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Summary This paper studies the error in forecasting an autoregressive process with a
deterministic component. We show that when the data are strongly serially correlated, fore-
casts based on a model that detrends the data using OLS before estimating the autoregressive
parameters are much less precise than those based on an autoregression that includes the
deterministic components, and the asymptotic distribution of the forecast errors under the
two-step procedure exhibits bimodality. We explore the conditions under which feasible GLS
trend estimation can lead to forecast error reduction. The finite sample properties of OLS and
feasible GLS forecasts are compared with forecasts based on unit root pretesting. The pro-
cedures are applied to 15 macroeconomic time series to obtain real time forecasts. Forecasts
based on feasible GLS trend estimation tend to be more efficient than forecasts based on OLS
trend estimation. A new finding is when a unit root pretest rejects non-stationarity, use of GLS
yields smaller forecast errors than OLS. When the series to be forecasted is highly persistent,
GLS trend estimation in conjunction with unit root pretests can lead to sharp reduction in
forecast errors.

Keywords: Forecasting, Trends, Unit root, GLS estimation.

1. INTRODUCTION

An important use of econometric modeling is generating forecasts. If one is interested in forecast-
ing a single economic time series, the starting point is often autoregressive models. Alternatively,
one could base forecasts on structural models that incorporate economic theory. The usefulness
of structural models is often measured by forecast precision compared to those of autoregressive
models. Given the many uses of forecasts from autoregressive models, it seems sensible to con-
struct these forecasts using the best methodology possible. We show in this paper that the way
in which deterministic components (mean, trend) are estimated matters in important ways when
the data are strongly serially correlated. In particular, we show that use of GLS detrending can
improve forecasts compared to OLS when the errors are highly persistent.
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Consider data generated by the trend plus noise model:

yt = mt + ut , (1)

ut = αut−1 + et , (2)

mt = δ0 + δ1t + · · · + δpt p (3)

whereet ∼ i .i .d.(0, σ 2
e ), and p is the order of the polynomial in time. We restrict attention to

the empirically relevant cases ofp = 0 and p = 1. We focus on AR(1) errors for the sake
of simplicity as it enables derivation of asymptotic results and more importantly, it provides
intuition as to how the trend estimates affect forecasts.1

An appealing feature of the trend plus noise model is that the unconditional mean of the series
does not depend on the dynamic parameterα. In contrast, the unconditional mean of a process
generated byyt = c + αyt−1 + et depends onα. In particular, for|α| < 1, E(yt ) = c/(1 − α),
whereas forα = 1, E(yt ) = E(y0)+ct. Because we consider both stationary and unit root errors,
it is important for clarity that the unconditional mean parameters, i.e. trend parameters, do not
depend onα. In addition the trend plus noise model has been analyzed by Elliottet al. (1996),
Canjels and Watson (1997), Phillips and Lee (1996) and Vogelsang (1998) to study the role of
trend parameter estimation in inference. Some results from these papers are directly useful for
analyzing the behavior of forecasts.

Assuming a quadratic loss function, the minimum mean squared error of theh-step ahead
forecast ofyt , conditional upon lags ofyt , is

yt+h|t = mt+h + αh(yt − mt ). (4)

If we write the DGP as
yt = β0 + β1t + αyt−1 + et , (5)

whereβ0 = (1 − α)δ0 + αδ1, β1 = (1 − α)δ1, theh step ahead forecast is

yt+h|t =

h−1∑
i =0

αi (β0 + β1(t + h − i )) + αhyt . (6)

If we know α andδ = (δ0, δ1)
′, the two parameterizations give exactly the same forecasts

since one model can be reparameterized as the other exactly. However,α andδ are population
parameters which we do not observe. In practice, we have three choices. First, we can jointly
estimate the parameters by quasi-maximum likelihood. Second, we can first obtain estimates of
δ by OLS or GLS, detrend the data, then estimateα by OLS, and ultimately use (4) to generate
forecasts. Third, we can estimateβ0, β1, andα simultaneously from (5) by OLS and then use (6)
to make forecasts. In this paper, we focus on the latter two least squares method. We refer to
these procedures as one-step and two-step procedures respectively.2

A quick review of textbooks reveals that, although (1) and (2) are often used instead of (5)
to present the theory of optimal prediction,3 the practical recommendation is not unanimous.

1We would expect to obtain similar results for more general ARMA models. Clearly, generalization of our results to
ARMA models is worth considering in future work, though economic forecasting exercises tend to favor simple, low
order, autoregressive models, see Stock and Watson (1998).
2Maximum likelihood and feasible GLS are equally efficient asymptotically in the strictly stationary framework. Esti-

mation by GLS will be considered below.
3See, for example, Hamilton (1994, p. 81) and Boxet al. (1994, p. 157). An exception is Clements and Hendry (1994).
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For example, Pindyck and Rubinfeld (1998, p. 565) and Johnston and DiNardo (1997, p. 192,
232) used (1) and (2) to motivate the theory, but the examples appear to be based upon (5) (e.g.
see Table 7.15 of Johnston and DiNardo (1997)). Examples considered in Diebold (1997), on
the other hand, are based on an estimated trend function with a correction for serial correlation
in the noise component (e.g. p. 231). This is consistent with assuming (4) as the forecasting
model.

This paper is motivated by the fact that whileyt+h|t is unique, its feasible counterpart is not.
Depending on the treatment of the deterministic terms, the mean-squared forecast errors can be
different. Efficient estimation of the trend coefficients and ofα have separately received a great
deal of attention in the literature.4 The theme of this paper is that when the objective of the
exercise is forecasting, estimation of these parameters can no longer be considered in isolation.
This is especially important when the data are highly persistent.5

In this paper, we focus on two issues. Do the one- and two-step OLS forecasts differ in
ways that should matter to practitioners? Does efficient estimation of the deterministic com-
ponents improve forecasts? The answers to both of these questions are yes. Our results pro-
vide three useful recommendations for practitioners. First, if OLS is used to construct fea-
sible forecasts, then one-step OLS usually leads to better forecasts than two-step OLS. Sec-
ond, GLS estimation of the deterministic trend function, especially Prais–Winsten GLS, usu-
ally improves forecasts over OLS. Third, following unit root pretests (which are useful with
highly persistent series) GLS forecasts should be used when the unit root null is rejected. Specif-
ically, forecasts based on what is referred to as thePW1 procedure below yield gains over
the OLS procedures both in simulations and in empirical applications, and it is easy to imple-
ment.

The remainder of the paper is organized as follows. Theoretical and empirical properties of
the forecast errors under least squares and GLS detrending are presented in Sections 2 and 3. In
Section 4, we compare the forecasting procedures as applied to some common macroeconomic
time series. Proofs are given in an appendix. We begin in the next section with forecasts based
on OLS estimation of the trend function.

2. FORECASTS UNDER LEAST SQUARES ESTIMATION

Throughout our analysis, we assume that the data are generated by (1). Given{yt }
T
t=1, we con-

sider the one-step ahead forecast error given information at timeT ,

eT+1|T = yT+1 − ŷT+1|T

= yT+1 − yT+1|T + yT+1|T − ŷT+1|T

= eT+1 + êT+1|T ,

whereeT+1 = yT+1 − yT+1|T and̂eT+1|T = yT+1|T − ŷT+1|T . The innovation,eT+1, is unfore-
castable given information at timeT and is beyond the control of the forecaster. A forecast is
best in a mean-squared sense ifŷT+1|T is made as close toyT+1|T as measured by mean squared
error. Throughout, we refer tôeT+1|T as the forecast error.

4See Canjels and Watson (1997) and Vogelsang (1998) for inference onδ̂1 whenut is highly persistent.
5Stock (1995, 1996, 1997) considers forecasting time series with a large autoregressive root in the absence of a deter-

ministic component. Diebold and Kilian (2000) also consider forecasting highly persistent time series with a simple linear
deterministic trend function, but they focus on the effects of unit root pretests rather than trend function estimation.
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We consider two strategies, labelledOLS1 andOLS2 hereafter:

(1) OLS1: Estimate (5) by OLS directly and then use (6) for forecasting.
(2) OLS2: Estimateδ from (1) by OLS to obtain̂ut = yt − m̂t . Then obtain̂α from (2) by

OLS withut replaced bŷut . Forecasts are obtained from (4).

2.1. Finite sample properties

We first consider the finite sample properties of the forecast errors using Monte-Carlo experi-
ments. Focusing on AR(1) processes, we generate data according to (1) and (2) forα = −0.4,
0, 0.4, 0.8, 0.9, 0.95, 0.975, 0.99, 1.0, 1.01. We setδ0 = δ1 = 0 without loss of generality. The
choice of the parameter set reflects the fact that many macro-economic time series are highly and
positively autocorrelated. The errors areN(0, 1) generated using the rndn() function in Gauss
V3.27 with seed= 99. For this section, we assume thatu1 = 0. Results reported in Section 3.1
suggest that the rankings ofOLS1 andOLS2 do not depend critically on this assumption onu1.

We useT = 100 in the estimations to obtain up toh = 10 steps ahead forecasts. We use
10 000 replications to obtain the forecast errorsêT+h|T = yT+h|T − ŷT+h|T , and then eval-

uate the root mean-squared error (RMSE),
√

E(̂e2
T+h|T ), and the mean absolute error (MAE),

E(|̂eT+h|T |). The MAE and the RMSE provide qualitatively similar information and only the
RMSE will be reported.

Table 1(a) reports results forh = 1 (one step ahead forecasts). As benchmarks, we consider
two infeasible forecasts: (i)OLSα

2 which assumesα is known and (ii)OLSδ
2 which assumesδ

is known. From these, we see that whenp = 0, the error in estimatingα dominates the error in
estimatingδ0. But whenp = 1, the error in̂δ dominates unlessα ≥ 1.0. The RMSE forOLS2
is smaller than the sum ofOLSα

2 andOLSδ
2. The RMSE ath = 10 confirms that the error from

estimatingα vanishes whenα is far away from one but increases (approximately) linearly with
the forecast horizon whenα is close to unity. However, the error in estimatingδ does not vanish
with the forecast horizon even whenα = 0 as the RMSE forOLSα

2 shows.
The RMSE forOLS1 andOLS2 when both parameters have to be estimated are quite similar

whenα < 1.0 for p = 0 and whenα < 0.8 for p = 1. These similarities end as the error process
becomes more persistent.6 When p = 0, OLS2 exhibits a sudden increase in RMSE and is
sharply inferior toOLS1 at α = 1. Whenp = 1 the RMSE forOLS1 is always smaller than
OLS2 whenα ≥ 0.8. The difference is sometimes as large as 20% whenα is close to unity.
Results forh = 10 in Table 1(b) show a sharper contrast in the two sets of forecast errors. For a
given procedure, the forecast errors are much larger whenp = 1.

The finite sample simulations show that the method of trend estimation is by and large irrel-
evant whenα is small. However, whenp = 0, the forecast errors forOLS1 exhibit a sharp
decrease atα = 1, while those ofOLS2 show a sharp increase. Whenp = 1, one step least
squares also clearly dominates two steps least squares in terms of RMSE when the data are
persistent. Thus, for empirically relevant cases whenα is large, the method of trend estimation
matters for forecasting. In the next subsection, we report an asymptotic analysis which provides
some theoretical explanations for these simulation results.

6Sampson (1991) showed that under least squares trend estimation, the deterministic terms have a higher order effect
on the forecast errors whenut is non-stationary.
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Table 1. (a) RMSE of OLS forecast errors:T = 100,h = 1.

α OLS1 OLS2 OLSα
2 OLSδ

2 OLS1 OLS2 OLSα
2 OLSδ

2

p = 0 p = 1

−0.400 0.142 0.141 0.100 0.100 0.228 0.225 0.205 0.100

0.000 0.143 0.141 0.099 0.101 0.228 0.225 0.203 0.101

0.400 0.144 0.143 0.099 0.101 0.230 0.228 0.202 0.101

0.800 0.153 0.152 0.096 0.104 0.242 0.249 0.200 0.104

0.900 0.163 0.162 0.092 0.108 0.253 0.270 0.196 0.108

0.950 0.175 0.173 0.084 0.114 0.263 0.292 0.186 0.114

0.975 0.183 0.179 0.068 0.122 0.264 0.310 0.169 0.122

0.990 0.180 0.180 0.041 0.131 0.257 0.319 0.146 0.131

1.000 0.174 0.196 0.000 0.142 0.244 0.314 0.109 0.142

1.010 0.191 0.292 0.087 0.161 0.220 0.297 0.036 0.161

(b) RMSE of OLS forecast errors:T = 100, h = 10.

α OLS1 OLS2 OLSα
2 OLSδ

2 OLS1 OLS2 OLSα
2 OLSδ

2

p = 0 p = 1

−0.400 0.071 0.071 0.071 0.001 0.167 0.167 0.167 0.001

0.000 0.100 0.099 0.099 0.000 0.233 0.231 0.231 0.000

0.400 0.166 0.165 0.165 0.001 0.384 0.379 0.379 0.001

0.800 0.471 0.450 0.429 0.159 1.008 0.984 0.972 0.159

0.900 0.767 0.720 0.601 0.410 1.487 1.466 1.365 0.410

0.950 1.054 0.976 0.675 0.669 1.843 1.874 1.569 0.669

0.975 1.244 1.134 0.613 0.897 1.994 2.141 1.572 0.897

0.990 1.305 1.204 0.394 1.123 1.986 2.284 1.427 1.123

1.000 1.315 1.436 0.000 1.345 1.830 2.217 1.090 1.345

1.010 1.715 2.684 0.911 1.681 1.507 1.983 0.364 1.681

Note: OLS1 andOLS2 are forecasts based on (6) and (4) respectively.OLSα
2 refers toOLS2

with α assumed known.OLSδ
2 refers toOLS2 with δ assumed known.

2.2. Asymptotic properties of OLS forecasts

The goal of this section is to provide an asymptotic approximation for the sampling behavior of
the forecast errors, and to use the asymptotic representations to provide theoretical explanations
for why OLS1 and OLS2 give different forecasts. Because the difference betweenOLS1 and
OLS2 occurs for 0.8 ≤ α ≤ 1.01, a useful asymptotic approximation is obtained by using a
local-to-unity framework with non-centrality parameterc to characterize the DGP as:

yt = δ0 + δ1t + ut ,

ut = αT ut−1 + et ,

αT = 1 +
c

T
,

c© Royal Economic Society 2002
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u1 =

[κT]∑
i =0

αi
T e1−i , (7)

whereet is a martingale difference sequence with 2+d moments for somed > 0 andE(e2
t ) = 1,

[x] is the integer part ofx, andκ ∈ [0, 1]. It can be shown that the forecast errors depend on
δ̂ − δ, which can be expressed in terms of stochastic processes that are invariant toδ (see the
appendix). Because of this invariance toδ, without loss of generality we can setδ0 = δ1 = 0.
For a given sample size,ut is locally stationary whenc < 0 and locally explosive whenc > 0,
but becomes an integrated process as the sample size increases to infinity.

The model of the initial condition follows Canjels and Watson (1997) and allows several
relevant special cases. Using backward substitution we have

ut =

t−2∑
i =0

αi
T et−i + αt−1

T u1 =

t−2∑
i =0

αi
T et−i + αt−1

T

[κT]∑
i =0

αi
T e1−i .

Let ⇒ denote weak convergence. Given the assumptions onet , a functional central limit theorem
applies to both terms ofut :

T−1/2
[rT ]−2∑

i =0

αi
T et−i ⇒ Jc(r ), T−1/2

[κT]∑
i =0

αi
T e1−i ⇒ J−

c (κ),

where Jc(r ) and J−
c (r ) are given byd Jc(r ) = cJc(r ) + dW(r ) and d J−

c (r ) = cJ−
c (r ) +

dW−(r ) respectively, withW(r ) and W−(r ) being independent standard Wiener processes.
Because limT→∞ α

[rT ]

T = limT→∞(1 + c/T)[rT ]
= exp(rc), it directly follows that

T−1/2u[rT ] ⇒ Jc(r ) + exp(rc)J−
c (κ) ≡ J∗

c (r ).

Whenκ = 0, u1 = e1 andT−1/2u1 = op(1). We adopt the standard convention thatJ−
c (0) = 0

in which caseT−1/2u[rT ] ⇒ Jc(r ). Therefore, theκ = 0 case is asymptotically equivalent to
settingu1 = 0. Whenκ > 0, T−1/2u1 ⇒ J−

c (κ) = Op(1). In this case, the initial condition is
modeled as evolving from past unobserved observations going back[κT] time periods. Because
we are modeling the errors as nearlyI (1), u1 = Op(T1/2).

The asymptotic behavior of the forecast errors depends on demeaned and detrended variants
of J∗

c (r ) which are the limits of OLS residuals,̂ut , obtained from the regressions ofut on 1 when
p = 0, and on 1 andt when p = 1. Specifically we have

p = 0 : T−1/2û[rT ] ⇒ J̄∗
c (r ) = J∗

c (r ) −

∫ 1

0
J∗

c (s)ds,

p = 1 : T−1/2û[rT ] ⇒ J̃∗
c (r ) = J∗

c (r ) − (4 − 6r )

∫ 1

0
J∗

c (s)ds− (12r − 6)

∫ 1

0
s J∗

c (s)ds.

If a detrending procedure can removemt without leaving asymptotic effects on the data,J̄∗
c (r )

and J̃∗
c (r ) would have been identicallyJ∗

c (r ). Least squares detrending evidently leaves non-
vanishing effects on the detrended data when errors are highly persistent. It is this observation
that suggests GLS detrending can lead to more precise forecasts. Not surprisingly, the asymptotic
distributions of the forecast errors all depend on the limiting distribution ofT (̂α − α). Let ĉ =

c© Royal Economic Society 2002
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limT→∞ T (̂α − 1). Then, it directly follows thatT (̂α −α) = T (̂α − 1− c/T) ⇒ (̂c− c). When
α is estimated by least squares, we more specifically have:

ĉ − c =

∫ 1
0 Bc(r )dW(r )∫ 1

0 Bc(r )2dr
≡ 8(Bc(r ), W)

whereBc(r ) = J̄∗
c (r ) when p = 0, andBc(r ) = J̃(r )∗c when p = 1.

We use two theorems to summarize the asymptotic results.

Theorem 2.1.(OLS1) Let the data be generated by(7). Let p be the order of the polynomial in
time. Let̂eT+1|T be obtained by one-step OLS estimation ofβ andα.

• For p = 0, T1/2̂eT+1|T ⇒ W(1) − (̂c − c) J̄∗
c (1).

• For p = 1, T1/2̂eT+1|T ⇒
∫ 1

0 (2 − 6r )dW(r ) − (̂c − c) J̃∗
c (1).

Theorem 2.2.(OLS2) Let the data be generated by(7). Let p be the order of the polynomial in
time. Let̂eT+1|T be obtained by two steps OLS estimation ofδ and thenα.

• For p = 0, T1/2̂eT+1|T ⇒ c[J∗
c (1) − J̄∗

c (1)] − (̂c − c) J̄∗
c (1).

• For p = 1, T1/2̂eT+1|T ⇒ c[J∗
c (1)− J̃∗

c (1)]+[
∫ 1

0 (6−12r )J∗
c (r )dr ]− (̂c−c) J̃∗

c (1).

The main implication of the two theorems is that forecasts based uponOLS1 andOLS2 are
not asymptotically equivalent.7 The difference is not due to estimation ofα becauseOLS1 and
OLS2 share the same dependence asymptotically onĉ. The difference betweenOLS1 andOLS2
arises from the differences in the estimation of the trend parameters. An interesting property of
OLS1 is that the sampling variability in the forecast errors from the trend estimates do not depend
on c (i.e. α) while for OLS2 there is a dependence onc. Therefore, forecasts based onOLS2
are more sensitive toα, and this explains why the RMSE ofOLS2 forecasts showed large jumps
(relative toOLS1) for α close to one in the simulations.

Intuitively, OLS2 is inferior becauseδ0 is not identified whenc = 0 and hence is not con-
sistently estimable whenα = 1. By continuity, δ̂0 is imprecisely estimated in the vicinity of
c = 0. In the local to unity framework,T−1/2(̂δ0 − δ0) is Op(1) and has a non-vanishing effect
on OLS2, and consequently, the forecast error is large. Theorem 2.2 confirms that this intuition
also applies forp = 1. The forecast errors underOLS2 are thus unstable and sensitive toc
aroundc = 0. Theorems 2.1 and 2.2 illustrate in the most simple of models the care with which
deterministic parameters need to be estimated when constructing forecasts.

The asymptotic results given by Theorems 2.1 and 2.2 can be used to understand the finite
sample behavior of the conditional forecast errors and to shed light on the bias and the RMSE of
the forecast errors asc varies. Five values ofc are considered:−15,−5,−2, 0, 1. We approximate
the limiting distributions by approximatingW(r ) and Jc(r ) using partial sums ofi .i .d. N(0, 1)

errors with 500 steps in 10 000 simulations.8 Given that the initial condition was set to zero in
the simulations in the previous subsection, we focus onκ = 0 in which caseJ∗

c (r ) = Jc(r ). We
do not report asymptotic approximations for the case ofκ > 0.

7Similar asymptotic results were also obtained for long horizon forecasts with horizonh satisfyingh/T → λ ∈ (0, 1).
8The asymptotic MSE are in close agreement with the finite sample simulations forT = 500 which we did not report.

In particular, the RMSE forp = 0 at α = 1 are 0.078 and 0.089 respectively. The RMSE based on the asymptotic
approximations are 0.0762 and 0.0877 respectively. Forp = 1, the finite sample RMSE are 0.109 and 0.143. The
asymptotic approximations are 0.108 and 0.142 respectively.
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Densities of the asymptotic distributions are estimated using the Gaussian kernel with band-
width selected as in Silverman (1986). These are plotted in Figures 1 and 2 forp = 0 and
1 respectively. The result that stands out is that the dispersion ofOLS2 is very sensitive to
whetherc ≥ 0. This is consistent with our finite samples results. A notable aspect of Figure 1 is
that the distribution of forecast errors forOLS2 is bimodal whenp = 0 andc = 0, i.e. when
there is a unit root.9 In this case, the forecast error underOLS2 is −(yT − m̂T )(̂α − α) in the
limit. Sinceα̂ is downward biased, the forecast errors will be positive ifyT −mT > 0.10 Figure 3
presents the limiting error distributions conditional onyT − mT > 0, and conditional median
bias in the forecast errors is confirmed. Thus, when the deterministic terms have to be estimated,
êT+1|T can also be expected to be positive ifyT − m̂T > 0. The bimodality in Figure 1 arises
becauseyT −m̂T is unconditional and can take on positive or negative values. In other cases when
the sign of the prediction error depends on terms other than the bias inα̂, conditional median bias
does not immediately imply bimodality in the forecast error distribution.

3. FORECASTS UNDER GLS ESTIMATION

The foregoing analysis shows thatOLS1 dominatesOLS2 when forecasting persistent time
series. This raises the obvious question as to whether there exists a two-step procedure that
can improve upon one-step least squares detrending. Two options come to mind. One possibility
is to fix α to remove estimation ofα. For highly persistent data, imposing a unit root (setting
α = 1) has been treated as a serious option. We will return to this subsequently. The other
option is to reduce variability in the estimation of the deterministic trend parameters. Recall that
the OLS estimate ofδ0 is inconsistent and in fact, there is no consistent estimate ofδ0 when
errors are highly persistent in the local-to-unity framework. However, improved forecasts can
be obtained if estimation of the trend parameters leaves no asymptotic effects on the detrended
data. GLS estimation ofδ is the obvious way to achieve this goal. In addition to improving fore-
casts through more precise trend parameters estimates, GLS potentially can improve forecasts by
reducing sampling variability in estimates ofα. This gain can be large when the data are highly
persistent, as suggested by the findings of Elliottet al. (1996) concerning the dependence of
the power of unit root tests on estimated trends. Thus, GLS estimation ofδ has the potential to
improve forecasts in two distinct ways.

The usefulness of GLS in forecasting was first analyzed by Goldberger (1962) who consid-
ered optimal prediction based upon the modelyt = δ′zt + ut but E(uu′) = � is non-spherical.
Goldberger showed that the best linear unbiased prediction can be obtained by quasi-differencing
the data to obtain GLS estimates ofδ, and then exploit the fact that ifut is serially corre-
lated, the relation between theuT+h anduT can be used to improve the forecast. Whenut is
an AR(1) process with known parameterα, the one-step ahead optimal prediction reduces to
yT+1 = δ̂′zT+1 + α(yT − δ̂′zT ). This amounts to using (4) for forecasting with an efficient
estimate ofδ, assumingα is known.

9Abadir and Paruolo (1997) noted that kernel smoothers may not pick up discontinuities in the underlying densities.
But the bimodality displayed in Figures 1 and 2 can be seen even from the histograms of the simulated distributions.
10Using Edgeworth expansions and assumingα is bounded away from the unit circle, Phillips (1979) showed that the
exact distribution of̂eT+h|T will be skewed to the left ifyT > 0 once the dependence ofα̂ on yT is taken into account.
His result is for strictly stationary processes and applies in finite samples. Thus, the median bias conditional onyT > 0
observed here does not arise for the same reason. Stock (1996) evaluated the forecasts conditional onyT > 0 assuming
mt is known and confirms asymptotic median bias.
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Figure 1. (a) OLS1 p = 0. (b) OLS2 p = 0.
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Figure 2. (a) OLS1 p = 1. (b) OLS2 p = 1.
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Figure 3. (a) OLS1 p = 0: conditional onyT − mT > 0. (b) OLS2 p = 0: conditional onyT − mT > 0.
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Figure 4. (a) OLS1 p = 1: conditional onyT − mT > 0. (b) OLS2 p = 1: conditional onyT − mT > 0.
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Trend estimation by GLS requires quasi-differencing the data at someα. We consider the
Prais–Winsten (PW) transformation which includes information from the first observation, and
the Cochrane–Orcutt (CO) transformation which drops information of the first observation. Spe-
cifically, given α and zt = (1, t)′, the quasi-differenced datay+

t and z+
t , are constructed as

follows:

• PW: for t = 2, . . . T , y+
t = yt − αyt−1, z+

t = zt − αzt−1, with y+

1 = y1 andz+

1 = z1,
• C O: for t = 2, . . . T , y+

t = yt − αyt−1, z+
t = zt − αzt−1.

Then,̃δ = (z+′z+)−1(z+′y+) is the GLS estimate ofδ, andũt = yt − δ̃′zt is the GLS detrended
data. The treatment of the initial condition under thePW follows Canjels and Watson (1997),
Elliott et al.(1996) and Phillips and Lee (1996), who also favor quasi-differencing when the data
are highly persistent.11

Goldberger assumedα is known, but in practice, this too has to be estimated. The method
used to estimateα will inevitably affect the distribution of the trend parameter estimates and thus
the forecast errors. We leṫα denote a generic estimator ofα used for obtaining feasible GLS
estimates of the trend parameters. Canjels and Watson (1997) showed that the limiting behavior
of the trend parameter estimates depends onα̇ in a complicated way. To make general observa-
tions about the relative merits of the different detrending methods in the asymptotic analysis, we
defineċ = limT→∞ T(α̇ − 1). Then, it directly follows thatT(α̇ − α) ⇒ (ċ − c). If α̇ were
obtained by (5) using OLS, for example,ċ − c = 8(Bc(r ), W), where againBc(r ) = J̄∗

c (r )

when an intercept is included, andBc(r ) = J̃∗
c (r ) when a time trend is also included in the

regression. We also definedẆ(r ) = dW(r ) − (ċ − c)J∗
c (r ) which is the asymptotic analog of

the quasi-differenced errors where the effect of quasi-differencing is captured by(ċ − c)J∗
c (r )

(see the appendix for details).
As in the case of OLS forecasts, the behavior of the GLS detrended errors plays an important

role in the asymptotic behavior of the GLS forecasts. UnderC O detrending,

p = 0 : T−1/2ũ[rT ] ⇒ J∗
c (r ) + ċ−1

∫ 1

0
dẆ(s),

p = 1 : T−1/2ũ[rT ] ⇒ J∗
c (r )

− ċ−2
∫ 1

0
(6 − 4ċ − 12s + 6sċ)dẆ(s) − r ċ−1

∫ 1

0
(6 − 12s)dẆ(s) ≡ C(r ).

UnderPW detrending and witḣθ =
(
1 − ċ +

1
3 ċ2

)−1,

p = 0 : T−1/2ũ[rT ] ⇒ J∗
c (r ) − J−

c (κ),

p = 1 : T−1/2ũ[rT ] ⇒ J∗
c (r ) − J−

c (κ) −

r θ̇

(∫ 1

0
(1 − ċs)dẆ(s) + (1 −

1
2 ċ)J−

c (κ)

)
≡ P(r ).

Recall that detrending leaves no asymptotic effects on the data only whenT−1/2ũ[rT ] ⇒

J∗
c (r ). Clearly, theC O does not achieve this goal. UnderPW, this will also be the case except

when p = 0 andκ = 0 (i.e.u1 = Op(1)), in which case,J−
c (0) = 0. Thus when the data are

persistent orα is being estimated, the efficiency of GLS forecasts cannot be presumed.
11Canjels and Watson (1997) referred to this as conditional GLS (their CC). We label this asPW only because it retains
information in the first observation, in the same spirit as the Prais–Winsten transformation.
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Note that the estimator used forα when constructing the feasible GLS estimates of the trend
parameters does not necessarily have to be the same as the estimator ofα used in the forecasting
equation (4). To permit this level of generality, we continue to useα̇ to generically denote the
estimate ofα used for feasible GLS estimation of the trend parameters. We useα̈ to generically
denote the estimate ofα used in (4), and we definëc = limT→∞ T(α̈ − 1) so thatT(α̈ − α) ⇒

(c̈ − c). In many cases,̈α is constructed from a regression ofũt on ũt−1, whereũt is feasible
GLS detrended data usinġα. It is only in the special case whenα is not re-estimated thaṫα and
α̈ coincide. The limiting distributions of feasible GLS forecast errors are now summarized in the
following two theorems.

Theorem 3.1.(C O) Let the data be generated by(7). Let p be the order of the polynomial in
time. Let̃eT+1|T be the forecast error obtained with the trend parameters estimated by C O.

• For p = 0, T1/2̃eT+1|T ⇒ −cċ−1
∫ 1

0 dẆ(s) − (c̈ − c)(J∗
c (1) + ċ−1

∫ 1
0 dẆ(s)).

• For p = 1, T1/2̃eT+1|T ⇒ c(J∗
c (1)−C(1))− ċ−1

∫ 1
0 (6−12s)dẆ(s)− (c̈−c)C(1).

Theorem 3.2.(PW) Let the data be generated by(7). Let p be the order of the polynomial in
time. Let̃eT+1|T be the forecast error obtained with the trend parameters estimated by PW.

• For p = 0, T1/2̃eT+1|T ⇒ cJ−
c (κ) − (c̈ − c)(J∗

c (1) − J−
c (κ)).

• For p = 1, T1/2̃eT+1|T ⇒ c(J∗
c (1)− P(1))− θ̇

(∫ 1
0 (1− ċs)dẆ(s)+ ċ

(
1−

1
2 ċ
)
J−

c (κ)
)

−(c̈ − c)P(1).

The theorems show thatPW andC O do not generate equivalent forecasts and they both
differ from the OLS forecasts. Even in the special case of a unit root withc = 0, the asymptotic
expressions depend on bothċ and c̈ in highly nonlinear ways. However, two observations can
be made. First, because theC O forecast error distributions depend onċ−1 and ċ can take on
values close to zero, theC O forecasts will likely be subject to large errors (see Canjels and
Watson (1997) for a similar result). Second, the forecast error distributions depend on the initial
condition, a result that parallels that of Elliott (1999) for the power of unit root tests.

Even though the trend parameters estimated by GLS are more efficient than those esti-
mated by OLS, there is only one case when GLS leads unambiguously to more precise forecasts
than OLS.

Lemma 3.1.When p= 0, u1 = Op(1) and α̈ is constructed using PW–GLS demeaned data,
then

T1/2̃eT+1|T ⇒ −8(Jc(r ), W)Jc(1).

When p = 0 andu1 = Op(1), Theorem 3.2 implies thatT1/2̃eT+1|T ⇒ −(c̈ − c)Jc(1). The
forecast error distribution now depends on trend estimation only to the extent that estimation of
the autoregressive parameter in the forecasting equation is based on demeaned data. But Elliottet
al. (1996) showed if̈α were constructed using PW–GLS demeaned data, the distribution ofc̈− c
is the same as if the mean were known. It follows that ifα̈ were constructed using PW–GLS
demeaned data, the effects of trend estimation on the forecast error can be completely removed.
But note that this result requires efficient estimation of bothδ and α, i.e. iterated GLS. For
example, ifα̈ were constructed using OLS (rather than PW–GLS) data, thenc̈ − c = 8( J̄c, W),
T1/2̃eT+1|T ⇒ −8( J̄c, W)Jc(1), and the result of the lemma does not follow.
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In all other cases, GLS estimation ofδ has non-vanishing effects on the forecast error distri-
bution. Although one cannot unambiguously rank the different detrending methods for forecast-
ing, results of Canjels and Watson (1997) suggest that GLS estimation of the trend parameters
is more precise than OLS estimation, and that thePW provides more precise estimates ofδ1
thanC O. One might therefore expect GLS detrending to provide more efficient forecasts than
OLS detrending, and in particular, thatPW might generate smaller forecast errors than theC O.
Simulation results in the next subsection generally support these orderings.

3.1. Finite sample properties of feasible GLS forecasts

In this section, we consider six GLS estimators. Feasible GLS forecasts usingn iterations for
QD = PW or C O are constructed using the following steps:

(1) Obtain,α̇, an initial estimate ofα by OLS1.
(2) Transformyt andzt by QD to obtainy+

t andz+
t . Then computẽδ = (z+′z+)−1(z+′y+)

andm̃t = δ̃′zt . Construct the forecast using (4),yt+h|t = m̃t+h+ α̇h(yt − m̃t ).
(3) If n = 0, stop. Ifn = 1, then re-estimateα from (1) with ut replaced bỹut to give α̈ and

obtainyt+h|t = m̃t+h+ α̈h(yt − m̃t ). If n = 1, stop. Forn > 1, quasi-difference the data
at α̈, re-estimateδ, repeat the estimation ofα using the newly detrended data and repeat
until the change in̈α between iterations is small.

The objective of iterative estimation (n > 0) is to bring the estimates ofα andδ closer to
being jointly optimal. For models with no lagged dependent variable, the feasible GLS estimates
are as efficient as the maximum likelihood estimates asymptotically. Settingn = ∞ provides
a rough approximation to the forecast errors when the maximum likelihood estimator is used.
The use of OLS (the generic estimator) in step 1 is based on Rao and Griliches (1969) who find
that estimatingα from (5) by OLS is more efficient than estimating it from an autoregression
in least squares detrended data or by nonlinear least squares whenα is positive.12 In practice,α̇
could exceed unity, but quasi-differencing is valid only if|α̇| < 1. This problem is circumvented
in the simulations as follows. If an initial̇α exceeds one, it is reset to one prior toPW quasi-
differencing. Our theoretical results show that the distribution of theC O detrended data depends
on ċ−1 which does not exist wheṅc = 0. Numerical problems were indeed encountered if we
allow α̇ to be unity. Therefore underC O, we set the upper bound ofα̇ to 0.995.

The simulations are performed using four sets of assumptions onu1:

• Assumption A:u1 = e1 is fixed.
• Assumption B:u1 = e1 ∼ N(0, 1).
• Assumption C:u1 ∼ N(0, 1/(1 − α2)) for |α| < 1.
• Assumption D:u1 =

∑[κT]

j =0 α j e1− j , κ > 0.

Under A, we conditionu1 to a constant. Under B,u1 = Op(1) and does not depend on unknown
parameters. Under C,u1 depends onα. Elliott (1999) showed that unit root tests based on GLS
detrending are farther away from the asymptotic power envelope under C than B. Canjels and

12Using the regression modelyt = δ′zt + ut whereut is AR(1) with parameterα strictly bounded away from the unit
circle andzt does not include a constant, Rao and Griliches (1969) showed, via Monte-Carlo experiments, that GLS
estimation ofδ in conjunction with an initial estimate ofα obtained from (5) is desirable for the mean-squared-error ofδ̂

when|α| > 0.3.
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Watson (1997) found, under D, that the efficiency of estimatingδ1 by PW–GLS is reduced when
κ > 0. Assumption B is a special case of D withκ = 0. In the local asymptotic framework,
u1 is Op(T1/2) under both Assumptions C and D. Simulations are performed under the same
experimental design described earlier, except that under Assumption C, only cases with|α| < 1
are evaluated. Canjels and Watson (1997) found that for small values ofκ, thePW performs well.
Here, we report results forκ = 1, which is considerably large, to put thePW to a challenge.

The results withh = 1 andT = 100 are reported in columns 3 through 8 of Table 2 for
p = 0 and likewise in Table 3 forp = 1. The forecast errors are smaller, as expected, as
the sample size increases. Whenα < 0.8, the gain from GLS estimation over the two OLS
procedures is small, irrespective of the assumption onu1. This is perhaps to be expected since the
asymptotic equivalence of OLS and GLS detrending follows from the classic result of Grenander
and Rosenblatt (1957) whenut is stationary. However, as persistence inut increases, there are
notable differences.

Abadir and Hadri (2000) noted that the bias in the parameters estimated from a model without
deterministic components can increase with the sample size ifu1 is relatively large (e.g. exceed-
ing 32). To see if the mean-squared forecast errors exhibit non-monotonicity when deterministic
terms are present, Tables 4 and 5 report results forT = 50 while Tables 6 and 7 report results
for T = 250 for h = 10. Qualitatively, the results are not sensitive to the sample size. Com-
pared with the results for different sample sizes, we find no evidence of non-monotonicity, as the
forecast root-mean-squared errors fall with the sample size roughly at rate

√
T .

For p = 0, first notice thatPW0 displays a sharp increase in RMSE aroundα = 1 just like
OLS2 and PW0 gives less precise forecasts than either OLS forecast. This is the case whether
we conditionu1 to zero or let it be drawn from the unconditional distribution. This shows that
GLS estimation ofδ alone will not always reduce forecast errors. However,PW1 and PW∞,
greatly improves forecast precision overPW0 and OLS. This matches the intuition that efficient
forecasts depend on efficient estimation ofboththe trend and the slope parameters. WithC O on
the other hand, iteration does not make much difference andC O is usually dominated byPW1
andPW∞. NeitherPW1 nor PW∞ dominate the other with the best forecast depending onα and
u1. This dependence on the initial condition is predicted by theory but is problematic in practice
because the assumption onu1 cannot be validated. However, when the data are mildly persistent,
PW1 is similar toOLS1, when the data are moderately persistent,PW1 outperformsPW∞, and
when the data are extremely persistent,PW1 dominatesOLS1 and is second best toPW∞. It is
perhaps the best feasible GLS forecast whenp = 0.

Results forp = 1 are reported in Table 3. Because the contribution ofδ̂ to the forecast error
is large (as can be seen fromOLSα

2 in Table 1(a)), the reduction in forecast error due to efficient
estimation of trends is also more substantial. The results in Table 3 show that irrespective of the
assumption on the initial condition, the forecast errors are smallest withPW∞. Even at the one
period horizon, the error reduction is 30% overOLS2. From a RMSE point of view, the choice
among the feasible GLS forecasts is clear whenp = 1.

We also report results for two forecasts based on pretesting for a unit root. Settingα̂ = 1
will generate the best one-step ahead forecast if there is indeed a unit root, and in such a case,
even long horizon forecasts can be shown to be consistent. Of course, if the unit root is falsely
imposed, the forecast precision can suffer. But one can expect forecast error reduction if we
impose a unit root forα close to but not identically one. Campbell and Perron (1991) presented
some simulation evidence in this regard forp = 0, and Diebold and Kilian (2000) considered
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Table 2. (a) RMSE of GLS and UP forecast errors:p = 0, T = 100,h = 1, u1 = e1 = 0.
α OLS1 OLS2 C O0 PW0 C O1 PW1 C O∞ PW∞ U PPW1 U POLS1

0.000 0.143 0.141 0.143 0.142 0.143 0.142 0.143 0.142 0.148 0.148

0.400 0.144 0.143 0.144 0.143 0.144 0.143 0.144 0.143 0.146 0.147

0.800 0.153 0.152 0.153 0.146 0.153 0.146 0.153 0.147 0.151 0.157

0.900 0.163 0.162 0.163 0.145 0.163 0.144 0.163 0.146 0.175 0.187

0.950 0.175 0.173 0.174 0.145 0.175 0.141 0.175 0.139 0.174 0.182

0.975 0.183 0.179 0.179 0.159 0.180 0.143 0.180 0.140 0.142 0.146

0.990 0.180 0.180 0.173 0.205 0.174 0.152 0.175 0.145 0.102 0.105

1.000 0.174 0.196 0.168 0.287 0.163 0.165 0.164 0.153 0.068 0.070

(b) RMSE of GLS and UP forecast errors:p = 0, T = 100,h = 1, u1 = e1 ∼ N(0, 1).

α OLS1 OLS2 C O0 PW0 C O1 PW1 C O∞ PW∞ U PPW1 U POLS1

0.000 0.141 0.140 0.141 0.141 0.141 0.141 0.141 0.141 0.150 0.151

0.400 0.144 0.143 0.144 0.143 0.144 0.143 0.144 0.143 0.150 0.150

0.800 0.152 0.151 0.152 0.149 0.152 0.150 0.152 0.153 0.159 0.161

0.900 0.161 0.161 0.161 0.150 0.161 0.149 0.161 0.153 0.180 0.187

0.950 0.174 0.173 0.173 0.152 0.174 0.145 0.174 0.144 0.172 0.179

0.975 0.182 0.180 0.179 0.164 0.180 0.145 0.180 0.141 0.140 0.144

0.990 0.180 0.181 0.173 0.208 0.175 0.153 0.176 0.145 0.101 0.104

1.000 0.173 0.196 0.167 0.289 0.162 0.165 0.163 0.153 0.067 0.068

(c) RMSE of GLS and UP forecast errors:p = 0, T = 100,h = 1, u1 ∼ (0, 1/(1 − α2) |α| < 1.

α OLS1 OLS2 C O0 PW0 C O1 PW1 C O∞ PW∞ U PPW1 U POLS1

0.000 0.147 0.146 0.147 0.146 0.147 0.146 0.147 0.146 0.143 0.143

0.400 0.148 0.147 0.148 0.147 0.148 0.147 0.148 0.147 0.144 0.146

0.800 0.154 0.154 0.154 0.155 0.154 0.155 0.154 0.165 0.142 0.155

0.900 0.162 0.163 0.162 0.173 0.162 0.164 0.162 0.177 0.164 0.182

0.950 0.172 0.174 0.172 0.198 0.172 0.165 0.172 0.165 0.172 0.183

0.975 0.180 0.184 0.176 0.225 0.178 0.167 0.178 0.160 0.141 0.146

0.990 0.181 0.190 0.173 0.257 0.175 0.168 0.175 0.158 0.102 0.105

(d) RMSE of GLS and UP forecast errors:p = 0, T = 100,h = 1, u1 =
∑κT

j =0 α j e1− j , κ = 1.

α OLS1 OLS2 C O0 PW0 C O1 PW1 C O∞ PW∞ U PPW1 U POLS1

0.000 0.147 0.145 0.147 0.146 0.147 0.146 0.147 0.146 0.156 0.157

0.400 0.148 0.147 0.148 0.147 0.148 0.148 0.148 0.148 0.155 0.155

0.800 0.153 0.153 0.153 0.155 0.153 0.156 0.153 0.166 0.177 0.176

0.900 0.161 0.161 0.161 0.172 0.161 0.163 0.161 0.175 0.198 0.199

0.950 0.171 0.173 0.170 0.196 0.171 0.165 0.171 0.165 0.175 0.176

0.975 0.179 0.182 0.175 0.222 0.176 0.165 0.177 0.160 0.136 0.137

0.990 0.179 0.187 0.171 0.248 0.172 0.165 0.173 0.156 0.100 0.101

1.000 0.171 0.194 0.165 0.289 0.160 0.164 0.161 0.153 0.069 0.069

Note: OLS1 andOLS2 are forecasts based on (6) and (4) respectively.C On (Cochrane–Orcutt) andPWn
(Prais–Winsten) are forecasts based on GLS estimation of the trend function, with estimation ofα iterated
n times.U PPW1 is the forecast based on a unit root pretest wherePW1 is used if a unit root is rejected.
U POLS1 is the forecast based on a unit root pretest whereOLS1 is used if a unit root is rejected.

c© Royal Economic Society 2002



Forecasting 213

Table 3. (a) RMSE of GLS and UP forecast errors:p = 1, T = 100,h = 1, u1 = e1 = 0.
α OLS1 OLS2 C O0 PW0 C O1 PW1 C O∞ PW∞ U PPW1 U POLS1

0.000 0.228 0.225 0.228 0.227 0.228 0.227 0.228 0.227 0.227 0.228

0.400 0.230 0.228 0.230 0.227 0.230 0.227 0.230 0.227 0.227 0.230

0.800 0.242 0.249 0.242 0.227 0.242 0.226 0.242 0.226 0.251 0.262

0.900 0.253 0.270 0.253 0.231 0.253 0.225 0.253 0.223 0.254 0.259

0.950 0.263 0.292 0.280 0.245 0.263 0.227 0.263 0.222 0.209 0.210

0.975 0.264 0.310 0.298 0.265 0.264 0.232 0.264 0.221 0.175 0.176

0.990 0.257 0.319 0.312 0.279 0.257 0.233 0.257 0.218 0.149 0.150

1.000 0.244 0.314 0.332 0.274 0.242 0.222 0.242 0.204 0.123 0.123

(b) RMSE of GLS and UP forecast errors:p = 1, T = 100,h = 1, u1 = e1 ∼ N(0, 1).

α OLS1 OLS2 C O0 PW0 C O1 PW1 C O∞ PW∞ U PPW1 U POLS1

0.000 0.226 0.223 0.226 0.225 0.226 0.225 0.226 0.225 0.225 0.226

0.400 0.229 0.228 0.229 0.227 0.229 0.227 0.229 0.227 0.228 0.230

0.800 0.241 0.249 0.241 0.230 0.241 0.229 0.241 0.230 0.259 0.266

0.900 0.252 0.270 0.252 0.234 0.252 0.227 0.252 0.225 0.254 0.259

0.950 0.262 0.293 0.262 0.247 0.262 0.228 0.262 0.222 0.209 0.211

0.975 0.264 0.311 0.279 0.266 0.264 0.232 0.264 0.221 0.174 0.175

0.990 0.258 0.321 0.319 0.280 0.257 0.234 0.257 0.219 0.150 0.151

1.000 0.244 0.316 0.344 0.275 0.243 0.223 0.243 0.205 0.125 0.124

(c) RMSE of GLS and UP forecast errors:p = 1, T = 100,h = 1, u1 ∼ (0, 1/(1 − α2) |α| < 1.

α OLS1 OLS2 C O0 PW0 C O1 PW1 C O∞ PW∞ U PPW1 U POLS1

0.000 0.230 0.227 0.230 0.229 0.230 0.229 0.230 0.229 0.226 0.228

0.400 0.232 0.231 0.232 0.230 0.232 0.230 0.232 0.230 0.226 0.231

0.800 0.241 0.252 0.241 0.240 0.241 0.237 0.241 0.240 0.243 0.258

0.900 0.253 0.276 0.253 0.253 0.253 0.240 0.253 0.238 0.253 0.259

0.950 0.264 0.302 0.273 0.266 0.264 0.240 0.264 0.233 0.209 0.211

0.975 0.266 0.318 0.304 0.277 0.266 0.240 0.266 0.228 0.174 0.175

0.990 0.260 0.324 0.336 0.281 0.259 0.236 0.259 0.221 0.150 0.150

(d) RMSE of GLS and UP forecast errors:p = 1, T = 100,h = 1, u1 =
∑κT

j =0 α j e1− j , κ = 1.

α OLS1 OLS2 C O0 PW0 C O1 PW1 C O∞ PW∞ U PPW1 U POLS1

0.000 0.229 0.227 0.229 0.229 0.229 0.229 0.229 0.229 0.229 0.230

0.400 0.231 0.230 0.231 0.230 0.231 0.230 0.231 0.230 0.230 0.232

0.800 0.241 0.251 0.241 0.238 0.241 0.236 0.241 0.239 0.268 0.272

0.900 0.253 0.275 0.253 0.251 0.253 0.238 0.253 0.237 0.258 0.260

0.950 0.264 0.302 0.273 0.266 0.264 0.240 0.264 0.232 0.211 0.212

0.975 0.267 0.319 0.306 0.278 0.266 0.241 0.266 0.228 0.177 0.177

0.990 0.261 0.325 0.329 0.281 0.260 0.236 0.260 0.221 0.152 0.152

1.000 0.247 0.317 0.349 0.272 0.245 0.223 0.245 0.206 0.123 0.123

Note: OLS1 andOLS2 are forecasts based on (6) and (4) respectively.C On (Cochrane–Orcutt) andPWn
(Prais–Winsten) are forecasts based on GLS estimation of the trend function, with estimation ofα iterated
n times.U PPW1 is the forecast based on a unit root pretest wherePW1 is used if a unit root is rejected.
U POLS1 is the forecast based on a unit root pretest whereOLS1 is used if a unit root is rejected.
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Table 4. (a) RMSE of GLS and UP forecast errors:p = 0, T = 50,h = 1, u1 = e1 = 0.
α OLS1 OLS2 C O0 PW0 C O1 PW1 C O∞ PW∞ U PPW1 U POLS1

0.000 0.200 0.197 0.200 0.200 0.200 0.200 0.200 0.200 0.211 0.211

0.400 0.204 0.202 0.204 0.202 0.204 0.202 0.204 0.202 0.207 0.209

0.800 0.224 0.221 0.224 0.208 0.224 0.209 0.224 0.213 0.237 0.247

0.900 0.243 0.239 0.241 0.210 0.242 0.210 0.242 0.212 0.241 0.251

0.950 0.256 0.250 0.250 0.220 0.252 0.214 0.252 0.213 0.203 0.209

0.975 0.256 0.253 0.253 0.249 0.249 0.225 0.250 0.219 0.162 0.165

0.990 0.250 0.259 0.261 0.302 0.240 0.238 0.240 0.224 0.123 0.124

1.000 0.246 0.278 0.290 0.364 0.231 0.249 0.232 0.231 0.104 0.104

(b) RMSE of GLS and UP forecast errors:p = 0, T = 50,h = 1, u1 = e1 ∼ N(0, 1).

α OLS1 OLS2 C O0 PW0 C O1 PW1 C O∞ PW∞ U PPW1 U POLS1

0.000 0.201 0.198 0.201 0.200 0.201 0.201 0.201 0.201 0.213 0.213

0.400 0.206 0.203 0.206 0.204 0.206 0.204 0.206 0.204 0.214 0.216

0.800 0.223 0.221 0.223 0.212 0.223 0.213 0.223 0.222 0.246 0.252

0.900 0.241 0.238 0.240 0.217 0.241 0.214 0.241 0.218 0.240 0.247

0.950 0.254 0.250 0.249 0.226 0.252 0.215 0.252 0.214 0.200 0.205

0.975 0.254 0.253 0.253 0.251 0.248 0.222 0.249 0.216 0.159 0.162

0.990 0.248 0.258 0.260 0.301 0.238 0.233 0.238 0.219 0.124 0.126

1.000 0.242 0.275 0.285 0.362 0.229 0.243 0.229 0.223 0.103 0.103

(c) RMSE of GLS and UP forecast errors:p = 0, T = 50,h = 1, u1 ∼ N(0, 1/(1 − α2) |α| < 1.

α OLS1 OLS2 C O0 PW0 C O1 PW1 C O∞ PW∞ U PPW1 U POLS1

0.000 0.201 0.198 0.201 0.200 0.201 0.200 0.201 0.200 0.200 0.202

0.400 0.205 0.202 0.205 0.203 0.205 0.204 0.205 0.204 0.202 0.208

0.800 0.220 0.219 0.220 0.220 0.220 0.221 0.220 0.237 0.222 0.244

0.900 0.235 0.236 0.234 0.244 0.234 0.229 0.234 0.237 0.239 0.255

0.950 0.249 0.253 0.245 0.276 0.246 0.238 0.246 0.233 0.203 0.211

0.975 0.255 0.266 0.261 0.308 0.249 0.244 0.249 0.234 0.163 0.167

0.990 0.253 0.272 0.272 0.336 0.243 0.246 0.243 0.231 0.126 0.127

(d) RMSE of GLS and UP forecast errors:p = 0, T = 50,h = 1, u1 =
∑κT

j =0 α j e1− j , κ = 1.

α OLS1 OLS2 C O0 PW0 C O1 PW1 C O∞ PW∞ U PPW1 U POLS1

0.000 0.202 0.198 0.202 0.201 0.202 0.201 0.202 0.201 0.215 0.216

0.400 0.205 0.202 0.205 0.203 0.205 0.204 0.205 0.204 0.214 0.216

0.800 0.222 0.221 0.222 0.221 0.222 0.220 0.222 0.235 0.257 0.259

0.900 0.239 0.240 0.238 0.246 0.239 0.231 0.239 0.238 0.242 0.244

0.950 0.253 0.255 0.247 0.276 0.249 0.239 0.249 0.234 0.193 0.195

0.975 0.256 0.264 0.259 0.303 0.248 0.242 0.248 0.231 0.156 0.157

0.990 0.251 0.267 0.271 0.323 0.241 0.240 0.241 0.226 0.127 0.128

1.000 0.241 0.273 0.284 0.359 0.228 0.242 0.228 0.224 0.103 0.103

Note: OLS1 andOLS2 are forecasts based on (6) and (4) respectively.C On (Cochrane–Orcutt) andPWn
(Prais–Winsten) are forecasts based on GLS estimation of the trend function, with estimation ofα iterated
n times.U PPW1 is the forecast based on a unit root pretest wherePW1 is used if a unit root is rejected.
U POLS1 is the forecast based on a unit root pretest whereOLS1 is used if a unit root is rejected.
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Table 5. (a) RMSE of GLS and UP forecast errors:p = 1, T = 50,h = 1, u1 = e1 = 0.
α OLS1 OLS2 C O0 PW0 C O1 PW1 C O∞ PW∞ U PPW1 U POLS1

0.000 0.326 0.318 0.326 0.323 0.326 0.323 0.326 0.323 0.325 0.328

0.400 0.332 0.329 0.332 0.326 0.332 0.326 0.332 0.326 0.333 0.339

0.800 0.358 0.374 0.358 0.331 0.358 0.327 0.358 0.326 0.360 0.367

0.900 0.375 0.409 0.718 0.342 0.374 0.330 0.374 0.324 0.300 0.303

0.950 0.378 0.433 1.338 0.360 0.376 0.335 0.376 0.322 0.252 0.253

0.975 0.370 0.443 1.693 0.371 0.368 0.335 0.368 0.318 0.224 0.225

0.990 0.357 0.441 1.749 0.369 0.355 0.328 0.355 0.308 0.202 0.203

1.000 0.342 0.432 1.634 0.359 0.341 0.315 0.341 0.294 0.180 0.181

(b) RMSE of GLS and UP forecast errors:p = 1, T = 50,h = 1, u1 = e1 ∼ N(0, 1).

α OLS1 OLS2 C O0 PW0 C O1 PW1 C O∞ PW∞ U PPW1 U POLS1

0.000 0.327 0.318 0.327 0.323 0.327 0.323 0.327 0.323 0.325 0.328

0.400 0.333 0.329 0.333 0.326 0.333 0.326 0.333 0.326 0.334 0.340

0.800 0.356 0.372 0.356 0.332 0.356 0.328 0.356 0.327 0.358 0.364

0.900 0.371 0.406 0.420 0.342 0.371 0.328 0.371 0.322 0.296 0.299

0.950 0.372 0.429 1.060 0.359 0.371 0.331 0.371 0.318 0.248 0.250

0.975 0.364 0.440 1.517 0.371 0.362 0.334 0.362 0.317 0.222 0.223

0.990 0.352 0.441 1.607 0.372 0.350 0.329 0.350 0.310 0.203 0.203

1.000 0.339 0.433 1.467 0.363 0.337 0.318 0.337 0.297 0.182 0.181

(c) RMSE of GLS and UP forecast errors:p = 1, T = 50,h = 1, u1 ∼ N(0, 1/(1 − α2) |α| < 1.

α OLS1 OLS2 C O0 PW0 C O1 PW1 C O∞ PW∞ U PPW1 U POLS1

0.000 0.327 0.318 0.327 0.323 0.327 0.323 0.327 0.323 0.322 0.327

0.400 0.332 0.327 0.332 0.325 0.332 0.325 0.332 0.325 0.324 0.336

0.800 0.357 0.376 0.357 0.341 0.357 0.335 0.357 0.336 0.356 0.367

0.900 0.372 0.412 0.521 0.358 0.372 0.340 0.372 0.332 0.300 0.304

0.950 0.373 0.434 1.169 0.370 0.372 0.341 0.372 0.327 0.253 0.254

0.975 0.363 0.442 1.544 0.375 0.362 0.337 0.362 0.320 0.224 0.224

0.990 0.352 0.440 1.625 0.372 0.350 0.329 0.350 0.309 0.203 0.203

(d) RMSE of GLS and UP forecast errors:p = 1, T = 50,h = 1, u1 =
∑κT

j =0 α j e1− j , κ = 1.

α OLS1 OLS2 C O0 PW0 C O1 PW1 C O∞ PW∞ U PPW1 U POLS1

0.000 0.327 0.319 0.327 0.324 0.327 0.324 0.327 0.324 0.327 0.330

0.400 0.332 0.328 0.332 0.325 0.332 0.326 0.332 0.326 0.336 0.342

0.800 0.356 0.376 0.356 0.342 0.356 0.336 0.356 0.337 0.357 0.362

0.900 0.372 0.412 0.718 0.359 0.371 0.340 0.371 0.333 0.297 0.299

0.950 0.372 0.434 1.181 0.371 0.371 0.340 0.371 0.326 0.249 0.251

0.975 0.363 0.441 1.527 0.374 0.361 0.336 0.361 0.318 0.221 0.223

0.990 0.351 0.440 1.613 0.372 0.350 0.329 0.350 0.309 0.200 0.201

1.000 0.339 0.433 1.581 0.363 0.338 0.318 0.338 0.296 0.178 0.178

Note: OLS1 andOLS2 are forecasts based on (6) and (4) respectively.C On (Cochrane–Orcutt) andPWn
(Prais–Winsten) are forecasts based on GLS estimation of the trend function, with estimation ofα iterated
n times.U PPW1 is the forecast based on a unit root pretest wherePW1 is used if a unit root is rejected.
U POLS1 is the forecast based on a unit root pretest whereOLS1 is used if a unit root is rejected.
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Table 6. (a) RMSE of GLS and UP forecast errors:p = 0, T = 250,h = 10,u1 = e1 = 0.
α OLS1 OLS2 C O0 PW0 C O1 PW1 C O∞ PW∞ U PPW1 U POLS1

0.000 0.064 0.063 0.064 0.063 0.064 0.063 0.064 0.063 0.063 0.064

0.400 0.106 0.106 0.106 0.105 0.106 0.105 0.106 0.105 0.105 0.106

0.800 0.295 0.290 0.295 0.283 0.295 0.283 0.295 0.283 0.283 0.295

0.900 0.478 0.467 0.478 0.424 0.478 0.427 0.478 0.431 0.430 0.479

0.950 0.662 0.647 0.662 0.520 0.662 0.525 0.662 0.529 0.710 0.796

0.975 0.825 0.805 0.823 0.611 0.823 0.596 0.824 0.594 0.939 0.989

0.990 0.967 0.933 0.949 0.864 0.947 0.709 0.953 0.697 0.765 0.783

1.000 0.975 1.099 0.889 1.870 0.889 0.928 0.900 0.888 0.316 0.323

(b) RMSE of GLS and UP forecast errors:p = 0, T = 250,h = 10,u1 = e1 ∼ N(0, 1).

α OLS1 OLS2 C O0 PW0 C O1 PW1 C O∞ PW∞ U PPW1 U POLS1

0.000 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.064 0.064

0.400 0.106 0.105 0.106 0.105 0.106 0.105 0.106 0.105 0.107 0.108

0.800 0.296 0.292 0.296 0.290 0.296 0.290 0.296 0.291 0.296 0.302

0.900 0.482 0.471 0.482 0.451 0.482 0.455 0.482 0.471 0.486 0.509

0.950 0.663 0.648 0.663 0.560 0.663 0.562 0.663 0.578 0.766 0.824

0.975 0.821 0.798 0.821 0.640 0.821 0.616 0.821 0.616 0.952 0.993

0.990 0.955 0.917 0.936 0.878 0.933 0.709 0.940 0.697 0.765 0.784

1.000 0.964 1.090 0.876 1.852 0.876 0.927 0.887 0.891 0.317 0.321

(c) RMSE of GLS and UP forecast errors:p = 0, T = 250,h = 10,u1 ∼ (0, 1/N(1 − α2) |α| < 1.

α OLS1 OLS2 C O0 PW0 C O1 PW1 C O∞ PW∞ U PPW1 U POLS1

0.000 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.064

0.400 0.106 0.105 0.106 0.105 0.106 0.105 0.106 0.105 0.105 0.106

0.800 0.297 0.293 0.297 0.305 0.297 0.306 0.297 0.311 0.272 0.296

0.900 0.481 0.474 0.481 0.559 0.481 0.551 0.481 0.652 0.388 0.477

0.950 0.662 0.653 0.662 0.866 0.662 0.758 0.662 0.837 0.632 0.766

0.975 0.820 0.810 0.820 1.120 0.820 0.836 0.820 0.854 0.926 0.987

0.990 0.961 0.955 0.933 1.388 0.931 0.893 0.940 0.878 0.765 0.784

(d) RMSE of GLS and UP forecast errors:p = 0, T = 250,h = 10,u1 =
∑κT

j =0 α j e1− j , κ = 1.

α OLS1 OLS2 C O0 PW0 C O1 PW1 C O∞ PW∞ U PPW1 U POLS1

0.000 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.068 0.068

0.400 0.106 0.105 0.106 0.105 0.106 0.105 0.106 0.105 0.108 0.109

0.800 0.297 0.293 0.297 0.305 0.297 0.306 0.297 0.311 0.348 0.341

0.900 0.481 0.474 0.481 0.559 0.481 0.551 0.481 0.652 0.688 0.656

0.950 0.662 0.653 0.662 0.866 0.662 0.758 0.662 0.837 0.984 0.966

0.975 0.820 0.810 0.820 1.120 0.820 0.836 0.820 0.854 1.003 1.004

0.990 0.961 0.955 0.933 1.388 0.931 0.893 0.940 0.878 0.760 0.766

1.000 0.968 1.094 0.878 1.855 0.877 0.928 0.889 0.892 0.318 0.325

Note: OLS1 andOLS2 are forecasts based on (6) and (4) respectively.C On (Cochrane–Orcutt) andPWn
(Prais–Winsten) are forecasts based on GLS estimation of the trend function, with estimation ofα iterated
n times.U PPW1 is the forecast based on a unit root pretest wherePW1 is used if a unit root is rejected.
U POLS1 is the forecast based on a unit root pretest whereOLS1 is used if a unit root is rejected.
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Table 7. (a) RMSE of GLS and UP forecast errors:p = 1, T = 250,h = 10,u1 = e1 = 0.
α OLS1 OLS2 C O0 PW0 C O1 PW1 C O∞ PW∞ U PPW1 U POLS1

0.000 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133

0.400 0.222 0.221 0.222 0.220 0.222 0.220 0.222 0.220 0.220 0.222

0.800 0.593 0.589 0.593 0.570 0.593 0.570 0.593 0.570 0.570 0.593

0.900 0.889 0.895 0.889 0.812 0.889 0.813 0.889 0.813 0.878 0.939

0.950 1.145 1.187 1.145 1.011 1.145 0.995 1.145 0.992 1.218 1.250

0.975 1.328 1.436 1.329 1.206 1.327 1.125 1.327 1.112 1.070 1.079

0.990 1.427 1.658 1.436 1.465 1.421 1.245 1.421 1.195 0.777 0.780

1.000 1.341 1.726 1.360 1.567 1.326 1.217 1.326 1.118 0.345 0.350

(b) RMSE of GLS and UP forecast errors:p = 1, T = 250,h = 10,u1 = e1 ∼ N(0, 1).

α OLS1 OLS2 C O0 PW0 C O1 PW1 C O∞ PW∞ U PPW1 U POLS1

0.000 0.135 0.134 0.135 0.134 0.135 0.134 0.135 0.134 0.134 0.135

0.400 0.224 0.223 0.224 0.223 0.224 0.223 0.224 0.223 0.223 0.224

0.800 0.599 0.598 0.599 0.586 0.599 0.586 0.599 0.587 0.586 0.599

0.900 0.899 0.911 0.899 0.844 0.899 0.842 0.899 0.845 0.907 0.952

0.950 1.158 1.208 1.158 1.042 1.158 1.021 1.158 1.020 1.224 1.253

0.975 1.346 1.459 1.346 1.224 1.346 1.143 1.346 1.130 1.080 1.090

0.990 1.447 1.669 1.449 1.456 1.444 1.245 1.444 1.196 0.781 0.785

1.000 1.337 1.702 1.351 1.536 1.326 1.197 1.326 1.104 0.341 0.344

(c) RMSE of GLS and UP forecast errors:p = 1, T = 250,h = 10,u1 ∼ N(0, 1/(1 − α2) |α| < 1.

α OLS1 OLS2 C O0 PW0 C O1 PW1 C O∞ PW∞ U PPW1 U POLS1

0.000 0.135 0.135 0.135 0.135 0.135 0.135 0.135 0.135 0.133 0.134

0.400 0.224 0.223 0.224 0.223 0.224 0.223 0.224 0.223 0.219 0.222

0.800 0.601 0.600 0.601 0.604 0.601 0.604 0.601 0.610 0.554 0.594

0.900 0.902 0.916 0.902 0.925 0.902 0.912 0.902 0.935 0.835 0.928

0.950 1.159 1.221 1.159 1.191 1.159 1.121 1.159 1.126 1.207 1.251

0.975 1.349 1.489 1.349 1.386 1.349 1.237 1.349 1.214 1.067 1.079

0.990 1.459 1.704 1.462 1.542 1.456 1.300 1.456 1.243 0.774 0.779

(d) RMSE of GLS and UP forecast errors:p = 1, T = 250,h = 10,u1 =
∑κT

j =0 α j e1− j , κ = 1.

α OLS1 OLS2 C O0 PW0 C O1 PW1 C O∞ PW∞ U PPW1 U POLS1

0.000 0.135 0.135 0.135 0.135 0.135 0.135 0.135 0.135 0.135 0.135

0.400 0.224 0.223 0.224 0.223 0.224 0.223 0.224 0.223 0.223 0.224

0.800 0.601 0.600 0.601 0.604 0.601 0.604 0.601 0.610 0.614 0.611

0.900 0.902 0.916 0.902 0.925 0.902 0.912 0.902 0.935 1.013 1.013

0.950 1.159 1.221 1.159 1.191 1.159 1.121 1.159 1.126 1.258 1.263

0.975 1.349 1.489 1.349 1.386 1.349 1.237 1.349 1.214 1.080 1.081

0.990 1.459 1.704 1.462 1.542 1.456 1.300 1.456 1.243 0.783 0.784

1.000 1.335 1.698 1.349 1.537 1.325 1.197 1.325 1.105 0.345 0.344

Note: OLS1 andOLS2 are forecasts based on (6) and (4) respectively.C On (Cochrane–Orcutt) andPWn
(Prais–Winsten) are forecasts based on GLS estimation of the trend function, with estimation ofα iterated
n times.U PPW1 is the forecast based on a unit root pretest wherePW1 is used if a unit root is rejected.
U POLS1 is the forecast based on a unit root pretest whereOLS1 is used if a unit root is rejected.
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the case ofp = 1.13 Stock and Watson (1998) considered the usefulness of unit root pretests
in empirical applications. However, they forecast usingOLS1 when the unit root hypothesis is
rejected. In light of the efficiency of GLS over the OLS, we usePW1 under the alterative of
stationarity. ThePW1 is used because it has desirable properties both whenp = 0 andp = 1,
and also because it is easy to implement. Specifically, we use the DF–GLS test (based on the PW
transformation) with one lag to test for a unit root. If we cannot reject a unit root andp = 0,
ŷT+1|T = yT . If p = 1, the mean of the first differenced series is estimated. Denoting this by1y,
then ŷT+1|T = yT + 1y. If a unit root is rejected and aPW1 forecast is obtained, the procedure
is labelledU PPW1 below. If a unit root is rejected andOLS1 is used (as in Stock and Watson),
we refer to the procedure asU POLS1.

The UP forecast errors are given in the last two columns of Tables 2 to 7. If the unit root test
always rejects correctly, the RMSE forα < 1 would have coincided withPW1 or OLS1. This
apparently is not the case and reflects the fact that power of the unit root test is less than one.
The increase in RMSE from falsely imposing a unit root is larger whenp = 0. Furthermore,
forecasts based on unit root pretests can sometimes be worse than without unit root pretesting
(see line 5 of Table 2(a)). Nonetheless, the reductions in forecast errors are quite substantial in
many of the cases whenα is very close to or at unity. This arises not just because variability
in α̂ is suppressed, but also because first differencing bypasses the need to estimateδ0, the key
source of variability with any two-step procedure. Irrespective of the assumption onu1, U PPW1

has smaller RMSE thanU POLS1, reflecting the improved efficiency ofPW1 over OLS1. For
bothU P procedures, the trade-offs involved are clear: large reduction in RMSE when the data
are persistent versus an increase in RSME when the largest autoregressive root is far from unity.

An overview of the alternatives toOLS1 (the preferred OLS forecast) is as follows. The two
UP procedures usually yield the minimum RMSE whenα is very close to one. The problem, of
course, is that ‘close’ depends on the data in question. Of the GLS forecasts,PW∞ performs very
well when p = 1, and thePW1 also yields significant improvements over the OLS procedures.
For p = 0, the results are sensitive tou1 and thePW1 is more robust thanPW∞. Feasible GLS
based onPW1 andPW∞ with or without a unit root pretest dominates OLS and should be used
in practice.

4. EMPIRICAL EXAMPLES

In this section, we take the procedures to 15 US macroeconomic time series. These are GDP,
investment, exports, imports, final sales, personal income, employee compensation, M2 growth
rate, unemployment rate, 3 month, 1 year, and 10 year yield on treasury bills, FED funds rate,
inflation in the GDP deflator and the CPI. Except for variables already in rates, the logarithm of
the data is used. Inflation in the CPI is calculated as the change in the price index between the last
month of two consecutive quarters. All data span the sample 1960:1–1998:4 and are taken from
FRED.14 Throughout, we usek = 4 lags in the forecasting model. Stock and Watson (1998)
found little to gain from using data dependent rules for selecting the lag length in forecasting
exercises. Four lags are also used in the unit root tests. We assume a linear time trend for the
seven National Account series. Although the unit root test is performed each time the sample

13Diebold and Kilian (2000) found that pretesting is better than always settingα̂ = 1 and is often better than always
using the OLS estimate ofα.
14The web site address ishttp://www.stls.frb.org/fred.
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is extended, we only keep track of unit root test results for the sample as a whole. Except for
investment, the unit root hypothesis cannot be rejected in the full sample for the first seven
series. For the remaining variables, we usep = 0. The DFGLS rejects a unit root in M2 growth,
unemployment rate and CPI inflation.

Since the preceding analysis assumesk = 1, a discussion on quasi-differencing whenk > 1
is in order. We continue to obtaiṅαi , i = 1, . . . , k from (5) with additional lags ofyt added to
the regression. We experimented with two possibilities. One option is to quasi-difference with
α̇ =

∑k
i =1 α̇i . The alternative option is to letx+

t = xt −
∑k

i =1 α̇i xt−i for t = k + 1, . . . , T (x =

y, z). For theC O, we lose the firstk observations but no further modification is required. For the
PW, we additionally assumex+

i = xi −
∑i

j =1 α̇ j xi − j for i = 1, . . . , k (x = y, z). The forecasts
are then based on four lags of the quasi-transformed data. Based on our limited experimentation,
both approaches give very similar forecast errors and we only report results based on the first
procedure. That is, quasi-differencing using the sum of the autoregressive parameters.

Our results are based on 100 real time, one period ahead forecasts. Specifically, the first
forecast is based on estimation up to 1973:4. The sample is then extended by one period, the
models re-estimated, and a new forecast is obtained. Because we do not know the data generating
process for the observed data, the forecast errors reflect not only parameter uncertainty, but also
potential model misspecification. Procedures sensitive to model misspecification may have larger
errors than are found in the simulations when the forecasting model is correctly specified. We also
carried out formal tests for the equality of the MSE of the forecasts using the tests proposed by
West (1996). For each series we tested the hypothesis, denotedHA, that all forecasts (excluding
the UP forecasts) yield equivalent MSE (on average). The tests are carried out by testing whether
the sample means of the 100 real time MSEs are consistent with equal population means of
the underlying MSE processes. Therefore, we are essentially testing equality of the means of
vectors of time series consisting of the real time forecast mean square errors. West (1996) showed
that Wald statistics for testing equality of the means constructed using serial correlation robust
standard errors have asymptotic chi-square distributions. We computed serial correlation robust
standard errors using spectral density kernel methods with the quadratic spectral kernel and the
bandwidth chosen using the data-dependent method recommended by Andrews (1991) using the
VAR(1) plug-in method.

Our results are summarized in terms of the average RMSE and are reported in Table 8. We
group the series according to whetherp = 1 or p = 0. For p = 1 we see thatPW∞ gives the
best forecast in four of the seven cases. Surprisingly (given the simulation results in the previous
section),C O0 andC O1 give the best forecasts in three cases. However, iterating CO in those
cases makes the forecasts worse. The OLS forecasts are never the best althoughOLS1 is often
much better thanOLS2. Unit root pretesting often improves the forecasts which is not surprising
given that six of the series appear to beI (1). Because the UP forecasts are the same when a unit
root is not rejected,U PPW1 andU POLS1 usually have the same RMSE. The last column gives
p-values for the test of equality of forecasts. We see that, with the exception of the investment
series, we strongly reject the null that all the forecasts are equally precise. This suggests that the
dominance of GLS over OLS can be taken seriously.

For p = 0, less crisp comparisons of forecasts can be made. Except for the GDP deflator
series, the tests for equality of forecasts cannot be rejected. The null of equal forecasts for the
GDP deflator series is rejected because theC O0 forecast is much worse than any of the other
forecasts. For the series for which a unit root can be rejected (m2sl, unrate, cpiaus) the RMSE
are essentially identical across forecasts. This is to be expected given that the simulations in the
previous section showed that the method of trend estimation is largely irrelevant forI (0) series.
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Table 8.Empirical examples: average RMSE of 100 real time, one period ahead forecasts.

Series OLS1 OLS2 C O0 PW0 C O1 PW1 C O∞ PW∞ U PPW1 U POLS1 HA

p = 1

gdpc92-I (1) 0.280 0.292 0.279 0.294 0.279 0.286 0.287 0.285 0.278 0.278 0.000

gpdic92-I (0) 1.587 1.605 1.578 1.599 1.579 1.592 1.581 1.591 1.592 1.587 0.149

expgsc92-I (1) 0.196 0.204 0.195 0.208 0.193 0.184 0.191 0.182 0.181 0.181 0.000

impgsc92-I (1) 1.198 1.192 1.195 1.152 1.181 1.145 1.178 1.125 1.123 1.123 0.002

finslc92-I (1) 1.011 1.033 0.999 1.008 0.995 0.974 0.995 0.957 0.870 0.870 0.000

dpic92-I (1) 0.356 0.365 0.351 0.356 0.349 0.350 0.352 0.347 0.342 0.342 0.000

wascur-I (1) 0.239 0.247 0.237 0.247 0.237 0.242 0.241 0.241 0.238 0.238 0.000

p = 0

m2sl-I (0) 3.002 2.993 2.992 2.991 2.991 2.989 2.991 2.989 2.989 3.002 0.249

unrate-I (0) 0.353 0.353 0.353 0.354 0.353 0.354 0.358 0.355 0.354 0.353 0.524

tb3ma-I (1) 1.591 1.605 1.491 1.601 1.573 1.583 1.577 1.569 1.549 1.549 0.681

gs1-I (1) 1.474 1.476 1.366 1.475 1.447 1.469 1.458 1.468 1.452 1.452 0.860

gs10-I (1) 0.864 0.857 0.911 0.863 0.854 0.863 0.855 0.864 0.856 0.856 0.555

fed-I (1) 1.987 1.985 1.957 1.991 1.976 2.009 1.974 2.000 1.934 1.934 0.360

gdpdef-I (1) 1.156 1.131 1.213 1.155 1.121 1.148 1.117 1.151 1.115 1.115 0.000

cpiaucs-I (0) 2.221 2.206 2.206 2.207 2.211 2.217 2.199 2.218 2.217 2.221 0.139

Note: TheI (0)/I (1) after each series name indicates whether a unit root can be rejected in the errors of
the full series, using the DFGLS of Elliottet al. (1996). ColumnsOLS1 to U POLS1 are the averaged
RMSE over 100 continuously updated forecasts. The column labeledHA reports asymptoticp-values for
the joint hypothesis that mean square errors of all the forecasts (not includingU PPW1 andU POLS1) are
the same (on average). The series names are those used by FRED. They are deciphered as follows: gdpc92
= gross domestic product, gdpic92= investment, expgsc92= exports, impgsc92= imports, finslc92=
final sales, dpic92= personal income, wascur= employee compensation, m2sl= M2 growth rate, unrate=
unemployment rate, tb3ma= 3 month t-bill yield, gs1= one year t-bill yield, gs10= 10 year t-bill yield,
fed= FED funds rate, gdpdef= GDP deflator based inflation, cpiaucs= CPI based inflation.

Of the five series for which a unit root cannot be rejected, GLS gives better forecasts than OLS in
four cases.U PPW1 performs slightly better thanU POLS1 again supporting the recommendation
that GLS be used when a unit root is rejected.

5. CONCLUSION

In this paper, we focused on the role played by trend function estimation when forecasting autore-
gressive time series. We showed that the forecast errors based upon one-step OLS trend estima-
tion and two-step OLS trend estimation have rather different empirical and theoretical properties
when the autoregressive root is large. One-step OLS clearly dominates two-step OLS in terms
of forecast precision. We then showed that efficient estimation of deterministic trend parameters
by GLS may improve forecasts over OLS. Specifically, finite sample simulations and empiri-
cal applications show that iterative GLS, especially Prais–Winsten, yields smaller forecast errors
than one-step OLS when applied to series with highly persistent errors. Prais–Winsten GLS with-
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out iteration is not recommended because this does not lead to jointly optimal trend and autore-
gressive parameter estimation and can give forecasts inferior to OLS. Iterative Prais–Winsten
GLS is preferred over iterative Cochrane–Orcutt GLS because the latter tends to be unreliable
for highly persistent time series. In practice, we find one iteration to yield satisfactory and robust
results. We also confirmed in this paper that unit root pretests can improve forecast accuracy
when the errors have a root close to unity (but, unit root pretests can reduce forecast accuracy for
persistent but stationary errors). Whether or not a practitioner chooses to use a unit root pretest,
estimation of the trend and the autoregressive parameters by one iteration of Prais–Winsten GLS
is recommended when constructing forecasts of autoregressive time series.
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APPENDIX

The following lemma provides asymptotic limits that are used in the derivation of the limiting
distribution of the forecast errors. The proof of the lemma is straightforward and hence omitted.

Lemma 5.1.When p= 0, T−1/2(̂δ0 − δ0) ⇒
∫ 1

0 J∗
c (r )dr. When p= 1, T−1/2(̂δ0 − δ0) ⇒∫ 1

0 (4 − 6r )J∗
c (r )dr, and T1/2(̂δ1 − δ1) ⇒

∫ 1
0 (12r − 6)J∗

c (r )dr.

Proof of Theorems 2.1 and 2.2. We begin withOLS2 when p = 0.

êT+1|T = (α − α̂)(uT + δ0 − δ̂0) − cT−1(δ0 − δ̂0),

T1/2̂eT+1|T = T(α − α̂)(T−1/2uT + T−1/2(δ0 − δ̂0)) − cT−1/2(δ0 − δ̂0),

= cT−1/2(̂δ0 − δ0) − T (̂α − α)T−1/2ûT ,

⇒ c[J∗
c (1) − J̄∗

c (1)] − 8( J̄∗
c , W) J̄∗

c (1).

When p = 1, m̂t = δ̂0 + δ̂1t and therefore(1 − α̂L)(mT+1 − m̂T+1) = (1 − α̂)(mT − m̂T )

+ (δ1 − δ̂1). It follows that

êT+1|T = (1 − α̂)(mT − m̂T ) + (δ1 − δ̂1) + (α − α̂)uT ,

= (α − α̂)(mT − m̂T + uT ) + (δ1 − δ̂1) − cT−1(̂uT − uT ),

T1/2̂eT+1|T = cT−1/2(uT − ûT ) − T1/2(̂δ1 − δ1) − T (̂α − α)T−1/2ûT ,

⇒ c[J∗
c (1) − J̃∗

c (1)] −

∫ 1

0
(12r − 6)J∗

c (r )dr − 8( J̃∗
c (r ), W) J̃∗

c (1).
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UnderOLS1, let β = (β0 β1)
′. Then

ŷT+1|T = β̂0 + β̂1(T + 1)̂αyT ,

êT+1|T = (β0 − β̂0) + (β1 − β̂1)(T + 1) + (α − α̂)(mT + uT ),

= −[1, T + 1](β − β̂) + (α − α̂)(mT + uT ).

We first show that the forecast error is invariant to the true values ofδ0 andδ1. By partitioned
regression, recall thatzt = (1, t), and lety−1 = {y0, y1, . . . , yT−1}. Also let D be aT ×2 matrix
with 0 in the first column and 1 in the first column. Then

β̂ − β = (z′z)−1z′e− (z′z)−1z′y−1(̂α − α),

= (z′z)−1z′e− (z′z)−1z′(zδ − Dδ + u−1)(̂α − α),

= (z′z)−1z′e− (δ0 − δ1, δ1)
′(̂α − α) − (z′z)−1z′u−1(̂α − α).

Substituting this result into the expression forêT+1|T , we have

êT+1|T = −[1, T + 1][(z′z)−1z′e− (z′z)−1z′u−1(̂α − α)]

+ (δ0 − δ1 + δ1T + δ1)(̂α − α) + (α − α̂)(mT + uT ),

= −[1, T + 1][(z′z)−1z′e− (z′z)−1z′u−1(̂α − α)] + (α − α̂)uT ,

which does not depend onδ. Therefore, without loss of generality, we letδ = 0 so thatyT = uT .
Consider the artificial regressionxt = A0 + A1t + et whereet is white noise. Then̂β − β and
êT+1|T simplify to

β̂ − β = (z′z)−1z′e− (z′z)−1z′u−1(̂α − α),

≡

[
[c]cÂ0 − A0

Â1 − A1

]
−

[
[c]ĉδ0 − δ0

δ̂1 − δ1

]
(̂α − α),

êT+1|T = (β0 − β̂0) + (β1 − β̂1)(T + 1) + (α − α̂)uT .

Therefore,

êT+1|T = (δ0 − δ̂0) − (Â0 − A0) + (δ1 − δ̂1)(α − α̂)(T + 1) − (Â1 − A1)(T + 1)

+(α − α̂)uT ,

= (α − α̂)(mT − m̂T + uT ) + (δ1 − δ̂1)(α − α̂) − (Â0 − A0)

−(Â1 − A1)(T + 1),

= (α − α̂)̂uT + (δ1 − δ̂1)(α − α̂) − (Â0 − A0) − (Â1 − A1)(T + 1),

T1/2̂eT+1|T = T(α − α̂)T−1/2ûT − T1/2(Â0 − A0) − T3/2(Â1 − A1) + op(1)

⇒ −8( J̃∗
c , W) J̃∗

c (1) −

∫ 1

0
(6r − 2)dW(r ).

For p = 0, the last termA1 does not exist andA0 = T−1∑T
t=1 et . Thus,

T1/2̂eT+1|T = T(α − α̂)̂uT − T−1/2
T∑

t=1

et

⇒ −8( J̄∗
c , W) J̄∗

c (1) − W(1).

2
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GLS Detrending

Proof of Theorems 3.1 and 3.2. Recall thatδ̃ denotes the feasible GLS estimates ofδ. Using the
algebraic results fromOLS2 we have forC O andPW:

p = 0 : T1/2̃eT+1|T = cT−1/2(uT − ũT ) − T(α̈ − α)T−1/2ũT ,

p = 1 : T1/2̃eT+1|T = cT−1/2(uT − ũT ) − T1/2(̃δ1 − δ1) − T(α̈ − α)T−1/2ũT ,

whereT−1/2ũT = T−1/2uT −T−1/2(̃δ0−δ0) for p = 0 andT−1/2ũT = T−1/2uT −T−1/2(̃δ0−

δ0) − T1/2(̃δ1 − δ1) for p = 1. Given thatT−1/2uT ⇒ J∗
c (1) andT(α̈ − α) ⇒ (c̈ − c), all that

remains to be established are the limits ofT−1/2(̃δ0 − δ0) andT1/2(̃δ1 − δ1) for feasibleC O and
PW detrending.

The results forT1/2(̃δ1 − δ1) for p = 1 can be found in Canjels and Watson (1997):

C O : T1/2(̃δ1 − δ1) ⇒ ċ−1
∫ 1

0
(6 − 12s)dẆ(s),

PW : T1/2(̃δ1 − δ1) ⇒ θ̇

(∫ 1

0
(1 − ċs)dẆ(s) + ċ(1 −

1
2 ċ)J−

c (κ)

)
.

Using the limiting results in the appendix of Canjels and Watson (1997), it is a simple algebraic
exercise to show that forp = 1:

C O : T1/2(̃δ0 − δ0) ⇒ ċ−2
∫ 1

0
(6 − 4ċ − 12s + 6sċ)dẆ(s),

PW : T1/2(̃δ0 − δ0) ⇒ J−
c (κ),

and for p = 0:

C O : T1/2(̃δ0 − δ0) ⇒ −ċ−1
∫ 1

0
dẆ(s),

PW : T1/2(̃δ0 − δ0) ⇒ J−
c (κ).

The final expressions in the theorems then follow from algebraic simplification. 2
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