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Summary This paper studies the error in forecasting an autoregressive process with a
deterministic component. We show that when the data are strongly serially correlated, fore-
casts based on a model that detrends the data using OLS before estimating the autoregressive
parameters are much less precise than those based on an autoregression that includes the
deterministic components, and the asymptotic distribution of the forecast errors under the
two-step procedure exhibits bimodality. We explore the conditions under which feasible GLS
trend estimation can lead to forecast error reduction. The finite sample properties of OLS and
feasible GLS forecasts are compared with forecasts based on unit root pretesting. The pro-
cedures are applied to 15 macroeconomic time series to obtain real time forecasts. Forecasts
based on feasible GLS trend estimation tend to be more efficient than forecasts based on OLS
trend estimation. A new finding is when a unit root pretest rejects non-stationarity, use of GLS
yields smaller forecast errors than OLS. When the series to be forecasted is highly persistent,
GLS trend estimation in conjunction with unit root pretests can lead to sharp reduction in
forecast errors.

Keywords: Forecasting, Trends, Unit root, GLS estimation.

1. INTRODUCTION

An important use of econometric modeling is generating forecasts. If one is interested in forecast-
ing a single economic time series, the starting point is often autoregressive models. Alternatively,
one could base forecasts on structural models that incorporate economic theory. The usefulness
of structural models is often measured by forecast precision compared to those of autoregressive
models. Given the many uses of forecasts from autoregressive models, it seems sensible to con-
struct these forecasts using the best methodology possible. We show in this paper that the way
in which deterministic components (mean, trend) are estimated matters in important ways when
the data are strongly serially correlated. In particular, we show that use of GLS detrending can
improve forecasts compared to OLS when the errors are highly persistent.
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Consider data generated by the trend plus noise model:

Yt = Mt + Uy, (1)
U =al-1+ @, 2)
mt=50+51t+~~+8ptp 3)

whereg ~ i.i.d.(0, aez), and p is the order of the polynomial in time. We restrict attention to
the empirically relevant cases @f = 0 andp = 1. We focus on AR(1) errors for the sake

of simplicity as it enables derivation of asymptotic results and more importantly, it provides
intuition as to how the trend estimates affect forecAsts.

An appealing feature of the trend plus noise model is that the unconditional mean of the series
does not depend on the dynamic parametedn contrast, the unconditional mean of a process
generated by = ¢ + ay;—1 + & depends ow. In particular, forla| < 1, E(y;) = ¢/(1 — «),
whereas forr = 1, E(y;) = E(yp)+ct. Because we consider both stationary and unit root errors,
it is important for clarity that the unconditional mean parameters, i.e. trend parameters, do not
depend onx. In addition the trend plus noise model has been analyzed by Hiliatt (1996),
Canjels and Watson (1997), Phillips and Lee (1996) and Vogelsang (1998) to study the role of
trend parameter estimation in inference. Some results from these papers are directly useful for
analyzing the behavior of forecasts.

Assuming a quadratic loss function, the minimum mean squared error df$kep ahead
forecast ofy;, conditional upon lags o, is

Yerhit = Megn + a(ye — my). 4)
If we write the DGP as
Vi = Bo+ Pt +ay—1+ &, (%)
wherefo = (1 — a)do + ad1, B1 = (1 — )81, theh step ahead forecast is
h-1
Yerhe = Yo (Bo+ Bt +h—i)) +a"y. (6)
i=0

If we know a andsd = (8o, 81)’, the two parameterizations give exactly the same forecasts
since one model can be reparameterized as the other exactly. Howeusds are population
parameters which we do not observe. In practice, we have three choices. First, we can jointly
estimate the parameters by quasi-maximum likelihood. Second, we can first obtain estimates of
8 by OLS or GLS, detrend the data, then estimatey OLS, and ultimately use (4) to generate
forecasts. Third, we can estimaie, 81, anda simultaneously from (5) by OLS and then use (6)
to make forecasts. In this paper, we focus on the latter two least squares method. We refer to
these procedures as one-step and two-step procedures respéctively.

A quick review of textbooks reveals that, although (1) and (2) are often used instead of (5)
to present the theory of optimal predictidrihe practical recommendation is not unanimous.

Iwe would expect to obtain similar results for more general ARMA models. Clearly, generalization of our results to
ARMA models is worth considering in future work, though economic forecasting exercises tend to favor simple, low
order, autoregressive models, see Stock and Watson (1998).

2Maximum likelihood and feasible GLS are equally efficient asymptotically in the strictly stationary framework. Esti-
mation by GLS will be considered below.

3See, for example, Hamilton (1994, p. 81) and Bxbal. (1994, p. 157). An exception is Clements and Hendry (1994).
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For example, Pindyck and Rubinfeld (1998, p. 565) and Johnston and DiNardo (1997, p. 192,
232) used (1) and (2) to motivate the theory, but the examples appear to be based upon (5) (e.g.
see Table 7.15 of Johnston and DiNardo (1997)). Examples considered in Diebold (1997), on
the other hand, are based on an estimated trend function with a correction for serial correlation
in the noise component (e.g. p. 231). This is consistent with assuming (4) as the forecasting
model.

This paper is motivated by the fact that whilg.nt is unique, its feasible counterpart is not.
Depending on the treatment of the deterministic terms, the mean-squared forecast errors can be
different. Efficient estimation of the trend coefficients andvdfave separately received a great
deal of attention in the literatufeThe theme of this paper is that when the objective of the
exercise is forecasting, estimation of these parameters can no longer be considered in isolation.
This is especially important when the data are highly persistent.

In this paper, we focus on two issues. Do the one- and two-step OLS forecasts differ in
ways that should matter to practitioners? Does efficient estimation of the deterministic com-
ponents improve forecasts? The answers to both of these questions are yes. Our results pro-
vide three useful recommendations for practitioners. First, if OLS is used to construct fea-
sible forecasts, then one-step OLS usually leads to better forecasts than two-step OLS. Sec-
ond, GLS estimation of the deterministic trend function, especially Prais—Winsten GLS, usu-
ally improves forecasts over OLS. Third, following unit root pretests (which are useful with
highly persistent series) GLS forecasts should be used when the unit root null is rejected. Specif-
ically, forecasts based on what is referred to as P&, procedure below yield gains over
the OLS procedures both in simulations and in empirical applications, and it is easy to imple-
ment.

The remainder of the paper is organized as follows. Theoretical and empirical properties of
the forecast errors under least squares and GLS detrending are presented in Sections 2 and 3. In
Section 4, we compare the forecasting procedures as applied to some common macroeconomic
time series. Proofs are given in an appendix. We begin in the next section with forecasts based
on OLS estimation of the trend function.

2. FORECASTS UNDER LEAST SQUARES ESTIMATION

Throughout our analysis, we assume that the data are generated by (1).{%}\7;{1 we con-
sider the one-step ahead forecast error given information atfime

eT+UT = YT+1 — Y1447
= Y741 — YT+uT + Y1407 — Y47
=ery1+eryyT,

whereer 1 = Y141 — Y1417 andér 7t = Y1417 — Y1417 The innovationer 11, is unfore-
castable given information at time and is beyond the control of the forecaster. A forecast is
best in a mean-squared sensgrif 17 is made as close tgr .1t as measured by mean squared
error. Throughout, we refer @17 as the forecast error.

4see Canjels and Watson (1997) and Vogelsang (1998) for inferertyevamenu; is highly persistent.

Sstock (1995, 1996, 1997) considers forecasting time series with a large autoregressive root in the absence of a deter-
ministic component. Diebold and Kilian (2000) also consider forecasting highly persistent time series with a simple linear
deterministic trend function, but they focus on the effects of unit root pretests rather than trend function estimation.
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We consider two strategies, labell@d. S andOL S hereafter:

(1) OLS: Estimate (5) by OLS directly and then use (6) for forecasting.
(2) OLS: Estimates from (1) by OLS to obtairt; = y; — M;. Then obtair from (2) by
OLS with u; replaced byli;. Forecasts are obtained from (4).

2.1. Finite sample properties

We first consider the finite sample properties of the forecast errors using Monte-Carlo experi-
ments. Focusing on AR(1) processes, we generate data according to (1) andy2} fe0.4,
0, 0.4, 0.8, 0.9, 0.95, 0.975, 0.99, 1.0, 1.01. Wesset 51 = 0 without loss of generality. The
choice of the parameter set reflects the fact that many macro-economic time series are highly and
positively autocorrelated. The errors a0, 1) generated using the rndn() function in Gauss
V3.27 with seed= 99. For this section, we assume thiat= 0. Results reported in Section 3.1
suggest that the rankings 6fL § andOL S do not depend critically on this assumptionon

We useT = 100 in the estimations to obtain up o= 10 steps ahead forecasts. We use
10000 replications to obtain the forecast eréfsnt = Yr+hT — Y1+hT. and then eval-

uate the root mean-squared error (RMS,?E(@ +hT) and the mean absolute error (MAE),

E([€r4+nT]). The MAE and the RMSE provide qualitatively similar information and only the
RMSE will be reported.

Table 1(a) reports results for= 1 (one step ahead forecasts). As benchmarks, we consider
two infeasible forecasts: (P L S which assumea is known and (ii)O L% which assumes
is known. From these, we see that whes= 0, the error in estimating dominates the error in
estimatingdp. But whenp = 1, the error in5 dominates unlesg > 1.0. The RMSE forOL S
is smaller than the sum @ L S} andOL S). The RMSE ah = 10 confirms that the error from
estimatingx vanishes whew is far away from one but increases (approximately) linearly with
the forecast horizon whanis close to unity. However, the error in estimatihigoes not vanish
with the forecast horizon even when= 0 as the RMSE foOL S, shows.

The RMSE forOL § andO L $ when both parameters have to be estimated are quite similar
whena < 1.0 for p = 0 and wherx < 0.8 for p = 1. These similarities end as the error process
becomes more persistéhivhen p = 0, OL S exhibits a sudden increase in RMSE and is
sharply inferior toOLS atae = 1. Whenp = 1 the RMSE forOL § is always smaller than
OLS whena > 0.8. The difference is sometimes as large as 20% whénclose to unity.
Results forth = 10 in Table 1(b) show a sharper contrast in the two sets of forecast errors. For a
given procedure, the forecast errors are much larger vghenl.

The finite sample simulations show that the method of trend estimation is by and large irrel-
evant whenx is small. However, wherp = 0, the forecast errors foD L § exhibit a sharp
decrease at = 1, while those ofOL S show a sharp increase. When= 1, one step least
squares also clearly dominates two steps least squares in terms of RMSE when the data are
persistent. Thus, for empirically relevant cases whes large, the method of trend estimation
matters for forecasting. In the next subsection, we report an asymptotic analysis which provides
some theoretical explanations for these simulation results.

6Sampson (1991) showed that under least squares trend estimation, the deterministic terms have a higher order effect
on the forecast errors when is non-stationary.
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Table 1.(a) RMSE of OLS forecast error$: = 100,h = 1.
o OLS OLS OLS oOLS oL OLS oLy  oLS

p=0 p=1
—0.400 0.142 0.141 0.100 0.100 0.228 0.225 0.205 0.100
0.000 0.143 0.141 0.099 0.101 0.228 0.225 0.203 0.101
0.400 0.144 0.143 0.099 0.101 0.230 0.228  0.202 0.101
0.800 0.153 0.152 0.096 0.104 0.242 0.249  0.200 0.104
0.900 0.163 0.162 0.092  0.108 0.253 0.270  0.196 0.108
0.950 0.175 0.173 0.084 0.114 0.263 0.292  0.186 0.114
0.975 0.183 0.179 0.068  0.122 0.264 0.310 0.169 0.122
0.990 0.180 0.180 0.041 0.131 0.257 0.319 0.146 0.131
1.000 0.174 0.196 0.000 0.142 0.244 0.314 0.109 0.142
1.010 0.191 0.292 0.087 0.161 0.220 0.297  0.036 0.161

(b) RMSE of OLS forecast error3: = 100, h = 10.
o OLS OLS OLS oLS oL OLs oLy oLs

p=0 p=1
—0.400 0.071 0.071 0.071 0.001 0.167  0.167  0.167 0.001
0.000 0.100 0.099 0.099  0.000 0.233 0231 0.231 0.000
0.400 0.166  0.165 0.165 0.001 0.384  0.379 0.379 0.001
0.800 0.471  0.450 0.429 0.159 1.008 0.984 0.972 0.159
0.900 0.767  0.720 0.601 0.410 1.487 1.466 1.365 0.410
0.950 1.054 0.976 0.675 0.669 1.843 1.874 1.569 0.669
0.975 1244 1134 0.613 0.897 1994 2141 1.572 0.897
0.990 1.305 1.204 0.394 1.123 1986  2.284 1.427 1.123
1.000 1.315 1.436 0.000 1.345 1830 2217 1.090 1.345
1.010 1715 2.684 0.911 1.681 1.507 1.983 0.364 1.681

Note:OLS andOL S are forecasts based on (6) and (4) respectivelySy refers toOLS
with o assumed knowrO L% refers toOL S with § assumed known.

2.2. Asymptotic properties of OLS forecasts

The goal of this section is to provide an asymptotic approximation for the sampling behavior of
the forecast errors, and to use the asymptotic representations to provide theoretical explanations
for why OLS and OL S give different forecasts. Because the difference betw@érg and

OLS occurs for 08 < o < 1.01, a useful asymptotic approximation is obtained by using a
local-to-unity framework with non-centrality parametetio characterize the DGP as:

Vi = 80 + 81t + Uy,
Ut = atUt—1 + &,

Cc
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[«T]

up = Z arer i, (7)

whereg is a martingale difference sequence with@ moments for some > 0 andE (€?) = 1,
[x] is the integer part ok, andx € [0, 1]. It can be shown that the forecast errors depend on
3 — 8, which can be expressed in terms of stochastic processes that are invadigsetothe
appendix). Because of this invariancestovithout loss of generality we can s&f = §1 = 0.
For a given sample size; is locally stationary wher < 0 and locally explosive whea > 0,
but becomes an integrated process as the sample size increases to infinity.

The model of the initial condition follows Canjels and Watson (1997) and allows several
relevant special cases. Using backward substitution we have

[«T]

dhos k= Toka+of Y e
Z Z

Let = denote weak convergence. Given the assumptiors, @functional central limit theorem
applies to both terms af;:

rT1-2 LTl
T2 3 ahai= k), T Y2) dheri= I k).
i=0 i=0

where Je(r) and J; (r) are given bydJk(r) = cXk(r) + dW(r) anddJ (r) = cJ 7 (r) +
dW~(r) respectively, withW(r) and W~ (r) being independent standard Wiener processes.
Because lim_ a['T] = limT_0(14+¢/THI'T = expre), it directly follows that

T=Y207) = Je(r) + expre) J; (k) = JE(r).

Whenk = 0,u; = e andT ~Y/2u; = 0,(1). We adopt the standard convention tdat(0) = 0
in which caseT ~%/2y urt] = Je(r). Therefore, thee = O case is asymptotically equivalent to
settingu; = 0. Whenk > 0, T~%2u; = Ji (k) = Op(D). In this case, the initial condition is
modeled as evolving from past unobserved observations goinglb@gkime periods. Because
we are modeling the errors as neakll), u; = Op(T/?).

The asymptotic behavior of the forecast errors depends on demeaned and detrended variants
of J¥(r) which are the limits of OLS residualS;, obtained from the regressionsigfon 1 when
p =0, and on 1 antl whenp = 1. Specifically we have

1
p=0: T Yu1,= JFr) =) —/ JX(9)ds,
0
- 1 1
p=1: T Y01 = 30 =30r) - @4- 6r)/ Ji(sds— (12 — 6)/ sJ(s)ds.
0 0

If a detrending procedure can remave without leaving asymptotic effects on the dadig(r)
and J (r) would have been identicallyj (r). Least squares detrending evidently leaves non-
van|sh|ng effects on the detrended data when errors are highly persistent. It is this observation
that suggests GLS detrending can lead to more precise forecasts. Not surprisingly, the asymptotic

distributions of the forecast errors all depend on the limiting distributioh @f — «). Let€ =

(© Royal Economic Society 2002
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limT_ 0 T (@ —1). Then, it directly follows thaT (@ —a) = T(@—1—¢/T) = (€—c). When
o is estimated by least squares, we more specifically have:

1
e L BOIWO _ o w)

fol B.(r)2dr

whereB:(r) = J_C*(r) whenp = 0, andB(r) = JN(r)ﬁ whenp = 1.
We use two theorems to summarize the asymptotic results.

Theorem 2.1.(OL S) Let the data be generated ¥). Let p be the order of the polynomial in
time. Letér 17 be obtained by one-step OLS estimatiof @ndo.

e For p=0, TY%&r 11 = WD) — € — 0 JF ().
e Forp=1 TY%r g1 = [ -6r)dW(r) — €— 0.

Theorem 2.2.(OL S) Let the data be generated ). Let p be the order of the polynomial in
time. Letér 17 be obtained by two steps OL S estimatios ahd thenx.

e Forp=0 TY%&ryr = cXD-JDI-C-ol@. N
e FOrp=1, TY%8r 1 = [ (D) — Jc*(l)]+[j01(6—12r)Jg(r)dr] —C-0J Q).

The main implication of the two theorems is that forecasts based 0o andOL S are
not asymptotically equivaleritThe difference is not due to estimationsbecauseD LS and
OL S share the same dependence asymptoticalfy dhe difference betwee@ L S andOL S
arises from the differences in the estimation of the trend parameters. An interesting property of
OL S is that the sampling variability in the forecast errors from the trend estimates do not depend
onc (i.e. @) while for OL S there is a dependence enTherefore, forecasts based 1L S
are more sensitive i@, and this explains why the RMSE @fL $ forecasts showed large jumps
(relative toOL §) for « close to one in the simulations.

Intuitively, OL S is inferior becauséy is not identified wherc = 0 and hence is not con-
sistently estimable whea = 1. By continuity,é\o is imprecisely estimated in the vicinity of
¢ = 0. In the local to unity frameworkT‘1/2(§o — 8p) is Op(1) and has a non-vanishing effect
on OL S, and consequently, the forecast error is large. Theorem 2.2 confirms that this intuition
also applies forp = 1. The forecast errors und€@ L S are thus unstable and sensitivecto
aroundc = 0. Theorems 2.1 and 2.2 illustrate in the most simple of models the care with which
deterministic parameters need to be estimated when constructing forecasts.

The asymptotic results given by Theorems 2.1 and 2.2 can be used to understand the finite
sample behavior of the conditional forecast errors and to shed light on the bias and the RMSE of
the forecast errors avaries. Five values afare considered:15,—5, -2, 0, 1. We approximate
the limiting distributions by approximating/(r) and J.(r) using partial sums afi.d. N(0O, 1)
errors with 500 steps in 10 000 simulatidh&iven that the initial condition was set to zero in
the simulations in the previous subsection, we focus ea0 in which caseli(r) = Je(r). We
do not report asymptotic approximations for the case of 0.

7Similar asymptotic results were also obtained for long horizon forecasts with hdrigatisfyingh/ T — A € (0, 1).

8The asymptotic MSE are in close agreement with the finite sample simulatiofs=0500 which we did not report.
In particular, the RMSE fop = 0 ate = 1 are 0.078 and 0.089 respectively. The RMSE based on the asymptotic
approximations are 0.0762 and 0.0877 respectively. f-et 1, the finite sample RMSE are 0.109 and 0.143. The
asymptotic approximations are 0.108 and 0.142 respectively.
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Densities of the asymptotic distributions are estimated using the Gaussian kernel with band-
width selected as in Silverman (1986). These are plotted in Figures 1 and® for0 and
1 respectively. The result that stands out is that the dispersidd lo% is very sensitive to
whetherc > 0. This is consistent with our finite samples results. A notable aspect of Figure 1 is
that the distribution of forecast errors f@L S is bimodal whenp = 0 andc = 0, i.e. when
there is a unit roof. In this case, the forecast error und@t. S is —(yr — Mt)(@ — «) in the
limit. Since@ is downward biased, the forecast errors will be positiveit-mt > 0.1° Figure 3
presents the limiting error distributions conditional yp — mt > 0, and conditional median
bias in the forecast errors is confirmed. Thus, when the deterministic terms have to be estimated,
€r417 can also be expected to be positive/if — Mt > 0. The bimodality in Figure 1 arises
becauser —Myt is unconditional and can take on positive or negative values. In other cases when
the sign of the prediction error depends on terms other than the litasamditional median bias
does not immediately imply bimodality in the forecast error distribution.

3. FORECASTS UNDER GLS ESTIMATION

The foregoing analysis shows th&L S dominatesOLS when forecasting persistent time
series. This raises the obvious question as to whether there exists a two-step procedure that
can improve upon one-step least squares detrending. Two options come to mind. One possibility
is to fix « to remove estimation af. For highly persistent data, imposing a unit root (setting

a = 1) has been treated as a serious option. We will return to this subsequently. The other
option is to reduce variability in the estimation of the deterministic trend parameters. Recall that
the OLS estimate ofg is inconsistent and in fact, there is no consistent estimaty @fhen

errors are highly persistent in the local-to-unity framework. However, improved forecasts can
be obtained if estimation of the trend parameters leaves no asymptotic effects on the detrended
data. GLS estimation dfis the obvious way to achieve this goal. In addition to improving fore-
casts through more precise trend parameters estimates, GLS potentially can improve forecasts by
reducing sampling variability in estimates@f This gain can be large when the data are highly
persistent, as suggested by the findings of Elktal. (1996) concerning the dependence of

the power of unit root tests on estimated trends. Thus, GLS estimatidhad the potential to
improve forecasts in two distinct ways.

The usefulness of GLS in forecasting was first analyzed by Goldberger (1962) who consid-
ered optimal prediction based upon the moglek 8’z + ut but E(uu’) = € is non-spherical.
Goldberger showed that the best linear unbiased prediction can be obtained by quasi-differencing
the data to obtain GLS estimates &fand then exploit the fact that if; is serially corre-
lated, the relation between the , andut can be used to improve the forecast. Whgns
an AR(1) process with known parameter the one-step ahead optimal prediction reduces to
YT41 = 5 Zr41 + a(yT — §'zr). This amounts to using (4) for forecasting with an efficient
estimate o, assumingy is known.

9Abadir and Paruolo (1997) noted that kernel smoothers may not pick up discontinuities in the underlying densities.
But the bimodality displayed in Figures 1 and 2 can be seen even from the histograms of the simulated distributions.
10Using Edgeworth expansions and assuming bounded away from the unit circle, Phillips (1979) showed that the
exact distribution oBr 1 will be skewed to the left ifir > 0 once the dependence®bn yr is taken into account.
His result is for strictly stationary processes and applies in finite samples. Thus, the median bias conditignal 6n
observed here does not arise for the same reason. Stock (1996) evaluated the forecasts condpjosad @ssuming
m is known and confirms asymptotic median bias.
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Figure 1. (a) OLS, p=0. (b) OLS p=0.
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Figure 2. (@) OLS, p= 1. (b) OLS p=1.
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Figure 3. (a) OLS, p = 0: conditional onyt — mt > 0. (b) OLS p = 0: conditional oyt — mt > 0.
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Figure 4. (a) OLS, p = 1: conditional onyt — mt > 0. (b) OLS p = 1: conditional oyt — mt > 0.
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Trend estimation by GLS requires quasi-differencing the data at soriée consider the
Prais—Winsten (PW) transformation which includes information from the first observation, and
the Cochrane—Orcutt (CO) transformation which drops information of the first observation. Spe-
cifically, givena andz = (1,t)/, the quasi-differenced datg" and z", are constructed as
follows:

o PWifort=2...T, % =y —ay-1.Z4" =2z —az_1, withy] = y; andz] = z,
e COfort=2...T,yf =% —ay 1.4 =z —az_1.

Then,s = (zVzH)~L(z'y ") is the GLS estimate df, andili; = y; — 8z is the GLS detrended
data. The treatment of the initial condition under &V follows Canjels and Watson (1997),
Elliott et al.(1996) and Phillips and Lee (1996), who also favor quasi-differencing when the data
are highly persisterit

Goldberger assumed is known, but in practice, this too has to be estimated. The method
used to estimate will inevitably affect the distribution of the trend parameter estimates and thus
the forecast errors. We |ét denote a generic estimator efused for obtaining feasible GLS
estimates of the trend parameters. Canjels and Watson (1997) showed that the limiting behavior
of the trend parameter estimates depend& ama complicated way. To make general observa-
tions about the relative merits of the different detrending methods in the asymptotic analysis, we
define¢ = limy_,» T(&¢ — 1). Then, it directly follows thafl (¢ — «) = (¢ — ¢). If & were
obtained by (5) using OLS, for examplé— ¢ = ®(Bc(r), W), where agairB.(r) = J_C*(r)
when an intercept is included, ai@(r) = \Tc*(r) when a time trend is also included in the
regression. We also defitV(r) = dW(r) — (¢ — ¢) JZ (r) which is the asymptotic analog of
the quasi-differenced errors where the effect of quasi-differencing is captur@d-by) & (r)
(see the appendix for details).

As in the case of OLS forecasts, the behavior of the GLS detrended errors plays an important
role in the asymptotic behavior of the GLS forecasts. Uri€i€rdetrending,

1
p=0: T Y21y = J5() +c*1/0 dW(s),
p=1: T Y= 30
1 1
—(:*2/ (6 — 4¢ — 125 + 6s¢)dW(s) — r(:*1/ (6 — 125)dW(s) = C(r).
0 0

Under P W detrending and with = (1 — ¢ + %CZ)_l,

p=0: T M7= 30 - I (),
p=1: T Y27 = 3F0) - 56 —

1
ré(/ (1—¢9)dW(s) + (1 — %C)JC(K)> = P().
0

Recall that detrending leaves no asymptotic effects on the data only Whé(ﬁl“jm] =
JZ(r). Clearly, theC O does not achieve this goal. Undeiw, this will also be the case except
whenp = 0 andx = 0 (i.e.u; = Op(1)), in which caseJ; (0) = 0. Thus when the data are
persistent ot is being estimated, the efficiency of GLS forecasts cannot be presumed.

11Canjels and Watson (1997) referred to this as conditional GLS (their CC). We label & asly because it retains
information in the first observation, in the same spirit as the Prais—Winsten transformation.
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Note that the estimator used f@eiwhen constructing the feasible GLS estimates of the trend
parameters does not necessarily have to be the same as the estimatsedfin the forecasting
equation (4). To permit this level of generality, we continue to dge generically denote the
estimate ofx used for feasible GLS estimation of the trend parameters. Wé tsgenerically
denote the estimate afused in (4), and we defing= limt_ o T (& — 1) so thatT (& — «) =
(€ — ©). In many casesy is constructed from a regression@f on U;_1, where; is feasible
GLS detrended data usirg It is only in the special case whenis not re-estimated that and
@ coincide. The limiting distributions of feasible GLS forecast errors are now summarized in the
following two theorems.

Theorem 3.1.(CO) Let the data be generated §¥). Let p be the order of the polynomial in
time. Letér1;1 be the forecast error obtained with the trend parameters estimated by CO.

e Forp=0,  TYZ,yr = —c¢ ! [ dW(s) — (€ - 0)(JF (D) + ¢ [ dW(s)).
e FOrp=1, TY%&r 11 = (I () - C(D) — c—lfol(e— 12s)dW(s) — (E—c)C(1).

Theorem 3.2.(PW) Let the data be generated I§y). Let p be the order of the polynomial in
time. Letér 17 be the forecast error obtained with the trend parameters estimated by PW.

e Forp=0,  TY2& 47 = cl (k) — (E—0)(ID) — I5 (k).
e FOrp=1, TY%&r 1 = (I Q) — P(1))—é(fol(l—c';s)dv'\/(s)Jrc(l—%C)Jg(;c))
—(E&—-0o)P(®).

The theorems show th@®W andC O do not generate equivalent forecasts and they both
differ from the OLS forecasts. Even in the special case of a unit rootanth, the asymptotic
expressions depend on battand € in highly nonlinear ways. However, two observations can
be made. First, because tB<O forecast error distributions depend 6n' and ¢ can take on
values close to zero, the O forecasts will likely be subject to large errors (see Canjels and
Watson (1997) for a similar result). Second, the forecast error distributions depend on the initial
condition, a result that parallels that of Elliott (1999) for the power of unit root tests.

Even though the trend parameters estimated by GLS are more efficient than those esti-
mated by OLS, there is only one case when GLS leads unambiguously to more precise forecasts
than OLS.

Lemma 3.1.When p= 0, uy = Op(1) andé is constructed using PW-GLS demeaned data,
then
T1/2§T+1|T = —O(Je(r), W) I (D).

Whenp = 0 andu; = Op(1), Theorem 3.2 implies thak¥/2&r 11 = —(€ — ©)J(1). The
forecast error distribution now depends on trend estimation only to the extent that estimation of
the autoregressive parameter in the forecasting equation is based on demeaned data. it Elliott
al. (1996) showed if: were constructed using PW-GLS demeaned data, the distributibn of

is the same as if the mean were known. It follows that ivere constructed using PW-GLS
demeaned data, the effects of trend estimation on the forecast error can be completely removed.
But note that this result requires efficient estimation of bdtand «, i.e. iterated GLS. For
example, if were constructed using OLS (rather than PW-GLS) data,ihen = @ (J, W),
TY2&r 1 = — (e, W) Je(1), and the result of the lemma does not follow.
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In all other cases, GLS estimation ®has non-vanishing effects on the forecast error distri-
bution. Although one cannot unambiguously rank the different detrending methods for forecast-
ing, results of Canjels and Watson (1997) suggest that GLS estimation of the trend parameters
is more precise than OLS estimation, and that B& provides more precise estimateséef
thanC O. One might therefore expect GLS detrending to provide more efficient forecasts than
OLS detrending, and in particular, thBWW might generate smaller forecast errors thanGh.
Simulation results in the next subsection generally support these orderings.

3.1. Finite sample properties of feasible GLS forecasts

In this section, we consider six GLS estimators. Feasible GLS forecasts u#i@gtions for
QD = PW or CO are constructed using the following steps:

(1) Obtain,x, an initial estimate oft by OL S.

(2) Transformy; andz by QD to obtainy;” andz". Then computé = (z+'zt)~1(z"'y")
andii = §'z;. Construct the forecast using (4).+ht = Me1n+ o'zh(yt — My).

(3) If n =0, stop. Ifn = 1, then re-estimate from (1) with u; replaced byi; to give@ and
obtainyiyhit = M rh+ &h(yt — My). If n =1, stop. Fom > 1, quasi-difference the data
ata, re-estimate, repeat the estimation of using the newly detrended data and repeat
until the change i between iterations is small.

The objective of iterative estimatiom (> 0) is to bring the estimates of and§ closer to
being jointly optimal. For models with no lagged dependent variable, the feasible GLS estimates
are as efficient as the maximum likelihood estimates asymptotically. Settiagoo provides
a rough approximation to the forecast errors when the maximum likelihood estimator is used.
The use of OLS (the generic estimator) in step 1 is based on Rao and Griliches (1969) who find
that estimatingr from (5) by OLS is more efficient than estimating it from an autoregression
in least squares detrended data or by nonlinear least squaresnigpositivel? In practice ¢
could exceed unity, but quasi-differencing is valid onlyeif < 1. This problem is circumvented
in the simulations as follows. If an initial exceeds one, it is reset to one priorRW quasi-
differencing. Our theoretical results show that the distribution ofdi@detrended data depends
on ¢~1 which does not exist wheét = 0. Numerical problems were indeed encountered if we
allow & to be unity. Therefore unde& O, we set the upper bound aéfto 0.995.

The simulations are performed using four sets of assumptiong:on

e Assumption A:u; = ey is fixed.

e Assumption Bu; = e; ~ N(0, 1).

e Assumption Cu; ~ N(0, 1/(1 — «?)) for |a| < 1.
e Assumption Du; = Z[j":TO]ajel,j k> 0.

Under A, we conditioru; to a constant. Under By = Op(1) and does not depend on unknown
parameters. Under @; depends om. Elliott (1999) showed that unit root tests based on GLS
detrending are farther away from the asymptotic power envelope under C than B. Canjels and

12Using the regression modgl = 8’z + uy whereu is AR(1) with parametew strictly bounded away from the unit

circle andz does not include a constant, Rao and Griliches (1969) showed, via Monte-Carlo experiments, that GLS
estimation of§ in conjunction with an initial estimate of obtained from (5) is desirable for the mean-squared-errér of
when|a| > 0.3.
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Watson (1997) found, under D, that the efficiency of estimatingy PW-GLS is reduced when

k > 0. Assumption B is a special case of D with= 0. In the local asymptotic framework,

uz is Op(Tl/z) under both Assumptions C and D. Simulations are performed under the same
experimental design described earlier, except that under Assumption C, only casps with

are evaluated. Canjels and Watson (1997) found that for small valuethaP W performs well.

Here, we report results far = 1, which is considerably large, to put tfaWV to a challenge.

The results withh = 1 andT = 100 are reported in columns 3 through 8 of Table 2 for
p = 0 and likewise in Table 3 fop = 1. The forecast errors are smaller, as expected, as
the sample size increases. When< 0.8, the gain from GLS estimation over the two OLS
procedures is small, irrespective of the assumptioniofhis is perhaps to be expected since the
asymptotic equivalence of OLS and GLS detrending follows from the classic result of Grenander
and Rosenblatt (1957) when is stationary. However, as persistencalirincreases, there are
notable differences.

Abadir and Hadri (2000) noted that the bias in the parameters estimated from a model without
deterministic components can increase with the sample siggsfrelatively large (e.g. exceed-
ing 32). To see if the mean-squared forecast errors exhibit non-monotonicity when deterministic
terms are present, Tables 4 and 5 report result3 fer 50 while Tables 6 and 7 report results
for T = 250 forh = 10. Qualitatively, the results are not sensitive to the sample size. Com-
pared with the results for different sample sizes, we find no evidence of non-monotonicity, as the
forecast root-mean-squared errors fall with the sample size roughly af/Tate

For p = 0O, first notice thatP Wy displays a sharp increase in RMSE aroune- 1 just like
OLS and PW gives less precise forecasts than either OLS forecast. This is the case whether
we conditionu; to zero or let it be drawn from the unconditional distribution. This shows that
GLS estimation of alone will not always reduce forecast errors. Howewew,; and PW,,
greatly improves forecast precision oM@y and OLS. This matches the intuition that efficient
forecasts depend on efficient estimatiorboththe trend and the slope parameters. V@t® on
the other hand, iteration does not make much differenceCadds usually dominated by W
and P W,,. Neither P W nor PW,, dominate the other with the best forecast depending and
u1. This dependence on the initial condition is predicted by theory but is problematic in practice
because the assumption wncannot be validated. However, when the data are mildly persistent,
PW; is similar toO L §, when the data are moderately persist@ity; outperformsP W,,, and
when the data are extremely persistéhtly dominatesOL S and is second best 8W,,. It is
perhaps the best feasible GLS forecast whea 0.

Results forp = 1 are reported in Table 3. Because the contributiof tofthe forecast error
is large (as can be seen fradL § in Table 1(a)), the reduction in forecast error due to efficient
estimation of trends is also more substantial. The results in Table 3 show that irrespective of the
assumption on the initial condition, the forecast errors are smallestR¥¥,. Even at the one
period horizon, the error reduction is 30% ot $. From a RMSE point of view, the choice
among the feasible GLS forecasts is clear wpesa 1.

We also report results for two forecasts based on pretesting for a unit root. Setting
will generate the best one-step ahead forecast if there is indeed a unit root, and in such a case,
even long horizon forecasts can be shown to be consistent. Of course, if the unit root is falsely
imposed, the forecast precision can suffer. But one can expect forecast error reduction if we
impose a unit root fow close to but not identically one. Campbell and Perron (1991) presented
some simulation evidence in this regard for= 0, and Diebold and Kilian (2000) considered
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Table 2.(a) RMSE of GLS and UP forecast errops=0, T = 100,h =1,u; =e; =0.
o oL OLS COy PWg COp PW; COx PWx UPpw UPoLg

0.000 0.143 0.141 0.143 0.142 0.143 0.142 0.143 0.142 0.148 0.148
0.400 0.144 0.143 0.144 0.143 0.144 0.143 0.144 0.143 0.146 0.147
0.800 0.153 0.152 0.153 0.146 0.153 0.146 0.153  0.147 0.151 0.157
0.900 0.163 0.162 0.163 0.145 0.163 0.144 0.163 0.146 0.175 0.187
0.950 0.175 0.173 0.174 0.145 0.175 0.141 0.175 0.139 0.174 0.182
0975 0.183 0.179 0.179 0.159 0.180 0.143 0.180 0.140 0.142 0.146
0.990 0.180 0.180 0.173 0.205 0.174 0.152 0.175 0.145 0.102 0.105
1.000 0.174 0.196 0.168 0.287 0.163 0.165 0.164 0.153 0.068 0.070

(b) RMSE of GLS and UP forecast erros= 0, T = 100,h = 1,u; = e; ~ N(O, 1).
o oL OLS COy PWg COp PW; COx PWs U Ple U POle

0.000 0.141 0.140 0.141 0.141 0.141 0.141 0.141 0.141 0.150 0.151
0.400 0.144 0.143 0.144 0.143 0.144 0.143 0.144 0.143 0.150 0.150
0.800 0.152 0.151 0.152 0.149 0.152 0.150 0.152 0.153 0.159 0.161
0.900 0.161 0.161 0.161 0.150 0.161 0.149 0.161 0.153 0.180 0.187
0.950 0.174 0.173 0.173 0.152 0.174 0.145 0.174 0.144 0.172 0.179
0.975 0.182 0.180 0.179 0.164 0.180 0.145 0.180 0.141 0.140 0.144
0.990 0.180 0.181 0.173 0.208 0.175 0.153 0.176 0.145 0.101 0.104
1.000 0.173 0.196 0.167 0.289 0.162 0.165 0.163 0.153 0.067 0.068

(c) RMSE of GLS and UP forecast errops:= 0, T = 100,h = 1,u; ~ (0,1/(1— o?) |a| < 1.
o OLS OLS COp PW COp PWy COx PWx UPpyy UPoLs

0.000 0.147 0.146 0.147 0.146 0.147 0.146 0.147 0.146 0.143 0.143
0.400 0.148 0.147 0.148 0.147 0.148 0.147 0.148 0.147 0.144 0.146
0.800 0.154 0.154 0.154 0.155 0.154 0.155 0.154 0.165 0.142 0.155
0.900 0.162 0.163 0.162 0.173 0.162 0.164 0.162 0.177 0.164 0.182
0.950 0.172 0.174 0.172 0.198 0.172 0.165 0.172 0.165 0.172 0.183
0.975 0.180 0.184 0.176 0.225 0.178 0.167 0.178 0.160 0.141 0.146
0.990 0.181 0.190 0.173 0.257 0.175 0.168 0.175 0.158 0.102 0.105

(d) RMSE of GLS and UP forecast erros= 0, T = 100,h =1,u; = Z’j‘loajel_j =1
o oL OLS COy PWg COp PW; COx PWx UPpwy UPoLsg

0.000 0.147 0.145 0.147 0.146 0.147 0.146 0.147 0.146 0.156 0.157
0.400 0.148 0.147 0.148 0.147 0.148 0.148 0.148 0.148 0.155 0.155
0.800 0.153 0.153 0.153 0.155 0.153 0.156 0.153 0.166 0.177 0.176
0900 0.161 0.161 0.161 0.172 0.161 0.163 0.161 0.175 0.198 0.199
0.950 0.171 0.173 0.170 0.196 0.171 0.165 0.171 0.165 0.175 0.176
0975 0.179 0.182 0.175 0.222 0.176 0.165 0.177 0.160 0.136 0.137
0990 0.179 0.187 0.171 0.248 0.172 0.165 0.173 0.156 0.100 0.101
1.000 0.171 0.194 0.165 0.289 0.160 0.164 0.161 0.153 0.069 0.069

Note: OLS, andOL S are forecasts based on (6) and (4) respecti@ly, (Cochrane—Orcutt) anB W,
(Prais—Winsten) are forecasts based on GLS estimation of the trend function, with estimatiderated
n times.U Ppyy, is the forecast based on a unit root pretest wHew is used if a unit root is rejected.
UPoLg is the forecast based on a unit root pretest wi@teS; is used if a unit root is rejected.
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Table 3.(a) RMSE of GLS and UP forecast errops=1, T = 100,h =1,u; =e; =0.
o oL OLS COy PWg COp PW; COx PWx UPpwy UPoLg

0.000 0.228 0.225 0.228 0.227 0.228 0.227 0.228 0.227 0.227 0.228
0.400 0.230 0.228 0.230 0.227 0.230 0.227 0.230 0.227 0.227 0.230
0.800 0.242 0.249 0.242 0.227 0.242 0.226 0.242 0.226 0.251 0.262
0.900 0.253 0.270 0.253 0.231 0.253 0.225 0.253 0.223 0.254 0.259
0.950 0.263 0.292 0.280 0.245 0.263 0.227 0.263 0.222 0.209 0.210
0975 0.264 0.310 0.298 0.265 0.264 0.232 0.264 0.221 0.175 0.176
0990 0.257 0.319 0312 0.279 0.257 0.233 0.257 0.218 0.149 0.150
1.000 0.244 0.314 0.332 0.274 0.242 0.222 0.242 0.204 0.123 0.123

(b) RMSE of GLS and UP forecast errops= 1, T = 100,h =1,u; = e; ~ N(O, 1).
o oL OLS COy PWg COp PW; COx PWs U Ple U POle

0.000 0.226 0.223 0.226 0.225 0.226 0.225 0.226  0.225 0.225 0.226
0.400 0.229 0.228 0.229 0.227 0.229 0.227 0.229 0.227 0.228 0.230
0.800 0.241 0.249 0241 0230 0.241 0.229 0.241 0.230 0.259 0.266
0.900 0.252 0.270 0.252 0.234 0.252 0.227 0.252 0.225 0.254 0.259
0.950 0.262 0.293 0.262 0.247 0.262 0.228 0.262 0.222 0.209 0.211
0975 0.264 0311 0.279 0.266 0.264 0.232 0.264 0.221 0.174 0.175
0.990 0.258 0.321 0.319 0.280 0.257 0.234 0.257 0.219 0.150 0.151
1.000 0.244 0.316 0.344 0.275 0.243 0.223 0.243 0.205 0.125 0.124

(c) RMSE of GLS and UP forecast errops:= 1, T = 100,h = 1,u; ~ (0,1/(1— o?) |a| < 1.
o OLS OLS COp PW COp PWy COx PWx UPpyy UPoLs

0.000 0.230 0.227 0.230 0.229 0.230 0.229 0.230 0.229 0.226 0.228
0.400 0.232 0.231 0232 0.230 0.232 0.230 0.232 0.230 0.226 0.231
0.800 0.241 0.252 0.241 0.240 0.241 0.237 0.241  0.240 0.243 0.258
0.900 0.253 0.276 0.253 0.253 0.253 0.240 0.253 0.238 0.253 0.259
0950 0.264 0.302 0.273 0.266 0.264 0.240 0.264 0.233 0.209 0.211
0975 0.266 0.318 0.304 0.277 0.266 0.240 0.266 0.228 0.174 0.175
0.990 0.260 0.324 0.336 0.281 0.259 0.236 0.259 0.221 0.150 0.150

(d) RMSE of GLS and UP forecast erros= 1, T = 100,h = 1,u; = Z’j‘loajel_j =1
o oL OLS COy PWg CO PW; COx PWx UPpw UPoLsg

0.000 0.229 0.227 0.229 0.229 0.229 0.229 0.229 0.229 0.229 0.230
0.400 0.231 0.230 0.231 0.230 0.231 0.230 0.231 0.230 0.230 0.232
0.800 0.241 0.251 0.241 0.238 0.241 0.236 0.241  0.239 0.268 0.272
0900 0.253 0.275 0.253 0.251 0.253 0.238 0.253  0.237 0.258 0.260
0.950 0.264 0.302 0.273 0.266 0.264 0.240 0.264 0.232 0.211 0.212
0975 0.267 0.319 0.306 0.278 0.266 0.241 0.266 0.228 0.177 0.177
0990 0.261 0.325 0.329 0.281 0.260 0.236 0.260 0.221 0.152 0.152
1.000 0.247 0317 0.349 0.272 0.245 0.223 0.245 0.206 0.123 0.123

Note: OLS, andOL S are forecasts based on (6) and (4) respecti@ly, (Cochrane—Orcutt) anB W,
(Prais—Winsten) are forecasts based on GLS estimation of the trend function, with estimatiderated
n times.U Ppyy, is the forecast based on a unit root pretest wHew is used if a unit root is rejected.
UPoLg is the forecast based on a unit root pretest wi@teS; is used if a unit root is rejected.
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Table 4.(a) RMSE of GLS and UP forecast errops=0, T =50,h=1,u; = e; = 0.
o oL OLS COy PWg COp PW; COx PWx UPpw UPoLg

0.000 0.200 0.197 0.200 0.200 0.200 0.200 0.200 0.200 0.211 0.211
0.400 0.204 0.202 0.204 0.202 0.204 0.202 0.204 0.202 0.207 0.209
0.800 0.224 0.221 0.224 0.208 0.224 0.209 0.224 0.213 0.237 0.247
0.900 0.243 0.239 0.241 0.210 0.242 0.210 0.242 0.212 0.241 0.251
0.950 0.256 0.250 0.250 0.220 0.252 0.214 0.252 0.213 0.203 0.209
0975 0.256 0.253 0.253 0.249 0.249 0.225 0.250 0.219 0.162 0.165
0990 0.250 0.259 0.261 0.302 0.240 0.238 0.240 0.224 0.123 0.124
1.000 0.246 0.278 0.290 0.364 0.231 0.249 0.232 0.231 0.104 0.104

(b) RMSE of GLS and UP forecast erros= 0, T =50,h =1,u; =e; ~ N(O,1).
o oL OLS COy PWg COp PW; COx PWs U Ple U POle

0.000 0.201 0.198 0.201 0.200 0.201 0.201 0.201 0.201 0.213 0.213
0.400 0.206 0.203 0.206 0.204 0.206 0.204 0.206 0.204 0.214 0.216
0.800 0.223 0.221 0.223 0.212 0.223 0.213 0.223 0.222 0.246 0.252
0.900 0.241 0.238 0.240 0.217 0.241 0.214 0.241 0.218 0.240 0.247
0.950 0.254 0.250 0.249 0.226 0.252 0.215 0.252 0.214 0.200 0.205
0975 0.254 0.253 0.253 0.251 0.248 0.222 0.249 0.216 0.159 0.162
0.990 0.248 0.258 0.260 0.301 0.238 0.233 0.238 0.219 0.124 0.126
1.000 0.242 0.275 0.285 0.362 0.229 0.243 0.229 0.223 0.103 0.103

(c) RMSE of GLS and UP forecast errogs:= 0, T = 50,h =1,u; ~ N(0,1/(1— o?) |a| < 1.
o OLS OLS COp PW COp PWy COx PWx UPpyy UPoLs

0.000 0.201 0.198 0.201 0.200 0.201 0.200 0.201  0.200 0.200 0.202
0.400 0.205 0.202 0.205 0.203 0.205 0.204 0.205 0.204 0.202 0.208
0.800 0.220 0.219 0.220 0.220 0.220 0.221 0.220 0.237 0.222 0.244
0.900 0.235 0.236 0.234 0.244 0234 0.229 0.234 0.237 0.239 0.255
0.950 0.249 0.253 0.245 0.276 0.246 0.238 0.246  0.233 0.203 0.211
0975 0.255 0.266 0.261 0.308 0.249 0.244 0.249 0.234 0.163 0.167
0.990 0.253 0.272 0.272 0.336 0.243 0.246 0.243 0.231 0.126 0.127

(d) RMSE of GLS and UP forecast erro=0,T =50,h =1,u; = Z’j‘loaj e—j, k=1
o oL OLS COy PWg COp PW; COx PWx UPpwy UPoLsg

0.000 0.202 0.198 0.202 0.201 0.202 0.201 0.202 0.201 0.215 0.216
0.400 0.205 0.202 0.205 0.203 0.205 0.204 0.205 0.204 0.214 0.216
0.800 0.222 0.221 0.222 0.221 0.222 0.220 0.222 0.235 0.257 0.259
0.900 0.239 0.240 0.238 0.246 0.239 0.231 0.239 0.238 0.242 0.244
0.950 0.253 0.255 0.247 0.276 0.249 0.239 0.249 0.234 0.193 0.195
0975 0.256 0.264 0.259 0.303 0.248 0.242 0.248 0.231 0.156 0.157
0990 0.251 0.267 0.271 0.323 0.241 0.240 0.241 0.226 0.127 0.128
1.000 0.241 0.273 0.284 0.359 0.228 0.242 0.228 0.224 0.103 0.103

Note: OLS, andOL S are forecasts based on (6) and (4) respecti@ly, (Cochrane—Orcutt) anB W,
(Prais—Winsten) are forecasts based on GLS estimation of the trend function, with estimatiderated
n times.U Ppyy, is the forecast based on a unit root pretest wHew is used if a unit root is rejected.
UPoLg is the forecast based on a unit root pretest wi@teS; is used if a unit root is rejected.
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Table 5.(a) RMSE of GLS and UP forecast errops=1,T =50,h=1,u; = e; =0.
o oL OLS COy PWg COp PW; COx PWx UPpw UPoLsg

0.000 0.326 0.318 0.326 0.323 0.326 0.323 0.326  0.323 0.325 0.328
0.400 0332 0329 0.332 0326 0332 0326 0332 0.326 0.333 0.339
0.800 0358 0.374 0.358 0.331 0.358 0.327 0.358 0.326 0.360 0.367
0900 0375 0.409 0.718 0.342 0.374 0.330 0.374 0.324 0.300 0.303
0.950 0.378 0433 1.338 0.360 0.376 0.335 0.376 0.322 0.252 0.253
0975 0370 0443 1693 0.371 0.368 0.335 0.368 0.318 0.224 0.225
0990 0.357 0441 1749 0369 0.355 0.328 0.355 0.308 0.202 0.203
1.000 0342 0432 1634 0359 0341 0315 0341 0.294 0.180 0.181

(b) RMSE of GLS and UP forecast erros= 1, T = 50,h =1,u; = e; ~ N(O,1).
o oL OLS COy PWg COp PW; COx PWx UPpw UPoLsg

0.000 0.327 0.318 0.327 0.323 0327 0323 0327 0.323 0.325 0.328
0.400 0.333 0.329 0333 0.326 0.333 0.326 0.333 0.326 0.334 0.340
0.800 0.356 0.372 0356 0.332 0.356 0.328 0.356 0.327 0.358 0.364
0.900 0.371 0406 0420 0.342 0371 0.328 0371 0.322 0.296 0.299
0.950 0372 0429 1060 0359 0371 0331 0371 0.318 0.248 0.250
0975 0.364 0440 1517 0371 0.362 0.334 0.362 0.317 0.222 0.223
0990 0.352 0.441 1.607 0372 0350 0.329 0.350 0.310 0.203 0.203
1.000 0.339 0.433 1467 0.363 0.337 0.318 0.337 0.297 0.182 0.181

(c) RMSE of GLS and UP forecast errogg:= 1, T = 50,h =1,u; ~ N(0,1/(1— o?) |a| < 1.
o OLS OLS COp PW COp PWy COx PWyx UPpwy UPoLg

0.000 0.327 0318 0.327 0.323 0.327 0.323 0.327 0.323 0.322 0.327
0.400 0.332 0.327 0332 0325 0.332 0325 0.332 0.325 0.324 0.336
0.800 0.357 0.376 0357 0.341 0357 0.335 0.357 0.336 0.356 0.367
0.900 0372 0412 0521 0.358 0.372 0.340 0.372 0.332 0.300 0.304
0.950 0373 0434 1169 0370 0.372 0341 0372 0.327 0.253 0.254
0975 0.363 0442 1544 0375 0.362 0.337 0.362 0.320 0.224 0.224
0.990 0.352 0.440 1.625 0.372 0.350 0.329 0.350 0.309 0.203 0.203

(d) RMSE of GLS and UP forecast errog=1,T =50,h =1,u; = ’j(loaj ej, k=1
o OLS OLS$ COy PW COp PW, COyx PW, UPpy, UPoLg

0.000 0.327 0.319 0.327 0.324 0.327 0324 0327 0.324 0.327 0.330
0.400 0.332 0328 0.332 0.325 0.332 0.326 0.332 0.326 0.336 0.342
0.800 0.356 0376 0.356 0.342 035 0336 0.356  0.337 0.357 0.362
0900 0.372 0412 0.718 0.359 0.371 0.340 0.371 0.333 0.297 0.299
0950 0372 0434 1181 0371 0371 0.340 0.371 0.326 0.249 0.251
0.975 0.363 0441 1527 0374 0361 033 0361 0.318 0.221 0.223
0990 0.351 0440 1.613 0.372 0.350 0.329 0.350 0.309 0.200 0.201
1.000 0.339 0433 1581 0.363 0.338 0.318 0.338 0.296 0.178 0.178

Note: OLS andOL S are forecasts based on (6) and (4) respecti@ly, (Cochrane—Orcutt) anB W,
(Prais—Winsten) are forecasts based on GLS estimation of the trend function, with estimatidgerated
n times.U Ppyy, is the forecast based on a unit root pretest wHew is used if a unit root is rejected.
UPoLg is the forecast based on a unit root pretest wi@teS; is used if a unit root is rejected.
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Table 6.(a) RMSE of GLS and UP forecast errops= 0, T = 250,h = 10,u; = ¢; = 0.
o oL OLS COy PWg COp PW; COx PWx UPpw UPoLg

0.000 0.064 0.063 0.064 0.063 0.064 0.063 0.064 0.063 0.063 0.064
0.400 0.106 0.106 0.106 0.105 0.106 0.105 0.106 0.105 0.105 0.106
0.800 0.295 0.290 0.295 0.283 0.295 0.283 0.295 0.283 0.283 0.295
0.900 0.478 0.467 0.478 0.424 0478 0427 0478 0431 0.430 0.479
0.950 0.662 0.647 0.662 0520 0.662 0.525 0.662 0.529 0.710 0.796
0975 0825 0.805 0.823 0.611 0.823 0.596 0.824 0.594 0.939 0.989
0.990 0.967 0.933 0949 0.864 0.947 0.709 0.953 0.697 0.765 0.783
1.000 0.975 1.099 0.889 1870 0.889 0.928 0.900 0.888 0.316 0.323

(b) RMSE of GLS and UP forecast errops= 0, T = 250,h = 10,u; = e; ~ N(O, 1).
o oL OLS COy PWg COp PW; COx PWs U Ple U POle

0.000 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.064 0.064
0.400 0.106 0.105 0.106 0.105 0.106 0.105 0.106 0.105 0.107 0.108
0.800 0.296 0.292 0.296 0.290 0.296 0.290 0.296 0.291 0.296 0.302
0.900 0.482 0471 0482 0451 0482 0455 0482 0471 0.486 0.509
0.950 0.663 0.648 0.663 0.560 0.663 0.562 0.663 0.578 0.766 0.824
0975 0821 0.798 0.821 0.640 0.821 0.616 0.821 0.616 0.952 0.993
0.990 0955 0917 0.936 0.878 0.933 0.709 0.940 0.697 0.765 0.784
1.000 0964 1.090 0876 1852 0.876 0927 0.887 0.891 0.317 0.321

(c) RMSE of GLS and UP forecast errogg:= 0, T = 250,h = 10,u; ~ (0,1/N(1— a?) o] < 1.
o OLS OLS COp PW COp PWy COx PWx UPpyy UPoLs

0.000 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.064
0.400 0.106 0.105 0.106 0.105 0.106 0.105 0.106 0.105 0.105 0.106
0.800 0.297 0.293 0.297 0.305 0.297 0.306 0.297 0.311 0.272 0.296
0.900 0481 0474 0481 0559 0481 0551 0481 0.652 0.388 0.477
0.950 0.662 0.653 0.662 0.866 0.662 0.758 0.662  0.837 0.632 0.766
0975 0820 0.810 0.820 1.120 0.820 0.836 0.820 0.854 0.926 0.987
0.990 0961 0955 0.933 1.388 0.931 0.893 0.940 0.878 0.765 0.784

(d) RMSE of GLS and UP forecast erros= 0, T = 250,h = 10,u; = Z’J?loai e—j, k=1
o oL OLS COy PWg CO PW; COx PWx UPpw UPoLsg

0.000 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.068 0.068
0.400 0.106 0.105 0.106 0.105 0.106 0.105 0.106 0.105 0.108 0.109
0.800 0.297 0.293 0.297 0.305 0.297 0.306 0.297 0.311 0.348 0.341
0.900 0481 0474 0481 0559 0481 0551 0481 0.652 0.688 0.656
0.950 0.662 0.653 0.662 0.866 0.662 0.758 0.662  0.837 0.984 0.966
0975 0820 0.810 0.820 1.120 0.820 0.836 0.820 0.854 1.003 1.004
0990 0961 0.955 0933 1.388 0.931 0.893 0.940 0.878 0.760 0.766
1.000 0.968 1.094 0878 1.855 0.877 0.928 0.889 0.892 0.318 0.325

Note: OLS, andOL S are forecasts based on (6) and (4) respecti@ly, (Cochrane—Orcutt) anB W,
(Prais—Winsten) are forecasts based on GLS estimation of the trend function, with estimatiderated
n times.U Ppyy, is the forecast based on a unit root pretest wHew is used if a unit root is rejected.
UPoLg is the forecast based on a unit root pretest wi@teS; is used if a unit root is rejected.
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Table 7.(a) RMSE of GLS and UP forecast errops= 1, T = 250,h = 10,u; = ¢; = 0.
o oL OLS COy PWg COp PW; COx PWx UPpwy UPoLg

0.000 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133
0.400 0.222 0.221 0.222 0.220 0.222 0.220 0.222 0.220 0.220 0.222
0.800 0593 0589 0593 0570 0593 0570 0593 0.570 0.570 0.593
0.900 0.889 0.895 0.889 0.812 0.889 0.813 0.889 0.813 0.878 0.939
0.950 1.145 1.187 1145 1.011 1.145 0.995 1.145 0.992 1.218 1.250
0975 1.328 1436 1.329 1.206 1.327 1.125 1.327 1.112 1.070 1.079
0.990 1427 1.658 1436 1465 1.421 1245 1421 1195 0.777 0.780
1.000 1.341 1.726 1360 1567 1326 1.217 1326 1.118 0.345 0.350

(b) RMSE of GLS and UP forecast errops= 1, T = 250,h = 10,u; = e; ~ N(O, 1).
o oL OLS COy PWg COp PW; COx PWs U Ple U POle

0.000 0.135 0.134 0.135 0.134 0.135 0.134 0.135 0.134 0.134 0.135
0.400 0.224 0.223 0.224 0.223 0.224 0.223 0.224 0.223 0.223 0.224
0.800 0599 0598 0599 0586 0599 0586 0599 0.587 0.586 0.599
0.900 0.899 0911 0.899 0.844 0899 0.842 0.899 0.845 0.907 0.952
0.950 1.158 1.208 1.158 1.042 1.158 1.021 1.158 1.020 1.224 1.253
0.975 1.346 1459 1346 1.224 1346 1.143 1.346 1.130 1.080 1.090
0.990 1.447 1.669 1449 1456 1444 1.245 1444 1.196 0.781 0.785
1.000 1.337 1.702 1351 1536 1.326 1.197 1.326 1.104 0.341 0.344

(c) RMSE of GLS and UP forecast errogs:= 1, T = 250,h = 10,u; ~ N(0,1/(1— a?) o] < 1.
o OLS OLS COp PW COp PWy COx PWx UPpyy UPoLs

0.000 0.135 0.135 0.135 0.135 0.135 0.135 0.135 0.135 0.133 0.134
0.400 0.224 0.223 0.224 0.223 0.224 0.223 0.224 0.223 0.219 0.222
0.800 0.601 0.600 0.601 0.604 0.601 0.604 0.601 0.610 0.554 0.594
0.900 0.902 0916 0.902 0.925 0.902 0912 0902 0.935 0.835 0.928
0.950 1.159 1221 1159 1.191 1.159 1.121 1.159 1.126 1.207 1.251
0.975 1.349 1.489 1349 1386 1.349 1.237 1.349 1.214 1.067 1.079
0.990 1.459 1.704 1462 1542 1.456 1.300 1.456 1.243 0.774 0.779

(d) RMSE of GLS and UP forecast errops= 1, T = 250,h = 10,u; = Z’J?loai e—j, k=1
o oL OLS COy PWg COp PW; COx PWx UPpwy UPoLsg

0.000 0.135 0.135 0.135 0.135 0.135 0.135 0.135 0.135 0.135 0.135
0.400 0.224 0.223 0.224 0.223 0.224 0.223 0.224 0.223 0.223 0.224
0.800 0.601 0.600 0.601 0.604 0.601 0.604 0.601 0.610 0.614 0.611
0.900 0902 0916 0902 0925 0.902 0.912 0.902 0.935 1.013 1.013
0.950 1.159 1.221 1159 1.191 1159 1121 1.159 1.126 1.258 1.263
0.975 1.349 1.489 1349 1386 1.349 1.237 1.349 1.214 1.080 1.081
0.990 1.459 1.704 1462 1542 1.456 1.300 1.456  1.243 0.783 0.784
1.000 1.335 1.698 1.349 1537 1325 1.197 1325 1.105 0.345 0.344

Note: OLS, andOL S are forecasts based on (6) and (4) respecti@ly, (Cochrane—Orcutt) anB W,
(Prais—Winsten) are forecasts based on GLS estimation of the trend function, with estimatiderated
n times.U Ppyy, is the forecast based on a unit root pretest wHew is used if a unit root is rejected.
UPoLg is the forecast based on a unit root pretest wi@teS; is used if a unit root is rejected.
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the case ofp = 1.13 Stock and Watson (1998) considered the usefulness of unit root pretests
in empirical applications. However, they forecast usidg S when the unit root hypothesis is
rejected. In light of the efficiency of GLS over the OLS, we WBB®&4 under the alterative of
stationarity. ThePW; is used because it has desirable properties both when0 andp = 1,

and also because it is easy to implement. Specifically, we use the DF-GLS test (based on the PW
transformation) with one lag to test for a unit root. If we cannot reject a unit rootpardO,

V14171 = 1. If p =1, the mean of the first differenced series is estimated. Denoting thiy py
thenVr 1T = yr + Ay. If a unit root is rejected and BW; forecast is obtained, the procedure

is labelledU Ppy, below. If a unit root is rejected an@L S is used (as in Stock and Watson),

we refer to the procedure &5Po g .

The UP forecast errors are given in the last two columns of Tables 2 to 7. If the unit root test
always rejects correctly, the RMSE far< 1 would have coincided witlPWj or OLS. This
apparently is not the case and reflects the fact that power of the unit root test is less than one.
The increase in RMSE from falsely imposing a unit root is larger wheg 0. Furthermore,
forecasts based on unit root pretests can sometimes be worse than without unit root pretesting
(see line 5 of Table 2(a)). Nonetheless, the reductions in forecast errors are quite substantial in
many of the cases whenis very close to or at unity. This arises not just because variability
in @ is suppressed, but also because first differencing bypasses the need to dgtithaté&ey
source of variability with any two-step procedure. Irrespective of the assumptiop, €hPpy,
has smaller RMSE thabl Pg| g, reflecting the improved efficiency d? Wy over OLS. For
bothU P procedures, the trade-offs involved are clear: large reduction in RMSE when the data
are persistent versus an increase in RSME when the largest autoregressive root is far from unity.

An overview of the alternatives tO L § (the preferred OLS forecast) is as follows. The two
UP procedures usually yield the minimum RMSE wheis very close to one. The problem, of
course, is that ‘close’ depends on the data in question. Of the GLS foreleasis performs very
well whenp = 1, and theP W, also yields significant improvements over the OLS procedures.
For p = 0, the results are sensitive i@ and theP W is more robust tha? W,,. Feasible GLS
based orP W, and P W,, with or without a unit root pretest dominates OLS and should be used
in practice.

4. EMPIRICAL EXAMPLES

In this section, we take the procedures to 15 US macroeconomic time series. These are GDP,
investment, exports, imports, final sales, personal income, employee compensation, M2 growth
rate, unemployment rate, 3 month, 1 year, and 10 year yield on treasury bills, FED funds rate,
inflation in the GDP deflator and the CPI. Except for variables already in rates, the logarithm of
the data is used. Inflation in the CPl is calculated as the change in the price index between the last
month of two consecutive quarters. All data span the sample 1960:1-1998:4 and are taken from
FRED* Throughout, we us& = 4 lags in the forecasting model. Stock and Watson (1998)
found little to gain from using data dependent rules for selecting the lag length in forecasting
exercises. Four lags are also used in the unit root tests. We assume a linear time trend for the
seven National Account series. Although the unit root test is performed each time the sample

13pjebold and Kilian (2000) found that pretesting is better than always seitirgl and is often better than always

using the OLS estimate of.
14The web site addressistp://www.stls.frb.org/fred.
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is extended, we only keep track of unit root test results for the sample as a whole. Except for
investment, the unit root hypothesis cannot be rejected in the full sample for the first seven
series. For the remaining variables, we gpse 0. The DFGLS rejects a unit root in M2 growth,
unemployment rate and CPI inflation.

Since the preceding analysis assurkes 1, a discussion on quasi-differencing wHes 1
is in order. We continue to obtaiy, i = 1, ..., k from (5) with additional lags of; added to
the regression. We experimented with two possibilities. One option is to quasi-difference with
o= Z!‘Zl & . The alternative option is to lef™ = x; — Z!‘zl aix—i fort =k+1,..., T X =
Yy, z). For theC O, we lose the firsk observations but no further modification is required. For the
PW, we additionally assume" = x; —lezldj xi—jfori =1,...,k(x =Y, 2). The forecasts
are then based on four lags of the quasi-transformed data. Based on our limited experimentation,
both approaches give very similar forecast errors and we only report results based on the first
procedure. That is, quasi-differencing using the sum of the autoregressive parameters.

Our results are based on 100 real time, one period ahead forecasts. Specifically, the first
forecast is based on estimation up to 1973:4. The sample is then extended by one period, the
models re-estimated, and a new forecast is obtained. Because we do not know the data generating
process for the observed data, the forecast errors reflect not only parameter uncertainty, but also
potential model misspecification. Procedures sensitive to model misspecification may have larger
errors than are found in the simulations when the forecasting model is correctly specified. We also
carried out formal tests for the equality of the MSE of the forecasts using the tests proposed by
West (1996). For each series we tested the hypothesis, dedatatiat all forecasts (excluding
the UP forecasts) yield equivalent MSE (on average). The tests are carried out by testing whether
the sample means of the 100 real time MSEs are consistent with equal population means of
the underlying MSE processes. Therefore, we are essentially testing equality of the means of
vectors of time series consisting of the real time forecast mean square errors. West (1996) showed
that Wald statistics for testing equality of the means constructed using serial correlation robust
standard errors have asymptotic chi-square distributions. We computed serial correlation robust
standard errors using spectral density kernel methods with the quadratic spectral kernel and the
bandwidth chosen using the data-dependent method recommended by Andrews (1991) using the
VAR(1) plug-in method.

Our results are summarized in terms of the average RMSE and are reported in Table 8. We
group the series according to whethee= 1 or p = 0. For p = 1 we see thaP W, gives the
best forecast in four of the seven cases. Surprisingly (given the simulation results in the previous
section),C Oy and C Oy give the best forecasts in three cases. However, iterating CO in those
cases makes the forecasts worse. The OLS forecasts are never the best althdgh often
much better tha® L $. Unit root pretesting often improves the forecasts which is not surprising
given that six of the series appear tolh@). Because the UP forecasts are the same when a unit
root is not rejectedJ Ppy, andU Po( g usually have the same RMSE. The last column gives
p-values for the test of equality of forecasts. We see that, with the exception of the investment
series, we strongly reject the null that all the forecasts are equally precise. This suggests that the
dominance of GLS over OLS can be taken seriously.

For p = 0, less crisp comparisons of forecasts can be made. Except for the GDP deflator
series, the tests for equality of forecasts cannot be rejected. The null of equal forecasts for the
GDP deflator series is rejected becauseGh®, forecast is much worse than any of the other
forecasts. For the series for which a unit root can be rejected (m2sl, unrate, cpiaus) the RMSE
are essentially identical across forecasts. This is to be expected given that the simulations in the
previous section showed that the method of trend estimation is largely irrelevdnDjcseries.
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Table 8. Empirical examples: average RMSE of 100 real time, one period ahead forecasts.
Series  OLS; OLS, COp PWp COy PWi COxo PWoo UPpw UPoLs  Ha
p=1
gdpc924 (1) 0.280 0.292 0.279 0.294 0.279 0.286 0.287 0.285 0.278 0.278 0.000
gpdic924 (0) 1.587 1.605 1.578 1.599 1.579 1.592 1.581 1.591 1.592  1.587 0.149
expgsc92k(1) 0.196 0.204 0.195 0.208 0.193 0.184 0.191 0.182 0.181 0.181 0.000
impgsc92+ (1) 1.198 1.192 1.195 1.152 1.181 1.145 1.178 1.125 1123  1.123 0.002
finslc924 (1) 1.011 1.033 0.999 1.008 0.995 0.974 0.995 0.957 0.870 0.870 0.000
dpic924 (1) 0.356 0.365 0.351 0.356 0.349 0.350 0.352 0.347 0.342 0.342 0.000
wascurf (1) 0.239 0.247 0.237 0.247 0.237 0.242 0.241 0.241 0.238 0.238 0.000
p=0
m2siH (0)  3.002 2.993 2.992 2991 2.991 2989 2.991 2.989 2989  3.002 0.249
unratet (0)  0.353 0.353 0.353 0.354 0.353 0.354 0.358 0.355 0.354  0.353 0.524
tb3mad (1) 1.591 1.605 1.491 1.601 1.573 1.583 1.577 1.569 1.549  1.549 0.681
gsi (1) 1474 1.476 1.366 1.475 1.447 1.469 1.458 1.468 1.452  1.452 0.860
gs104 (1) 0.864 0.857 0.911 0.863 0.854 0.863 0.855 0.864 0.856 0.856 0.555
fed-1 (1) 1.987 1.985 1.957 1.991 1.976 2.009 1.974 2.000 1.934 1.934 0.360
gdpdefd (1) 1.156 1.131 1.213 1.155 1.121 1.148 1.117 1.151 1.115 1.115 0.000
cpiaucst (0) 2.221 2.206 2.206 2.207 2.211 2217 2.199 2218 2217 2221 0.139

Note: Thel (0)/1 (1) after each series name indicates whether a unit root can be rejected in the errors of
the full series, using the DFGLS of Elliogt al. (1996). ColumnsOL S to UPg g are the averaged

RMSE over 100 continuously updated forecasts. The column lab¢jedeports asymptotig-values for

the joint hypothesis that mean square errors of all the forecasts (not includegy, andU P g ) are

the same (on average). The series names are those used by FRED. They are deciphered as follows: gdpc92
= gross domestic product, gdpic@2 investment, expgsc92 exports, impgsc92= imports, finslc92=

final sales, dpic92- personal income, wascer employee compensation, m2sIM2 growth rate, unrate-
unemployment rate, tb3ma 3 month t-bill yield, gsl= one year t-bill yield, gs16= 10 year t-bill yield,

fed = FED funds rate, gdpdet GDP deflator based inflation, cpiauesCPI based inflation.

Of the five series for which a unit root cannot be rejected, GLS gives better forecasts than OLS in
four casesU Ppyy, performs slightly better thad Po 5 again supporting the recommendation
that GLS be used when a unit root is rejected.

5. CONCLUSION

In this paper, we focused on the role played by trend function estimation when forecasting autore-
gressive time series. We showed that the forecast errors based upon one-step OLS trend estima-
tion and two-step OLS trend estimation have rather different empirical and theoretical properties
when the autoregressive root is large. One-step OLS clearly dominates two-step OLS in terms
of forecast precision. We then showed that efficient estimation of deterministic trend parameters
by GLS may improve forecasts over OLS. Specifically, finite sample simulations and empiri-
cal applications show that iterative GLS, especially Prais—Winsten, yields smaller forecast errors
than one-step OLS when applied to series with highly persistent errors. Prais—Winsten GLS with-
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out iteration is not recommended because this does not lead to jointly optimal trend and autore-
gressive parameter estimation and can give forecasts inferior to OLS. lterative Prais—Winsten
GLS is preferred over iterative Cochrane—Orcutt GLS because the latter tends to be unreliable
for highly persistent time series. In practice, we find one iteration to yield satisfactory and robust
results. We also confirmed in this paper that unit root pretests can improve forecast accuracy
when the errors have a root close to unity (but, unit root pretests can reduce forecast accuracy for
persistent but stationary errors). Whether or not a practitioner chooses to use a unit root pretest,
estimation of the trend and the autoregressive parameters by one iteration of Prais—Winsten GLS
is recommended when constructing forecasts of autoregressive time series.
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APPENDIX
The following lemma provides asymptotic limits that are used in the derivation of the limiting
distribution of the forecast errors. The proof of the lemma is straightforward and hence omitted.
Lemma5.1.When p= 0, T-Y2(8, — 30) = [5 J2(r)dr. When p= 1, T-Y2(§, — 8) =
Jo(4—6r)3x(r)dr, and TY2(31 — 81) = [y (12r — 6) 3z (r)dr.
Proof of Theorems 2.1 and 2.2. We begin w@hi. S whenp = 0.
€ryyr = (@ —@)UT + 80 — 80) — T~ (S0 — d0),
TY28r 1 = T(e —&)(TY2ur + T-Y2(80 — 50)) — cT~2(50 — d0).
= cT Y20 —80) — T(@— )T V207,
= c[JF D) — D] — oI W) IEQD).

Whenp = 1, M = 3o + o1t and thereforel — al)y(myy1 — Mryp) = (1 —@)(mr — M)
+ (81 — 81). It follows that

@ryyr = (L—a@)(mr — M) + (81— 1) + (¢ — @)ur,
= (¢ —@)(mr — M +ur) + (81— 81) — cT (Tt —ur),
TY%r a7 = cT Y2 ur —Or) - TY2(1 - 80 - T@— )T,

1
S o3 - T —/0 (12 — 632 ()dr — (FEr), W) T (D).
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UnderOLS, letB = (8o B1)’. Then

Va7 = Bo + Bu(T + Dayr,
€yt = (Bo— Bo) + (B1 — BT + 1) + (@ — @) (M + ur),
=—[1 T+1(8 - B) + (¢ — @) (mr +ur).
We first show that the forecast error is invariant to the true valuég ahdé§;. By partitioned
regression, recall that = (1,t), and lety_1 = {Yo, V1, - .., Y1—1}. Also let D be aT x 2 matrix
with O in the first column and 1 in the first column. Then
B-B=(Z2 e- 70 '7y1@ - w),
= (Z2Ze— (Z2)"1Z(z5 — D§ +u_)(@ — @),
=(Z2) Ze— (6o —81, 81)@—a) — (Z2) Zu_1@ — ).
Substituting this result into the expression&t.1j7, we have

€T =—[L T +1(Z2 Ze— (72 Zu_1@ — )]
+ (80— 81+ 81T +8)(@ — ) + (@ —@)(M7 + UT),
=—[L T+ 1[(Z2) Ze— (Z2) 1Zu_1@ — a)] + (@ — @)uT,
which does not depend @n Therefore, without loss of generality, we fet= 0 so thalyT = ur.
Consider the artificial regressioa = Ag + Ait + e whereg is white noise. Them — g and
€rq71 simplify to
B—B=(Z2 Ze— Z2) " Zu_1@ — a),
_[lelcAo— Ao [lclcdo—60] ~
s Bl R S
&yt = (Bo — Po) + (Br— PO(T + 1) + (¢ — @)u.
Therefore,
€T = (80— 80) — (Ao — Ag) + (81— 8) (@ —@)(T + 1) — (Ap — A))(T + 1)
= (@ —@)(M7 — My +ur) + (81 — 81) (@ — @) — (Ao — Ag)
—(A1— A)(T + 1),
= (@ —a)Ur + (81 —8)(@—a) — (Ao — Ag) — (A1 — AD)(T + 1),
TY%r iy = T@ — )T Y207 — TY2(Ag — Ao) — T¥2(A1 — A1) + 0p(D)

1
:—@(JN;‘,W)JT;*(l)—/ (6r —2)dW(r).
0

For p = 0, the last termA; does not exist andg = T~1 ZtT:let. Thus,

.
TY%8r a7 = T(@ —@)07 — T—1/2Ze[
t=1

= —d(JF, W) IE D) — W(Q).
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GLS Detrending

Proof of Theorems 3.1 and 3.2. Recall thatenotes the feasible GLS estimates dfJsing the
algebraic results fron® L S we have forlC O and P W:

p=0: T1/2§T+1|T = CT_l/Z(UT —Ur) —-T(@— c()T_l/ZGT,

p=1:  TY%ryr =cTV2ur —Un) — TY2@1 —61) — T@ — o) T~ Y20,
whereT ~%20r = T~Y2ur — T~Y2(8,—8o) for p = 0 andT Y207 = T~¥2ur — T~ 2(5p -
80) — TH2(81 — 81) for p = 1. Given thatT ~*2ur = J#(1) andT (& — @) = (€ — ©), all that
remains to be established are the limitsfof/2(sg — 8¢) andTY/2(8; — 81) for feasibleC O and

PW detrending. ~
The results folf /2(§; — 1) for p = 1 can be found in Canjels and Watson (1997):

1
CO:TY2(6,—61) = C’lf (6= 125)dW(s),
0
1
PW: TY2(61 - 81) = 9(/ (1—¢9dW(s) +¢(1 — 3¢) JJ(K))-
0

Using the limiting results in the appendix of Canjels and Watson (1997), it is a simple algebraic
exercise to show that fqu = 1:

1
CO:TY2Gy — 80) = C_Z/ (6 — 4¢ — 125 + 65¢)dW(s),
0

PW: TY2(50 — 80) = JI5 (k).

and forp = 0:
CO: TY?(y - 60) = —c—lfoldv'v(s),
PW: TY2Gg — 80) = g (k).
The final expressions in the theorems then follow from algebraic simplification. O
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