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Abstract

Perron (1989) finds that increasing the span of the point sampled data always increases the power of unit root
tests. We extend the analysis to analyze flow data which have a moving average error structure. We examine five
unit root tests which correct for serial correlation and find the power of some tests not to be monotonic in the span
of the data.

JEL classification: C12

1. Motivation

Consider a time series of data y,, sampled at a discrete interval 4 over a span of S time units
with the data generating process given by

Yon =Yy T Uy, - (1)

This discrete time representation of y, is the exact solution to an Ornstein—Uhlenbeck
diffusion process

dy, = vyy,dt + o dw, (2)

where —o <y <o, 0<r<S, w, is a unit Weiner process, and vy, o, and y(0) are constants.
The discrete time model (1) is related to the continuous time model (2) by «, = exp(hy),
Uy =0 [, exp(y(th —s)) dw,, with u, ~N(0, o*(exp”" —1)/2y). Given the corre-
spondence between the two models, testing o, = 1 against the stationary alternative that o, <1
in (1) is equivalent to testing y = 0 against the alternative of y <0 in (2).

Simulations of Shiller and Perron (1985) and Perron (1989) showed that when the data are
sampled at discrete points the power of unit root tests is more influenced by the span of the
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data and less so by the number of observations. The span of the data, S, plays an important
role in unit root tests because the sampling interval is tied to the number of observations, T,
by the relationship 4 = S/T. The sampling interval evidently falls as the number of observa-
tions increases if the span of the data is held fixed. In the limit, #— 0 as 7— o« for fixed S.
Since a;, = exp(yh), this means that a, — 1 as &#— 0 regardless of the true value of y. In other
words the value of «, under the alternative tends to that under the null as Ah—0. The
implication is that unit root tests based on (1) have lower power when applied to higher
frequency data and are outright inconsistent in the limit when A— 0. Increasing the span of
the data yields more power for a given number of observations because it moves & away from
zero. A formal treatment of these issues can be found in Perron (1990).

The assumption that data are sampled at discrete points in time is appropriate for variables
such as interest rates and the money supply. However, many economic time series such as
consumption are observed only as integrals over a fixed sampling interval. That is, these data
are flows. Suppose that y, is not observed at every point but over an interval of length .
Integrating (2) from ¢ — h to ¢ and rearranging terms gives

Y, = JI—-I y, dr= eXP('}'h)Y(zfl)h T U,

t h
v, =oh f_l ]0 exp(sy)w(rh —s)ds dr .

The double integral in the error term v,, is the primary cause of serial correlation. Phillips
(1974) formally showed that v, is an MA(1) and that the exact discrete representation can be
approximated by

Y, = ahY(t—l)h tv,
vy, = e, +0.268¢,_,,,

(3)
where o, = exp(vh). In other words, if y, is a diffusion process like (2), then observed Y,, will
be an ARMA(1,1). When o, =1, the first order autocorrelation coefficient for AY,, equals
0.25. This is the special case considered by Working (1960). In general, the first difference of
Y, i1s an ARMA(1,2).

The objective of this paper is to see how the span and the number of observations affect the
power of unit root tests on flow data. Hypothesis testing is complicated by the presence of
serial correlation, and statistics analyzed in Perron (1989) are inappropriate in these cases.
Choi (1992) analyzed the implications of data aggregation over k periods on the power of
some unit root tests with the sampling frequency held fixed. The DGP considered in this paper
is a special case of data aggregation with k— c, but we consider the power function at
different sampling frequencies.

2. Results

Our Monte Carlo analysis is based on the regression model

yth =H +ay(r—l)h +uth (4)
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using (3) as DGP. We examine % in the range 40 and 1/40 by allowing § and T to vary
between 25 and 1000. All simulations are based on 1000 replications with y, normalized to
zero and o chosen such that e, ~ N(0, 1).

We consider five unit root tests that deal with serial correlation. They are the Phillips—
Perron Z, and Z, tests, the Said-Dickey ¢, test, Hall’s IV test, and the test for randomness
based on high order autocorrelation coefficient on the first difference data.

The ¢, statistic due to Said and Dickey (1984) is based on the ¢ statistic on p, in the
regression

I
Ay, =p TP Y- T 2:20, Ay(H—j—l)h te,.
j=

The truncation lag is determined by /= int(4(7/100)"") as described in Schwert (1989).
The Z, and Z, tests, due to Phillips and Perron (1988), are defined as

T -1
2, = 166 =)= 0563~ D(T 7 2 O —)’)

T -1/2
Z,= Guls = (055,055 =S 2 e =3

-1 T A A A : 2 -1 yT A2
where y,, =T " Z,_; ¥ 1yn> Uy =Yy — 4 — @Y (1), are the OLS residuals, s, =7 X_; dy,

sh=T "2l q, +2T' 2 _ w@ DL, fyti, s (7,1) is a lag window with truncation
lag /. The quadratic spectral window with automatic bandwidth as described in Andrews
(1991) is used to estimate s’,.

The IV test, due to Hall (1989), is based on the idea that since y,_y, = Yi-mpn T Y-1)n ~
Y(—mn-> the sample variation in y,, ,,, is dominated by variations in y_,,,. Therefore y,_,,,
can be used as an instrument to remove the bias caused by correlation between y,_,,, and u,,.
When the serial correlation is an MA(q) Hall suggests setting m = q + 1. Thus, we have

T -1 T
&, (V)= (I_ZH y(r—m)hy(z—l)h) » Y—mnYn

=m

and the statistic of interest is 7(&,(/V) — 1). Since the error term of the DGP in question is an
MA(1), the second lag of y,, is used as an instrument.

The Z, statistic has the same asymptotic distribution as Hall’s test, while the Z, test and ¢,
are asymptotically identical. Critical values for these tests are given in Fuller (1976).

The last statistic looks for randomness in the first differenced data. Under the null of a unit
root, the noise component is an MA(1); the first differenced data therefore have second and
higher order autocorrelation coefficients of zero. Under the alternative, the first differenced
data is an ARMA(1,2). The test statistic is VTR, (k) ~ N(0, avarR(k)), where

" The results based on the Bartlett window and the autoregressive spectral window are quite similar and are
available on request.
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T T
R,(j)= ( ZH Ay, A}’(:-j)h><22 Ay12h>
t=j t=

and avar R(j) is the asymptotic variance based on Bartlett’s formula as defined in Priestley

Table 1
Power of unit root tests for flow data DGP: y,, =exp(yh)y .., T €, +0.268¢,_,,,
vy=-0.20, h=8/T

T\|—>S 25 50 100 250 500 1000
le
25 0.041 0.060 0.114 0.144 0.155 0.172
50 0.103 0.180 0.248 0.316 0.368 0.402
100 0.375 0.555 0.681 0.844 0.866 0.896
250 0.824 0.984 1.000 1.000 1.000 1.000
500 0.921 1.000 1.000 1.000 1.000 1.000
1000 0.930 1.000 1.000 1.000 1.000 1.000
Size 0.014 0.021 0.025 0.036 0.054 0.041
Zt
25 0.030 0.035 0.055 0.078 0.090 0.091
50 0.082 0.092 0.125 0.187 0.247 0.279
100 0.285 0.367 0.496 0.681 0.701 0.773
250 0.776 0.946 0.996 1.000 1.000 1.000
500 0.894 1.000 1.000 1.000 1.000 1.000
1000 0.900 1.000 1.000 1.000 1.000 1.000
Size 0.035 0.028 0.028 0.040 0.058 0.054
T(a, V) ~ 1)
25 0.223 0.169 0.149 0.150 0.139 0.146
50 0.436 0.370 0.330 0.341 0.348 0.358
100 0.633 0.742 0.798 0.855 0.868 0.883
250 0.770 0.963 1.000 1.000 1.000 1.000
500 0.704 0.934 1.000 1.000 1.000 1.000
1000 0.690 0.850 0.992 1.000 1.000 1.000
Size 0.081 0.052 0.030 0.035 0.047 0.037
t
,
25 0.072 0.074 0.074 0.108 0.113 0.116
50 0.110 0.160 0.165 0.245 0.270 0.312
100 0.163 0.274 0.399 0.623 0.719 0.773
250 0.254 0.515 0.799 0.981 1.000 1.000
500 0.270 0.615 0.947 1.000 1.000 1.000
1000 0.289 0.648 0.973 1.000 1.000 1.000
Size 0.050 0.047 0.034 0.045 0.058 0.049
R,(3)
25 0.077 0.080 0.079 0.055 0.038 0.032
50 0.119 0.120 0.110 0.065 0.049 0.039
100 0.093 0.186 0.260 0.150 0.095 0.052
250 0.074 0.157 0.356 0.398 0.280 0.142
500 0.052 0.110 0.264 0.636 0.668 0.468
1000 0.055 0.097 0.141 0.580 0.880 0.911

Size 0.022 0.040 0.042 0.041 0.025 0.016
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(1981). Although in theory, R,(2) ought to be an appropriate test for randomness since Ay, is
an MA(1), we find the size of the test to be distorted. We therefore report the results based on
R,(3).

Table 1 gives the power of the statistics of interest. In general, the power of all statistics is
lower than that reported in Perron (1990) for point sampled observations. The two Z tests are
undersized while the IV test is oversized at small samples. Note also that the two normalized
least squares tests are more powerful than the two ¢ tests.

The Z,, Z, and ¢, tests share the properties that (i) increasing T while keeping S fixed
increases power but at a diminishing rate; (ii) power decreases when T increases as S falls.
Thus, none of the tests considered here seem to be small-S consistent in the sense of Perron
(1990). Increasing the number of observations while reducing the span always leads to a
power loss; (iii) power increases with S for fixed 7. These findings are similar to those of
Perron (1990) for point sampled data.

The IV test appears not to be monotonic in the S when T is small. While the test is the most
powerful for small values of S and 7, power actually falls as T increases holding § fixed at
small values. The power of R(1) was found to peak at T =50 in the case of point sampled
data. Here in the case of flow data, the power function is still non-monotonic in 7" but it peaks
at a higher value of 250 for every S. As well, increasing the span of flow data when 7 < 100
could decrease the power of the statistic.

3. Conclusion

This paper uses simulations to show that while increasing the span of the data unambiguous-
ly increases the power of unit root tests in point sampled observations, some unit root tests
which correct for serial correlation in time averaged data do not share the same property. In
particular, the IV based normalized least squares statistic and the test for randomness show
non-monotonicity of power in the span of the data. Other unit root tests not examined here
may have similar properties. As far as Z,, Z, and ¢, are concerned, increasing the span of the
data always yields power gain.
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