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Constructing Common Factors from Continuous and
Categorical Data

Serena Ng
Department of Economics, Columbia University, New York, New York, USA

The method of principal components is widely used to estimate common factors in
large panels of continuous data. This article first reviews alternative methods that obtain
the common factors by solving a Procrustes problem. While these matrix decomposition
methods do not specify the probabilistic structure of the data and hence do not permit
statistical evaluations of the estimates, they can be extended to analyze categorical data.
This involves the additional step of quantifying the ordinal and nominal variables. The
article then reviews and explores the numerical properties of these methods. An interesting
finding is that the factor space can be quite precisely estimated directly from categorical
data without quantification. This may require using a larger number of estimated factors
to compensate for the information loss in categorical variables. Separate treatment of
categorical and continuous variables may not be necessary if structural interpretation of the
factors is not required, such as in forecasting exercises.

Keywords Alternating least squares; Factor models; Ordinal data; Principal components.

JEL Classification C5; C6; C25; C35.

1. INTRODUCTION

The recent interest of economists in factor models is largely driven by the fact that
common factors estimated from large panels of data often have predictive power
for economic variables of interest. Theoretical and empirical work predominantly use
principal components to estimate the common factors in continuous data. Little attention
has been given to alternative estimators and to the treatment of categorical data even
though many economic variables are of this nature. For example, households and firms
are asked in surveys whether they expect economic conditions to improve or not. While
such data could be useful for forecasting, they cannot be approximated by continuous
distributions. This article first reviews dimension reduction methods that can handle
mixed measurement data, meaning that the data can be continuous or categorical. I then
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1142 S. NG

investigate the consequence from the perspective of the factor space of using categorical
variables to construct principal components, treating the data as if they were continuous.

Any study of socioeconomic status necessarily involves analyzing dichotomous data
or data with a small number of categories. Such data requires special treatment as
they contain important but imperfect information about the underlying latent variables.
Racine and Li (2004) and Su and Ullah (2009) consider using a small set of mixed
data in non-parametric regressions. Here, I consider the situation when the set of mixed
predictors is large enough that dimenional reduction becomes necessary. As pointed out
in Kolenikov and Angeles (2009) and further investigated below, the method that is
currently used by economists is far from satisfactory.

The psychometric approach to the dimension reduction problem is to either explicitly
model the latent continuous variables or quantify (impute) the continuous variables from
the categorical data.1 According to the Statistical Package for the Social Science (SPSS)
software and as explained in Meulman and Heiser (2001), the following three types
of categorical variables are relevant: (1) nominal variables which represent unordered
categories (such as zip codes and SIC codes); (2) ordinal variables which represent ordered
categories (such as satisfaction ratings of excellent/good/average/poor and Likert scale);
and (3) numerical (count) variables which represent ordered categories (such as age
in years and income class in dollars) with distances between categories that can be
meaningfully interpreted. Nominal and ordinal data are said to be nonmetrical because
the distance between two categories has no meaningful interpretation. The challenge for
factor analysis of non-metrical data lies in the fact that normalization and monotonicity
constraints need to be imposed to ensure consistency between the imputed variables and
the observed discrete variables. Not surprisingly, going down this route necessarily takes
us from linear to nonlinear methods of dimension reduction.

I begin with a review of factor analysis of continuous data from the viewpoint of
solving a Procrustes problem. These methods are nonprobabilistic and do not permit
formal inference to be made. But they form the basis of many dimension reduction
problems which are interesting in their own right. The issues that arise in factor analysis
of categorical data are then discussed. Special focus is given to methods that quantify the
discrete data. Simulations are used to evaluate the precision of the factors estimated from
continuous and mixed data. The so-called Filmer–Pritchett procedure is also evaluated.
I assess the factors estimates from the perspective of diffusion index forecasting which
requires extracting common information in a large number of categorical variables.
Precise estimation of the factor space rather than structural interpretation of the factor
estimates takes center-stage.2 An interesting finding is that the principal components of
the raw discrete data can estimate the factor space reasonably precisely, though this may

1A 1983 issue of Journal of Econometrics (de Leeuw and Wansbeek editors) was devoted to these
methods.

2The focus is rather different from the structural factor analysis considered in Cunha and Heckman (2008)
and Almund et al. (2011).
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CONSTRUCTING COMMON FACTORS 1143

require overestimating the number of factors to compensate for the information loss in
categorical data. Data quantification may not be necessary.

2. FACTOR ANALYSIS OF CONTINUOUS DATA

Factor analysis is a statistical framework used to analyze the behavior of observed
variables using a small number of unobserved factors. Spearman (1904) appears to be the
first to conjecture that a common unobserved trait (mental ability) may be responsible
for the positive correlation in children’s test scores on a variety of subjects. To analyze
the contribution of the factors on the test scores and more generally on data that are
continuous, the classical approach is to estimate the factor loadings by maximizing the
Gaussian likelihood. Important contributions have subsequently been made by Anderson
and Rubin (1956), Joreskog (1970), Lawley and Maxwell (1971), and Browne (1984),
among others. Factor models are now used not just by psychologists, but by researchers
in marketing, biology, and other fields.

Let X denote a T × N matrix of continuous data or data in ratio form. As a matter
of notation, the i, j entry of X is denoted Xij ; Xi,: is the ith row of X and X:,j is the jth
column. For macroeconomic panels, N is the number of variables, and T is the number of
time periods over which the variables are observed. A superscript zero is used to denote
true values. The goal of factor analysis is to explain X using r common factors F 0 =
(F 0

1 , � � � , F 0
r ) and N idiosyncratic errors e0. In matrix form, the factor representation of

the data is

X = F 0�0′ + e0,

where �0 is a N × r matrix of factor loadings. The population covariance structure of X
under the assumption that the factors have unit variance and are mutually uncorrelated
is

�0
X = �0�0′ + �0�

In classical factor analysis, �0 is assumed to be a diagonal matrix, and the data X are
said to have a strict factor structure. Let k be the assumed number of factors which can
be different from r. Anderson and Rubin (1956) assume that the data are multivariate
normal. They use the normalization �F 0 = Ir and suggest to estimate the factor loadings
by maximizing the log likelihood:

log L0(�, �; k) = log |�| + trace (X − F�′)�−1(X − F�′)′�

Lawley and Maxwell (1971) consider the equivalent problem of maximizing

log L1(�, �; k) = log |�X| + trace (SX�−1
X ) − log |SX| − N ,
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1144 S. NG

where SX is the sample covariance of X. An advantage of maximum likelihood estimation
is that the sampling distribution of �̂ is known and inference can be made. When T is
large and N is fixed, the factor estimates �̂ are

√
T consistent and asymptotically normal.

Unbiased estimates of F can be obtained as shown in Lawley and Maxwell (1971, Ch. 8)
even though these are not usually the object of interest in psychology research.

When the normality assumption is not appropriate, one alternative is to consider
covariance structure estimation (also known as structural equation modeling). Let
� = (vec (�), vech (�))′ be the parameters of the factor model and W be a weighting
matrix. The weighted least squares estimator is

�̂WLS = argmin
�

(vech (�X(�) − vech (SX))′W (vech (�X(�) − vech (SX))�

Under regularity conditions and assuming that N is fixed, the weighted least squares
(WLS) estimator is also

√
T consistent and asymptotically normal, as shown in Browne

(1984) and others. As �̂WLS is simply a method of moments estimator, it is less efficient
than maximum likelihood estimator (MLE) but is robust to departures from normality.
Assuming that the true number of factors is known, it has been documented that the
asymptotic approximation of the WLS estimator is not accurate when the data exhibit
excess kurtosis; the chi-square statistic for goodness of fit is oversized; the factor loadings
are underestimated, and the standard error of the estimates tend to be downward biased.

Another alternative to MLE is iterative least squares estimation, the best known in this
category being minimum residual (MINRES). Given a N × N sample correlation matrix
RX , the objective is to find a N × N matrix � and a N × k matrix � such that ��′ is as
close to RX as possible. Formally,

LMINRES(�; k) = ∥∥RX − ��′ − �
∥∥2

�

Concentrating out � and using the fact that the diagonal entries of RX all equal one, the
concentrated loss function is

Lc
MINRES(�; k) =

∑
i �=j

(RX,ij − �i,:�′
j,:)

2,

where �i,: is the ith row of �, and RX,ij is the (i, j) entry of RX . Harman and Jones (1966)
suggest to start with an arbitrary � and iterate on each row of � holding other rows
fixed. To update the rows, the objective function is separated into a part that depends
on �i,: and a part ci that does not. Let R−i

X be the ith column of RX with the i-element
excluded, and let �−i be the (N − 1) × k matrix of � when the ith row is deleted. Define

Lc
MRS,i(�i,:; k) = (RX,1i − �1,:�′

i,:)
2 + (RX,i−1,i − �i−1,:�′

i,:)
2

+ (RX,i+1,i − �i+1,:�′
i,:)

2 + · · · + (RX,ki − �k,:�′
i,:)

2 + ci

= ∥∥R−i
X − �−i�′

i,:
∥∥2 + ci�
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CONSTRUCTING COMMON FACTORS 1145

The solution to this minimization problem is standard; it is the least squares estimate

�̂′
i,: = (�−i′�−i)−1�−i′R−i

X �

Since all units other than i are held fixed when �̂i,: is constructed, the estimator is
based on the principle of alternating least squares. Iterative updating of the ith row
of � has been shown to decrease the loss function. However, a researcher would not
be able to say whether a poor fit is due to the idiosyncratic errors or omitted factors.
One shortcoming of MINRES is that �̂i,:�̂′

i,: can exceed one, which would then imply a
negative idiosyncratic error variance. This so-called Heywood case can be circumvented.
An example is the linear structural relations (LISREL) implementation of MINRES,
detailed in Joreskog (2003).

Strict (or exact) factor models are to be contrasted with models more widely used in
macroeconomics and finance. These models relax the assumption of strict factor models to
allow some cross-section and serial correlation in eit. Chamberlain and Rothschild (1983)
referred to these as approximate factor models. Estimation is based on the method of
asymptotic principal components (PCA) first proposed in Connor and Korajzcyk (1986).
The estimator minimizes

LPCA(�, F ; k) = 1
NT

N∑
i=1

T∑
t=1

(xit − �i,:Ft)
2 = 1

NT

N∑
i=1

(X:,i − F�′
i)

′(X:,i − F�′
i)�

Because �′
i,: = (F ′F)−1F ′X:�i for any given F , the concentrated objective function is

Lc
PCA(F ; �; k) = 1

NT

N∑
i=1

(X:,i − PF X:,i)′(X:,i − PF X:,i)

= 1
NT

N∑
i=1

X′
:,iX:,i − 1

N

N∑
i=1

X′
:,iPF X:,i�

Since F and � are not separately identified, the normalization F ′F/T = Ik or �′�/N = Ik

is necessary. When N > T , minimizing Lc
PCA(F ; �) subject to the constraint that F ′F/T =

Ik is the same as maximizing

trace

(
1
N

N∑
i=1

X′
:,iFF ′X:,i

)
= trace

(
F ′ 1

N

N∑
i=1

X:,iX′
:,iF

)
= 1

N
trace (F ′XX′F)�

The solution for F , denoted F̂ , is
√

T times the eigenvectors corresponding to the
k largest eigenvalues of the T × T matrix XX′. The solution for �, denoted �̂, is
X′F̂/T . When T > N and under the normalization that �′�/N = Ik, �̂ is

√
N times the

eigenvectors corresponding to the k largest eigenvalues of the N × N matrix X′X with
F̂ = X�̂/N � Note that unlike MLE and WLS which fix either T or N , the sample sizes
in both dimensions are allowed to be large so that inferential theory can be developed
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1146 S. NG

for both F̂ and �̂. Bai (2003) shows that if
√

N/T → 0, then for each t,
√

N (F̂ ′
t,: −

HF 0′
t,:)

d−→ N (0, Avar(F̂t)), and if
√

T/N → 0, then for each i,
√

T(�̂′
i,: − H−1�0′

i,:)
d−→

N (0, Avar(�̂i)). As is well known, principal components describe but does not impose
any structure on the data, while a factor model distinguishes between the common and
idiosyncratic components. In a data rich environment, the distinction between factor
models and principal components analysis is often left vague because the principal
components consistently estimate the space spanned by the common factors.

A crucial assumption in the asymptotic theory for large dimensional factor models is
that the largest eigenvalue of �0 is bounded. A sufficient condition is that e0

it is weakly
correlated across i and t because under stationarity, the largest eigenvalue of �0 is bounded
by maxj

∑N
i=1 |Ee0

ite
0
jt|. Simulations show that F̂t precisely estimates the space spanned by

F 0
t when �0 is diagonal. This is a special case in which the eigenvalue bound is trivially

satisfied. However, the construction of principal components as factor estimates do not take
this constraint into account. Boivin and Ng (2006) report that estimated idiosyncratic errors
associated with macroeconomic data tend to be quite pervasively cross-correlated. Onatski
(2010) finds that asymptotic theory may not be a good guide to the finite sample properties of
the factor estimates when the errors are strongly cross-sectionally correlated. However, few
alternatives to the PCA are available. Doz et al. (2007) suggest a quasi-maximum likelihood
approach that assumes � is diagonal even if the errors are serially and cross-sectionally
correlated. A Kalman smoother is used to build up the likelihood which is then maximized
using the expectation-maximization (EM) algorithm. They find that omitting the correlation
in the errors has negligible effects on the estimated common factors when N is large. But
their simulations only consider mildly correlated errors.

3. TWO ALTERNATING LEAST SQUARES ESTIMATORS (ALS)

As alternatives to the method of principal components, I consider two estimators (ALS1
and ALS2) that address the Haywood problem of negative idiosyncratic error variances.
ALS2 additionally allows us to assess if the common and idiosyncratic components are
poorly estimated. As distinct from all estimators considered in the previous section,
the idiosyncratic errors are also objects of interest, putting them on equal footing with
the common factors. Furthermore, the factors are estimated without writing down the
probability structure of the model and as such, the statistical properties of the estimates
are not known. It may perhaps be inappropriate to call these estimators. My interest in
these methods arises because they can be extended to study latent variable models for
mixed (discrete and continuous) data.

Whereas the standard approach to deriving an estimator is to take derivatives of the
objective function, a derivative free alternative is to exploit information in the objective
function evaluated at the upper or lower bound. For example, consider finding the
minimum of f(x) = x2 − 6x + 11. By completing the squares and writing f(x) = (x −
3)2 + 2, it is clear that the lower bound for f(x) is 2 and is achieved at x = 3. Knowing
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CONSTRUCTING COMMON FACTORS 1147

the lower bound helps to determine the minimizer.3 ten Berge (1993) and Kiers (2002)
provide a formal treatment of using bounds to solve matrix optimizaiton problems.

Lemma 1. Let Y be of order p × q with singular value decomposition Y = PDQ′. Let
di be the ith diagonal value of D. Then (i) trace (B′Y ) ≤ ∑q

i=1 di and (ii) the maximum
of trace (B′Y ) subject to the constraint B′B = I is achieved by setting B = PQ′.

Kristof’s upper bound for trace functions states that if G is a full rank orthonormal
matrix and D is diagonal, then the upper bound of trace (GD) is

∑n
i=1 di. ten Berge (1993)

generalizes the argument to sub-orthonormal matrices of rank r ≤ n. Now trace (B′Y ) =
trace (B′PDQ′) = trace (Q′B′PD).4 Part (i) follows by letting G = Q′B′P. Part (ii) says
that the upper bound under the orthogonality constraint is attained by setting G = I
or equivalently, B = PQ′. This second result is actually the solution to the orthogonal
“Procrustes problem” underlying many dimension reduction problems and is worthy of a
closer look.5

Let A be a n × m matrix (of rank r ≤ m ≤ n), and let C be a n × k matrix with a
specified structure. The orthogonal Procrustes problem looks for an orthogonal matrix
B of dimension m × k that closely maps A to C. Formally, one chooses B to minimize
‖C − AB‖2

F subject to the constraint B′B = Im, where for a p × q matrix A, ‖A‖F =
trace (AA′)1/2 =

√∑p
i=1

∑q
j=1 A2

ij .
By definition,

‖C − AB‖2
F = trace (C ′C + B′A′AB − 2B′A′C)�

When A has the same number of columns as C, B must be a k × k orthonormal
matrix satisfying B′B = BB′ = Ik. The first two terms do not depend on B since
trace (B′A′AB) = trace (BB′A′A) = trace (A′A). The minimization problem is thus the
same as maximizing trace (B′A′C) subject to the constraint that B′B = I . Letting PDQ′

be the singular value decomposition of A′C gives trace (B′A′C) = trace (B′PDQ′) =
trace (Q′B′PD). Since Q′B′P is orthogonal and D is a diagonal positive matrix, the trace
is maximized if Q′B′P is an identity matrix. The solution is to set B = PQ′. When m > k
and B is a long matrix with more rows than columns, the solution has no closed form
and must be solved by iteration.

To see how Lemma 1 can be used to construct principal components, I follow the
formulation in ten Berge (1993). Given a T × N matrix of standardized data X, the goal of
principal components analysis is to find k linear combinations given by the N × k matrix

3It is important that the lower bound is attainable and does not depend on x. If the lower bound was 1
instead of 2, no meaning could be attached to x = 3 because the lower bound of 1 is not attainable.

4A matrix is sub-orthonormal if it can be made orthonormal by appending rows or columns.
5The orthogonal Procrustes problem was solved in Schonmenn (1966). See Gower and Dijksterhuis (2004)

for a review for subsequent work.
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1148 S. NG

B such that F = XB optimally summarizes information in X. Let A′ be the weights for
estimating F from X. The loss function

Lc
PCA(B, A) = ∥∥X − FA′∥∥2

is to be minimized subject to F ′F/T = B′(X′X/T)B = B′RXB = Ik. Concentrating out
A′ = (F ′F)−1FX and defining Y = R1/2

X B gives

Lc
PCA(B; A) = ∥∥X − XB(F ′F)−1F ′X

∥∥2 = ∥∥X − XBB′RX

∥∥2

= trace (X′X) − 2T trace (B′R2
XB) + T · trace (B′R2

XB)

= T · k − T · trace (B′R2
XB)

= T · k − T · trace (Y ′RXY )�

The constrained minimization problem now becomes maximizing trace (B′RXB) subject
to B′RXB, or equivalently, maximizing trace (Y ′RXY ) subject to Y ′Y = Ik. From the eigen-
decomposition that RX = PDP ′,

trace (Y ′RXY ) = trace (Y ′PDP ′Y ) = trace (P ′YY ′PD) = trace (GD)

with G = P ′YY ′P. The upper bound of trace (GD) = ∑k
i=1 di is achieved if G is sub-

orthonormal, i.e., G = (
Ik 0
0 0

)
. We thus let Y = P:,1:r and B = P:,1:kD1:k,1:k (times any k × k

orthonormal matrix). Canonical correlation analysis and many constrained least squares
problems with no closed form solutions can also be solved using these monotonically
convergent algorithms.

3.1. ALS1

I first consider the estimator proposed in De Leeuw (2004), Unkel and Trendafilov (2010)
and Trendafilov and Unkel (2011). Let e = u� where u′u = IN . Let k be the number of
assumed (not necessarily equal r, the true) number of factors. Suppose first that T ≥ N ,
and consider maximizing

LALS1(F , �, u, � ; k) = ∥∥X − F�′ − u�
∥∥2

F

subject to (i) F ′F = Ik, (ii) u′u = IN , (iii) u′F = 0N×k,

(iv) � is diagonal�

Notice that ALS minimizes the difference between the X and its fitted value X̂ =
F̂ �̂′ + ê. While the idiosyncratic and the common components are explicitly chosen,
distributional assumptions on e are not made. Furthermore, the objective function takes
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CONSTRUCTING COMMON FACTORS 1149

into account the off-diagonal entries of the fitted correlations. In contrast, the PCA loss
function only considers the diagonal entries of (X − F�)′(X − F�′). Define

The ALS estimates are obtained by minimizing

LALS1(B, A; k) = ∥∥X − BA′∥∥2

F
subject to B′B = IN+k�

But for given A, this is the same as maximizing trace (B′XA) over B satisfying B′B = IN+k.
The problem is now in the setup of Lemma 1. When N ≤ T , the estimates (F̃ , �̃, Ũ) can
be obtained using the following three-step procedure:

1. Let B̃ = PQ′ where SVD(XA) = PDQ′�
2. From B̃ = ( B̃:,1:k |̃B:,k+1:k+N ), let F̃ = B̃:,1:k and Ũ = B̃:,k+1:N . Update �̃ as X′F̃ .
3. Let �̃ = diag(Ũ ′X).

Steps (1) and (2) are based on part (ii) of Lemma 1. Step (3.) ensures that � is diagonal
and is motivated by the fact that

U ′X = U ′F�′ + U ′U��

Steps (1)–(3) are repeated until the objective function does not change. As F�′ is
observationally equivalent to FC−1C�′ for any orthogonal matrix C, Step (2) can be
modified to make the top k × k submatrix of � lower triangular. This identification
restriction does not affect the fact that rank (�) = min(rank (X), rank (F)) = k.

When N > T , the rank of U ′U is at most T and the constraint U ′U = IN cannot
be satisfied. However, recall that �X = ��′ + �U ′U� . Trendafilov and Unkel (2011)
observe that the population covariance structure of the factor model can still be preserved
if the constraint �U ′U = � holds, and in that case, � = � 2 is positive semidefinite by
construction. Furthermore, the constraints F ′F = Ik and U ′F = 0N×k are equivalent to
FF ′ + UU ′ = IT and rank (F) = k. Minimizing

LALS1(B, A; k) = ∥∥X − BA′∥∥2

F
subject to BB′ = IT

is the same as maximizing trace (BA′X′) which is again a Procrustes problem. The
three step solution given above remains valid when N > T , but the singular value
decomposition in Step (a) needs to be applied to A′X′.

Trendafilov and Unkel (2011) show that the objective function will decreases at each
step and the algorithm will converge from any starting value. However, convergence of
the objective function does not ensure convergence of the parameters. Furthermore, B is
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1150 S. NG

not unique because it is given by the singular value decomposition of a rank deficient
matrix. In particular, rank (XA) ≤ min(rank (X), rank (A)) < rank (X) + k.

3.2. ALS2

To motivate the second estimator, partition F 0 as F 0 = (
F 01 F 02

)
where F 01 has k columns

and F 02 has r − k columns for some k < r. The data generating process can be written as

X = F 01�1′ + F 02�2′ + e0 = F 01′�1 + e∗�

If k < r factors are assumed, the omitted factors F 02 will be amalgamated with e0 into e∗.
Even though �0 is diagonal in the population, the off-diagonal entries of the covariance
matrix for e∗ could be nonzero. Without explicitly imposing the restriction that X and
e0 are orthogonal, an estimator may confound e0 with F 0

2 . Socan (2003) reexamined an
(unpublished) idea by H. Kiers to minimize

LALS2(F , �, e; k) = ∥∥X − F�′ − e
∥∥2

F

subject to (i) e′F = 0 (ii) e′e diagonal (iii) e′X diagonal�

As with ALS1, estimation of e is explicitly taken into account. The first two constraints
are standard; the third constraint ensures that the idiosyncratic errors are truly
uncorrelated across units. This is because given orthogonality between e and F , any
nonzero correlation between eit and xjt when i �= j can only arise if eit is a function of the
omitted factors.

The estimates (
F , 
�, ē) are iteratively updated until the objective function does not
change.

1. Given 
�, let 
J be in the orthogonal null space of ē so that 
F = 
J
C satisfies the
constraints for 
C = J ′X�(�′�)−1 = minC ‖JC�′ − X‖2.

2. For i = 1, � � � N , update ē:,i:

a) Let (X−i, ē−i) be (X, ē) with the ith column set to zero;
b) Let Hi = ( X−i F ē−i ) with svd(Hi) = PHiDHiQ′

Hi;
c) Let ē:,i = P0

HiP
0′
HiX:,i where P0

Hi is the last column of PHi.

3. Update 
� = X′
F(
F ′
F)−1.

Steps (1) and (3) are intuitive as linear combinations of the basis in the orthonormal null
space of e will be orthogonal to e. To find the optimal linear combinations, C is chosen
to minimize ‖X − F�′‖2 = ‖X − JC�′‖2. This yields


C = (
J ′
J)−1
J ′X
�(
�′
�)−1 = 
J ′X
�(
�′
�)−1�
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CONSTRUCTING COMMON FACTORS 1151

Step (2) is more involved. Recall that for each i, I need to find a ē:,i that it is uncorrelated
with F and with X:,j and ē:,j for j �= i. As rank (Hi) is less than its column dimension, P0

Hi

is orthogonal to all but the ith column of X and e as well as F . It remains to find the
relation between e:,i and P0

Hi. Minimizing ‖X,i − P0
Hi�i‖ yields �̄i = P0′

HiX:,i. The update is
thus ē:,i = P0

Hi�̄i = P0
HiP

0′
HiX:,i.

4. FACTOR ANALYSIS OF CATEGORICAL VARIABLES

Suppose the continuous data X are well represented by the factor model X = F�′ + e,
but we observe x which are discrete (nominal, ordinal, or numerical) transformations
of X. Discrete data tend to be skewed and have excess kurtosis especially when the
frequencies of observing a few categories are disproportionately high. Classical factor
analysis is not appropriate because the normality assumption and Pearson correlation
coefficients take as given that the data are continuous. As Kruskal and Shepard (1974)
point out, a nonmetrical factor analysis needs to recover data that can be represented
with the smallest number of factors and yet be consistent with the observed categorical
data. Several approaches have been considered.

4.1. Probabilistic Approaches

The Bayesian approach is to parametrically specify the factor representation for X as
well as the relation between X and x. This permits joint estimation of the factors and
the loadings, as in Conti et al. (2012). Amongst the frequentist approaches, an “item
response” analysis specifies the conditional distribution of the responses as a function
of the latent factors assuming that the responses are independent conditional on the
factors. A frequentist method that does not specify the mechanism that generates X is the
“underlying variable approach”. It simply assumes that each observed ordinal variable xj

is generated by a normally distributed latent variable Xj :

xj = aj 	j ≤ Xj ≤ 	j−1, j = 1, � � � Cj − 1,

where 	 = (	1, � � � , 	Cj−1) is a vector of Cj − 1 thresholds that define Cj categories. Both
the item response and the underlying variable approach require calculations of tetrachoric
or polychoric correlations.6 These are correlations between two continuous variables

6Suppose that two continuous variables X1 and X2 are jointly normal with correlation coefficient 
. The
probability that (X1 > 	1, X2 > 	2) is given by

p12(
) = 1

2�
√

1 − 
2

∫ ∞

	1

∫ ∞

	2

exp
(

− y2
1 + y2

2 − 2
y1y2

2(1 − 
2)

)
dy1dy2�

The tetrachoric correlation proposed by Pearson (1900) is the 
 such that p12(
) equals the sample proportion
p̂12. Polychoric correlations are then generalizations of tetrachoric correlations from two dichotomous
indicators to multiple ordered class.
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1152 S. NG

underlying the discrete indicators. Once they are computed, the likelihood or method of
moments estimation can be used. Muthén (1984) proposes a three step estimator of the
latent variable model as follows:

1. Standardize X to be mean zero, unit variance, and estimate the vector of thresholds 	

from the univariate margins of the observed data;
2. Estimate the polychoric correlations from the bivariate margins of the observed

variables given the thresholds estimates. Denote the matrix of polychoric correlations
by �̂X;

3. Estimate � (the factor loadings and variances) by maximizing the log likelihood
(expressed in terms of the observed frequencies) or by minimizing the function

vech (�̂X − �X(�))′W vech (�̂X − �X(�))

with respect to �, where W is a positive definite weighting matrix.

Compared to the method WLS described earlier for continuous data, parametric
assumptions and an additional step of estimating the polychoric correlations are
necessary. Joreskog and Moustki (2001) compare the latent variable and item response
methods and find that full information methods are not very practical even though they
are theoretically appealing. These estimators are designed for ordinal data; they can be
computationally demanding even when N is small. Fortunately, they are implemented in
packaged software like LISREL, Joreskog and Sorbom (2006) and Joreskog (1994).

The properties of these estimators applied to ordered data are documented in Babakus
et al. (1987), Muthen and Kaplan (1985), Dolan (1994), and Bollen (1989, Ch. 9), among
others. The bias in the estimated loadings, while often less than 10% or so, depends on
how far are the categorized data from normality. Furthermore, the covariance matrix of
the estimated idiosyncratic errors often have nonzero off-diagonal entries even if the true
idiosyncratic errors are mutually uncorrelated. The possibility that categorical data may
lead to spurious factors has also been raised, McDonald (1985, Ch. 4).

4.2. FACTALS and Optimal Scaling

Methods have also been developed to estimate common factors in categorical data
without specifying a probability model. Let X be a N × J matrix, and let x denote the
observed but discretized values of X. Let � be a N × r matrix of factor loadings, � =
D2 be a diagonal matrix of idiosyncratic error variances. If all J columns of X were
continuous, the factor model implies the correlation structure ��′ + �(D). MINRES
then minimizes

LMINRES(�, D; r) = ∥∥RX − ��′ − �(D)
∥∥2

�
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CONSTRUCTING COMMON FACTORS 1153

As pointed out earlier, the minimization problem can be solved columnwise because
RX is a correlation matrix. Now instead of X, a N × J matrix of data x is observed,
some columns are of X continuous, and some are discrete. The challenge for nonmetrical
factor analysis is that the discrete nature of the observables put constraints on the
factor estimates. For example, to respect the fact that ordinal data are ordered, Kruskal
and Shepard (1974) suggest to construct principal components subject to monotonicity
constraints. Takane et al. (1979) argue that this does not fully exploit the factor structure.
They suggest to replace RX by RZ, where Z is a N × J matrix of optimally scaled values
of x.

Optimal scaling is an integral part of dimension reduction methods used to analyze
nonmetrical variables. Let Cj be the number of categories in variable j, and let Gj be a
N × Cj indicator matrix that is one if variable j is categorical with columns following the
ordering of the categories. The adjacency matrix is defined as G = [G1, G2, � � � GJ ]. The
quantified scores for variable j is Zj = GjYj where Yj is estimated subject to constraints
of the measured data. For example, if x:,j is ordinal, the restriction that Yj(1) ≥ Yj(2) ≥
� � � Yj(Cj) is required. The exercise is to iteratively estimate Y , �, and � by minimizing

LQFAC(�, D, Z; k) = ∥∥Z′Z − ��′ − �(D)
∥∥2

subject to

i) 1′Z:,j = 0 (ii) Z′Z = IJ (iii) measurement level constraints

Note that each column of Z is normalized to have unit sum of squares. This is a MINRES
problem in which Z plays the role of X, and more importantly, Z is itself being estimated.
In a sense, the analysis proceeds as though Z:,j has factor representation Z:,j = F�′

j,: + e:,j .
While the problem seems conceptually simple, it is not trivial computationally because

this is a quadratic program with a quadratic constraint (in view of the normalization for
Z′Z). Kiers et al. (1993) propose a monotonically convergent FACTALS (factor analysis
by alternating least squares) algorithm for estimating k factors as follows7:

1. Let �̂ = U:,1:kS1/2
k where Z′Z − � has singular value decomposition USV , with U:,1:k

being the first k columns of U ;
2. Let �̂ = diag(Z′Z − �̂�̂′) (constrained to be non-negative);
3. Update R̂Z = �̂�̂′ + �̂. For j = 1, � � � , J :

a) If x:,j is continuous, Z:,j = x:,j . Let Z:,−j be Z with the jth column removed, and
R̂Z,:,−j be the jth column of R̂Z with the jth element removed;

7The initial procedure proposed by Takane et al. (1979) and refined by Nevels (1989) both have
shortcomings. FACTALS fixes those bugs. Special thanks to H. Kiers for sharing the MATLAB code.
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1154 S. NG

b) If xj,: is nominal, minimize ‖Z′
:,−jGjyj − R̂Z,:,−j‖2 subject to the constraint that Gjyj

is centered and y′
jG

′
jGjyj = 1. Given the solution y0

j , update Z:,j = Gjy0
j ;

c) If x:,j is ordinal, let z = Gjy0
j + a−1Z:,−jR̂Z,:,−j − a−1Z:,−jZ′

:,−jGjy0
j , and minimize ‖z −

Gjyj‖2 subject to the constraints that (i) Gjyj is centered, (ii) y′
jG

′
jGjyj = 1, and (iii)

the elements of yj are weakly ordered. Given the solution y0
j , update Z:,j = Gjy0

j ;

4. Check if
∥∥Z′Z − R̂Z

∥∥2
converges. If not, return to step (1).

The thrust of FACTALS is to iteratively choose the scale values yj to yield the quantified
data Zj and to update � and �. The first two steps perform columnwise update along the
lines of MINRES. Step 3 imposes measurement level restrictions. Depending on the data
type, it involves either solving an oblique Procrustes problem or performing a monotone
regression. In a sense, FACTALS is a data augmentation method that treats X as missing
values and imputes them as Z. These steps are further explained in the Appendix.

4.3. Principal Component Analysis

While economists rarely consider principal component analysis of qualitative data, the
literature on this problem is in fact large. As surveyed in Michailidis and de Leeuw (1998),
seemingly related research appears under a variety of names: homogeneity analysis,
multiple correspondence analysis, PRINCALS systems, PRINCIPALS, discriminant
analysis, to name a few.8 Related approaches also include the principal factor analysis
of Keller and Wansbeek (1983) and redudancy analysis (canonical correlation) of Israels
(1984). As with continuous data, principal component analysis differs from factor analysis
by going a step further to impose a structure.

Recall that given a T × N matrix of standardized continuous variables standardized
to X, PCA computes �̂ = T −1X′F , where F is a T × r matrix of common components.
PCA can be generalized to mixed data as follows. If variable j in the mixed data set is
quantitative, let

Sj = 1
T

X:,jX′
:,j

be the quantification matrix where X:,j contains the standardized values of the T
observations on variable j. If variable j is qualitative, the quantification matrix is
defined as

Sj = MGjD−1
j GjM

8The method has been discovered and rediscovered under different names, including as quantification,
multiple correspondence analysis, dual or optimal scaling, and homogeneity analysis. See Tenenhaus and
Young (1985) for a synthesis of these procedures. However, none of these methods are familiar to economists.
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CONSTRUCTING COMMON FACTORS 1155

where M = I − 11′/T is the centering matrix, Dj is a diagonal matrix of frequencies of the
categories in variable j, and Gj is the T × Cj indicator matrix for variable j. A principal
components of mixed data then minimizes

N∑
j=1

trace F ′SjF

over F subject to F ′F/T = Ir . The solution is given by the first r eigenvectors of
∑

j Sj .
The T × r matrix F then contains the standardized values of the components. If all
variables are quantitative, the loadings are the eigenvectors of X′X/T , which is the PCA
solution. If all variables are qualitative, the solution is the eigenvectors of

∑
j MGjD

−1
j M .

Sophisticated methods go one step further to impose level constraints (as in FACTALS)
and may also allow for multiple quantification. See, for example, the PRINCIPALS
routine in SAS and R, PRINCALS in R (HOMALS), and SPSS (CATPCA). I explore
these methods in on-going empirical work but do consider them in simulations as these
procedures are well studied in statistics and the psychometrics literature.

4.4. Experimental Alternatives

The difficulty in estimating and interpreting latent components from categorical data is
that the population covariance of the categorical variables x (ie �x) is not the same as
the population covariance of the continuous variables X (ie. �X). An estimate of the
(i, j)th entry of �x obtained by regressing x:,i on x:,j . will be biased for the corresponding
entry in �X . Lancaster (1957) shows that, if a bivariate distribution is obtained by
separate transformations of Y and Z that are bivariate normal, then the correlation of the
transformed distribution cannot exceed the correlation coefficient of 
YZ in the bivariate
normal distribution.9

In fact, discretization is a form of data transformation that is known to underestimate
the linear relation between two variables, though the problem is alleviated as the number
of categories increases. As mentioned earlier, many simulation studies have found that the
r factor loadings estimated by MLE and WLS do not behave well when the data exhibit
strongly non-Gaussian features. Data transformations can induce such features. But as
seen above, estimating latent components from discrete data is quite not a trivial task.

A practical approach that has gained popularity in analysis of socioeconomic data is
the so-called Filmer–Pritchett method used in Filmer and Pritchett (1998). Essentially,
the method constructs principal components from the adjacency matrix, G. Kolenikov
and Angeles (2009) assess the model’s predicted rankings and find the method to be

9Olsson et al. (1982) show that 
Yz is downward biased for 
YZ if Y and Z are jointly normal. The
greatest attenuation occurs when there are few categories and the data are opposite skewed. In the special
case when consecutive integers are assigned to categories of Y , it can be shown that 
Yz = 
YZ · q, where q =

1
��

∑J−1
j=1 (�j) and (·) is the standard normal density and q is the categorization attenuation factor.
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1156 S. NG

inefficient because it loses the ordinal information in the data. Furthermore, spurious
negative correlation in the G matrix could underestimate the common variations in the
data. However, they also find that constructing principal components from polychoric
correlations of socio-economic data did not yield substantial improvements over the
Filmer–Pritchett method.

I explore two alternatives that seem sensible when structural interpretation of the
components in categorical variable is not necessary, and that N is large. The hope
is that in such cases (as in economic forecasting), simpler procedures can be used to
extract information in the categorical variables. The first idea is to construct the principal
components from the quantified data. If principal components precisely estimates the
space spanned by X, and Z are good quantifications of the discrete data x, then PCA
applied to Z should estimate the space spanned by the common factors in X. I therefore
obtain the quantified data Ẑ by FACTALS and then apply PCA to the covariance of
Ẑ (i.e., RẐ) to obtain estimate F̂ and �̂. The approach is a natural generalization of the
method of asymptotic principal components used when X was observed. However, the �̂

estimated by PCA applied to Z will generally be different from those that directly emerge
from FACTALS because PCA does not impose diagonality of �. It will also be different
from the ones that emerge from homogeneity analysis because level constraints are not
imposed.

The second method is to ignore the fact that some variables are actually discrete and
to extract principal components of �x. As pointed out earlier, the eigenvectors of X will
generally be different from those of x because �X �= �x� In a sense, x is a contaminated
copy of X. The hope is that the salient information in X will be retained in a sufficiently
large number of eigenvectors of x, and that principal components will be able to extract
this information. In other words, I compensate for the information loss created by data
transformations with more latent components than would otherwise be used if X was
observed.

5. MONTE CARLO SIMULATIONS

This section has two parts. The first subsection focuses on continuous data and assesses
the precision of the factor estimates produced by the method of asymptotic principal
components, ALS1, and ALS2. I also evaluate criterion for determining the number of
factors. Subsection two turns to categorical and mixed data. All computations are based
on MATLAB Release 2011a.

5.1. Continuous Data

Data with macroeconomic characteristics are generated from an approximate factor
model. Specifically, two serially correlated factors are assumed with 
Fk ∼ U(0, 0�8) for
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CONSTRUCTING COMMON FACTORS 1157

k = 1, � � � r and

Xit = �0
i,:F

0
t + eit �0

i,j ∼ N (0, �2), �0 = �1, 0�5�

F 0
k,t = 
0

F ,kF 0
k,t−1 + ukt, ukt ∼ N (0, 1)

eit = 
0
eeit−1 + �it, �′

t,: ∼ N (0, I)C0

with 
e ∼ U(0, 0�8). The degree of cross-section correlation in errors is deteremined by

C0 = toeplitz([1, u1×Nc , 01×N−Nc−1]),

where Nc = �0, 0�1N �. As �0 = C0C0′, the number of correlated series is much larger than
N/10. The common component is strong when �0 = 1 and weak if �0 = 0�5, all else equal.
Since �0 is drawn randomly, F 0

1 is not necessarily more important than F 0
2 . The relative

importance of the common component in the population is given by

signal =
S∑

s=1

signals, signals = 1 −
∑N

i=1 var (es
i )∑N

i=1 var (xs
i )

,

where s indexes the draw, and S = 1,000 is the number of replications. The properties of
the estimates are judged by separately regressing F̂1t and F̂2t on a constant and the two
dimensional F 0

t . The R2 of the regressions indicate the coherence between F̂kt (k = 1, 2)
and the space spanned by the true factors.

Of the three estimators considered, the PCA is the easiest to compute as there is no
iteration involved. While ALS1 converges in a few iterations, ALS2 is computationally the
most demanding. It is the only estimator that sometimes (albeit rarely) fails to converge.
Furthermore, the ALS2 estimator cannot be implemented when N > T and I mark these
estimates with a “-”.

Table 1 reports results for the strong factor case with � = 1. The top panel has time
dependent but cross-sectionally uncorrelated idiosyncratic errors since Nc = 0. With signal
above 0.5, the three sets of estimated factors explain well over 0.95 of the variations in
the true Ft. Assuming that eit is cross-sectionally uncorrelated did not hurt the efficiency
of PCA because the constraint is correct in this case.

The bottom panel of Table 1 allows the errors to be cross-sectionally correlated. As a
consequence, the common component relative to the total variation in the data falls by
as much as half. Notably, all factor estimates are less precise. One PCA factor tends to
be more precisely estimated than the other. The discrepancy seems to increase as signal
decreases. The two ALS estimators are much more even in this regard since F̂1 and F̂2

have similar predictive power of the factor space. Of the three estimators, ALS2 appears
to be most unstable; it can be extremely good (such as when (T , N ) = (120, 80)) or
extremely bad (such as when T is increased to 240) holding Nc fixed at = 8. A factor that
is precisely estimated by the PCA is not always precisely estimated by the ALS estimators
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1158 S. NG

TABLE 1
R2 from Regressions of ̂Fj on F : � = 1

T N Nc signal F̂1 F̂2 F̂1 F̂2 F̂2 F̂2

PCA ALS I ALS II

120 40 0 0�520 0.960 0.961 0.941 0.940 0.960 0.960
120 80 0 0�548 0.981 0.980 0.971 0.971 0.979 0.970
120 120 0 0�598 0.987 0.985 0.986 0.986 – –
120 240 0 0�599 0.994 0.993 0.994 0.994 – –
240 40 0 0�579 0.975 0.961 0.944 0.953 0.962 0.974
240 80 0 0�593 0.984 0.978 0.978 0.969 0.985 0.979
240 120 0 0�592 0.988 0.986 0.981 0.981 0.988 0.987
480 40 0 0�564 0.964 0.948 0.927 0.938 0.947 0.964
480 80 0 0�582 0.980 0.977 0.968 0.966 0.977 0.981
480 120 0 0�588 0.989 0.985 0.979 0.982 0.988 0.985
480 240 0 0�607 0.994 0.001 0.991 0.992 0.993 0.994

40 120 0 0�610 0.987 0.984 0.987 0.987 – –
80 120 0 0�601 0.987 0.984 0.987 0.987 – –

120 40 4 0�432 0.866 0.918 0.896 0.852 0.821 0.921
120 80 8 0�302 0.797 0.878 0.780 0.880 0.905 0.827
120 120 12 0�268 0.520 0.492 0.540 0.532 – –
120 240 24 0�173 0.104 0.131 0.124 0.137 – –
240 40 4 0�487 0.972 0.924 0.933 0.923 0.955 0.970
240 80 8 0�330 0.928 0.917 0.897 0.900 0.803 0.142
240 120 12 0�254 0.524 0.355 0.111 0.824 0.272 0.739
480 40 4 0�466 0.922 0.901 0.896 0.893 0.930 0.874
480 80 8 0�320 0.689 0.826 0.718 0.824 0.660 0.691
480 120 12 0�260 0.664 0.446 0.832 0.309 0.350 0.781
480 240 24 0�182 0.003 0.044 0.019 0.032 0.012 0.467

40 120 12 0�277 0.518 0.549 0.548 0.560 – –
80 120 12 0�270 0.494 0.515 0.531 0.539 – –

and vice versa. When (T , N ) = (240, 120), F 0
1 is poorly estimated by the ALS estimators

(R2 of 0.111 and 0.272) than by PCA (with R2 of 0.524). However, the reverse is true of
F 0

2 , with R2 of 0.824 and 0.739 for the ALS estimators, and only 0.355 for the PCA.
Table 2 considers weaker factor loadings with � = 0�5. When the errors are not cross-

sectionally correlated, signal in the top panel of Table 2 is reduced somewhat relative
to Table 1, but the correlation is not enough to strongly affect the precision of the
factor estimates. For example, when (T , N ) = (120, 40), R2 is 0.960 when � = 1 and
is 0.865 when � = 0�5. When (T , N ) = (40, 120), R2 goes from 0.987 to 0.94. When
the idiosyncratic errors are also cross-sectionally correlated, the drop in signal is much
larger. The R2 values in the second panel of Table 2 are one-third to one-quarter of
those in Table 1. Weak loadings combined with cross-correlated errors drastically reduce
the precision of the factor estimates irrespective of the method used. When (T , N ) =
(240, 120) which is not an unusual configuration of the data encountered in practice,
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CONSTRUCTING COMMON FACTORS 1159

TABLE 2
R2 from Regressions of ̂Fj on F : � = 0�5

T N Nc signal F̂1 F̂2 F̂1 F̂2 F̂1 F̂2

PCA ALS I ALS II

120 40 0 0.217 0.865 0.857 0.776 0.730 0.846 0.866
120 80 0 0.235 0.928 0.934 0.910 0.896 0.909 0.891
120 120 0 0.272 0.956 0.945 0.950 0.950 – –
120 240 0 0.272 0.977 0.973 0.975 0.975 – –
240 40 0 0.259 0.918 0.879 0.771 0.845 0.875 0.916
240 80 0 0.267 0.951 0.922 0.904 0.889 0.951 0.918
240 120 0 0.266 0.961 0.953 0.919 0.932 0.960 0.955
480 40 0 0.244 0.889 0.831 0.754 0.769 0.835 0.878
480 80 0 0.256 0.930 0.928 0.872 0.878 0.931 0.927
480 120 0 0.264 0.962 0.952 0.920 0.930 0.961 0.954
480 240 0 0.278 0.979 0.979 0.969 0.963 0.968 0.967

40 120 0 0.281 0.943 0.929 0.937 0.936 – –
80 120 0 0.274 0.954 0.942 0.948 0.948 – –

120 40 4 0.161 0.326 0.451 0.377 0.332 0.410 0.176
120 80 8 0.098 0.195 0.023 0.037 0.192 0.209 0.032
120 120 12 0.084 0.047 0.052 0.050 0.055 – –
120 240 24 0.050 0.032 0.035 0.033 0.036 – –
240 40 4 0.192 0.445 0.387 0.449 0.371 0.647 0.748
240 80 8 0.110 0.009 0.022 0.021 0.026 0.030 0.011
240 120 12 0.078 0.007 0.036 0.003 0.040 0.011 0.041
480 40 4 0.179 0.364 0.266 0.190 0.418 0.274 0.196
480 80 8 0.105 0.088 0.033 0.010 0.113 0.026 0.047
480 120 12 0.081 0.012 0.007 0.008 0.013 0.001 0.045
480 240 24 0.053 0.002 0.003 0.003 0.002 0.002 0.014

40 120 12 0.088 0.118 0.121 0.126 0.125 – –
80 120 12 0.085 0.064 0.068 0.071 0.070 – –

signal falls from 0.254 to 0.078 and the average R2 drops from around 0.5 in Table 1 to
less than 0.05 in Table 2! The difference is attributed to cross-correlated errors.

The results in Tables 1 and 2 are based on the assumption that r is known. Bai and
Ng (2002) show that the number of factors can be consistently estimated by minimizing
LPCA subject to the constraint of parsimony. Specifically,

r̂PCA = argmin
k=kmin ,���,kmax

log LPCA(k) + kg(N , T),

where g(N , T) → 0 but min(N , T)g(N , T) → ∞. The ALS estimators are based on
different objective functions. While their statistical properties are not known, Tables 1
and 2 find that the estimated ALS factors behave similarly to the PCA ones. I therefore
let

r̂ALS = argmin
k=kmin ,���,kmax

log LALS(k)/nT + kg(N , T)�
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1160 S. NG

In the simulations, I use

g2(N , T) = N + T
NT

log min(N , T)

noting that NT/(N + T) ≈ min(N , T)−1. This corresponds to IC2 recommended in Bai
and Ng (2008). For the ALS estimators I also consider a heavier penalty

gA(N , T) = N + T
NT

log(N · T)�

The simulation design is similar to Tables 1 and 2. The criteria are evaluated for
k = 0, � � � , 6. I only consider 500 replications because ALS2 is extremely time consuming
to compute. The results are reported in Table 3. When � = 1 and the errors are cross-
sectionally uncorrelated, the IC2 almost always chooses the correct number of factors. The
suitably penalized ALS objective functions also give the correct number of factors. The
estimates of r are imprecise when there is cross-section dependence in eit. The g2 penalty
often chooses the maximum number of factors whether PCA or ALS is used to estimate
F , while the gA tends to select too few factors. The results are to be expected; the penalties
developed in Bai and Ng (2002) are predicated on a strong factor structure with weakly
correlated idiosyncratic errors. When those assumptions are violated, the penalties are no
longer appropriate.

We use AO to denote the test of Onatski (2010). His criterion exploits the square root
shape of the edge of the eigenvalue distribution. The AO criterion of Onatski (2010) is
supposed to better handle situations when there is substantial correlation in the errors.
As seen from the third panel of Table 3, the AO criterion gives more precise estimates
of r when the factor loadings are weak. However, it tends to select zero factors when
many of the idiosyncratic errors are cross-sectionally correlated. Onatski (2010) argues
that his criterion selects the number of factors that can be consistently estimated. It is
not surprising that the AO criterion selects fewer factors when the factor component is
weak. But taking the argument at face value would suggest that when signal is below 0.3,
none of the two factors can be consistently estimated by the PCA or the ALS. This seems
at odds with the fact that the estimated factors still have substantial correlation with the
true factors.

Two conclusions can be drawn from these simulations. First, the objective function
used to obtain F̂ seems to make little difference as the PCA and ALS estimates are similar.
Second, not constraining � to be diagonal (as in the PCA) or unnecessarily imposing the
constraint (as in the ALS) also does not have much effect on R2. In this regard, the results
echo those of Doz et al. (2007). If the strong factor assumptions hold true, there is little to
choose between the estimators on the basis of the precise estimation of the factor space.
Nonetheless, the PCA is computationally much less demanding.

Second, the precision of the factor estimates are strongly influenced by weak factor
loadings. While signal is not observed and it is not known if the factors are strong or weak
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CONSTRUCTING COMMON FACTORS 1161

TABLE 3
Estimates of r = 2 Using Continuous Data

T N Nc signal g2 g2 gA g2 gA AO

� = 1 PCA ALS1 ALS PCA

120 40 0 0.497 2.002 2.006 2.000 1.998 1.010 2.040
120 80 0 0.495 2.000 2.000 2.000 2.142 1.634 2.072
120 240 0 0.495 2.000 2.000 2.000 3.378 1.746 2.006
240 40 0 0.490 2.000 2.026 2.000 1.996 1.022 2.020
240 80 0 0.489 2.000 2.000 2.000 2.006 1.932 2.030
240 120 0 0.491 2.000 2.000 2.000 2.002 1.998 2.022
480 40 0 0.486 2.000 2.026 2.000 2.004 1.010 2.010
480 80 0 0.488 2.000 2.000 2.000 2.012 1.966 2.026
480 120 0 0.487 2.000 2.000 2.000 2.002 1.998 2.020
480 240 0 0.488 2.000 2.000 2.000 2.004 2.004 2.006

120 40 4 0.423 6.000 5.732 1.448 1.912 1.000 1.838
120 80 8 0.300 6.000 5.998 1.008 4.782 1.002 0.276
120 240 24 0.165 6.000 6.000 1.002 5.242 1.092 0.010
240 40 4 0.418 6.000 6.000 1.622 1.994 1.000 1.908
240 80 8 0.300 6.000 6.000 1.112 5.860 1.002 0.184
240 120 12 0.239 6.000 6.000 4.600 5.966 1.000 0.004
480 40 4 0.415 6.000 6.000 1.712 2.022 1.000 1.946
480 80 8 0.300 6.000 6.000 1.970 5.920 1.002 0.132
480 120 12 0.236 6.000 6.000 6.000 5.986 1.000 0.000
480 240 24 0.162 6.000 6.000 6.000 5.992 5.922 0.000

� = 0�5

120 40 0 0.086 0.004 1.010 1.000 1.000 1.000 0.488
120 80 0 0.085 0.000 1.000 1.000 1.300 1.000 0.918
120 240 0 0.086 0.658 1.000 1.000 1.124 1.000 1.960
240 40 0 0.084 0.006 1.384 1.000 1.000 1.000 1.164
240 80 0 0.084 0.096 1.614 1.000 1.000 1.000 1.930
240 120 0 0.084 0.606 1.682 1.000 1.002 1.000 2.016
480 40 0 0.083 0.008 1.940 1.006 1.000 1.000 1.888
480 80 0 0.083 0.396 2.000 1.064 1.000 1.000 2.014
480 120 0 0.083 1.452 2.000 1.178 1.000 1.000 2.020
480 240 0 0.083 2.000 2.000 1.440 1.008 1.000 2.008

� = 0�25

120 40 0 0.244 1.938 2.004 1.280 1.010 1.000 2.034
120 80 0 0.242 2.000 2.000 1.324 1.618 1.024 2.072
120 240 0 0.243 2.000 2.000 1.092 1.406 1.022 2.004
240 40 0 0.239 1.982 2.004 1.924 1.064 1.000 2.066
240 80 0 0.238 2.000 2.000 2.000 1.662 1.002 2.022
240 120 0 0.239 2.000 2.000 2.000 1.958 1.052 2.012
480 40 0 0.236 1.996 2.002 2.000 1.094 1.000 2.038
480 80 0 0.237 2.000 2.000 2.000 1.874 1.000 2.042
480 120 0 0.237 2.000 2.000 2.000 1.962 1.078 2.044
480 240 0 0.237 2.000 2.000 2.000 2.032 1.576 2.008
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1162 S. NG

in practice, two indicators can be useful. The first is R2, which should increase with signal.
A low R2 in spite of using many factors would be a cause for concern. The second is the
discrepancy between the number of factors selected by IC2 and AO. The two estimates
should not be far apart when the factor structure is strong. When the r̂s are very different,
the strong factor assumptions may be questionable.

5.2. Mixed Data

Two designs of categorical data are considered. In the first case, the ordinal data x
consists of answers by N respondents (such as professional forecasters) to the same
question (such as whether they expect inflation to go up, down, or stay the same) over
time T periods. In the second case, x consists of J responses (such as on income and health
status) for each of the N units (such as households). In these experiments, PCA is used to
estimate r̂ factors in (i) the continuous data X as if it were observed, (ii) the categorical
data x, (iii) the adjacency matrix G, and (where appropriate) (iv) the quantified data Z.
The number of factors is determined by the criterion in Bai and Ng (2002) with penalty
g2 or the AO test of Onatski (2010). I begin with the first case when all data are ordinal.

a) PCA of X, x : and G. Data on one variable X are generated for N units and T time
periods. The J − 1 thresholds are spaced so that the probability of being in each interval
is the same, and are generated using NORMINV (0.05:J–1:0.95). The data matrix is first
standardized columnwise and then categorized into x which has J groups.

The results are given in Table 4. Columns 3 and 4 show that if X was observed, the
number of factors would be precisely estimated. As seen from columns 5 and 6, r̂ remains
fairly precisely estimated when the categorical data x are used instead of X. However, the
estimated number of factors in the adjacency matrix G is less stable. There are too few
factors when the sample size is small but too many factors when N and T are large.10

Turning to an assessment of the estimated factor space, R2
X indicates the average R2

when r̂ principal components are estimated from X where the r̂ is determined by penalty
g2. The interpretation is similar for R2

x and R2
G. Evidently, F̂ precisely estimates F when

X was available for analysis. The R2s are slightly lower if the factors are estimated from
x but the difference is quite small. The average R2 remains well over 0.95. However,
the principal components of the adjacency matrix G are less informative about the true
factors. When the sample size is small and r̂ underestimates r, R2

G can be much lower than
R2

x. For example, when r = 2, R2
x is 0.916 when (T , N ) = (100, 20), but R2

G is only 0.368.
The situation improves when the sample size increases as estimating more factors in G
compensates for the information loss in the indicator variables. However, even with large
r̂, the principal components of G remain less informative about F 0 than the principal
components of x. When (T , N ) = (200, 100), R2

x is 0.956 while R2
G is 0.849, even though

on average, r̂ = 3 > r = 2 factors are found in G.

10In an earlier version of the article when x and G were not demeaned, PCA estimated one more factor
in both x and G.
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CONSTRUCTING COMMON FACTORS 1163

TABLE 4
Estimates of r from Ordinal Data

Number of Factors R2

T N ICX AOX ICx AOx ICG AOG R2
X R2

x R2
G

r = 1

50 20 1�050 1.014 1.000 1.014 0.854 0.914 0.959 0.927 0.557
100 20 1�052 1.006 1.000 1.026 1.140 1.156 0.959 0.929 0.676
200 20 1�060 1.008 1.000 1.024 1.342 1.310 0.959 0.928 0.687

50 50 1�000 1.010 1.000 1.026 1.136 1.606 0.984 0.953 0.777
100 50 1�000 1.010 1.000 1.018 1.502 1.962 0.984 0.955 0.791
200 50 1�000 1.006 1.000 1.010 1.890 2.144 0.984 0.954 0.796

50 100 1�000 1.004 1.000 1.018 1.244 2.016 0.992 0.963 0.826
100 100 1�000 1.010 1.000 1.006 1.872 2.368 0.992 0.962 0.830
200 100 1�000 1.016 1.000 1.058 2.006 2.864 0.992 0.962 0.831

r = 2

50 20 2�714 2.024 2.000 2.028 0.324 0.524 0.958 0.919 0.119
100 20 3�302 2.032 2.000 2.020 1.126 1.004 0.960 0.916 0.368
200 20 3�424 2.014 2.000 2.010 1.916 1.458 0.959 0.917 0.577

50 50 2�000 2.034 2.000 2.016 1.236 1.502 0.984 0.949 0.488
100 50 2�000 2.016 2.000 2.024 2.090 2.344 0.984 0.947 0.750
200 50 2�000 2.010 2.000 2.016 2.784 2.902 0.984 0.947 0.797

50 100 2�000 2.014 2.000 2.022 1.742 2.138 0.992 0.958 0.708
100 100 2�000 2.004 2.000 2.062 2.710 2.630 0.992 0.957 0.841
200 100 2�000 2.018 2.000 2.184 3.092 2.842 0.992 0.956 0.849

r = 3

50 20 4�212 3.012 2.998 3.020 0.082 0.398 0.960 0.908 0.022
100 20 4�450 3.002 3.000 3.018 0.330 0.518 0.960 0.906 0.085
200 20 4�478 3.002 3.000 3.004 1.040 0.852 0.960 0.906 0.249

50 50 3�006 3.032 3.000 3.012 0.336 0.716 0.984 0.944 0.103
100 50 3�028 3.012 3.000 3.030 1.358 1.704 0.984 0.943 0.382
200 50 3�138 3.014 3.000 3.036 2.756 2.776 0.984 0.942 0.686

50 100 3�000 3.006 3.000 3.032 0.760 1.290 0.992 0.955 0.243
100 100 3�000 3.014 3.000 3.018 2.750 2.106 0.992 0.954 0.751
200 100 3�000 3.008 3.000 3.054 3.930 2.756 0.992 0.953 0.868

For y = X (latent continuous data), x (categorical data), and G (adjacency matrix of indicators), ICy

denotes the number of factors selected by the Bai and Ng (2002) criterion with penalty g2 = N+T
NT log min(N , T)

when the principal components are constructed from data y. AOy denotes factors determined using the
criterion of Onatski (2010). The columns R2

y denote the average R2 when each of the r̂ factors estimated
from y are regressed on the true factors.

b) PCA of X, x, G, and Z. Data for J variables for each of the N units are generated as

Xij = �0
i,:F

0
t + eij ,

where eij ∼ N (0, �2), �0
i,: is a 1 × r vector of standard normal variates, F 0

t ∼ N (0, Ir). The
factor loadings are N (0, �2). The J continuous variables are categorized using unevenly
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1164 S. NG

TABLE 5
Ordinal Data, r = 2

N J nG r̂X r̂G r̂Z r̂x R2
X R2

G R2
Z R2

x

� = 1

100 5 18 4.000 3.513 4.000 4.000 0.742 0.475 0.609 0.630
100 10 33 3.828 2.648 3.013 3.993 0.798 0.497 0.650 0.686
100 15 50 3.332 2.346 2.646 3.824 0.832 0.544 0.690 0.723
200 5 18 4.000 3.777 4.000 4.000 0.734 0.481 0.599 0.616
200 10 33 3.806 2.971 3.051 3.994 0.793 0.527 0.652 0.675
200 15 50 3.314 2.677 2.688 3.847 0.830 0.590 0.701 0.715
100 20 60 2.025 1.945 1.898 3.569 0.928 0.744 0.783 0.811
100 30 80 2.013 2.001 1.848 3.693 0.941 0.778 0.770 0.821
200 20 60 2.015 2.209 1.966 3.695 0.928 0.787 0.817 0.811
200 30 80 2.007 2.305 1.958 3.814 0.941 0.811 0.819 0.818

� = 0�5

100 5 18 4.000 2.212 4.000 4.000 0.487 0.219 0.384 0.400
100 10 33 2.644 1.289 2.237 4.000 0.462 0.164 0.269 0.446
100 15 50 1.433 0.331 0.436 2.096 0.562 0.115 0.155 0.458
200 5 18 4.000 2.594 4.000 4.000 0.469 0.234 0.369 0.377
200 10 33 2.663 1.600 2.228 4.000 0.472 0.205 0.270 0.430
200 15 50 1.556 0.735 0.431 2.159 0.602 0.240 0.155 0.470
100 20 60 1.641 0.423 0.453 2.710 0.669 0.155 0.165 0.529
100 30 80 1.769 0.488 0.412 3.159 0.744 0.184 0.153 0.562
200 20 60 1.788 0.973 0.454 3.051 0.723 0.335 0.168 0.554
200 30 80 1.881 1.133 0.442 3.485 0.786 0.399 0.168 0.578

For y = X, x, G, Z where Z denotes quantified data, r2
y denotes the number of factors estimated by the IC

criterion of Bai and Ng (2002) with penalty g2. R2
y is the average R2 when each of the factors estimated from

y is regerssed on all the true factors.

spaced thresholds as summarized in Table 5a. The total number of categories (also the

dimension of G) is denoted nG.

TABLE 5a
Ordinal Variables

Ordinal Series Thresholds Series Thresholds

1 −1.5, −0�75, 0.75, 1.5 2 −0�5 0.5
3 0 4 −0.5 0 0.5
5 −0�4 0.4 1 6 −1 0 1
7 0.4 1 0.6 8 0.3
9 1 10 0.6 1.2
11 0.2 0.6 12 −0.2 0.6
13 −0.7 0 0.7 14 −1.2 0.2 1.5
15 0.75 1.2
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CONSTRUCTING COMMON FACTORS 1165

The results for the case of strong loadings (� = 1) are in the top panel of Table 5. As
seen from columns 5 to 8, the number of factors is overestimated whenever J is small
even if X was observed; the average R2 is 0.75 when J is 5 but increases to 0.941 when
J = 30. This just shows that principal components can precisely estimate the factor space
only when J is reasonably large. There is undoubtedly a loss of precision when X is not
observed. The principal components of G yield low R2 for small values of J . Apparently,
G contains less information about F than Z. While the number of factors found in the
discrete data x exceeds r, the r̂ principal components of x give R2s close to those based
on Z. In other words, with enough estimated factors, the factor space can be as precisely
estimated from discrete data than as from the quantified data.

Table 5a are results for the case of weak loadings with � = 0�5. Now R2
Z and R2

G

are much reduced as the corresponding number of factors found in Z and G tends to
be below the true value of two. This suggests that when the factor structure is already
weak, discretization further weakens the information about the common factors in x. It
is thus difficult to recover F from quantified data or from transformations of x. In such a
case, the principal components of the raw categorical data x give the most precise factor
estimates, and they are easiest to construct.

The final set of simulations consider mixed continuous, nominal and ordinal data. The
number of continuous variables is always 20, the number of nominal variables Jnominal is

Nominal Variables

Series Thresholds Series Thresholds

1 −1.5, −0.75, 0.75, 1.5 2 −0.2 0.5 1
3 0.8 4 −0.5 0.5
5 0.4 1 6 −1 0 1
7 0.5 0.5 8 −0.3 0.3
9 −1 1 10 −1.2 1.2

Ordinal Variables

Series Thresholds Series Thresholds

1 0.2 0.6 2 −0.2 −0.6
3 −.7 0 0.7 4 −1.2 0.2 1.5
5 −.75 1.2 6 −1.3
7 −1 8 −0.7
9 0 10 0.3
11 −1.5, −0.75, 0.75, 1.5 12 −0.5 0.5
13 0 14 −0.5 0 0.5
15 −0.4 0.4 1 16 −1 0 1
17 −0.7 0.4 1.6 18 −0.3
19 1 20 −0.6 1.2
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1166 S. NG

TABLE 6
Mixed data, r = 2

N Jnominal Jordinal nG r̂X r̂G r̂Z r̂x R2
X R2

G R2
Z R2

x

� = 1

100 5 5 31 2.000 4.000 2.000 2.003 0.953 0.491 0.940 0.941
100 10 5 42 2.000 4.000 2.000 2.002 0.957 0.497 0.942 0.943
100 5 10 41 2.000 3.997 2.000 2.003 0.958 0.585 0.942 0.943
200 5 5 31 2.000 4.000 2.000 2.003 0.953 0.470 0.942 0.941
200 10 5 42 2.000 4.000 2.000 2.002 0.956 0.478 0.944 0.943
200 5 10 41 2.000 4.000 2.000 2.004 0.958 0.542 0.944 0.943
200 5 20 74 2.000 3.615 2.000 2.004 0.961 0.608 0.946 0.945
200 10 20 85 2.000 3.467 2.000 2.003 0.963 0.646 0.948 0.947
400 5 5 31 2.000 4.000 2.000 2.010 0.953 0.468 0.943 0.942
400 10 5 42 2.000 4.000 2.000 2.007 0.957 0.471 0.945 0.944
400 5 10 41 2.000 4.000 2.000 2.014 0.958 0.528 0.945 0.944
400 5 20 74 2.000 3.716 2.000 2.012 0.961 0.595 0.947 0.946
400 10 20 85 2.000 3.669 2.000 2.010 0.963 0.637 0.949 0.947

either 5 or 10, and the number of ordinal variables Jordinal is 5, 10, or 20.11 The results are
given in Table 6. The number of factors is correctly estimated from the continuous data
X, the quantified data Z, or the discrete data x but are overestimated from the dummy
variable matrix G. The factor space is precisely estimated using X, Z or x but not G. The
results are similar to those for purely ordinal data.

6. CONCLUSION

This article reviews and explores various matrix decomposition based methods for
estimating the common factors in mixed data. A few conclusions can be drawn. First, if all
data are continuous and T and N are large, ALS estimators have no significant advantage
over PCA which is much simpler to construct. Second, with mixed data, the principal
components of G give the least precise estimates of the factor space. Third, FACTALS
provides a way to quantify the data consistent with a factor structure. But while the factor
space can be precisely obtained from Z when the factor structure is strong, they are no
more precise than analyzing x directly, and it is not robust when the factor structure in
X is weak. Fourth, the observed categorical data x can be used to estimate the factor
space quite precisely though additional factors may be necessary to compensate for the
information that is lost from data discretization. It should be emphasized that different
conclusions might emerge if criterion other than the factor space is used. Furthermore, the

11The FACTALS has convergence problems when N is 100 and the dimension of G is large.
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CONSTRUCTING COMMON FACTORS 1167

Monte Carlo exercise is quite limited in scope. Nonetheless, the findings are encouraging
and merit further investigation.

I consider FACTALS because it constructs quantified data Z consistent with a factor
structure which allows me to consider a large dimensional factor analysis treating Z as
data. However, as pointed out earlier, the sample correlations of transformed data are
not the same as the raw data. Nothing ensures that Z will necessarily recover X from x.
Thus, an important caveat of nonmetrical factor analysis is that Z may not be unique
even when its second moments are consistent with the factor structure implied by the data
X. Buja (1990) warns that the transformed data may identify spurious structures because
singular values are sensitive to small changes in the data. A better understanding of these
issues is also necessary.

7. APPENDIX

This appendix elaborates on how nominal and ordinal data are optimally scaled. It will
be seen that the steps rely on matrix arguments presented in Section 3.

Step 3b: Nominal Variables. Observe first that Z′
:,−jGjyj = Z′

:,−jZ:,j defines the vector of
“sample” cross correlations, while R̂Z,−j is the model implied analog. The j-entry is
omitted since it is one by construction in both the sample and the model. We put sample
in quotes because Z are quantified variables and not data.

Let M = IT − 11′/T be the idempotent matrix that demeans the data. Constraining Z
to be mean zero columnwise is equivalent to imposing the condition MGjyj = Gjyj for
every j with Z′

:,−jGjyj = Z′
:,−jMGjyj . Let B be an orthonormal bases for MGjyj . Then

MGjyj = B	 for some 	. Instead of minimizing ‖Z′
:,−jGjyj − R̂Z,:,−j‖2 over yj subject to the

constraint y′
jG

′
jGjyj = y′

jG
′
jMGjyj , the problem is now to minimize

∥∥Z′
−j,:B	 − R̂Z,:,−j

∥∥2

over 	 subject to the constraint that 	′B′B	 = 	′	 = 1� This is an oblique Mosier’s
Procrustes problem whose solution, denoted 	0, is given in Cliff (1966) and ten Berge and
Nevels (1997). Given 	0, yj can be solved from MGjyj = B	0. By least squares argument,

y0
j = (G′

jGj)
−1G′

jB	0�

It remains to explain the oblique Procrustes problem. Recall that the orthogonal
Procrustes problem looks for a m × k transformation matrix B to minimize ‖� − AB‖2

subject to B′B = I . The oblique Procrustes problem imposes the constraint diag(B′B) = I .
Since the constraint is now a diagonal matrix, each column of B can be solved separately.
Let � be a vector from B, and � be a column of �. The objective is now to find �
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to minimize (� − A�)′(� − A�). For U such that UU ′ = U ′U = I and A′A = UCU ′, the
problem can be rewritten as

(� − A�)′(� − A�) = (� − AU�)′(� − AU�)�

By letting w = U ′� and x = U ′A�, the problem is equivalent to finding a vector w to
minimize

�′� − 2x′w + w′Cw subject to w′w = 1�

The objective function and the constraint are both in quadratic form. The (nonlinear)
solution depends on q, the multiplicity of the smallest latent root of A′A. In the
simulations, I use the algorithm of ten Berge and Nevels (1997). In the present problem,
� = R̂Z,:,−j and A = Z′

:,−jB.

Step 3c: Ordinal Variables. When X:,j is ordinal, we minimize a function that majorizes
f(yj) and whose solution is easier to find. As shown in Kiers (1990), this is accomplished
by viewing f as a function of q = Gjyj . The function of interest (for given q0)

f(q) = ∥∥Z′
:,−jq − R̂Z,:,−j

∥∥ = R̂′
Z,:,−jR̂Z,:,−j − 2R̂′

Z,:,−jZ
′
:,−jq + trace (Z:,−jZ′

:,−jqq′),

is majorized by

g(q) = c1 + a
(∥∥q0 − (2a)−1(−2Z:,−jR̂Z,:,−j + 2Z:,−jZ′

:,−jq
0) − q

∥∥2 + c2

)
where c1 and c2 are constants for q, and a is the first eigenvalue of Z:,−jZ′

:,−j . Reexpressing
qj in terms of Gjyj , we can maximize

h(yj) = ∥∥Gjy0
j − (2a)−1(−2Z:,−jR̂Z,:,−j + 2Z:,−jZ′

:,−jGjG0
j ) − Gjyj

∥∥2

= ∥∥(Gjy0
j + a−1Z:,−jR̂Z,:,−j − a−1Z:,−jZ′

:,−jGjy0
j ) − Gjyj

∥∥2

= ∥∥z − Gjyj

∥∥2

subject to the constraints that Gjyj is centered and y′
jG

′
jGjyj = 1. This is now a

normalized monotone regression problem.12

12Given weights w1, � � � , wT and real numbers x1, � � � , xT , the monotone (isotonic) regression problem finds
x̂1, � � � x̂T to minimize S(y) = ∑T

t=1 wt(xt − yt)
2 subject to the monotonicity condition t � k implies yt ≤ yk

where � is a partial ordering on the index set [1, � � � T ]. An up-and-down-block algorithm is given in Kruskal
(1964). See also de Leeuw (2005).
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