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Static models that are not identifiable in the presence of white noise measurement
errors are known to be potentially identifiable when the model has dynamics. How-
ever, few results are available for the plausible case of serially correlated measure-
ment errors. This paper provides order and rank conditions for “limited information”
identification of parameters in dynamic models with measurement errors where
some aspects of the probability model are not fully specified or utilized. The key
is to consider a model for the contaminated data that has richer dynamics than the
model for the correctly observed data. Simply counting the total number of unknown
parameters in the true model relative to the estimable model will not yield an infor-
mative order condition for identification. Implications for single-equation, vector
autoregressive, and panel data models are studied.

1. INTRODUCTION

Empirical analysis often involves using an observable that is an inexact measure
of the latent variable of interest. To distinguish the marginal effect of a covariate
from measurement error, assumptions on the measurement error process are re-
quired. While the white noise assumption is convenient, it is rather restrictive in
time series and panel data settings when the data are correlated over time. This
paper provides general conditions for identification of dynamic models subject
to serially correlated measurement errors. It is shown that the error-ridden data
necessitate consideration of a model with higher-order dynamics than if the data
were correctly observed. Furthermore, an informative order condition for identi-
fication cannot be obtained by simply comparing the total number of unknowns
in the true model with that of the estimable model. Specific conditions are pro-
vided for vector autoregressive models with predetermined variables (VARX) and
dynamic panel models with fixed effects.
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As is well documented, measurement errors are prevalent in survey data.
Erickson and Whited (2000) argue that investment cash-flow regressions can be
uninformative when Tobin’s Q is measured with errors because average Q is no
longer a good proxy for marginal Q. Devereux (2001) finds significant errors in
survey reports of earnings and work hours. Quality variables (such as those of
hospitals and the environment) are especially susceptible to measurement errors.
Aggregate data are less susceptible but are not immune to measurement error
problems. Since we do not observe variables such as the level of global economic
activity or the state of the economy, filtered variables are often used as proxies.
Except by coincidence, the deviations between the latent process and the filtered
series are likely to be serially correlated. Furthermore, errors in data collection
and reporting are inevitable. Wilcox (1992) discusses the issues in consumption
measurements, especially at the monthly level. If the theoretical construct of con-
sumption differs from its empirical counterpart, identification of the behavioral
parameters and testing of consumption from observed data will be misleading.
Ermini (1993) shows that allowing for serially uncorrelated measurement errors
changes the measure of persistence in consumption growth. Falk and Lee (1990)
suggest that measurement errors can explain rejections of the permanent income
hypothesis. Sargent (1989) considers a model in which the data collecting agency
observes data with serially correlated errors but reports a filtered version of the
data. In the context of an accelerator model, he shows that when the data are error
ridden, more steps are needed to estimate the parameters.

Given that economic time series are known to be persistent, it is somewhat
surprising that measurement errors are usually assumed to be serially uncorre-
lated. Perhaps one explanation is that estimation with white noise measurement
errors is no more difficult than when measurement errors are absent, provided
valid instruments can be found. However, when measurement errors are serially
correlated, short lags of the data will still be correlated with the composite er-
ror, while lags long enough to satisfy instrument exogeneity will likely be weak.
Eberly, Rebelo, and Vincent (2009) estimate an AR(1) model for the measure-
ment noise in Tobin’s Q and note that the measurement error problem “cannot
be corrected in investment regressions using instrumental regressions.” Dealing
with correlated measurement errors might well require state space modeling of
all variables, which may not always be possible.

Indeed, while much has been written about errors in variables (EIV) in a static
setting, the role of measurement errors in dynamic models is much less stud-
ied. Grether and Maddala (1973) examine the effects of measurement errors
on the probability limits of the estimated coefficients in distributed lag models.
They show that measurement errors in the exogenous variables may lead a re-
searcher to detect long lags in adjustments. Ashley and Vaughan (1986) obtain
an upper bound on the amount of measurement error in time series using a spec-
tral decomposition method. Chanda (1996) studies the asymptotic properties of
estimators based on Yule-Walker equations in autoregressive models with EIV.
Tanaka (2002) develops tests to detect the existence of measurement errors in
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long- and short-memory data. Staudenmayer and Buonaccorsi (2005) study the
estimation of parameters in autoregressive models when the measurement errors
are uncorrelated but possibly heteroskedastic. All of the above papers focus on
single-equation analysis. Patriota, Sato, and Blas (2009) show that not accounting
for measurement errors distorts Granger causality tests and consider estimation of
VARs with white noise measurement errors.

We consider identification of single- and multiple-equation dynamic models
with dynamic measurement errors under limited information. This can mean us-
ing the conditional model alone for identification, leaving the marginal distri-
bution of the exogenous variables unspecified, as in autoregressive distributed
lag models. Or it can mean that some but not all aspects of the probability dis-
tribution of the data are used for identification. To proceed, Section 2 sets up
the VARX framework and reviews related work in the literature. Section 3 first
presents general order conditions for identification and then specializes to ARX
and VAR models. Rank conditions are derived in Section 4, and the results are
illustrated via an example. Dynamic panel data models with measurement er-
rors are considered in Section 5. Proofs are relegated to an Appendix. As a mat-
ter of notation, if P(L) is an autoregressive polynomial matrix of order p, then
P(L) = I − ∑p

j=1 Pj L j , and if Q(L) is a moving average polynomial matrix of

order q, then Q(L) = I +∑q
j=1 Qj L j . Finally, if R(L) is a polynomial matrix of

order r associated with the covariates, then R(L) = ∑r
j=0 Rj L j .

2. VARX MODELS WITH MEASUREMENT ERRORS

2.1. Preliminaries

Consider a system of dynamic equations relating ny endogenous variables yt =
(y1t , . . . , ynyt )

′ to nx exogenous variables xt = (x1t , . . . , xnx t )
′ and ny disturbances

ut = (u1t , . . . ,unyt )
′. For all t = 1, . . .T , the data generating process (DGP) is

assumed to be

yt =
py

∑
j=1

Aj yt− j +
rx

∑
j=0

Bj xt− j +ut . (Model-y)

We will henceforth refer to the DGP as Model-y. Then �A ≡ (A1, . . . , Apy ), �B ≡
(B0, . . . , Brx ), and �u are the parameters of Model-y.

Suppose the observed data are contaminated by errors ε
y
t and εx

t so that for
all t ,

Yt = yt + ε
y
t

Xt = xt + εx
t .

A correctly measured variable has a corresponding measurement error compo-
nent of zero. Let M y and Mx be matrices consisting of zeros and ones (assumed
known to the econometrician) that select the ny

ε and nx
ε nonzero components of
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ε
y
t and εx

t , respectively. When the j th component of yt is measured without error,
the corresponding component of ε

y
t is zero, as is the j th column of the ny

ε × ny

matrix M y . When every component of yt is measured with error, M y is an identity
matrix of dimension ny .

Assumption A. (i) ut ∼ W N (0,�u) with �u full rank; (ii) xt is weakly sta-
tionary; (iii) for all t and τ � 0, E[ut x ′

t−τ ] = 0; and (iv) for all (t,s), E[ε y
t u′

s] = 0,
E[ε y

t x ′
s] = 0, E[εx

t x ′
s] = 0, and E[εx

t u′
s] = 0.

Assumption B. The matrix polynomial A(L) is stable; py and rx are known.

Assumption C. Let v y
t ∼ W N (0,�

y
v ) and v x

t ∼ W N (0,�x
v ), where �

y
v and �x

v

are full-rank diagonal matrices with E[v y
t v x

s
′] = 0 for all (t,s). The measurement

errors are

�y(L)M yε
y
t = �y(L)v

y
t ,

�x (L)Mxεx
t = �x (L)v x

t ,

where �y(L), �y(L), �x (L), and �x (L) are diagonal polynomial matrices of
known orders py

ε , q y
ε , px

ε , and qx
ε , respectively. Furthermore, �y(L) and �x (L)

are stable; �y(L) and �y(L) as well as �x (L) and �x (L) are left co-prime.

Under Assumption A, the vector white noise process ut is orthogonal to the
measurement errors ε

y
t and εx

t , and the latter are “classical” in the sense that ε
y
t is

uncorrelated with yt , and εx
t is uncorrelated with xt . Moreover, ut is uncorrelated

with the current and past values of xt , which is the usual exogeneity condition.
Under Assumption B, all roots of det A(z) (z ∈ C) are outside the closed unit
disk. Under Assumption C, each element in M yε

y
t is a scalar ARMA(py

ε ,q y
ε )

process, while each element of Mxεx
t is a scalar ARMA(px

ε ,qx
ε ) process. These

are mutually uncorrelated stationary processes. Multivariate processes complicate
the analysis and are less likely to be empirically relevant. When Assumptions A,
B, and C hold, (Y ′

t , X ′
t )

′ is weakly stationary (see, e.g., Hannan, 1970).
Define the parameters in Model-y and the measurement error processes as:

θAR ≡ vec(A1, . . . , Apy , B0, . . . , Brx ,�
y
1, . . . ,�

y
py
ε
,�x

1, . . . ,�x
px
ε
),

θM A ≡ vec(�u,�
y
1, . . . ,�

y
q y
ε
,�x

1, . . . ,�x
qx
ε
,�y

v ,�x
v ).

The objective of the exercise is to identify θAR and θM A.
Consider first identification of the parameters of Model-y in the absence of

measurement error. Let �xt = (x ′
t , . . . , x ′

t−rx
)′. If lagged values of yt are absent from

Model-y, then �B is identified if E[ut �x ′
t ] = 0 and E[�xt �x ′

t ] is full rank, no matter
what the dynamics of the unobservables ut are. With lagged yt ’s in the model, �A
and �B are identified if for all t , E[ut x ′

t−τ ] = 0 for all τ � 0 and E[ut u′
s] = 0 for

all s < t .1 Since ut is covariance stationary under Assumption A, time invariance
of the second moments permits identification of �u from the covariance structure
of the residuals A(L)yt − B(L)xt .
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With measurement errors, the model in terms of observables is

A(L)Yt = B(L)Xt +ut + A(L)ε
y
t − B(L)εx

t .

The three terms in ut + A(L)ε
y
t − B(L)εx

t are not separately observable. Iden-
tification of dynamic models in the presence of measurement errors is a non-
trivial problem because the composite error term ut + A(L)ε

y
t − B(L)εx

t will in
general fail to be a finite order moving average process, and common factor dy-
namics cannot be ruled out. This violates classical conditions for identification
of vector autoregressive moving average (VARMA) processes derived in Hannan
(1969), which require co-primeness even in the absence of exogenous regressors.
Furthermore, the composite error is necessarily correlated with Yt and/or Xt , vio-
lating the exogeneity conditions used, for example, in Hannan (1971) and Hannan,
Dunsmuir, and Deistler (1980).

2.2. Related Literature

In a seminal paper, Reiersøl (1950) showed that identification in a single-
regressor static model is possible only if (Yt , Xt ) are not jointly normally
distributed. However, as discussed in Maravall and Aigner (1977) and Maravall
(1979), a static model that is unidentified in the presence of serially uncorrelated
measurement errors could be identifiable when the model has a dynamic struc-
ture. Intuitively, if ε

y
t and εx

t are white noise but the model has dynamics, �A and �B
can, in principle, be identified by the suitable choice of instruments such as lags
of Yt and Xt . Aigner, Hsiao, Kapteyn, and Wansbeek (1984, p. 1324) pointed out
that consistent parameter estimation is also possible with repeated observations
on yt , or strong a priori information.2 Aigner et al. (p.1377) also noted that
serially correlated measurement errors will complicate the identification problem,
but the econometrics literature on this issue is quite sparse. Mcdonald and
Darroch (1983) considered single-equation estimation of �A and �B with correlated
measurement errors but did not consider separate identification of the equation
error and the measurement noise.

There is, however, a reasonably large literature in control theory studying the
identification of noise-corrupted “multiple input-multiple output” (MIMO) mod-
els; see Söderström (2007) for a survey. By defining a new, latent endogenous
variable y∗

t ≡ yt − A(L)−1ut , Model-y can be written as a MIMO model,

y∗
t = B∗(L)xt ,

where B∗(L) ≡ A(L)−1 B(L). In a noise-corrupted analysis, xt is referred to as
the input vector and yt is the output vector. The observed variables are Xt = xt +
εx

t and Yt = y∗
t + ε

y
t

∗
, where the new measurement error ε

y
t

∗ ≡ A(L)−1ut + ε
y
t

amalgamates the shocks ut and the observational errors ε
y
t ; see Solo (1986).

While a specification with no error term on the right-hand side is uncommon
in econometric analysis, yt has a MIMO representation and results from that
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literature are relevant. The key result, shown for the case of a single input and
single output (also known as SISO systems), is given in Anderson and Deistler
(1984). They show that the transfer function B∗(L) (or the Wold representa-
tion) of such systems is impossible to identify nonparametrically. This “essential
nonidentifiability” holds even if the system is known to be causal. Identification
is possible only if some structure is put on the measurement errors. One alterna-
tive is to treat εx

t as a dynamic factor, and B(L) are the factor loadings. A second
alternative is to parametrically specify the covariance structure of the residuals.
Anderson and Deistler assume that the input and the measurement errors are au-
toregressive moving average (ARMA) processes and obtain conditions for iden-
tification from the second moments of the data without restricting the lag orders
a priori. The multivariate extension to stationary and causal MIMO-EIV systems
is considered in Nowak (1992, 1993).

The common feature of these results is that they all require a parametric model
for xt . For instance, Nowak (1992, 1993) assumes that xt are VARMA processes.
Parametric identification when the data are correctly observed dates back to
Koopmans (1953) and Fisher (1963). Measurement errors impose the additional
requirement that the model for xt has to be specified. This is restrictive if xt ’s are
thought to be determined outside of the system defined by Model-y.

An alternative to MIMO models is state space systems that explicitly allow
for measurement noise. Sargent (1989) shows how the Kalman filter can be used
when the variables in a dynamic model are subject to autoregressive measure-
ment errors. But, much like the MIMO models, the process for every variable
in the model needs to be completely specified. There are in fact relatively few
identification results for which the exogenous variables are not explicitly mod-
eled. Solo (1986) considers an Autoregressive-Moving Average Models with
Exogenous Variables (ARMAX) model without imposing assumptions on the ex-
ogenous variable and shows that the identification conditions agree with those
derived by Maravall (1979) with parametric assumptions on the exogenous pro-
cess. Our approach is similar in spirit to Solo (1986), with several considerations
in mind.

First, if the primitive shocks of a structural VAR were to be subsequently
recovered from the reduced-form errors ut , then ut needs to be separated from the
measurement noise ε

y
t . Considering the composite error ε

y∗
t as in MIMO systems

is not enough. Second, we restrict attention to VARX models because VARMAX
models are rarely used in economic applications. Requiring ut to be white noise
rules out observational equivalence that may arise from common factors between
A(L) and ut . Third, we do not specify the distribution of the measurement errors
or of the exogenous variables. The only restriction is that the measurement
errors are scalar ARMA processes. Parametric assumptions on the measurement
errors are necessary in view of the result of Anderson and Deistler (1984). One
can think of this limited information approach as a semiparametric setup in which
the distribution of the measurement errors and the exogenous variables is the
nonparametric part of the model.
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3. ORDER CONDITION FOR MISMEASURED VARX MODELS

3.1. General Results

Our point of departure is that when the measurement errors are serially corre-
lated, the dynamic representation for Yt will, in general, be different from that
for yt because Yt is the sum of two latent dynamic processes. In a univariate
setting, Granger and Morris (1976) showed that if yt is ARMA(py,qy) and ε

y
t

is ARMA(py
ε ,q y

ε ), then Yt = yt + ε
y
t is ARMA(p,q) where p � py + py

ε and
q � max{py +q y

ε , py
ε +qy}.3 The following lemma provides a general result for

vector processes.

LEMMA 1. Suppose Assumptions A, B, and C hold. Then the observed data
can be represented as

A(L)Yt = B(L)Xt +Ut , (Model-Y)

where A(L) and B(L) are polynomials of orders pY and rX whose coefficients
only depend on θAR, Ut is a V M A(qU ) error process that depends on both θAR

and θM A, and

pY = py + p̄

qU � p̄ +max{0, [py +q y
ε − py

ε ] ·1(ny
ε > 0), [rx +qx

ε − px
ε ] ·1(nx

ε > 0)}
rX = rx + p̄,

for some p̄ � ny
ε py

ε +nx
ε px

ε . Moreover, E(Ut ) = 0, E(Ut Y ′
t−τ ) = 0 for all τ > τY ,

and E(Ut X ′
t−τ ) = 0 for all τ > τX , where

τY � p̄ +max{0, [py +q y
ε − py

ε ] ·1(ny
ε > 0)},

τX � p̄ +max{0, [rx +qx
ε − px

ε ] ·1(nx
ε > 0)}.

Lemma 1 shows that Model-Y has richer dynamics than Model-y. The au-
toregressive part of Model-Y is of order pY � py . Furthermore, Yt has a
moving average (MA) component even if none is present in yt and �U ( j) ≡
E(UtU ′

t− j ) 	= 0 for all j = 1, . . . ,qU . In consequence, the usual orthogonality
conditions E(Ut Y ′

t−τ ) = 0 and E(Ut Xt−τ ) = 0 no longer hold for all τ > 0.
Instead, E(Ut Y ′

t−τ ) = 0 only for τ > τY , and E(Ut X ′
t−τ ) = 0 only for τ > τX .

The composite error Ut is a moving average process of order

qU = max
[
τY ,τX

]
.

In general, τY 	= τX because py and rx may differ, and so can the dynamics of the
measurement errors in Yt and Xt . Even though under Assumption C the measure-
ment errors are mutually uncorrelated ARMA processes, Ut will follow a vector
MA process whenever one of the polynomials A(L) and B(L) is not diagonal.

Although pY , rX , and qU can be identified from the data, point identification of
py,rx , py

ε ,q y
ε , px

ε ,qx
ε necessitates a priori restrictions. For this reason, Assump-

tions B and C treat these parameters as fixed. Interestingly, Lemma 1 implies that
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the true lags py and rx are always set identified in the sense that 0� py � pY and
0� rx � rX .

From the data Yt and Xt and the assumed lag orders, the most we can uncover
are the parameters in Model-Y:

πAR ≡ vec(A1, . . . ,ApY ,B0, . . . ,BrX ),

πM A ≡ vec(�U (0), . . . ,�U (qU )).

The question is whether knowing the parameters π ′ ≡ (π ′
AR,π ′

M A) enables iden-
tification of the parameters θ ′ ≡ (θ ′

AR,θ ′
M A) without fully specifying the DGP

for xt . A key to our order condition for identification is to exploit the specific
structure implied by Lemma 1:

πAR = πAR(θAR),

πM A = πM A(θAR,θM A).

This observation leads to the following order conditions.

PROPOSITION 1. Suppose Assumptions A, B, and C hold. Assume that π(θ)
is continuously differentiable and that the rank of ∂π

∂θ remains constant in a neigh-
borhood of θ . The necessary order conditions for local identification of θAR and
θM A jointly are

AR : dim(θAR)� dim(πAR)+dim(πM A)−dim(θM A),

M A : dim(θM A)� dim(πM A).

The results exploit the triangular structure of the problem and are new to the
literature. Since θM A appears in πM A and not in πAR , θM A can only be identified
from πM A, and the MA condition follows. If θM A is overidentified, the additional
information can be used to identify θAR , leading to the AR condition. These order
restrictions are more stringent than just requiring that dim(θAR) + dim(θM A) �
dim(πAR)+dim(πM A). Proposition 1 can be made more explicit upon substitut-
ing in the dimensions of the parameters:

dim(θAR) = n2
y · py +ny ·nx · (rx +1)+ny

ε · py
ε +nx

ε · px
ε ,

dim(θM A) = ny(ny +1)

2
+ny

ε +ny
ε ·q y

ε +nx
ε +nx

ε ·qx
ε ,

dim(πAR) = n2
y · pY +ny ·nx · (rX +1),

dim(πM A) = ny(ny +1)

2
+n2

y ·qU .

The AR order condition holds whenever the following two conditions are satis-
fied:

n2
y(pY − py)� ny

ε py
ε and nynx (rX − rx )� nε

x px
ε .

Although simple instrumental variables arguments can be used to establish that
Aj and Bj are identified, Aj 	= Aj and Bk 	= Bk in the presence of measurement
errors. The above conditions ensure that the dynamics of Model-Y are sufficiently
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richer than those of Model-y to disentangle the effects of lagged yt and xt from the
measurement noise. The required difference in dynamics depends on the number
of variables measured with errors. The conditions are, however, stronger than
necessary.

The MA order condition requires that

ny
ε (q y

ε +1)+nx
ε (qx

ε +1)

� n2
y

[
ny
ε py

ε +nx
ε px

ε +max{0, [py +q y
ε − py

ε ] ·1(ny
ε > 0), [rx +qx

ε − px
ε ] ·1(nx

ε > 0)}
]
,

which evidently depends on the lag structure of the model (as given by py and
rx ) and the dynamics of the measurement errors (as given by py

ε ,q y
ε , px

ε ,qx
ε ).

If the condition fails, then θM A cannot be recovered from the variance and the
qU autocovariances of Ut collected in πM A. As our subsequent examples will
show, the MA order condition is more likely to be violated than the AR condi-
tion, even in simple models. It is therefore possible that dim(θAR)+dim(θM A)�
dim(πAR)+dim(πM A) and yet dim(θM A) > dim(πM A).

The results of Proposition 1 have implications for identification of the structural
parameters in the simultaneous equations system,

A0 yt = A1 yt−1 +·· ·+Apy yt−py +B0xt +·· ·+Brx xt−rx +Ut ,

with A0 	= I , and whose reduced form is Model-y. Hsiao (1979) develops exclu-
sion restrictions for the case of white noise measurement errors. Because identifi-
cation of Model-y is necessary for identification of (A1, . . . ,Apy ), (B0, . . . ,Brx ),
and �U, the order conditions presented above are also necessary for identification
of the structural parameters.

PROPOSITION 2. Suppose Assumptions A, B, and C hold. Assume that π(θ)
is continuously differentiable, and that the ranks of ∂π

∂θ , ∂π
∂θAR

, and ∂π
∂θM A

remain
constant in a neighborhood of θ . The necessary order conditions for local identi-
fication of θAR alone and of θM A alone are, respectively,

AR : dim(θAR)� dim(πAR)+dim(πM A),

MA : dim(θM A)� dim(πM A).

If one is interested in θM A alone, the necessary order condition for identifica-
tion is simply dim(θM A) � dim(πM A). This is hardly surprising, since θM A can
only be recovered from πM A. However, θAR can potentially be recovered from
all information available. This leads to the weaker order condition: dim(θAR) �
dim(πAR)+dim(πM A).

3.2. Two Special Cases: ARX Models and VAR

This subsection studies the implications of Proposition 1 for important special
cases: scalar ARX models and pure VARs. We focus on the joint identification of
θAR and θM A.
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Case 1 (ARX(py,rx ) with nx = 1, ny
ε = 0, nx

ε = 1). When xt is scalar, Model-y
is

yt = A1 yt−1 +·· ·+ Apy yt−py

+ B0xt +·· ·+ Brx xt−rx +ut , ut ∼ W N (0,�u). (1)

If yt is correctly measured but xt is measured with errors, Model-Y is
ARMA(pY ,qU ,rX ) with pY = py + px

ε , qU = px
ε + max{0,rx + qx

ε − px
ε }, and

rX = rx + px
ε .4 The model is quite commonly used, as latent variables such as ex-

pected inflation, permanent income, wealth, and marginal Q play important roles
in economic analysis. For example, the Phillips curve has xt being the output gap
and yt being inflation. As the output gap is latent, its proxy can be thought of as
a mismeasured variant of xt . If this proxy is constructed by filtering an observed
variable, it is likely that εx

t will be serially correlated.
Applying Lemma 1, we have dim(θAR) = py + (rx + 1) + px

ε , dim(θM A) =
2+qx

ε , dim(πAR) = py + (rx +1)+2px
ε , and dim(πM A) = 1+ px

ε +max{0,rx +
qx
ε − px

ε }. Consider the cases in Table 1.
When there are no lags of the dependent variable (hence py = 0) and rx = 0,

Model-y is static. The autoregressive dynamics in Model-Y alone are not
sufficient for identification, since the residual autocovariances need to provide
information for recovering the components of θM A. The MA order condition fails
except when εx

t is AR(1). The condition also fails if py = 1 or py = 2, with rx = 0
because there are fewer nonzero lagged autocovariances of Ut than are needed to
recover all MA parameters. Identification is more likely to obtain when Model-y
is dynamic. As indicated from Table 1, the MA order condition holds for any
value of py whenever rx � 1. The identification conditions can be formalized as
follows.

TABLE 1. ARX(py,rx ) with ny
ε = 0.

εx
t pY qU rX AR M A pY qU rX AR M A

py = 0,rx = 0 Order Condition py = 1, rx = 0 Order Condition

WN 0 0 0 pass fail 1 0 0 pass fail
MA(1) 0 1 0 pass fail 1 1 0 pass fail
AR(1) 1 1 1 pass pass 2 1 1 pass pass
ARMA(1,1) 1 1 1 pass fail 2 1 1 pass fail

py = 2,rx = 0 Order Condition py = 1, rx = 1 Order Condition

WN 2 0 0 pass fail 1 1 1 pass pass
MA(1) 2 0 0 pass fail 1 2 1 pass pass
AR(1) 3 1 1 pass pass 2 1 2 pass pass
ARMA(1,1) 3 1 1 pass fail 2 2 2 pass pass
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COROLLARY 1. Consider an ARX(py,rx ) model in which the scalar vari-
able xt is observed with error, and let all the assumptions of Proposition 1 hold.
The AR order condition for joint local identification of θAR and θM A always holds;
the MA order condition for joint local identification of θAR and θM A requires
max{px

ε −qx
ε ,rx }� 1.

The corollary makes clear that the AR order condition always holds, but the
necessary condition for identifying θM A can fail. More precisely, dim(πAR) +
dim(πM A) can exceed dim(θAR)+dim(θM A), and yet the order condition for θM A

fails. In the case of an ARX(1,0) model with ARMA(1,1) measurement error, for
example, dim(π) = dim(θ) = 6, but dim(πM A)−dim(θM A) = −1. Although the
total number of parameters in Model-Y and Model-y are equal, this total number
is uninformative and misleading about the identifiability of Model-y. The issue is
that πAR tends to overidentify θAR , but the overidentifying conditions are of no
help in identifying θM A. For this reason, the MA and AR order conditions need
to be considered jointly.

Case 2 (ARX(py,rx ) with nx = ny
ε = nx

ε = 1). When xt and yt are both mis-
measured, the dynamic structures of yt and ε

y
t will both play a role in identifica-

tion of θM A. This is illustrated for the case when ε
y
t ∼ AR(1) in Table 2.

COROLLARY 2. Consider an ARX(py,rx ) model in which the scalar vari-
ables yt and xt are observed with errors and ε

y
t is an AR(1) process, and let

all the assumptions of Proposition 1 hold. The AR order condition for joint local
identification of θAR and θM A always holds; the MA order condition for joint local
identification of θAR and θM A requires max{px

ε −qx
ε , py −1+ px

ε −qx
ε ,rx }� 1.

The order condition for identifying θM A holds with white noise but not with
MA(1) errors in xt . This is because qU is the same in both cases, but the lags
of Ut provide no additional information to identify the MA(1) parameter in the
measurement error process. In such a case, the order condition requires either that
rx be greater than one or that the measurement error be an ARMA(1,1).

Case 3 (VAR(py)). Vector regressions are widely used in macroeconomic anal-
ysis. In the presence of serially correlated measurement errors, a VAR(py) model
becomes a VARMA(pY ,qU ).

TABLE 2. ARX (py,rx ) with (py
ε ,q y

ε ) = (1,0).

py = 2,rx = 0 Order Condition py = 0, rx = 2 Order Condition

εx
t pY qU rX AR M A pY qU rX AR M A

WN 3 2 1 pass pass 1 3 3 pass pass
MA(1) 3 2 1 pass fail 1 4 3 pass pass
AR(1) 4 3 2 pass pass 2 4 4 pass pass
ARMA(1,1) 4 3 2 pass pass 2 4 4 pass pass
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COROLLARY 3. Consider a VAR(py) process in which some (possibly all)
components of the ny vector yt are observed with error, and let all the assumptions
of Proposition 1 hold. The AR order condition for joint local identification of θAR

and θM A is always satisfied; the MA order condition for joint local identification
of θAR and θM A requires that

max

{
n2

y

ny
ε

py +
(

n2
y

ny
ε

−1

)
q y
ε + n2

y

ny
ε
(ny

ε −1)py
ε , n2

y py
ε −q y

ε

}
� 1.

Note that since ny
ε � ny , the first term inside the max operator is always greater

than or equal to py . Thus, if py � 1, the order condition for identification of θM A

always holds. This comes from the fact that our measurement errors are univariate
ARMA and not VARMA processes. Thus, while dim(πM A) = O(n2

y), the number
of measurement error parameters is O(ny

ε ). The order conditions for VAR(py)
models with py � 1 are thus satisfied for all ny . Interestingly, the result implies
that seemingly unrelated systems might make it possible to identify parameters
that are otherwise nonidentifiable in a single-equation setup. In the case of an
AR(py) model (i.e. ny = 1), the order condition for identifying θM A simplifies to
max{py, pε

y −q y
ε }� 1.

4. RANK CONDITION FOR MISMEASURED VARX MODELS

4.1. General Result

The preceding analysis has focused on conditions that are necessary for identify-
ing Model-y. The order conditions are not sufficient because Model-Y may not
be identified. Showing that Model-Y is identifiable is not trivial for two reasons.
First, the covariates Xt are no longer strongly exogenous. Second, Model-Y has
a VARMAX structure that is susceptible to the presence of common factors that
render the parameters in Model-Y nonidentifiable. However, deriving a canoni-
cal form for Model-Y that is free of common factors is often not a trivial task
(see, e.g., Hannan, 1971).

The following lemma gives sufficient conditions for identification of Model-Y
that do not require canonical forms. Let �Y Y ( j) ≡ E(Yt Y ′

t− j ), �X X ( j) ≡
E(Xt X ′

t− j ), �XY ( j) ≡ E(Xt Y ′
t− j ), and �Y X ( j) ≡ E(Yt X ′

t− j ) be the autocovari-
ances and cross-covariances of Yt and Xt . Define

HY Y ≡
(
�Y Y ( j − i + τY )

)
1�i, j�pY

,

HY X ≡
(
�Y X ( j − i + τX )

)
1�i�pY ,1� j�rX +1

,

HXY ≡
(
�XY ( j − i + τY +1)

)
1�i�rX +1,1� j�pY

,

HX X ≡
(
�X X ( j − i + τX +1)

)
1�i, j�rX +1

.



162 IVANA KOMUNJER AND SERENA NG

LEMMA 2. Suppose Assumptions A, B, and C hold. Then the parameters πAR

and πM A of Model-Y are jointly globally identifiable if and only if

rank

(
HY Y HY X

HXY HX X

)
= ny pY +nx (rX +1).

The key insight of Lemma 2 is that the orthogonality restrictions E(Ut Y ′
t−τ ) = 0

for τ > τY and E(Ut X ′
t−τ ) = 0 for τ > τX put enough structure to guarantee iden-

tification of Model-Y. The result requires, however, that there be enough informa-
tion in the autocovariances and cross-covariances of Yt and Xt to satisfy the rank
condition. Since Model-Y is linear in πAR , the rank condition is both necessary
and sufficient, and the identification result is global.

As an example, consider an ARX(1,0) model in which both yt and xt are subject
to white noise measurement errors. In that case, Yt = A1Yt−1 + B0 Xt +ut +v

y
t −

A1v
y
t−1 − B0v

x
t is an ARMAX(1,1,0) with τY = 1 and τX = 0. Now if the latent

covariates xt are themselves a white noise process, the matrix in Lemma 2 reduces
to(
�Y Y (1) �Y X (0)
�XY (2) �X X (1)

)
=
(

�yy(1) �yx (0)
0 0

)
,

which clearly fails to satisfy the rank condition. Thus, we recover the well-known
result that identification of EIV systems fails when the covariates are white noise.
Lemma 2 is an extension of the results in Solo (1986) and Hsiao (1979) to multi-
variate systems with independent ARMA measurement errors.

Once the parameters of Model-Y are identified, we can proceed with the
identification of Model-y. Sufficient rank conditions for θAR and θM A to be
jointly locally identified from πAR and πM A are summarized in the following
proposition.

PROPOSITION 3. Suppose Assumptions A, B, and C hold. Assume in addi-
tion that π(θ) is continuously differentiable and that the rank condition of Lemma
2 holds. Then the sufficient rank conditions for local identification of θAR and θM A

jointly are

AR : rank
(

∂πAR(θAR)
∂θAR

)
= dim(θAR),

MA : rank
(

∂πM A(θAR ,θM A)
∂θM A

)
= dim(θM A).

The result of Proposition 3 exploits the triangular structure of the system. The
practical implication of Proposition 3 is that identification of the autoregressive
parameters precedes identification of the variances and moving average parame-
ters of the measurement error process. Even if the AR rank condition is satisfied,
the MA rank for condition may fail.

The following result provides separate rank conditions for partial identification
of either θAR or θM A alone.
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PROPOSITION 4. Suppose Assumptions A, B, and C hold. Assume in addi-
tion that π(θ) is continuously differentiable and that the rank condition of Lemma
2 holds. Then the sufficient rank conditions for local identification of θAR alone
and of θM A alone are, respectively,

AR : rank
(

∂πAR(θAR)
∂θAR

)
= dim(θAR)

M A : rank
(

∂π(θAR ,θM A)
∂θ

)= rank
(

∂π(θAR ,θM A)
∂θAR

)
+dim(θM A).

Since πAR is a function of θAR alone, the same rank condition as in Proposition
3 obtains. The condition is sufficient to identify θAR irrespective of θM A. Thus,
it is possible that θAR is identified and yet θM A fails to be so. The rank condition
for θM A now takes into account that θAR may no longer be identified.

4.2. Example

There are several ways in which the rank conditions may be checked. In sim-
ple models in which the mapping from θ to π is easy to compute analytically,
evaluating the rank conditions is straightforward, though formal testing is not. In
general, however, numerical approaches may be easier to implement. To illus-
trate how the rank condition presented in Proposition 3 is to be used, consider
the model yt = A1 yt−1 + B0xt + B1xt−1 + ut with ut ∼ W N (0,σ 2

u ). While yt is
correctly measured, we only observe Xt = xt + εt where εt is ARMA(1,1),
εt = �εt−1 + vt +�vt−1, vt ∼ W N (0,σ 2

v ). The parameters θ ′ = (θ ′
AR,θ ′

M A) of
Model-y are

θAR ≡ (A1, B0, B1,�)′ and θM A ≡ (σ 2
u ,�,σ 2

v )′.

The observed variables follow Model-Y, which is an ARMAX(2,2,2) given by

yt = (�+ A1)yt−1 −�A1 yt−2 + B0 Xt + (B1 −�B0)Xt−1 −�B1 Xt−2 +Ut

=A1 yt−1 +A2 yt−2 +B0 Xt +B1 Xt−1 +B2 Xt−2 +Ut .

The parameters π ′ = (π ′
AR,π ′

M A) in Model-Y are

πAR ≡ (A1,A2,B0,B1,B2)
′ ,

πM A ≡ (�U (0),�U (1),�U (2))′ ,

where �U (0) = (1 + �2)σ 2
u + [B2

0 + (B1 + �)2 + B2
1�2]σ 2

v , �U (1) = −�σ 2
u +

(B0 + B1�)(B1 +�)σ 2
v , and �U (2) = B0 B1�σ 2

v .
First consider the identifiability of π . For this, let Wt ≡ (yt−1, yt−2, Xt ,

Xt−1, Xt−2)
′, Zt ≡ (yt−1, yt−2, Xt−3, Xt−4, Xt−5)

′. Then Model-Y can be writ-
ten as yt = W ′

t πAR + Ut with E[ZtUt ] = 0. Clearly, πAR can be identified pro-
vided rank E[Zt W ′

t ] = 5. This is precisely the rank condition in Lemma 2. Once
πAR is identified, πM A is determined from the autocovariances of the residuals
yt − W ′

t πAR .
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Now consider the identification of θ ′ = (θ ′
AR,θ ′

M A) from π , and note first that
since B0 = B0, B0 is identified whether or not any of the other components of
θ are identifiable. However, we need to identify the nuisance parameter � to
identify (A1, B1). If σ 2

u is of interest, then we also need to identify the nuisance
parameters (�,σ 2

v ).
The sufficient AR condition in Proposition 3 depends on

∂πAR

∂θAR
=

⎛⎜⎜⎜⎜⎝
1 0 0 1

−� 0 0 −A1
0 1 0 0
0 −� 1 −B0
0 0 −� −B1

⎞⎟⎟⎟⎟⎠ .

Observe that rank
(

∂πAR
∂θAR

)
= 4 except when B0 = 1 and A1 = B1 = �, in which

case the rank is 3 and identification of θAR from πAR fails. When measurement
errors are present, identification of the components of A(L) and B(L) requires
that those polynomials be co-prime. This is unlike the case in which all the vari-
ables are correctly observed.

The sufficient MA condition depends on

∂πM A

θM A
=
⎛⎝(1+�2) 2[B1 +�+ B2

1�]σ 2
v B2

0 + (B1 +�)2 + B2
1�2

−� (B0 + B2
1 +2B1�)σ 2

v (B0 + B1�)(B1 +�)

0 B0 B1σ
2
v B0 B1�

⎞⎠ ,

whose determinant

det

(
∂πM A

θM A

)
= −B0 B1σ

2
v

(
B2

0�+ B0 B1�
2 + B0 B1 − B2

1��2 + B2
1�

−B1�
2�2 − B1�

2 −��2
)

vanishes whenever B0 = 0 or B1 = 0. This occurs when yt is truly an AR(1)
instead of an assumed ARX(1,1). When B0 	= 0, B1 	= 0, and the measure-
ment errors are AR(1) with � = 0, the determinant vanishes whenever B0 B1 +
(B2

0 + B2
1 )� + B0 B1�

2 = 0. The solutions to this quadratic equation in � are
{−B0/B1,−B1/B0}. If |B0| 	= |B1|, there is one solution strictly inside the unit
circle. If, on the other hand, the measurement errors are MA(1) with � = 0, the
determinant vanishes whenever B0 = �2.

5. DYNAMIC PANEL DATA MODELS WITH MEASUREMENT
ERRORS

This section extends the identification analysis to dynamic panel data models. In
theory, identification is possible from repeated observations of the data over time
if the time variations of the measurement errors differ from those of the variables
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that they contaminate. The problem is complicated by the fact that unobserved
heterogeneity is characteristic of panel data, and transformations that remove the
individual effects tend to remove more signal than noise from the data. Griliches
and Hausman (1986) propose to combine information of the maximum likelihood
(also known as the within or the LSDV) estimator with the first difference (FD) es-
timator to consistently estimate a static panel model with one covariate. Wansbeek
and Koning (1991) and Biorn (1992,1996) extend the idea in various ways under
the maintained assumption that the measurement errors are white noise. While the
assumption is convenient, Bell and Wilcox (1993) find that the sampling error of
retail sales is highly serially correlated, while Bound and Krueger (1991) find that
the measurement error in reported earnings is correlated over time.

While there is a huge literature on measurement errors for cross section or time
series data, a comprehensive treatment of which is given in Wansbeek and Meijer
(2000), there are few results for dynamic panel models. Holtz-Eakin, Newey, and
Rosen (1988) consider panel vector autoregressions but limit their attention to
white noise measurement errors. Wansbeek (2001) derives moment conditions
by considering the covariances between the dependent variables and the regres-
sors over time, projecting out the parameters of the possibly serially correlated
measurement error process. Biorn (2008) also allows for moving-average-type
measurement errors. However, both studies adopt a static setup.

We consider a general panel autoregressive distributed lag ARX(py,rx ) model
with a dependent variable yit and a scalar covariate xit . Assume there are N indi-
vidual units indexed by i that are observed over T time periods indexed by t . For
all i and t , the data are generated by

yit = λi +
py

∑
j=1

Aj yi,t− j +
rx

∑
j=0

Bj xi,t− j +uit , (Model-py)

with unobserved heterogeneity captured by λi and possibly correlated with the
predetermined variables yi,t−τ−1 and xi,t−τ (τ � 0).

The data are contaminated by classical measurement errors. For i = 1, . . . N
and t = 1, . . .T ,

Yit = yit + ε
y
i t ,

Xit = xit + εx
i t .

Let ny
ε = 1 (resp. nx

ε = 1) if yit (resp. xit ) is measured with error and zero oth-
erwise. We do not allow for measurement errors to occur in only a subset of the
units in the panel. The following assumptions are used.

Assumption PA. (i) For all i , uit ∼ W N (0,σ 2
u ); (ii) for all i , xit is weakly

stationary; (iii) for all (i, t) and τ � 0, E[uit xi,t−τ ] = 0 and E(uitλi ) = 0; and
(iv) for all (i, t,s), E[ε y

i t uis] = 0, E[ε y
i t xis] = 0, E[εx

i t xis] = 0, and E[εx
i t uis] = 0.

Assumption PB. The polynomial A(L) is stable, and py and rx are known.
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Assumption PC. For all i , let v
y
i t ∼ W N (0,σ

y
v

2
) and v x

i t ∼ W N (0,σ x
v

2), with
E[v y

i tv
x
is] = 0 for all (t,s). The measurement errors follow:

�y(L)ε
y
i t = �y(L)v

y
i t , if ny

ε = 1,

�x (L)εx
i t = �x (L)v x

i t , if nx
ε = 1,

where �y(L), �y(L), �x (L), and �x (L) are polynomials of known orders py
ε ,

q y
ε , px

ε , and qx
ε , respectively. Moreover, �

y
0 = �

y
0 = 1, �x

0 = �x
0 = 1, �y(L)

and �x (L) are stable, and �y(L) and �y(L) as well as �x (L) and �x (L) are
co-prime.

Under Assumption PA(i), the disturbances are uncorrelated across time with
variances that are homogeneous across units. The uncorrelatedness of uit together
with Assumption PA(iii) ensure that lagged values of yit as well as xit and its
lags qualify as instrumental variables in Model-py. While the latent fixed effect
λi is assumed uncorrelated with the error uit , E(xitλi ) is left unrestricted. As in
Holtz-Eakin et al. (1988), we do not impose any dependence restrictions across
units. Cross-sectional independence can lead to additional orthogonality condi-
tions beyond those specified in Assumption PA(iii). Assumption PA(iv) states
that the measurement errors are classical. Assumption PB imposes stability on
the model. When combined with Assumptions PA and PC, this assumption guar-
antees that for every i , (Yit , Xit )

′ are weakly stationary. Under Assumption PC,
the measurement errors are uncorrelated ARMA processes. The coefficients and
the lag order of A(L), B(L), �x (L), �y(L), �x (L), �y(L), as well as σ x

v and
σ

y
v are homogeneous across units. The main difference with a VAR is thus that

the parameters in the panel data model are common across units.
The parameters of Model-py are θ ′ ≡ (θ ′

AR,θ ′
M A) with

θAR ≡
(

A1, . . . , Apy , B0, . . . , Brx ,�
y
1, . . . ,�

y
py
ε
,�x

1, . . . ,�x
px
ε

)′
,

θM A ≡
(
σ 2

u ,�
y
1, . . . ,�

y
q y
ε
,�x

1, . . . ,�x
qx
ε
,σ y

v
2,σ x

v
2
)′

,

and the objective of the exercise is to identify θAR and θM A.
The model in terms of the error-ridden data is

A(L)Yit = λi + B(L)Xit +uit + A(L)ε
y
i t − B(L)εx

i t .

Under Assumptions PA, PB, and PC, the same reasoning as in Lemma 1 shows
that the observed data can be represented as

A(L)Yit = λi +B(L)Xit +Uit , (Model-PY)

where A(L) and B(L) are polynomials of orders pY and rX , respectively, with
pY = py + p̄, qU � p̄+max{0, [py +q y

ε − py
ε ]ny

ε , [rx +qx
ε − px

ε ]nx
ε }, rX = rx + p̄,

and p̄ � ny
ε py

ε + nx
ε px

ε . The composite error Uit = uit + A(L)ε
y
i t − B(L)εx

i t is an
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M A(qU ) even though uit is white noise. A triangular structure obtains when the
coefficients of A(L) and B(L) depend on θAR alone, while Ut depends on both
θAR and θM A.

In addition to the possible correlation between Uit and the predetermined vari-
ables in Model-PY, identification of θ is now complicated by the presence of
the unobserved heterogeneity term λi . Model-PY must further be transformed
to eliminate the individual effect. Let Yit ≡ Yit − Yi,t−1. First differencing
Model-PY gives

A(L)Yit = B(L)Xit +Uit . (Model-PY)

Since Uit is MA(qU ), it follows that Uit is M A(qU +1). Model-py can be iden-
tified from Model-PY only if Model-PY is itself identifiable.

Letting �U ( j) ≡ E(UitUi,t− j ),5 the parameters of Model-PY are π ′ ≡
(π ′

AR,π ′
M A), with

πAR ≡ (A1, . . . ,ApY ,B0, . . . ,BrX

)′
,

πM A ≡ (�U (0), . . . ,�U (qU +1)))′ .

In order to identify the pY + (rX +1) components of πAR , we use the orthogonal-
ity conditions that hold under Model-PY:

E(Uit ) = 0,

E(UitYi,t−τ ) = 0, for all τ > τY +1, τY � p̄ +max{0, [py +q y
ε − py

ε ]ny
ε },

E(UitXi,t−τ ) = 0, for all τ > τX +1, τX � p̄ +max{0, [rx +qx
ε − px

ε ]nx
ε }.

The second set of moments yields T − τY −2 orthogonality conditions, while the
third set yields T − τX − 2 conditions. The number of conditions differs because
the lag lengths py and rx are not necessarily identical, and the measurement er-
rors for yit and xit may have different dynamics.6 Once πAR is identified, πM A

is identifiable from the autocovariances of the residuals A(L)Yit −B(L)Xit

provided Model-py has T −max{pY ,rX }� qU +2 observations. This leads to the
following result.

LEMMA 3. Suppose Assumptions PA, PB, and PC hold. The order conditions
for identification of πAR and πM A jointly are

AR : T � 1

2

[
τY + τX + py + rx +1

]+ p̄ +2,

MA : T � qU + p̄ +max{py,rx }+2.

A useful observation can be made if πAR (and not πM A) is of interest, as in
Holtz-Eakin et al. (1988), who consider serially uncorrelated measurement errors
in a panel VAR. In this case p̄ = 0, τY = py , τX = rx −1, and our AR order con-
dition reduces to T � py + rx + 2. This is equivalent to their condition (p. 1377)
of T � 2m +2, since py = rx = m. Our results are more general, as we allow the
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measurement errors to be serially correlated. Once πAR and πM A are identified,
one can proceed with the local identification of θAR and θM A from πAR and πM A.
The order and rank conditions are the same as before.

6. CONCLUSION

Mismeasured variables arise either as a result of the data collection process or
when the latent variables in the model are replaced by proxies. This paper shows
that in dynamic models with measurement errors, comparing the total number
of unknowns in Model-y with the number of parameters in Model-Y does not
provide an informative order condition for identification. The results have impli-
cations for estimation of dynamic models in which measurement errors are often
inevitable.

NOTES

1. The exogeneity condition E[ut �x ′
t ] = 0 is no longer sufficient as �yt−1 = (y′

t−1, . . . , y′
t−py

)′ is a
function of all the lagged xt ’s and ut ’s.

2. Erickson and Whited (2002) used higher-order moments, while Willassen (1977) used the joint
distribution of the observables for identification. Hsiao (1979) studies identification of dynamic si-
multaneous equations models from the second-moment properties of the data when the measurement
errors are white noise.

3. For example, if yt and ε
y
t are AR(1) with different coefficients, then Yt is ARMA(2,1).

4. When all the variables in Model-y are scalar, ny
ε = 0 and B(L) 	= �x (L), then the results of

Lemma 1 hold with equalities in place of (upper) inequalities.
5. Note that because of our homogeneity restrictions, �U ( j) does not vary across individuals.
6. Biorn (2008) considers orthogonality conditions for the first difference of Model-py without the

lagged dependent variable and suggests using lagged levels and/or the differenced data as instruments.
Our orthogonality conditions are based on Model-PY. Note that one observation is lost from first
differencing.
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APPENDIX

Proof of Lemma 1. Proof is done in two steps. We first discuss the case in which at
least one component of yt and one component of xt are measured with errors.

CASE 1. ny
ε � 1 AND nx

ε � 1.
Under Assumption C, the components of

{
M yε

y
t
}

and
{

Mxεx
t
}

are independent
ARMA

(
py
ε ,q y

ε
)

and ARMA
(

px
ε ,qx

ε

)
processes, respectively:

�y(L)M yε
y
t = �y(L)v

y
t , v

y
t ∼ W N (0,�

y
v ), (A.1)

�x (L)Mxεx
t = �x (L)vx

t , vx
t ∼ W N (0,�x

v ), E[v y
t vx

s
′] = 0 for all (t,s), (A.2)

where �y(z) = I −
[

∑py
ε

j=1 �
y
j z j
]

, �y(z) = I + ∑q y
ε

j=1 �
y
j z j , �x (z) = I −

[
∑

px
ε

j=1 �x
j z j
]
,

and �x (z) = I +∑
qx
ε

j=1 �x
j z j are diagonal polynomial matrices. The matrices �

y
j , �

y
j , and

�
y
v are of dimensions ny

ε × ny
ε . Similarly, �x

j , �x
j , and �x

v are of dimensions nx
ε × nx

ε .
Given that �y(z) and �x (z) have determinants with zeros outside the unit circle, i.e. for
any z ∈ C, det�y(z) = 0 only if |z| > 1, and det�x (z) = 0 only if |z| > 1, we have

M yε
y
t = �y(L)−1�y(L)v

y
t and Mxεx

t = �x (L)−1�x (L)vx
t .

Whenever measurement errors are present, i.e., ny
ε 	= 0, we can “reconstruct” the zeros in

ε
y
t by pre-multiplying M yε

y
t by M y ′. This gives

ε
y
t = M y ′�y(L)−1�y(L)v

y
t and εx

t = Mx ′�x (L)−1�x (L)vx
t .
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Now use the fact that for an arbitrary stable polynomial matrix �(L), �(z)−1 =
1

det[�(z)] Co[�(z)]′ where Co[�(z)] denotes the matrix of co-factors of �(z). Then,

ut + A(L)ε
y
t − B(L)εx

t =ut + 1

det[�y(L)]
A(L)M y ′Co[�y(L)]′�y(L)v

y
t

− 1

det[�x (L)]
B(L)Mx ′Co[�x (L)]′�x (L)vx

t

≡ ut + 1

py(L)
P y(L)v

y
t − 1

px (L)
Px (L)vx

t ,

where py(L) and P y(L) (and similarly px (L) and Px (L)) are a scalar and a ma-
trix polynomial, respectively, that are co-prime. Specifically, letting π y(L) be the
scalar polynomial that is the greatest common divisor (GCD) of det[�y(L)] and
A(L)M y ′Co[�y(L)]′�y(L), py(L) and P y(L) are such that

det[�y(L)] = π y(L)py(L) and A(L)M y ′Co[�y(L)]′�y(L) = π y(L)P y(L).

Hence,

deg{py(L)}� ny
ε py

ε and deg{P y(L)}� py + (nx
ε −1

)
py
ε +q y

ε ,

with an analogous result holding for px (L) and Px (L). In addition, note that

deg
{

P y(L)
}−deg

{
py(L)

}= deg

{
1

py(L)
P y(L)

}
= deg{A(L)}+deg{�y(L)}−deg{�y(L)}
= py +q y

ε − py
ε ,

with an analogous result holding for px (L) and Px (L).
Let ϕU (L) be the scalar polynomial that is the least common multiplier (LCM) of py(L)

and px (L), ϕU (L) = LC M
(

py(L), px (L)
)

and denote by ψ y(L) and ψ x (L) the poly-
nomials such that

py(L)ψ y(L) = ϕU (L) and px (L)ψ x (L) = ϕU (L).

For example, if py(L) and px (L) are co-prime, then ϕU (L) = py(L)px (L), ψ y(L) =
px (L), and ψ x (L) = py(L). It follows that

ϕU (L)
[
ut + A(L)ε

y
t − B(L)εx

t

]
= ϕU (L)ut +ψ y(L)P y(L)v

y
t −ψ x (L)Px (L)vx

t

≡ ũt + ṽ
y
t + ṽx

t .

Define the ny ×ny and the ny ×nx matrix polynomials A(L) and B(L) by

A(L) ≡ ϕU (L)A(L) and B(L) ≡ ϕU (L)B(L).

ThenA(L)Yt =B(L)Xt +Ut , with Ut = ũt + ṽ
y
t + ṽx

t . Note that the coefficients of py(L)
(resp. px (L)) are functions of the coefficients in �y(L) (resp. �x (L)), so the coefficients
of ϕU (L) are functions of those in �y(L) and �x (L). Hence, the coefficients ofA(L) and
B(L) are functions of θAR alone. On the other hand, Ut depends on both θAR and θM A.
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To determine the degrees of various polynomials above, let p̄ ≡ deg{ϕU (L)} and note
that p̄ � ny

ε py
ε +nx

ε px
ε . Then,

deg
{A(L)

}= py + p̄, deg
{B(L)

}= rx + p̄,

ũt ∼ V M A(qũ) with qũ = p̄,

ṽ
y
t ∼ V M A(q y

w̃) with q y
w̃ = p̄ −deg{py(L)}+deg{P y(L)}

= p̄ + py +q y
ε − py

ε ,

ṽx
t ∼ V M A(qx

w̃) with qx
w̃ = p̄ −deg{px (L)}+deg{Px (L)}

= p̄ + rx +qx
ε − px

ε .

Since ut , v
y
t , and vx

t are mutually uncorrelated white noise processes, E[utv
y
s

′
] = 0,

E[utv
x
s

′] = 0, E[v y
t vx

s
′] = 0 for all (t,s), and the sequences ũt , ṽ

y
t , and ṽx

t are mutually
uncorrelated VMA processes. Hence, Ut ∼ V M A(qU ) of order qU �max{qũ ,q y

w̃,qx
w̃}.

In addition, E(Ut ) = 0 and E(Ut Y ′
t−τ ) = 0 whenever τ > τY with τY � p̄+max{0, py +

q y
ε − py

ε }, and E(Ut X ′
t−τ ) = 0 whenever τ > τX with τX � p̄+max{0,rx +qx

ε − px
ε }. This

establishes the result of Lemma 1 when ny
ε � 1 and nx

ε � 1.

CASE 2. ny
ε = 0 or nx

ε = 0
If ny

ε = 0 and nx
ε � 1, then following the same reasoning as above, we have A(L)Yt =

B(L)Xt +Ut , with

Ut = ũt + ṽx
t , ũt ≡ px (L)ut , ṽx

t ≡ −Px (L)vx
t ,

where the ny × ny and the ny × nx matrix polynomials A(L) and B(L) are now defined
by

A(L) ≡ px (L)A(L) and B(L) ≡ px (L)B(L).

The coefficients of A(L) and B(L) are functions of θAR alone. On the other hand,
Ut depends on both θAR and θM A. In addition, p̄ � nx

ε px
ε and

deg{A(L)} = py + p̄, deg{B(L)} = rx + p̄,

qU � p̄ +max{0,rx +qx
ε − px

ε }.
Further, E(Ut ) = 0, E(Ut Y ′

t−τ ) = 0 for all τ > τY with τY � p̄, and E(Ut X ′
t−τ ) = 0 for

all τ > τX with τX � p̄ +max{0,rx +qx
ε − px

ε }.
If on the other hand, ny

ε � 1 and nx
ε = 0, then A(L)Yt = B(L)Xt +Ut with

Ut = ũt + ṽ
y
t , ũt ≡ py(L)ut , ṽ

y
t ≡ P y(L)v

y
t ,

and the ny ×ny and the ny ×nx matrix polynomials A(L) and B(L) are given by

A(L) ≡ py(L)A(L) and B(L) ≡ py(L)B(L).

Then p̄ � ny
ε py

ε and

deg{A(L)} = py + p̄, deg{B(L)} = rx + p̄,

qU � p̄ +max{0, py +q y
ε − py

ε }.
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Since E(Ut ) = 0, while E(Ut Y ′
t−τ ) = 0 for all τ > τY with τY � p̄+max{0, py +q y

ε − py
ε }

and E(Ut X ′
t−τ ) = 0 for all τ > τX with τX � p̄. Again, the coefficients ofA(L) and B(L)

are functions of θAR alone, while Ut depends on both θAR and θM A. This completes the
proof of Lemma 1. n

Proof of Propositions 1, 2, 3, and 4. The proof of Propositions 1, 2, 3, and 4 is based
on the following lemma.

LEMMA 4. Let g : D → R
r1 and f : D → R

r2 (with D ⊆ Rd1+d2 , d1 � 1, d2 � 1) be
two continuously differentiable mappings on D, and define ϕ : D → R

r1+r2 to be a map-
ping such that ϕ(x1, x2) ≡ (g(x1), f (x1, x2)

)
for each x = (x ′

1, x ′
2)′ ∈ D (with dim x1 = d1

and dim x2 = d2). Then,

(i) rank
(

∂g(x1)
∂x1

)
= d1 and rank

(
∂ f (x1,x2)

∂x2

)
= d2 imply rank

(
∂ϕ(x1,x2)

∂x

)
= d1 +d2,

(ii) rank
(

∂ϕ(x1,x2)
∂x

)
= d1 +d2 implies rank

(
∂ f (x1,x2)

∂x2

)
= d2.

Using Lemma 1, we can write the parameters of Model-Y as

(πAR,πM A) = (πAR(θAR),πM A(θAR,θM A)) .

Hence, the mapping π = π(θ) has a triangular structure as in Lemma 4.
The order conditions in Proposition 1 follow by a well-known result (see, e.g., Fisher,

1966) stating: If π(θ) is continuously differentiable and the rank of ∂π/∂θ remains con-
stant in a neighborhood of θ , then a necessary condition for θ to be a locally identified is
that rank (∂π/∂θ) = dim(θ). The latter implies dim(θ) � dim(π), which is the AR order
condition in Proposition 1. Combining rank (∂π/∂θ) = dim(θ) with Lemma 4(ii) further
gives

rank

(
∂πM A(θAR,θM A)

∂θM A

)
= dim(θM A) so dim(θM A)� dim(πM A),

which is the MA order condition in Proposition 1.
To derive the order conditions in Proposition 2, we use the second well-known result

(see, e.g., Fisher, 1966) stating: If π(θ) is continuously differentiable and the ranks of
∂π/∂θ and ∂π/∂θM A remain constant in a neighborhood of θ , then a necessary condition
for θAR alone to be locally identified is that rank (∂π/∂θ) = rank (∂π/∂θM A)+dim(θAR).
The above implies dim(θAR) � dim(π), which is the AR condition in Proposition 2.
For the MA condition, we use an analogous result that says: If π(θ) is continuously
differentiable and the ranks of ∂π/∂θ and ∂π/∂θAR remain constant in a neighbor-
hood of θ , then a necessary condition for θM A alone to be locally identified is that
rank (∂π/∂θ) = rank (∂π/∂θAR)+dim(θM A). Now rank (∂π/∂θ)� rank (∂π/∂θAR)+
rank (∂π/∂θM A) = rank (∂π/∂θAR) + rank (∂πM A/∂θM A), where the second equal-
ity follows by the triangular structure of the problem. Hence, a necessary condition
is that dim(θM A) � rank (∂πM A/∂θM A) � dim(πM A), which is the MA condition in
Proposition 2.

The rank conditions in Proposition 3 are an immediate application of the implicit func-
tion theorem, which says that the rank condition rank (∂π/∂θ) = dimθ is also sufficient



174 IVANA KOMUNJER AND SERENA NG

for θ to be locally identified. Using Lemma 4(i), sufficient conditions are

rank

(
∂πAR(θAR)

∂θAR

)
= dim(θAR) and rank

(
∂πM A(θAR,θM A)

∂θM A

)
= dim(θM A),

which are the conditions in Proposition 3.
Finally, for Proposition 4, note that since πAR is a function of θAR alone, the AR con-

dition follows by the implicit function theorem. The MA condition uses the fact that the
above rank condition rank (∂π/∂θ) = rank (∂π/∂θAR)+ dim(θM A) is also sufficient for
partial local identification of θM A. n

Proof of Lemma 4. To show (i), note first that for every x = (x ′
1, x ′

2)′ ∈ D
(with dim x1 = d1 and dim x2 = d2),

∂ϕ(x1, x2)

∂x
=
⎛⎝ ∂g(x1)

∂x1
0r1×d2

∂ f (x1,x2)
∂x1

∂ f (x1,x2)
∂x2

⎞⎠ .

If the r1 × d1 matrix ∂g(x1)/∂x1 is of rank d1, then r1 � d1 and there exists a square
d1 ×d1 matrix Mg(x1) obtained by deleting (r1 −d1) rows of ∂g(x1)/∂x1 that is such that
detMg(x1) 	= 0. Similarly, if the r2 ×d2 matrix ∂ f (x1, x2)/∂x2 is of rank d2, then r2 � d2
and there exists a square d2 ×d2 matrix Mf (x1, x2) obtained by deleting (r2 −d2) rows of
∂ f (x1, x2)/∂x2 such that det Mf (x1, x2) 	= 0. Now let Nf (x1, x2) be the d2 × d1 subma-
trix of ∂ f (x1, x2)/∂x1 obtained by deleting the same rows. Then, consider the following
(d1 +d2)× (d1 +d2) submatrix of ∂ϕ(x1, x2)/∂x ,

Mϕ(x1, x2) =
(

Mg(x1) 0d1×d2
Nf (x1, x2) Mf (x1, x2)

)
.

Since det
(

Mϕ(x1, x2)
) = det

(
Mg(x1)

)
det
(

Mf (x1, x2)
) 	= 0, rank(∂ϕ(x1, x2)/∂x) =

d1 +d2.
We now show (ii). If rank (∂ϕ(x1, x2)/∂x) = d1 + d2, then ∂ϕ(x1, x2)/∂x is of full

column rank, which implies that

rank

⎛⎝ ∂g(x1)
∂x1

∂ f (x1,x2)
∂x1

⎞⎠= d1 and rank

⎛⎝ 0r1×d2

∂ f (x1,x2)
∂x2

⎞⎠= d2.

The second equality can only hold if rank (∂ f (x1, x2)/∂x2) = d2. n

Proof of Lemma 2. From Lemma 1, Model-Y is

A(L)Yt = B(L)Xt +Ut ,

with disturbances Ut that satisfy E(Ut Y ′
t−τ ) = 0 for τ > τY , and E(Ut X ′

t−τ ) = 0 for all
τ > τX . Now post-multiplying the above equation by Y ′

t−τ for τY +1� τ � τY + pY and
taking expectations gives

(A1 . . .ApY B0 . . . BrX

)(HY Y
HXY

)
= CY , (A.3)
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where CY ≡ (�Y Y (τY +1) . . . �Y Y (τY + pY )
)
. Similarly, post-multiplying by X ′

t−τ for
τX +1� τ � τX + rX +1 and taking expectations gives

(A1 . . .ApY B0 . . . BrX

)(HY X
HX X

)
= CX , (A.4)

where CX ≡ ( �Y X (τX +1) . . . �Y X (τX + rX +1)
)
. Combining (A.3) and (A.4) and ap-

plying the vec operator to both sides gives[(
HY Y HY X
HXY HX X

)′
⊗ Iny

]
vec
(A1 . . .ApY B0 . . . BrX

)= vec
(CY CX

)
.

The above system of equations is linear in πAR = vec
(A1 . . .ApY B0 . . . BrX

)
. Hence,

it has a globally unique solution if and only if[(
HY Y HY X
HXY HX X

)′
⊗ Iny

]
is nonsingular, i.e., rank

(
HY Y HY X
HXY HX X

)
= ny pY +nx (rX +1).

Once all the parameters inA(L) and B(L) are identified, the disturbances Ut are identified,
and so are their auto-covariances (�U (0), . . . ,�U (qU )). Hence, the global identification of
πM A follows. n


