
AN AUTOREGRESSIVE SPECTRAL
DENSITY ESTIMATOR AT
FREQUENCY ZERO FOR

NONSTATIONARITY TESTS

PIIIEEERRRRRREEE PEEERRRRRROOONNN
Boston University

and
C.R.D.E.

SEEERRREEENNNAAA NGGG
Boston College

Many unit root and cointegration tests require an estimate of the spectral density
function at frequency zero of some process+ Commonly used are kernel estimators
based on weighted sums of autocovariances constructed using estimated residuals
from an AR~1! regression+ However, it is known that with substantially correlated
errors, the OLS estimate of theAR~1! parameter is severely biased+ In this paper,we
first show that this least-squares bias induces a significant increase in the bias and
mean-squared error~MSE! of kernel-based estimators+We then consider a variant
of the autoregressive spectral density estimator that does not share these shortcom-
ings because it bypasses the use of the estimate from the AR~1! regression+ Simu-
lations and local asymptotic analyses show its bias and MSE to be much smaller
than those of a kernel-based estimator when there is strong negative serial correla-
tion+We also include a discussion about the appropriate choice of the truncation lag+

1. INTRODUCTION

The statistical analysis of models with nonstationary variables has received con-
siderable attention in the last decade, as seen from the many theoretical results
that have been developed and the numerous applications that have been reported+
It is by now common practice to report the outcome of some unit root test on each
variable, perform tests for the presence of cointegration, and, using one of the
many asymptotically optimal procedures, estimate the cointegrating vectors+ For
a review, see Campbell and Perron~1991!, Stock ~1994!, and Watson~1994!+
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Consider for example the following simple relation between a scalaryt and an
m-dimensional vectorxt with all variables beingI ~1!:

yt 5 b 'xt 1 vt + (1.1)

Of special interest is to test the null hypothesis of no cointegration+ This is often
done applying a unit root test to the estimated residuals, [vt 5 yt 2 Zb 'xt ,where Zb is
the ordinary least squares~OLS! estimate ofb+ Note that~1+1! contains the uni-
variate unit root problem as a special case withb 5 0 and [vt 5 yt + This model is
quite general because substantial heterogeneity and autocorrelation are permitted
in the errors$vt % and the first differences of the data, Dxt + Usually some kind of
“mixing conditions” are imposed~see, e+g+, Phillips and Perron, 1988!, such that
one can apply a functional central limit theorem to the partial sums of the errors+

The basis of many unit root tests is the following first-order autoregression:

[vt 5 a [vt21 1 ut ,

with the least-squares estimate denoted[a and [ut 5 [vt 2 [a [vt21+ It is by now
well known that, under the null hypothesis of no cointegration~or the null
hypothesis of a unit root whenb 5 0!, the least-squares estimator, [a, converges
to 1 at the fast rate ofT+ However, the limiting distributions ofT~ [a 2 1! and of
its associatedt-statistic depend on nuisance parameters arising from serial cor-
relation in the errors$Dvt %+ A popular approach to remove this dependence of
the asymptotic distribution on the nuisance parameters has been to apply
some kind of transformation to the basic least-squares estimates+ For the uni-
variate case, early examples of transformed unit root tests are those of Phillips
~1987! and Phillips and Perron~1988!+ In the multivariate case, transformed
statistics were proposed by Phillips and Ouliaris~1990!+ To apply these trans-
formations, consistent estimates ofsDv

2 5 limTr` T21 (t51
T E~Dvt2! ands2 5

limTr` T21E~ST
2!, with ST 5 (t51

T Dvt , are needed+ These are usually based on
the estimated residuals[ut because [a converges to 1 at the fast rate ofT+ For
example, to estimatesDv

2 one usessu
2 5 T21 (t51

T [ut
2, and to estimates2 the

most popular method has been to use a kernel-based estimator of the form

sWA
2 5 T21 (

t51

T

[ut
2 1 2T21 (

j51

~T21!

k~ j,MT ! (
t5k11

T

[ut [ut2k+ (1.2)

Herek~ j,MT! is some kernel that weighs the sample autocovariances andMT is
a bandwidth that acts as a truncation lag parameter whenk~ j,MT! 5 0 for 6 j 6 .
MT + Although many variants of unit root and cointegration tests have been pro-
posed, almost all use in some way such estimators to eliminate the effect of
nuisance parameters on the asymptotic distribution+

It is important to note that the preceding estimators ofsDv
2 ands2 both depend

on the properties of[a via the use of the estimated residuals[ut + However, it has
also been shown that the least-squares estimate ofa is severely biased in samples
of typical sizes~and remains so even in quite large samples! when there is sub-
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stantial correlation in the errors+This feature has been extensively documented in
Perron~1996! for the univariate case and is recently analyzed in Ng and Perron
~1997a! for the multivariate case+This can explain the substantial size distortions
of the tests in the presence of important serial correlation+

Given these biases in the least-squares estimates, one would like to construct
cointegration and unit root tests that are affected as little as possible by the de-
pendence on[a+ An obvious possibility is to use the residuals under the null hy-
pothesis, i+e+, D [vt ~or Dyt in the univariate unit root problem!+ However, if both
sDv

2 ands2 are estimated using the residuals under the null hypothesis, it was
shown by Phillips and Ouliaris~1990! that the tests become inconsistent+ This
result was more or less perceived as implying an impossibility to altogether avoid
the use of the least-squares estimates[a in constructing estimates of the nuisance
parameters+

The theme of this paper is that, on the contrary, it is possible to construct
estimates of the nuisance parameters that are consistent under the null hypoth-
esis and ensure consistent tests while avoiding any dependence on[a+ The idea
is to use the residuals under the null hypothesis, D [vt , to constructsu

2 and to
use a particular formulation of the autoregressive spectral density estimator to
estimate the spectral density at frequency zero ofDvt + Such an estimator was
first proposed by Stock~1990! and is defined bysAR

2 5 sek
2 0~1 2 Zb~1!!2, where

Zb~1! 5 (j51
k Zbj andsek

2 5 T21 (t5k11
T [etk

2 with Zbj and [etk obtained from the fol-
lowing autoregression:

D [vt 5 b0 [vt21 1 (
j51

k

bj D [vt2j 1 etk+

It is the aim of this paper to analyze the properties of such an autoregressive
spectral density estimator+Without much loss of generality we concentrate on the
univariate case whereb 5 0 with [vt 5 yt , and the problem of interest is that of
testing for a unit root+ The focus is on the properties of the estimator when there
is substantial correlation in the error process+We first show that such an estimator
of the spectral density at frequency zero has much smaller biases and mean-
squared errors~MSE! compared to a kernel-based estimator of the form~1+2! that
is constructed using the least-squares residuals+These features are analyzed using
both simulations and local asymptotic analyses where the errors are modeled as
AR~1! or MA ~1! processes with parameters approaching the boundaries21 or
11 as the sample size increases+ The qualitative results obtained extend imme-
diately to the multivariate framework+

The plan of the paper is as follows+ Section 2 motivates the analysis in terms of
theZa test for the presence of a unit root+ Section 3 discusses the data-generating
processes used for the simulations and presents the results+ Section 4 presents a
framework to analyze the local asymptotic properties of the spectral density es-
timators+ Section 5 summarizes the implications of the different estimators of the
spectral density at frequency zero for the unit root tests+ In particular, we discuss
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how the use of the autoregressive spectral density estimator allows unit root tests
that show little size distortions even in the presence of substantial serial correla-
tion in the errors+Section 6 offers concluding comments+Atechnical contribution
of this paper is to derive the limit of the autoregressive spectral density estimator
in several local asymptotic frameworks+ These proofs are contained in a math-
ematical appendix+

2. MOTIVATION

We motivate our analysis with the problem of testing for a unit root+We consider
a series$ yt %t50

T generated by

yt 5 ayt21 1 ut , (2.1)

with a 5 1 under the null hypothesis+ The errors$ut % are assumed to be a linear
process of the formut 5 (i50

` bi et2i with et being independent and identically
distributed, et ; i+i+d+ ~0,se

2!+ Let B~z! 5 1 1 (i51
` bi z

i 5 10~1 1 (i51
` ai z

i ! 5
10A~z!+We further assume thatB~z! is nonzero on the unit circle, thatA~1! Þ 0,
and thatk102 (i51

` 6ak1i 6r 0 for some increasing sequencek ~note that the latter
condition is automatically satisfied ifut is a stationary and invertible autoregres-
sive moving average~ARMA ! process!+ Also, y0 5 0, for simplicity+

We shall focus on theZa test developed in Phillips~1987! and extended in
Phillips and Perron~1988!+ The test is defined as

Za 5 T~ [a 2 1! 2 ~s2 2 su
2!YS2T22 (

t51

T

yt21
2 D, (2.2)

where [a is the OLS estimate of the autoregressive parameter in~2+1!, su
2 5

T21 (t51
T [ut

2, [ut 5 yt 2 [ayt21, ands2 is a consistent estimator ofs2+ The anal-
ysis can easily be extended to the case where additional deterministic compo-
nents are included in the regression~2+1!+ The form ofZa remains the same if
yt21 is replaced by its demeaned or detrended counterpart+ See Ng and Perron
~1997b! for a discussion of issues pertaining to detrending and the estimation
of the spectral density function+

A consistent estimator ofs2 often used is the nonparametric estimator, sWA
2 ,

defined in~1+2!+Simulation results of Schwert~1989!,DeJong,Nankervis,Savin,
and Whiteman~1992!, and Phillips and Perron~1988!, among others, have shown
thatZa based uponsWA

2 suffers from severe size distortions, especially when there
is substantial negative correlation in the residualsut ~see Haug, 1993, concerning
cointegration tests!+ There is also evidence that the choice of the kernel and the
methods to choose the truncation lag do not affect much the finite-sample prop-
erties of the test~see Kim and Schmidt, 1990!+

The bad size properties of the test can be explained by the fact that[a is severely
biased+ In Perron~1996!, it was shown that the finite-sample distribution of the
normalized least-squares estimator, T~ [a 21!, is very badly approximated by its

AUTOREGRESSIVE SPECTRAL DENSITY ESTIMATOR 563



limiting distribution when there is substantial serial correlation in the residuals
and the adequacy of the asymptotic approximation deteriorates when additional
deterministic components are included in the regression+ Indeed, the properties
of [a effect the properties ofZa not only in a direct way viaT~ [a 21!, but also in
indirect ways via the estimates of the nuisance parameterssWA

2 andsu
2 because

they are constructed using the least-squares residuals[ut and hence depend on the
biased estimate[a+

The size problem found inZa is not unique to the use of the kernel estimator+
As an alternative tosWA

2 , consider the standard autoregressive spectral density
estimator following the work of Berk~1974!+ It is defined bysB

25sek
2 0~12 Zb~1!!2,

where Zb~1! 5 (j51
k Zbj andsek

2 5 T21 (t5k11
T [etk

2 with Zbj and [etk obtained from the
following autoregression:

[ut 5 (
j51

k

bj [ut2j 1 etk+ (2.3)

The estimator can be seen as a parametric autoregressive approximation ofs2+
BecauseT~ [a 21! 5 Op~1!, one can use the results of Berk~1974! to show thatsB

2

is consistent providedk30T r 0 andk r ` asT r `+ Simulations showed that
unit root tests continue to have severely distorted sizes when based uponsB

2+ The
problem is that the autoregressive spectral density estimator still depends on the
estimated residuals, [ut +Hence, a starting point to modify theZa test is to try to get
rid of the dependence of the test statistic on[a+

As a first step in eliminating this dependence, let us analyze the case where,
instead of usingsu

25T21 (t51
T [ut

2 as an estimate ofsu
2,we use the residuals under

the null hypothesis, i+e+, sDy
2 5 T21 (t51

T Dyt
2+ This estimator is obviously also

consistent under the null hypothesis of a unit root+A little algebra shows that, in
this case, Za can be written as

MZa 5 ~T21yT
2 2 s2!YS2T22 (

t51

T

yt21
2 D, (2.4)

which is exactly the modified unit root test proposed by Stock~1990! and further
analyzed by Perron and Ng~1996!+ It is called a modifiedZa test because it can
also be written as~see Ng and Perron, 1976b!

MZa 5 Za 1 ~T02!~ [a 2 1!2+ (2.5)

Because [a converges to 1 at rateT, the correction factor is asymptotically negli-
gible andZa andMZa are asymptotically equivalent+ However, when large neg-
ative serial correlation is present in the residuals and hence[a is severely biased,
the correction factor~T02!~ [a 21!2 can be important even in quite large samples+

The representation~2+4! is interesting in several aspects+ First, it shows that
using the residuals under the null hypothesis to construct a consistent estimate of
su

2 eliminates the dependence of the unit root test on[a were it not for the fact that
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the spectral density estimates2 remains constructed using the least-squares re-
siduals+Second,writing MZa 5 ~ yT

22Ts2!0~2T21 (t51
T yt21

2 !, it is easy to see that
a necessary condition for the test to be consistent against stationary alternatives is
thatTs2 diverges under such alternatives+ This is important because it shows that
we cannot constructsWA

2 using the residuals under the null hypothesis ifsu
2 is

estimated using the same residuals, i+e+, Dyt + This is becauseTsWA
2 5 Op~1! under

stationary alternatives when constructed withDyt as shown by Phillips and Ou-
liaris ~1990!+

The challenge therefore is to construct an estimators2 that is consistent fors2

under the null hypothesis,with Ts2 diverging under stationary alternatives, and is
such that the estimator does not depend on[a+ This is achieved using a modified
autoregressive spectral density estimator based on the first differences of the data+
Such an estimator, which we denote bysAR

2 , is defined in the present context as

sAR
2 5 sek

2 0~12 Zb~1!!2, (2.6)

wheresek
2 5 T21 (t5k11

T [etk
2 , Zb~1! 5 (j51

k Zbj , with Zbj and$ [etk% obtained from the
following autoregression estimated by OLS:

Dyt 5 b0 yt21 1 (
j51

k

bj Dyt2j 1 etk+ (2.7)

Under the conditions stated on the errors$ut %, consistency of the parameter esti-
mates in the preceding regression under the null hypothesis thatyt has a unit root
follows from the results of Berk~1974!, Said and Dickey~1984!, and Ng and
Perron~1995! provided the truncation lag is such thatkr` andk30Tr 0 asTr

`+ Consistency ofsAR
2 for s2 follows+

The preceding autoregressive spectral density estimator differs from~2+3! in
two ways+ First, it usesDyt instead of [ut , and second, the lagged levelyt21 is
included as a regressor+ The introduction of the lagged level is of no importance
under the null hypothesis of a unit root becauseZb0 r 0 at rateT+ In other words,
sB

2 andsAR
2 are asymptotically equivalent under the null hypothesis+ The introduc-

tion of the lagged level, however, ensures the consistency of unit root tests by
making the estimate bounded below by zero under stationary alternatives+ This is
an important property because the requirement thatTs2 diverges is now satisfied+
An overlooked advantage ofsAR

2 over sB
2 is that the former based upon~2+7! is

immune to potentially severe biases in[a caused by the presence of substantial
correlation in the errors+

Given thatsAR
2 based upon~2+7! does not depend on[a, it is likely to provide a

better estimate ofs2 thansWA
2 in finite samples+ The next sections of this paper

establish that this is indeed the case+

3. THE EXPERIMENTAL DESIGN

In this section, we discuss the experimental design used to evaluate the relative
properties ofsWA

2 andsAR
2 +We keep the design very simple to better highlight the
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types of correlation that induce problems of inference+To that effect,we consider
errors as being generated by simple AR~1! or MA ~1! models+ Hence, the data-
generating processes are of the form

yt 5 yt21 1 ut , (3.1)

where the initial condition is set toy0 5 0 and the errors$ut % are generated by
either of the following:

MA ~1!: ut 5 et 1 uet21,

AR~1!: ut 5 rut21 1 et , (3.2)

with u05 e05 0 andet ; i+i+d+ ~0,se
2!+Note that, in this case, the true value ofs2

is se
2~1 1 u!2 andse

20~1 2 r!2 for moving average and autoregressive models,
respectively+ We present both simulation experiments and theoretical analyses
based on these specifications+

In the simulations,we consider the case where the data are assumed to have an
unknown mean+ Correspondingly, sWA

2 is constructed using residuals[ut obtained
from the regression~2+1! with a constant included+ Also, the regression used to
construct the autoregressive spectral density estimator is

Dyt 5 c 1 b0 yt21 1 (
j51

k

bj Dyt2j 1 etk+ (3.3)

The aim of the simulation experiments is to quantify the bias and MSE ofsWA
2

andsAR
2 for a range of values ofu andr+ The emphasis of our discussion is on

cases where there is substantial serial correlation in the errors+ The innovations
$et % are generated as i+i+d+ N~0,1! random variables using the GASDEV function
in Press, Teukolsky, Vetterling, and Flannery~1992!+ In all cases, 2,000 replica-
tions are used+ Three sample sizes are considered, T 5 100, 200, and 500+

3.1. Results for sWA
2 with Estimated Residuals

We report results for the kernel-based estimator constructed as in~1+2! using the
Parzen window+ This is a kernel that operates with a truncation point+ Although
other kernels are possible, the choice of this kernel is with little loss of generality
given that our focus is on processes forut with roots close to the boundary of
unity+ The Parzen kernel was found to produce estimates with relatively good
finite-sample properties in Ng and Perron~1996!+ It is among the best windows
that provide non-negative estimates by construction and for which the bandwidth
acts as a truncation lag parameter+We also tried other windows such as the qua-
dratic spectral advocated byAndrews~1991!+The results are qualitatively similar+

Several methods to choose the truncation lag were considered+ We analyzed
the properties of the estimator using fixed truncation lags ranging from 1 to some
maximal orderMT~max! that increases with the sample size+We setMT~max! 5
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6, 10, and 14 forT 5 100, 200, and 500, respectively+ For data-dependent selec-
tion rules, our base case is the asymptotically optimal data-dependent method
suggested by Andrews~1991! using an AR~1! approximation+ Another experi-
ment that we tried was to calculate the optimal bandwidth using an ARMA~1,1!
approximation with the true values of the parameters+ This led to estimates with
even worse properties, especially in the negative MA~1! case+ The reason is that
for such a process the optimal bandwidth is relatively large and for reasons ex-
plained subsequently, the properties ofsWA

2 deteriorate as the bandwidth increases
because the estimated residuals are not good approximations to the true residuals+
We also considered experiments using the prewhitening device suggested by An-
drews and Monahan~1992!+ This produced significant improvements only for
AR~1! errors with positive coefficients+ However, there were neither significant
improvements nor marked deteriorations in cases with large negative AR~1! or
MA ~1! coefficients+ To conserve space, these results will not be reported~but are
available on request!+ Readers will be reminded of the advantages of prewhiten-
ing where appropriate+

The results are presented in Tables 1 and 2 for the bias and MSE, respectively+
Consider first the base case with i+i+d+ errors+ For a given sample size the bias
decreases, as expected, as the truncation lag increases+ For a fixed truncation lag,
it also decreases rapidly as the sample size increases+ The MSE eventually in-
creases with the truncation lag, but it is relatively small in all cases and decreases
rapidly asT increases, especially using an automatic bandwidth selection proce-
dure+ For models with positive moving average coefficients, the bias and MSE
are large for small values of the truncation lag, but both decrease substantially as
the truncation lag increases+ However, for a given truncation lag, the error de-
creases less rapidly as the sample size increases than in the i+i+d+ case+

Consider now the case with a large negative moving average coefficient+ Here
the bias and MSE initially decrease as the truncation lag increases but start in-
creasing at larger lags+ More importantly, for u 5 2+8 the bias and MSE barely
decrease asT increases even when an automatic bandwidth selection procedure is
used+ The MSE is, in all cases, several orders of magnitude greater than in the
i+i+d+ case+ Indeed, the bias and MSE atu 5 2+8 are very large in relative terms
because the true value iss2 5 +04+ Although the bias and MSE diminish some-
what more quickly in cases of large negative autoregressive errors, the estimator
still gives imprecise estimates ofs2 given that the true values are small whenr
is negative+ When the autoregressive coefficient is positive, both the bias and
MSE decrease as the truncation lag increases but they are very large compared to
other cases and again decrease only very slowly asT increases+

We also present, in the last column of Tables 1 and 2, the minimal value of the
bias and MSE for each case over all possible integer valued bandwidths+While
these figures correspond to the best case possible and cannot, in general, be at-
tained in practice, they provide a useful benchmark for comparison with the bias
and MSE ofsAR

2 later+
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Table 1. Exact bias ofsWA
2 using the Parzen windowa

s2 MT 5 1 2 3 4 5 MT~max! Auto Min

T 5 100, MT~max! 5 6 i+i+d+ 1+00 20+054 20+051 20+046 20+040 20+034 20+029 20+037 20+014
MA 5 0+80 3+24 21+688 21+321 20+877 20+650 20+536 20+476 20+428 20+426

0+50 2+25 21+053 20+820 20+536 20+388 20+311 20+269 20+220 20+227
0+20 1+44 20+450 20+358 20+246 20+188 20+157 20+140 20+134 20+125

20+20 0+64 0+341 0+262 0+170 0+130 0+116 0+115 0+137 0+115
20+50 0+25 0+857 0+705 0+531 0+465 0+455 0+470 0+457 0+455
20+80 0+04 1+071 1+003 0+942 0+957 1+014 1+088 0+939 0+942

AR 5 0+80 25+00 222+655 221+765 220+480 219+368 218+373 217+504 212+244 212+286
0+50 4+00 22+746 22+448 22+042 21+741 21+512 21+340 20+903 20+887
0+20 1+56 20+562 20+465 20+342 20+267 20+220 20+192 20+193 20+157

20+20 0+69 0+296 0+213 0+121 0+088 0+082 0+086 0+093 0+082
20+50 0+44 0+791 0+544 0+294 0+251 0+273 0+309 0+260 0+251
20+80 0+31 1+925 1+372 0+913 1+031 1+257 1+484 1+148 0+913

T 5 200, MT~max! 5 10 i+i+d+ 1+00 20+028 20+026 20+021 20+017 20+013 0+003 20+015 0+000
MA 5 0+80 3+24 21+640 21+256 20+789 20+545 20+415 20+240 20+229 20+233

0+50 2+25 21+032 20+792 20+500 20+346 20+264 20+155 20+149 20+151
0+20 1+44 20+426 20+328 20+209 20+145 20+110 20+057 20+077 20+052

20+20 0+64 0+367 0+279 0+174 0+122 0+100 0+098 0+113 0+088
20+50 0+25 0+926 0+735 0+509 0+408 0+372 0+447 0+368 0+366
20+80 0+04 1+207 1+084 0+958 0+947 0+999 1+480 0+953 0+947

5
6
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AR 5 0+80 25+00 222+434 221+431 219+975 218+696 217+531 213+284 27+956 28+011
0+50 4+00 22+709 22+395 21+967 21+647 21+401 20+807 20+669 20+612
0+20 1+56 20+542 20+441 20+312 20+231 20+178 20+082 20+128 20+067

20+20 0+69 0+320 0+228 0+124 0+083 0+071 0+086 0+077 0+069
20+50 0+44 0+825 0+542 0+248 0+178 0+178 0+281 0+184 0+178
20+80 0+31 2+172 1+395 0+688 0+700 0+849 1+579 0+947 0+688

T 5 500, MT~max! 5 14 i+i+d+ 1+00 20+013 20+011 20+009 20+007 20+005 0+011 20+007 0+001
MA 5 0+80 3+24 21+618 21+225 20+745 20+490 20+352 20+121 20+117 20+118

0+50 2+25 21+014 20+769 20+471 20+312 20+226 20+080 20+082 20+073
0+20 1+44 20+413 20+314 20+193 20+127 20+091 20+025 20+048 20+013

20+20 0+64 0+388 0+292 0+176 0+117 0+087 0+070 0+081 0+059
20+50 0+25 0+967 0+743 0+475 0+342 0+279 0+308 0+245 0+239
20+80 0+04 1+365 1+151 0+911 0+830 0+836 1+579 0+866 0+830

AR 5 0+80 25+00 222+305 221+237 219+681 218+306 217+043 29+893 24+900 24+755
0+50 4+00 22+683 22+356 21+908 21+571 21+309 20+446 20+386 20+273
0+20 1+56 20+533 20+431 20+300 20+219 20+166 20+048 20+094 20+036

20+20 0+69 0+341 0+239 0+123 0+073 0+053 0+055 0+049 0+041
20+50 0+44 0+867 0+553 0+220 0+126 0+109 0+181 0+109 0+108
20+80 0+31 2+327 1+378 0+472 0+383 0+451 1+116 0+583 0+383

aThe column labeled Min gives the smallest value of the bias over all possible integer-valued bandwidths+Sometimes, the bias obtained using the automatic bandwidth selection procedure
with an AR~1! approximation is slightly smaller~column Auto!+ This can occur because the automatic procedure selects a bandwidth that is not necessarily integer-valued+

5
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Table 2. MSE of sWA
2 using the Parzen windowa

s2 MT 5 1 2 3 4 5 MT~max! Auto Min

T 5 100, MT~max! 5 6 i+i+d+ 1+00 0+022 0+024 0+032 0+040 0+048 0+056 0+040 0+022
MA 5 0+80 3+24 2+926 1+884 1+023 0+788 0+760 0+802 1+244 0+760

0+50 2+25 1+149 0+741 0+411 0+326 0+321 0+342 0+485 0+321
0+20 1+44 0+225 0+161 0+116 0+111 0+121 0+135 0+139 0+111

20+20 0+64 0+137 0+086 0+047 0+038 0+037 0+040 0+041 0+037
20+50 0+25 0+769 0+518 0+299 0+236 0+234 0+258 0+232 0+234
20+80 0+04 1+194 1+038 0+911 0+945 1+067 1+236 0+908 0+911

AR 5 0+80 25+00 5+13E2 4+74E2 4+21E2 3+78E2 3+43E2 3+14E2 2+17E2 2+02E2
0+50 4+00 7+599 6+104 4+396 3+390 2+792 2+454 2+695 2+203
0+20 1+56 0+340 0+252 0+176 0+153 0+152 0+160 0+177 0+152

20+20 0+69 0+111 0+064 0+033 0+030 0+034 0+039 0+032 0+030
20+50 0+44 0+677 0+320 0+101 0+084 0+105 0+136 0+093 0+084
20+80 0+31 4+094 2+072 1+040 1+429 2+146 2+991 1+706 1+040

T 5 200, MT~max! 5 10 i+i+d+ 1+00 0+010 0+011 0+015 0+019 0+023 0+045 0+019 0+010
MA 5 0+80 3+24 2+730 1+651 0+755 0+486 0+416 0+558 0+712 0+413

0+50 2+25 1+086 0+664 0+315 0+212 0+188 0+264 0+283 0+188
0+20 1+44 0+193 0+125 0+072 0+060 0+062 0+102 0+077 0+060

20+20 0+64 0+146 0+087 0+039 0+025 0+021 0+031 0+025 0+021
20+50 0+25 0+876 0+550 0+267 0+177 0+153 0+250 0+151 0+153
20+80 0+04 1+494 1+193 0+932 0+920 1+032 2+302 0+934 0+920
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AR 5 0+80 25+00 5+03E2 4+59E2 4+00E2 3+52E2 3+11E2 1+90E2 1+37E2 1+24E2
0+50 4+00 7+367 5+796 3+988 2+900 2+225 1+302 1+433 1+295
0+20 1+56 0+305 0+212 0+127 0+096 0+086 0+115 0+102 0+086

20+20 0+69 0+114 0+061 0+025 0+018 0+018 0+032 0+018 0+018
20+50 0+44 0+707 0+306 0+068 0+041 0+045 0+119 0+048 0+041
20+80 0+31 4+992 2+052 0+566 0+663 0+996 3+487 1+214 0+556

T 5 500, MT~max! 5 14 i+i+d+ 1+00 0+004 0+004 0+006 0+008 0+010 0+026 0+007 0+004
MA 5 0+80 3+24 2+634 1+530 0+610 0+320 0+228 0+321 0+362 0+198

0+50 2+25 1+038 0+608 0+250 0+138 0+103 0+147 0+138 0+094
0+20 1+44 0+175 0+105 0+048 0+031 0+027 0+055 0+034 0+027

20+20 0+64 0+155 0+089 0+035 0+018 0+013 0+018 0+013 0+011
20+50 0+25 0+943 0+557 0+228 0+121 0+083 0+130 0+068 0+067
20+80 0+04 1+888 1+334 0+839 0+713 0+740 2+776 0+801 0+713

AR 5 0+80 25+00 4+97E2 4+51E2 3+88E2 3+36E2 2+92E2 1+08E2 69+908 62+849
0+50 4+00 7+208 5+574 3+691 2+547 1+823 0+596 0+644 0+596
0+20 1+56 0+288 0+192 0+101 0+064 0+048 0+066 0+046 0+042

20+20 0+69 0+121 0+061 0+019 0+010 0+008 0+018 0+009 0+008
20+50 0+44 0+762 0+310 0+051 0+019 0+016 0+055 0+018 0+016
20+80 0+31 5+544 1+941 0+250 0+199 0+287 1+864 0+496 0+199

aThe column labeled Min gives the smallest value of the MSE over all possible integer-valued bandwidths+Sometimes, the bias obtained using the automatic bandwidth selection procedure
with an AR~1! approximation is slightly smaller~column Auto!+ This can occur because the automatic procedure selects a bandwidth that is not necessarily integer valued+
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3.2. Results for the Autoregressive Spectral Density Estimator, sAR
2

This subsection discusses results pertaining to the behavior ofsAR
2 constructed

using the augmented autoregression~3+3!+ For the construction of the autoregres-
sive spectral density estimator, sAR

2 , the only nuisance parameter to determine is
the order of the autoregressionk+We first considered deterministic rules whereby
k is a fixed value in the integer interval between 1 andkmax+We usedkmax5 4,
8, and 14 forT 5 100, 200, and 500, respectively+ We also considered data-
dependent rules wherebyk is chosen according to statistical criteria+ This in-
cludes~i! a general to specific recursive procedure using a 5 and a 10%t-test for
the significance of the last lag~given the upper boundkmax! and~ii ! rules based
on the AIC and the Schwartz information criteria+ Thet-test tends to select orders
of truncation that are higher than information-based rules, with the order of trun-
cation increasing with the significance level of the test+Thus,of the data-dependent
rules considered, the Schwartz criterion produces the tightest model and the 10%
t-test is the most liberal+

The results for the bias and MSE are presented in Tables 3 and 4, respectively+
A notable property ofsAR

2 is that its bias and MSE decrease rapidly as the sample
size increases+ However, for T5100 or smaller, the bias and variance ofsAR

2 can
be large, especially at an overly liberal value ofk+

For small sample sizes, for example, atT5100, the results are sensitive to the
choice ofkmax+ For larger values ofkmax, the estimates exhibit occasional out-
liers that increase the bias and MSE substantially+ This occurs because whenk is
large relative to the total sample the biases of the least-squares estimatesZbi are
such that(i51

k Zbi is occasionally close to 1, causing a singularity in the denomi-
nator of sAR

2 + This problem is less severe when no constant is included in the
autoregression but more so when a time trend is included+When the sample size
is larger, sayT5150 or greater, this sensitivity to the choice ofkmax disappears+

Consider first the base case with i+i+d+ errors+ For low values of the truncation
lag, the bias and MSE are small but increase substantially as the truncation lag
increases+With positive moving average errors, the bias eventually decreases and
the MSE increases as the truncation lag increases for a fixedT+ However, the
errors decrease noticeably asT increases+ While the variations in performance
across selection procedures reduce as the sample size increases, the tight Schwartz
criterion tends to produce the smallest MSE with positive moving average models+

It is of interest to note that both the bias and the MSE display a clear oscillating
pattern as the truncation lag varies from odd to even values+More precisely, bias
and MSE are substantially smaller at even than at odd lags+ This can be seen from
the fact that the autoregressive representation of a moving average model has
coefficients~2u! i at theith lag+An evenk always ensures that the calculation of
(i51

k Zbi is balanced, in the sense that the number of odd and even terms always
match+

For negative moving average errors, several features are noteworthy+ First, the
bias and MSE ofsAR

2 both decrease as the truncation lag increases for a fixedT
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whenu # 20+5+ Accordingly, a more liberal data-dependent method~e+g+, the
recursivet-test! produces in this case smaller MSE than one that tends to select a
tight structure~e+g+, Schwartz’s criterion!+ Thus,while the MSE obtained using a
recursivet-test is higher than that obtained using the Schwartz criterion whenu is
positive, the reverse is true whenu is negative+

We now turn to cases of AR~1! errors+ It is useful to note at the outset that
because the true autoregressive order ofut is one in all data-generating processes
considered, any overparameterization of the autoregression will lead to increases
in the MSE+Accordingly, it is easy to understand why a tight selection procedure
such as that based on the Schwartz criterion might produce estimates that have
the lowest MSE+ This is indeed the case with6r6 , 0+8, where we observed that
bias and MSE increase as the truncation lag increases given a fixedT and they
both decrease rapidly asT increases+Whenr is close to one, the bias and MSE of
the estimator are large but diminish asT increases+Whenr is close to21, bias
and MSE increase somewhat ask increases with a givenT but fall rapidly asT
increases+

In view of the oscillating magnitude of the bias and MSE for the case of MA~1!
errors with positive coefficient, the errors associated with data-dependent rules
could be further reduced if the rules are specified to choose over a range of
even-valued truncation lags+ Simulations to that effect are presented in the last
four columns of Tables 3 and 4+ As can be seen, the bias and MSE are substan-
tially reduced in the positive moving average case+ Indeed, with a search re-
stricted to even lags, the MSE withk selected using recursivet-tests on the
significance of the last lag is decreased in all cases, even with AR~1! errors+ For
the data-dependent methods using the AIC and the Schwartz criteria, the MSE is
reduced with MA~1! errors but slightly increased with AR~1! errors+ The latter
can be explained by the fact that the true order~k51! is outside the permissible
range fork, being 2 tokmax+ In practical settings, one should expect a pure
numerical advantage in using an even number of autoregressive lags in empirical
work+

3.3. Comparison of sWA
2 and sAR

2

For the i+i+d+ case, a tight selection criterion, such as the Schwartz’s criterion,
permitssAR

2 to have as low a bias assWA
2 with the MSE remaining slightly higher+

For positive moving average errors, the MSE ofsAR
2 at the optimal truncation lag

for a givenT is higher than the MSE ofsWA
2 similarly evaluated at an optimal

truncation lag, especially atT 5 100, though the difference is only marginal at
larger sample sizes+

Significant differences betweensWA
2 and sAR

2 surface whenu is negative, in
particular if it is close to21+ The bias and MSE ofsAR

2 are dramatically smaller
and decrease much more rapidly thansWA

2 asT increases+ For example, with T5
200 andu 5 20+8, the smallest MSE forsWA

2 ~with a bandwidth of 4! is +920
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Table 3. Bias of the autoregressive spectral density estimator, sAR
2

s2 k 5 1 2 3 4 5

T 5 100, kmax5 4 i+i+d+ 1+00 0+023 0+073 0+158 0+232 —
MA 5 0+80 3+24 1+654 20+652 1+406 0+010 —

0+50 2+25 0+786 20+109 0+615 0+504 —
0+20 1+44 0+136 0+083 0+240 0+360 —

20+20 0+64 0+092 0+067 0+114 0+167 —
20+50 0+25 0+332 0+168 0+128 0+114 —
20+80 0+04 0+673 0+435 0+334 0+261 —

AR 5 0+80 25+00 23+328 21+972 20+001 3+638 —
0+50 4+00 20+044 0+195 0+631 0+964 —
0+20 1+56 0+036 0+108 0+237 0+306 —

20+20 0+69 0+027 0+052 0+113 0+170 —
20+50 0+44 0+026 0+047 0+093 0+130 —
20+80 0+31 0+019 0+034 0+060 0+086 —

T 5 200, kmax5 8 i+i+d+ 1+00 0+014 0+038 0+072 0+094 0+132
MA 5 0+80 3+24 1+597 20+692 1+035 20+186 1+027

0+50 2+25 0+703 20+211 0+329 0+131 0+355
0+20 1+44 0+121 0+038 0+113 0+144 0+201

20+20 0+64 0+076 0+035 0+049 0+061 0+084
20+50 0+25 0+310 0+141 0+083 0+061 0+057
20+80 0+04 0+612 0+345 0+222 0+154 0+115

AR 5 0+80 25+00 21+704 21+050 20+142 0+574 1+440
0+50 4+00 20+054 0+060 0+187 0+268 0+400
0+20 1+56 0+017 0+057 0+125 0+155 0+213

20+20 0+69 0+014 0+031 0+059 0+071 0+097
20+50 0+44 0+009 0+020 0+035 0+047 0+061
20+80 0+31 0+007 0+013 0+024 0+032 0+044

T 5 500, kmax5 14 i+i+d+ 1+00 0+004 0+014 0+030 0+035 0+047
MA 5 0+80 3+24 1+545 20+726 0+794 20+348 0+572

0+50 2+25 0+670 20+252 0+209 20+010 0+131
0+20 1+44 0+102 0+008 0+046 0+052 0+070

20+20 0+64 0+067 0+019 0+018 0+021 0+030
20+50 0+25 0+293 0+124 0+063 0+038 0+027
20+80 0+04 0+564 0+291 0+176 0+116 0+081

AR 5 0+80 25+00 20+638 20+328 0+038 0+243 0+473
0+50 4+00 20+004 0+037 0+090 0+116 0+168
0+20 1+56 20+003 0+011 0+039 0+052 0+071

20+20 0+64 0+003 0+008 0+016 0+023 0+032
20+50 0+25 0+003 0+005 0+011 0+016 0+019
20+80 0+04 0+002 0+005 0+010 0+014 0+017
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All lags Even lags

kmax t-10 t-5 AIC SW t-10 t-5 AIC SW

— 0+115 0+084 0+058 0+032 0+110 0+097 0+098 0+073
— 0+422 0+524 0+454 0+561 20+680 20+716 20+109 20+331
— 0+448 0+476 0+419 0+488 20+081 20+101 0+102 20+052
— 0+232 0+194 0+156 0+135 0+156 0+120 0+158 0+096
— 0+122 0+114 0+093 0+088 0+098 0+088 0+088 0+068
— 0+175 0+211 0+200 0+265 0+156 0+160 0+153 0+166
— 0+351 0+406 0+412 0+534 0+362 0+384 0+357 0+413
— 20+289 21+016 22+197 23+106 20+215 20+454 21+217 21+846
— 0+382 0+184 0+114 20+035 0+337 0+254 0+309 0+221
— 0+146 0+120 0+097 0+053 0+148 0+135 0+157 0+118
— 0+100 0+075 0+061 0+040 0+082 0+068 0+086 0+055
— 0+065 0+047 0+035 0+028 0+063 0+057 0+057 0+049
— 0+048 0+037 0+031 0+020 0+045 0+040 0+042 0+034

0+248 0+129 0+090 0+037 0+018 0+091 0+067 0+051 0+038
0+669 0+716 0+724 0+643 0+558 20+403 20+555 0+213 20+173
0+661 0+374 0+292 0+181 0+189 20+068 20+138 0+015 20+166
0+402 0+253 0+196 0+106 0+112 0+136 0+087 0+067 0+043
0+162 0+112 0+103 0+067 0+073 0+074 0+062 0+045 0+035
0+077 0+096 0+119 0+117 0+195 0+115 0+124 0+111 0+136
0+066 0+105 0+140 0+165 0+297 0+162 0+204 0+162 0+270
4+830 2+008 0+561 20+969 21+638 0+613 20+072 20+232 20+976
0+949 0+442 0+250 0+026 20+047 0+300 0+200 0+107 0+059
0+409 0+225 0+154 0+048 0+028 0+165 0+119 0+086 0+059
0+191 0+120 0+086 0+032 0+016 0+088 0+066 0+052 0+032
0+110 0+056 0+041 0+017 0+010 0+046 0+034 0+026 0+020
0+079 0+040 0+027 0+010 0+007 0+033 0+027 0+018 0+014

0+184 0+115 0+082 0+011 0+005 0+074 0+046 0+019 0+014
0+438 0+393 0+411 0+317 0+198 20+185 20+284 0+070 20+211
0+409 0+260 0+200 0+080 20+021 20+034 20+139 20+047 20+201
0+266 0+185 0+149 0+055 0+092 0+095 0+052 0+015 0+003
0+109 0+081 0+071 0+044 0+060 0+047 0+036 0+021 0+019
0+046 0+045 0+057 0+059 0+105 0+073 0+090 0+066 0+111
0+015 0+025 0+036 0+048 0+099 0+044 0+063 0+047 0+098
3+087 1+710 0+838 20+236 20+586 0+707 0+171 20+164 20+333
0+791 0+478 0+313 0+024 20+002 0+310 0+213 0+054 0+037
0+278 0+153 0+092 0+011 20+004 0+079 0+046 0+023 0+012
0+116 0+070 0+044 0+006 0+003 0+044 0+026 0+011 0+008
0+080 0+050 0+038 0+006 0+003 0+030 0+024 0+007 0+005
0+056 0+041 0+027 0+005 0+002 0+029 0+017 0+007 0+005
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Table 4. MSE of the autoregressive spectral density estimator, sAR
2

s2 k 5 1 2 3 4 5

T 5 100, kmax5 4 i+i+d+ 1+00 0+070 0+145 0+295 0+545 —
MA 5 0+80 3+24 5+514 1+584 8+556 3+649 —

0+50 2+25 1+544 0+714 2+373 3+273 —
0+20 1+44 0+242 0+339 0+776 1+475 —

20+20 0+64 0+037 0+056 0+113 0+334 —
20+50 0+25 0+125 0+041 0+037 0+045 —
20+80 0+04 0+483 0+229 0+197 0+179 —

AR 5 0+80 25+00 2+29E2 3+43E2 6+89E2 2+23E3 —
0+50 4+00 2+638 4+236 8+210 13+592 —
0+20 1+56 0+242 0+422 0+778 1+168 —

20+20 0+69 0+029 0+067 0+166 0+308 —
20+50 0+44 0+009 0+023 0+056 0+104 —
20+80 0+31 0+003 0+011 0+024 0+047 —

T 5 200, kmax5 8 i+i+d+ 1+00 0+032 0+059 0+096 0+141 0+196
MA 5 0+80 3+24 3+767 0+932 3+057 1+336 4+944

0+50 2+25 0+919 0+329 0+804 0+785 1+369
0+20 1+44 0+111 0+140 0+240 0+332 0+464

20+20 0+64 0+018 0+021 0+036 0+053 0+076
20+50 0+25 0+102 0+025 0+012 0+011 0+014
20+80 0+04 0+387 0+129 0+057 0+029 0+018

AR 5 0+80 25+00 1+27E2 1+51E2 1+90E2 2+34E2 2+80E2
0+50 4+00 1+203 1+672 2+273 3+111 4+048
0+20 1+56 0+104 0+166 0+273 0+372 0+510

20+20 0+69 0+012 0+026 0+045 0+068 0+101
20+50 0+44 0+004 0+009 0+016 0+025 0+035
20+80 0+31 0+001 0+004 0+007 0+011 0+018

T 5 500, kmax5 14 i+i+d+ 1+00 0+011 0+021 0+030 0+040 0+053
MA 5 0+80 3+24 2+849 0+693 1+251 0+529 1+206

0+50 2+25 0+612 0+168 0+266 0+223 0+324
0+20 1+44 0+045 0+047 0+072 0+094 0+115

20+20 0+64 0+010 0+008 0+012 0+017 0+022
20+50 0+25 0+088 0+017 0+006 0+004 0+003
20+80 0+04 0+322 0+087 0+032 0+014 0+007

AR 5 0+80 25+00 49+436 55+797 68+198 77+351 90+378
0+50 4+00 0+468 0+616 0+784 0+916 1+090
0+20 1+56 0+036 0+057 0+084 0+116 0+141

20+20 0+69 0+005 0+009 0+015 0+020 0+027
20+50 0+44 0+001 0+003 0+005 0+008 0+010
20+80 0+31 0+000 0+001 0+002 0+003 0+004
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All lags Even lags

kmax t-10 t-5 AIC SW t-10 t-5 AIC SW

— 0+296 0+226 0+169 0+090 0+259 0+225 0+224 0+145
— 5+858 6+720 5+630 6+229 1+915 1+818 3+351 2+844
— 2+706 2+290 2+254 1+546 1+518 1+100 2+055 1+352
— 0+987 0+712 0+582 0+309 0+827 0+591 0+895 0+467
— 0+249 0+222 0+179 0+039 0+235 0+217 0+204 0+057
— 0+061 0+075 0+067 0+094 0+043 0+042 0+040 0+041
— 0+207 0+245 0+245 0+350 0+193 0+199 0+186 0+218
— 9+80E2 8+32E2 3+57E2 2+49E2 9+37E2 8+96E2 4+66E2 3+55E2
— 7+662 5+104 4+253 2+781 6+514 4+905 5+331 4+464
— 0+752 0+633 0+548 0+343 0+664 0+588 0+694 0+460
— 0+195 0+142 0+100 0+061 0+148 0+110 0+177 0+074
— 0+051 0+038 0+024 0+012 0+046 0+041 0+041 0+028
— 0+022 0+015 0+012 0+004 0+019 0+017 0+017 0+011

0+532 0+274 0+200 0+064 0+036 0+201 0+152 0+099 0+059
6+354 6+118 5+915 4+957 3+888 1+733 1+289 3+854 2+072
5+765 2+289 1+791 1+072 0+767 1+108 0+758 2+260 0+562
1+431 0+856 0+618 0+183 0+121 0+651 0+476 0+219 0+150
0+219 0+125 0+090 0+032 0+019 0+094 0+072 0+035 0+021
0+038 0+031 0+035 0+027 0+054 0+029 0+028 0+021 0+024
0+012 0+023 0+041 0+052 0+131 0+048 0+066 0+047 0+095
5+76E2 3+96E2 2+79E2 1+67E2 1+36E2 2+78E2 2+32E2 2+15E2 1+57E2

10+969 5+629 3+617 1+616 1+263 4+172 3+196 1+975 1+674
1+643 0+779 0+587 0+180 0+112 0+591 0+459 0+271 0+169
0+396 0+186 0+126 0+036 0+014 0+118 0+074 0+066 0+027
0+097 0+051 0+034 0+009 0+004 0+038 0+025 0+016 0+009
0+044 0+024 0+017 0+004 0+002 0+018 0+014 0+007 0+004

0+280 0+186 0+136 0+019 0+012 0+124 0+082 0+025 0+021
2+662 2+325 2+225 1+652 1+070 1+137 0+963 1+293 0+662
1+482 0+949 0+757 0+302 0+280 0+608 0+442 0+274 0+191
0+555 0+370 0+248 0+054 0+047 0+228 0+134 0+064 0+047
0+112 0+075 0+048 0+012 0+010 0+050 0+030 0+011 0+008
0+017 0+012 0+012 0+008 0+016 0+015 0+015 0+009 0+016
0+001 0+001 0+002 0+004 0+014 0+004 0+007 0+004 0+013
2+82E2 1+78E2 1+44E2 66+407 50+885 1+34E2 1+12E2 63+150 55+917
6+056 2+844 2+020 0+596 0+476 2+059 1+495 0+725 0+616
0+714 0+421 0+295 0+063 0+038 0+261 0+170 0+083 0+057
0+155 0+109 0+061 0+009 0+005 0+084 0+037 0+013 0+010
0+057 0+035 0+024 0+003 0+002 0+021 0+016 0+005 0+003
0+026 0+019 0+014 0+001 0+001 0+014 0+009 0+002 0+001
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whereas the smallest MSE forsAR
2 ~with k5 8! is +012+ The comparisons are even

more dramatic withT 5 500+
For AR~1! errors, with 6r6 , 0+8, a tight selection procedure such as those

based on information criteria permits the MSE’s to be as small as those obtained
with sWA

2 evaluated with an optimal selection procedure for the bandwidth+ The
statisticsAR

2 is inferior to sWA
2 only in the case of positive AR~1! errors when

prewhitening is applied+
Whenr is close to the boundary of one, ut is nearly nonstationary with a power

spectrum that becomes unbounded whenr approaches 1+ It is then not surprising
that neithersAR

2 nor sWA
2 produces satisfactory estimates ofs2+Whereas the bias

remains high compared to other cases, it is substantially smaller withsAR
2 than

with sWA
2 + Also, unlike the bias ofsWA

2 , the bias ofsAR
2 decreases noticeably asT

increases+
Forr close to21, the bias and MSE ofsAR

2 are dramatically smaller than those
of sWA

2 + Indeed, even though a tight selection procedure produces the smallest
MSE for sAR

2 , any data-dependent rule would have resulted in a dramatically
smaller bias and MSE thansWA

2 constructed using an optimal bandwidth+ For
example, with T 5 100 andr 5 20+8, the MSE ofsAR

2 using a data-dependent
method to selectkvaries from+022~t-10! to +004~SW! whereas the smallest MSE
of sWA

2 ~atMT 5 3! is 1+04+ The differences remain as important for larger sample
size+

Our simulation results therefore lead to the following general observations+ In
well-behaved cases~u . 2+5 and 6r6 , +8!, both sAR

2 and sWA
2 produce good

estimates ofs2, butsWA
2 is somewhat better in a mean-squared sense if evaluated

at the optimal bandwidth+ In such cases, the choice of the optimal truncation lag
appears to be more important than the choice between the two estimators+ In the
AR~1! case with a large value ofr, both estimators have rather poor properties+
However, sAR

2 has noticeably smaller biases and slightly smaller MSE+ In cases of
large negative serial correlation~moving average or autoregressive!, the proper-
ties ofsAR

2 are dramatically superior to those ofsWA
2 irrespective of the method to

choosek+ Therefore the cases in which the choice of the estimator for the spectral
density at frequency zero matters are whenu r 21, and6r6r 61+ In all three
cases, sWA

2 appears inferior+

4. THEORETICAL RESULTS

To analyze the behavior of the estimates from a theoretical perspective,we adopt
the approach of Nabeya and Perron~1994!, treating the moving average or auto-
regressive coefficients as local to the relevant boundaries+We consider a slight
extension of the models specified by~3+1! and~3+2! with $ yt % generated by the
following nearly integrated model:

yt 5 ~11 c0T !yt21 1 ut + (4.1)

The series has an autoregressive root local to unity with noncentrality param-
eterc+ Under the null hypothesis of a unit root, c 5 0+ The advantage of this
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generalization is that it allows deriving the local asymptotic power of unit root
tests+ Our results are used to that effect in Perron and Ng~1996!+ There are three
relevant cases+ The first is when the moving average coefficient is local to21, in
which case the process is described by

ut 5 et 1 uT et21,

uT 5 211 d0#T+ (4.2)

Throughout, $et % is assumed to be i+i+d+ ~0,se
2!+ This specifies that the moving

average coefficient approaches21 at rate#T+ As T increases, the errors have a
noninvertible moving average representation and$ yt % is white noise+ Hence, this
model was labeled as a “nearly-integrated nearly white noise” process+ The sec-
ond case is when the autoregressive coefficient is local to11, and the process is
described by

ut 5 rT ut21 1 et ,

rT 5 11 f0T+ (4.3)

This specifies that the autoregressive coefficient approaches11 at rateT+ As T
increases, the errors have a unit root, and $ yt % has accordingly two unit roots+
Hence, this model was labeled as a “nearly twice integrated” process+ The third
case is when the autoregressive coefficient is local to21, and the process is
described by

ut 5 rT ut21 1 et ,

rT 5 2~11 f0T !+ (4.4)

This specifies that the autoregressive coefficient approaches21 at rateT+ As T
increases, the errors have a negative unit root andyt 5 yt22 1 et , a process with a
unit root at period 2+ Hence, this model was labeled as a “nearly seasonally inte-
grated” process+

All these specifications were found to be useful in providing good approxima-
tions to the finite-sample distribution of the least-squares estimator in an auto-
regression of order one+ Our aim in characterizing the limits ofsWA

2 andsAR
2 in

these local frameworks is similarly to obtain better approximations and addi-
tional insights about their behavior when there is substantial serial correlation in
the errors+We also summarize relevant results about the implied behavior of the
unit root tests+

4.1. Local Asymptotic Properties of sWA
2

In this section, we consider the limit ofsWA
2 for the case whereMT acts as a

truncation lag+ The results are stated in the following lemma+

LEMMA 4 +1+ Let $ yt % be generated by~4+1! and let sWA
2 be constructed as in

~1+2!+
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~a! Suppose that$ut % is generated by~4+2!, then MT
21sWA

2 is Op~1!+
~b! Suppose that$ut % is generated by~4+3!, then~MTT !21sWA

2 is Op~1!+
~c! Suppose that$ut % is generated by~4+4!, then~MTT !21sWA

2 is Op~1!+

This lemma is proved in Perron and Ng~1996! en route to explaining the
properties of unit root tests that adopt a kernel estimate fors2+ These asymptotic
limits of sWA

2 are, however, interesting in their own right+ In all cases considered
sWA

2 is not only an inconsistent estimator ofs2 but diverges asT increases~be-
causeMT is required to increase asT increases!+ The rate of divergence is more
severe in the autoregressive cases compared to the negative moving average case+
These theoretical results are in accord with the simulations reported earlier,namely,
that biases and MSE are large and do not decrease much as the sample size in-
creases when the autoregressive coefficient is close to61 or the moving average
coefficient is close to21+

The results of the preceding lemma hold irrespective of the choice of the kernel
and are the reason for our earlier claim that the choice of the Parzen kernel in the
simulations is without loss of generality+ The choice of the kernel affects the
Op~1! factors in the lemma but not the rate of divergence of the estimators+
The unimportance of the choice of the kernel in these situations is corroborated
by the empirical findings of Kim and Schmidt~1990!+Whereas the choice of the
kernel is of secondary importance for the issue considered here, the value of the
truncation pointMT is of special importance because it dictates the rate of diver-
gence ofsWA

2 +1

4.2. Local Asymptotic Properties of the Autoregressive Spectral

Density Estimator, sAR
2

The regression used to construct the autoregressive spectral density estimator is
evidently the same regression used to construct the unit root test of Said and
Dickey ~1984!+ However, the noise function of the three cases of interest each
has, in the limit, a root on the unit circle+ Hence, we cannot appeal to results in
Said and Dickey~1984! to derive the limit ofsAR

2 in the local asymptotic frame-
works+ To that effect, we provide, in the Appendix, detailed proofs of the results
stated in this section+

Consider first the case pertaining to a large negative moving average coeffi-
cient+ Becauses2 5 se

2~1 1 uT!2, we have that the limiting value is 0 because
uT r 21 asT r `+ The next theorem showssAR

2 to be consistent in this case+

THEOREM 4+1+ Let $ yt % be generated by~4+1! and~4+2!+ Let sAR
2 be obtained

by applyingOLS to ~2+7!+ Then sAR
2 r 0 provided kr` and k0Tr 0 as Tr`+

Becauseyt is a white noise process in the limit, Dyt is overdifferenced+ In spite
of this, Theorem 4+1 shows that the augmented autoregression can still be used to
construct a consistent estimate ofs2+ Because in the limits2 is 0, all that is
required is thatZb~1! r ` asT r `, a result that follows ifk r ` andk0T r 0
asTr`+ The consistency ofsAR

2 in this case is to be contrasted with the limit of
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sWA
2 , which diverges+ This explains why in the simulations, the bias and MSE are

much smaller withsAR
2 than withsWA

2 +
Consider now the case pertaining to a large positive autoregressive coefficient+

Note that becauses2 5 se
20~1 2 rT!2, we have that the limiting value satisfies

T22s2 r se
20f2 asT r ` given thatrT 5 ~11 f0T !+

THEOREM 4+2+ Let $ yt % be generated by~4+1! and~4+3!+ Let sAR
2 be obtained

by applyingOLS to ~2+7! with kr ` and k5 o~T 103!+ Let T~ Zb~1! 2 b~1!! r h,
whereh is a randomvariable defined in the Appendix~equation~A+7!!+ Then
T22sAR

2 r se
20~c 1 f 1 h!2+

Note that in this casesAR
2 is not consistent for the true value even under the null

hypothesis of a unit root~c5 0!+ Furthermore, it converges to a random variable
in the limit+Whereasut is a unit root process with noncentrality parameterf, in an
augmented autoregression inDyt it is a unit root process with noncentrality pa-
rameterc1f1h+ Thus, the augmented autoregression will not, in general, iden-
tify ut as a unit root process even whenf50+This accounts for the relatively poor
performance ofsAR

2 in models with positive residual autocorrelation+Recall, how-
ever, thatsWA

2 5 Op~MTT ! so that it understatess2 becauseMT0Tr 0 asTr`+
But, unlikesWA

2 , sAR
2 is of the same order as the true values2+ Hence, our theoret-

ical result indicates that we can still expectsAR
2 to be a better estimator thansWA

2 ,
even though both are likely to have poor properties because neither is consistent+

Consider now the case pertaining to a large negative autoregressive coeffi-
cient+ Note that becauses2 5 se

20~1 2 rT!2, we have that the limiting value
satisfiess2 r se

204 asT r ` becauserT 5 2~1 1 f0T !+ The next theorem
showssAR

2 to be consistent fors2 in this case+

THEOREM 4+3+ Let $ yt % be generated by~4+1! and~4+4!+ Let sAR
2 be obtained

by applyingOLS to ~2+7! with kr ` and k5 o~T 103! as Tr `+ Then sAR
2 r

se
204+

In the standard framework, Dyt is a stationary process whenyt is integrated of
order one+ For the data-generating process in question, yt has a seasonal unit root
of period two, and henceDyt remains nonstationary+Heuristically, consistency of
sAR

2 follows from the fact that all the variables in the augmented autoregression
areI ~1!+ Although the number of regressors increases with the sample size, we
show in the Appendix that consistency of the parameter estimates continues to
hold as in a regression with a fixed number ofI ~1! regressors+ The consistency of
sAR

2 in this case is again to be contrasted with the limit ofsWA
2 , which diverged+

5. IMPLICATIONS FOR UNIT ROOT TESTS

We now consider the implications of the local limits ofsWA
2 andsAR

2 for unit root
tests using the same local asymptotic frameworks+ The spectral density estimator
is, of course, not the only quantity that affects the properties of unit root tests+The
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sample moments of other quantities also matter+ The following two lemmas sum-
marize the relevant asymptotic results derived in Perron and Ng~1996!+

LEMMA 5 +2+ Let $ yt % be generated by~4+1! and let sWA
2 be constructed as in

~1+2!+

~a! Suppose that$ut % is generated by~4+2!, then ~MTT !21Za and ~MTT !21MZa are
Op~1!+

~b! Suppose that$ut % is generated by~4+3!, then Za and MZa are Op~1!+
~c! Suppose that$ut % is generated by~4+4!, then ~MTT !21Za and ~MTT !21MZa are

Op~1!+

In all cases, the divergence of Za and MZa is to 2`+

The implications for the unit root tests depend on the particular cases consid-
ered+With negative serial correlation, Za andMZa diverge to2` at rate~MTT !+
If a statistic has a limiting distribution that diverges to2` and critical values
from a bounded distribution are used in hypothesis testing, the consequence will
be large size distortions+ This is essentially why size distortions are reported for
Za+ Even though such results are widely reported for the negative moving aver-
age case, the problem is important in the negative autoregressive case also+ In
such cases, the selection ofMT in unit root tests entails considerations beyond the
usual bias-variance trade-off ofsWA

2 as analyzed in Andrews~1991!, because in-
creasing the truncation lag can aggravate size distortions in the tests+ In the case
of autoregressive errors with positive coefficients, Za andMZa remain bounded
asT increases even thoughsWA

2 diverges+ Hence, smaller size distortions are ex-
pected+These results are consistent with the simulations reported in the preceding
section+

We now consider the limit behavior of the same unit root tests whensAR
2 is used

as the spectral density estimator at frequency zero+

LEMMA 5 +3+ Let $ yt % be generated by~4+1! and let sAR
2 be obtained by apply-

ing OLS to ~2+7! as an estimator ofs2+

~a!2 Suppose that$ut % is generated by~4+2!, then Za 5 Op~T ! but MZa 5 Op~1!+
~b! Suppose that$ut % is generated by~4+3!, then Za, MZa are both Op~1!+
~c! Suppose that$ut % is generated by~4+4!, then Za 5 Op~T ! but MZa 5 Op~1!+

For the two cases of negative serial correlation~~a! and~c!!, the implications
are first thatZa remains with large size distortions even ifsAR

2 is used instead of
sWA

2 + This is because the bias in the least-squares estimator still affectsZa directly
via [a and indirectly via the least-squares residuals~when constructingsu

2!+ How-
ever, the statisticMZa is now bounded in probability in the local asymptotic
framework where the MA~1! or theAR~1! coefficient converges to21 asTr`+

The foregoing analysis suggests that, if we constructMZa usingsAR
2 , we will

essentially have a unit root test that does not have any dependence on[a+Whereas
the limiting distributions are different from those obtained using the standard
asymptotic framework, we also found the standard asymptotic distribution to be
a reasonable approximation to the finite-sample distribution ofMZa+ For this
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reason, use of the standard asymptotic critical values yielded unit root tests with
good size properties for all the parameters considered in the simulations+ Details
are contained in Perron and Ng~1996!+ The consequence is dramatic improve-
ments in size properties over unit root tests that do have a dependence on[a ~e+g+,
Za! in the problematic parameter space+ To give an idea of the magnitude of the
size improvement, consider the MA~1! case withu 5 20+8 andT5 100+ The size
of MZa usingsAR

2 is +09,whereas the size ofZa usingsWA
2 is +98,when the nominal

size of the test is+05+ Such contrasts in size remain in larger samples+
The preceding lemmas also indicate that to have unit root tests with good prop-

erties, simply replacingsWA
2 by sAR

2 will not be sufficient;we need to remove total
dependence of the test statistic on[a+ As discussed in Perron and Ng~1996!, there
exist several other tests that also do not have a dependence on[a; for example, a
modified Sargan–Bhargava test suggested by Stock~1990! or a modification of
theZt test developed in Phillips~1987!+ The autoregressive spectral density es-
timator discussed here can therefore be used in a rather broad range of applications+

6. CONCLUSIONS

This paper has considered estimating the nuisance parameters2 in the context of
unit root or cointegration tests+We have shown that a particular formulation of
the autoregressive spectral density estimator can provide estimates far superior to
the traditional kernel-based estimator constructed using least-squares residuals+
The gains are important in cases of strong negative correlation, and there are little
losses in accuracy in the other cases+When used in conjunction with tests that do
not depend on[a, it allows unit root or cointegration tests to have substantially
improved size in the presence of strong serial correlation in the residuals+ Also,
this marked reduction in size distortions does not come at the expense of a re-
duction in power+ The estimator is very easy to construct and requires basically
only a standard autoregression estimated by OLS+ For these reasons, we believe
that this estimator is of substantial interest for applications+

An issue that remains unsolved is an optimal method to select the orderk of the
autoregression+ The relative merits of data-dependent methods for selectingk are
discussed in Ng and Perron~1995! in the context of testing for a unit root from an
augmented regression such as~2+7!+Whereas we advocated the use of a general
to specific recursive procedure on the ground that it produces unit root tests with
better finite-sample size and power, it does not follow that this procedure is better
in the context of producing estimatessAR

2 that have the smallest MSE+ As seen
from the results here, too large akmax can induce excessive variability in the
estimates when the sample size is small+ As well, a liberal selection rule is pre-
ferred with negative moving average errors, but a conservative rule is preferred
with positive moving average errors, and with~finite order! autoregressive errors
in general+ This being said, it is not clear that the MSE of the spectral density
estimators is the appropriate criterion for selectingk, because our ultimate ob-
jective is to test for the presence of a unit root and not to obtain an estimate ofs2

that is as precise as possible+Clearly, the optimal lag length should depend on the
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underlying data-generating process+ Hence, an important avenue for future re-
search is to devise optimal data-dependent rules forsAR

2 that produce unit root
tests with good size both when the root of the error process is away from the unit
circle and when it is close to it+ These issues are discussed in Ng and Perron
~1997b!+

Finally, it is important to note that the estimators considered here are clearly
aimed at providing estimates of the nuisance parameters in the context of testing
for unit roots or cointegration+ In this case, the class of possible estimators is
constrained by the requirement that the estimates be bounded~or at least con-
verge to zero at a rate slower thanT ! under stationary alternatives+This is needed
to ensure consistency of the tests+ If one is interested solely in an estimate of~2p
times! the spectral density function at frequency zero of some series, sayDyt , then
better estimates are available+ Because one is no longer constrained to use the
least-squares residuals to constructsWA

2 , the first-differencesDyt can be used+
Also, in the construction of the autoregressive spectral density estimatorsAR

2 , one
need not include the lagged levelyt21 in the autoregression~2+7!+ These alterna-
tive constructions not only ensure consistency of the estimators under stationary
alternatives but also more efficient estimates when the level of the series contains
a unit root+

NOTE

1+ Lee and Phillips~1994! suggested an ARMA prewhitened long-run variance estimator that has
better properties than standard kernel estimators and can reduce size distortions inZa+

2+ Theorem 4+3 and the results in Perron and Ng~1996! are actually not sufficient to show that
MZa 5 Op~1!+What is required is thatTsAR

2 5 Op~1!+ This holds ifk r `, with k 5 cT102 for some
constantc+ In Ng and Perron~1997b!, we showed that model selection procedures based on the AIC
and a modified version of it,which works better in finite samples, imply a selectedk that satisfies this
requirement+ Methods based on the BIC do not, however, satisfy the requirement+
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APPENDIX: MATHEMATICAL RESULTS

The following regression equation estimated by OLS is considered throughout this
appendix:

Dyt 5 b0 yt21 1 (
i51

k

bi Dyt2i 1 etk+ (A.1)

We denote the OLS estimates by$ Zbi %i50
k and the estimated variance of the residuals assek

2 5
T21 (t5k11

T [etk
2 +As a matter of notation,we letn denote weak convergence in distribution

andr convergence in probability+Also,W~r ! is the unit Wiener process defined onC@0,1# ,
andJc~r ! 5 *0

r exp~~r 2 s!c! dW~s! is the Ornstein–Uhlenbeck process with drift param-
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eterc+ The norm of a matrixB is defined by7B7 5 sup$7Bx7 : 7x7 , 1%, where7x7 5
~x 'x!102 is the standard euclidian norm of a column vectorx+ We also letC denote an
arbitrary constant that is not necessarily the same throughout+

Proof of Theorem 4.1. We need to show(i51
k bi r `, that sek

2 5 T21 (t5k11
T [etk

2 is
bounded asTr`, and hence thatsAR

2 5 sek
2 0~12 (i51

k Zbi !
2 r 0 with k0Tr 0 andkr`

asT r `+ It is useful first to note the following representation derived in Nabeya and
Perron~1994! for $ yt % generated by~4+1! and~4+2!+ DefineXt 5 ~11 c0T !Xt21 1 et , aT 5
~12 d0#T !~12 c0T !, bT 512 ~12 c0T !~12 d0#T ! with aT r 1 andT 102bT r d asTr

`, then

yt 5 aT et 1 bT Xt 1 op~T2102!, (A.2)

where the presence of theop~T2102! term is due to the fact that we specifya 5 1 1 c0T
instead ofa 5 exp~c0T ! as in Nabeya and Perron~1994!+

Some of the arguments that follow are similar to those in Chang~1989! and Chang and
Dickey ~1994!+We define the following vectors of dimension~k 1 1!:

Ut
' 5 ~ yt21,Zt

'!, with Zt
'5 ~Dyt21, + + + ,Dyt2k!,

ZVT 5 T21 (
t5k11

T

Ut Dyt ,

V 5 se
2~21,21,0, + + + ,0!',

and the following~k 1 1! by ~k 1 1! matrices:

ZRT 5 T21 (
t5k11

T

Ut Ut
'5 T213 (

t5k11

T

yt21
2 (

t5k11

T

yt21Zt
'

(
t5k11

T

yt21Zt (
t5k11

T

Zt Zt
' 4 ,

ERT 5 se
23

se
22T21 (

t5k11

T

~aT
2et21

2 1 bT
2Xt21

2 ! 1

1 2 21

21 2 21

21 2 21

21 2

4 ,
R 5 se

23
11 d2E

0

1

Jc~r !2 dr 1

1 2 21

21 2 21

21 2 21

21 2

4 +
Using this notation,we have Zb 5 ZRT

21 ZVT ,where Zb 5 ~ Zb0, Zb1, + + + , Zbk!+We first state a few
results that are useful for subsequent derivations+
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LEMMA A +1+ Let Xt 5 ~11 c0T !Xt21 1 et , then~a! 6E~Xt es!6# C; ~b! 6E~Xt Xs!6#
TC for t,s, # T; ~c! E~(t51

T Xt et !
2 5 O~T 2!; ~d! (t51

T Xt21et 5 Op~T !; and ~e!
T22 (t51

T Xt
2 n se

2*0
1 Jc~r !2 dr+

Parts~a! through~d! are straightforward generalizations of results in Fuller~1976!; part
~e! is a standard result for near-integrated processes+ The following lemma collects some
useful results derived in Nabeya and Perron~1994!+

LEMMA A +2+ Let $ yt % be generated according to~4+1! and ~4+2! and let è 5
limTr`eT0se+ Then as Tr `, ~a! T21 (t51

T yt21
2 n se

2 1 se
2d2*0

1 Jc~r !2 dr ; ~b!
T21 (t51

T yt21ut n 2se
2; ~c! yT n seè 1 sedJc~1!; and~d! T21 (t51

T ut
2 n 2se

2+

Using Lemma A+2, it is straightforward to derive the convergence results stated in the
following lemma+

LEMMA A +3+ Let $ yt % be generated by~4+1! and~4+2!+ Then for i, j 5 1, + + + ,k,

~a!

T21 (
t5k11

T

yt21ut2i n Hse
2 if i 5 1,

0 otherwise;

~b!

T21 (
t5k11

T

yt2j yt2i n 5se
2S11 d2E

0

1

Jc~r !2 drD if i 5 j,

se
2d2E

0

1

Jc~r !2 dr if i Þ j ;

~c!

T21 (
t5k11

T

ut2i ut2j n 5
2se

2 if i 5 j,

2se
2 if 6 i 2 j 65 1,

0 otherwise+

The following bounds can also be derived using Lemma A+1+

LEMMA A +4+ Let $ yt % be generated according to~4+1! and ~4+2!: ~a! 6E @ yt ys#6 #
C if s 5 t or s 5 t 1 1, and 6E @ yt ys# 6 # CT2102 otherwise; ~b! E @ut us# 5 0 for
6 t 2 s6 . 1 and 6E @ut us#6 # C otherwise; ~c! E @(t5k11

T yt ut2j #
2 # CT2 if j 5 21

and E@(t5k11
T yt ut2j #

2 # CT if j Þ 21; ~d! E @(t5k11
T ut ut2j #

2 # CT for 6 j 6 . 1;
~e! E @(t5k11

T yt yt2j #
2 # CT2 for any j+

We now consider the limiting behavior of the moment matrixZRT +

LEMMA A +5+ ~a! 7 ZRT 2 R7r 0; ~b! 7 ZRT 2 ERT75 Op~k0T 102!+

Proof. To prove~a!, we show that each element ofZRT converges in distribution to the
corresponding element ofR+Consider first the~1,1! element of ZRT +Using Lemma A+2,we
have
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T21 (
t5k11

T

yt21
2 n se

2S11 d2E
0

1

Jc~r !2 drD+
For the remaining elements in the first row ofZRT , using ~4+2! and parts~a! and ~b! of
Lemma A+3, we have

T21 (
t5k11

T

yt21 Dyt21 5 T21 (
t5k11

T

yt21Sut21 1
c

T
yt22Dr se

2,

T21 (
t5k11

T

yt21 Dyt2i 5 T21 (
t5k11

T

yt21Sut2i 1
c

T
yt2i21Dr 0

for i 5 2, + + + ,k+Consider now the elements of the lower rightk3 k matrix of ZRT +We have,
for i, j 5 1, + + + ,k,

T21 (
t5k11

T

Dyt2i Dyt2j 5 T21 (
t5k11

T S c

T
yt2i21 1 ut2iDS c

T
yt2j21 1 ut2jD

5 T21 (
t5k11

T

ut2i ut2j 1 c2T23 (
t5k11

T

yt2i21 yt2j21

1 cT22 (
t5k11

T

yt2i21ut2j 1 cT22 (
t5k11

T

yt2j21ut2i + (A.3)

The last three terms converge to zero using parts~a! and ~b! of Lemma A+3+ Thus, by
Lemma A+3~c!, T21 (t5k11

T Dyt2i Dyt2j n 2se
2 if i 5 j,2se

2 if 6 i 2 j 651, and 0 otherwise+
This proves part~a!+

For part~b!, define the matrixQ 5 ZRT 2 ERT + We show that each element, qij ~i, j 5
1, + + + ,k11!, is such thatTE~qij

2! # C, for some constantC+Consider first the~1,1! element+
We have

T21 (
t5k11

T

yt21
2 5 T21 (

t5k11

T

~aT et21 1 bT Xt21!2

5 T21 (
t5k11

T

~aT
2et21

2 1 bT
2Xt21

2 1 2aT bT Xt21et21!

and

TE~q11
2 ! 5 4aT

2TbT
2T22EF (

t5k11

T

Xt21et21G2

# C,

using~c! of Lemma A+1 and the fact thataT 5 O~1! andTbT
2 5 O~1!+ Consider next the

~1,2! element+We have

TE~q12
2 ! 5 EFT2102 (

t5k11

T

~ yt21 Dyt21 2 se
2!G2

# EFT2102 (
t5k11

T

~ yt21ut21 2 se
2!G2

1 EFcT2302 (
t5k11

T

yt21 yt22G2

1 EF2cT2302 (
t5k11

T

yt21 yt22~ yt21ut21 2 se
2!G +
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The second term after the inequality iso~1! using Lemma A+4~e!+ Consider the first term:

EFT2102 (
t5k11

T

~ yt21ut21 2 se
2!G2

# EFT2102 (
t5k11

T

~aT et21
2 2 se

2!G2

1 EFT 102bTT21 (
t5k11

T

Xt21et21G2

1 EFaT uTT2102 (
t5k11

T

et21et22G2

1 EFuTT 102bTT21 (
t5k11

T

Xt21et22G2

# C,

using Lemma A+1~c!, the fact thataT r 1, and standard arguments for i+i+d+ random vari-
ables+ For i 5 2, + + + ,k, we have

TE~q1, i11
2 ! 5 EFT2102 (

t5k11

T

yt21 Dyt2iG2

5 EFT2102 (
t5k11

T

yt21ut2i 1 cT2302 (
t5k11

T

yt21 yt2i21G2

# EFT2102 (
t5k11

T

yt21ut2iG2

1 EFcT2302 (
t5k11

T

yt21 yt2i21G2

# C,

using~c! and~e! of Lemma A+4+ Consider now the elements of the lower right submatrix
of Q+We have, using~A+3!, for i 5 1, + + + ,k,

qi11, i11 5 T21 (
t5k11

T

~ut2i
2 2 2se

2! 1 c2T23 (
t5k11

T

yt2i21
2 1 2cT22 (

t5k11

T

yt2i21ut2i

TE~qi11, i11
2 ! # EFT2102 (

t5k11

T

~ut2i
2 2 2se

2!G2

1 EFc2T2502 (
t5k11

T

yt2i21
2 G2

1 2EFcT2302 (
t5k11

T

yt2i21ut2iG2

# C,

using Lemma A+4 and the fact that

EFT2102 (
t5k11

T

~ut2i
2 2 2se

2!G2

5 EFT2102 (
t5k11

T

$~et2i
2 2 se

2! 1 ~uT
2et2i21

2 2 se
2! 1 2uT et2i et2i21%G2

# EFT2102 (
t5k11

T

~et2i
2 2 se

2!G2

1 EFT2102 (
t5k11

T

~uT
2et2i21

2 2 se
2!G2

1 EF2uTT2102 (
t5k11

T

et2i et2i21G2

# C,
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where the last inequalities follow using standard arguments and the fact that6uT 6# 1+ For
the elements with6 i 2 j 65 1, we have

TE~qi11, j11
2 ! # EFT2102 (

t5k11

T

~ut2i ut2j 1 se
2!G2

1 EFc2T2502 (
t5k11

T

yt2i21 yt2j21G2

1 EFcT2302 (
t5k11

T

yt2i21ut2jG2

1 EFcT2302 (
t5k11

T

yt2j21ut2iG2

# C,

and for6 i 2 j 6 . 1,

TE~qi11, j11
2 ! # EFT2102 (

t5k11

T

ut2i ut2jG2

1 EFc2T2502 (
t5k11

T

yt2i21 yt2j21G2

1 EFcT2302 (
t5k11

T

yt2i21ut2jG2

1 EFcT2302 (
t5k11

T

yt2j21ut2iG2

# C+

Hence, we haveE~7Q72! # C~k 1 1!20T becauseQ is a matrix of dimension~k 1 1! 3
~k 1 1!+ n

We consider now results pertaining to the vectorZVT stated in the following lemma+

LEMMA A +6+ ~a! 7 ZVT75 Op~k102!; ~b! 7 ZVT 2 V75 Op~k0T !102+

Proof. We start by showing that each element ofZVT converges to the corresponding
element ofV+ Consider the first element+ From Lemma A+2:

T21 (
t5k11

T

Dyt yt21 5 cT22 (
t5k11

T

yt21
2 1 T21 (

t5k11

T

yt21ut r 2se
2+

For the remaining elements, we have, using Lemma A+3,

T21 (
t5k11

T

Dyt Dyt2i 5 T21 (
t5k11

T S c

T
yt21 1 utDS c

T
yt2i21 1 ut2iD

5 c2T23 (
t5k11

T

yt21 yt2i21 1 cT22 (
t5k11

T

yt21ut2i

1 cT22 (
t5k11

T

yt2i21ut 1 T21 (
t5k11

T

ut ut2i

r 2se
2 if i 5 1 and 0 otherwise+

This proves part~a! because each of the~k 1 1! elements of the vectorZVT is Op~1!+
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Letvi ~i 51, + + + ,k11! be theith element of the vectorZVT 2V+To prove part~b!,we show
thatTE~vi2! is bounded+Consider the last~k 21! elements+Using the preceding result and
Lemma A+4, we have, for 2 # i # k,

EST2102 (
t5k11

T

Dyt Dyt2iD2

# EST2102 (
t5k11

T

ut ut2iD2

1 o~1! # C+

Consider now the first element of the vectorT 102~ ZVT 2 V !+We have

TEST21 (
t5k11

T

Dyt yt21 1 se
2D2

5 TEScT22 (
t5k11

T

yt21
2 1 T21 (

t5k11

T

yt21ut 1 se
2D2

5 TEST21 (
t5k11

T

yt21ut 1 se
2D2

1 o~1!

5 EFT2102aT (
t5k11

T

et et21 1 T2102 (
t5k11

T

~aT uT et21
2 1 se

2!

1 T 102bTT21 (
t5k11

T

Xt21utG2

1 o~1!

# EFT2102aT (
t5k11

T

et et21G2

1 EFT2102aT (
t5k11

T

~se
2 2 et21

2 !G2

1 TbT
2EFT21 (

t5k11

T

Xt21utG2

1 o~1!

# C,

becauseuT r 21, TbT
2 r d2, andaT r 1, and using Lemmas A+4 and A+1~c! and the fact

thatT2102 (t5k11
T ~et21

2 2 se
2! is bounded in probability+ For the second element, similar

arguments show that

TE~v22! 5 T 102EFT21 (
t5k11

T

Dyt Dyt21 1 se
2G2

# C,

and part~b! follows+ n

The next lemma concerns the inverse of the moment matrixZRT +

LEMMA A +7+ 7 ERT
2175 Op~k2! and if k110Tr 0 as Tr`, then k1027 ZRT

21 2 ERT
217r

0+
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Proof. Note that ERT 5 A 1 E where

A 5 se
23

2 21

21 2 21

21 2 21

21 2 21

21 2

4 ,
E 5 se

23
se

22T21 (
t5k11

T

~aT
2et21

2 1 bT
2Xt21

2 ! 2 2 2

2 0 0

0 0 0 0

0 0 0

0 0

0

4 +
We havelmin~E! 5 0 andlmin~A! 5 2se

2~12 cos~p0k1 2!! 5 Op~k2! ~see Dickey, 1990!+
By Corollary 8+1–3 of Golub and van Loan~1984!, lmin~A 1 E! $ lmin~A! 1 lmin~E!,
becauseA andE are symmetric+ This implieslmin~ ERT

21! 5 7 ERT
2175 Op~k2! because the

maximal eigenvalue ofERT
21 is the reciprocal of the minimal eigenvalue ofERT +

For part~b!, we follow developments similar to those in Said and Dickey’s~1984!
Theorem 4+1+ Let q 5 7 ZRT

21 2 ERT
217 andQ 5 ZRT 2 ERT; we have

q 5 7 ZRT
21~ ERT 2 ZRT ! ERT

217# 7 ZRT
2177 ERT 2 ZRT77 ERT

217# ~q 1 7 ERT
217!7Q77 ERT

217+

Upon rearrangement, we have

k102q # k102~12 7 ERT
2177Q7!217 ERT

21727Q7+

Note that becauseE~7Q72! # C~k 1 1!20~T 2 k!, we havek9027Q7 r 0 if k110T r 0+
Hence,

k102q # ~12 k2502k227 ERT
217k9027Q7!21k247 ERT

2172k9027Q7r 0 asT r `,

which proves Lemma A+7+ n

We are now in a position to prove the following result+

LEMMA A +8+ Suppose kr` and k110Tr 0 as Tr`, then7 Zb2 Db7r 0,where Db5
ERT
21V+ Also, because T21 (t5k11

T ~aT
2et21

2 1 bT
2Xt21

2 ! n se
2~1 1 d2*0

1 Jc~r !2 dr!, we have
7 Zb 2 b7r 0, whereb 5 R21V+

Proof.

7 Zb 2 Db7 5 7 ZRT
21 ZVT 2 ERT

21V75 7 ZRT
21 ZVT 2 ERT

21 ZVT 1 ERT
21 ZVT 2 ERT

21V7

# 7 ZRT
21 2 ERT

2177 ZVT71 7 ERT
2177 ZVT 2 V7

5 k1027 ZRT
21 2 ERT

217k21027 ZVT71 k502T2102k227 ERT
217T 102k21027 ZVT 2 V7r 0

using Lemmas A+6 and A+7 and the fact thatk110T r 0+ n
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Because(i51
k Zbi is a continuous function of the vectorZb 5 ~ Zb0, Zb1, + + + , Zbk!, the limit of

(i51
k Zbi is the same as that of(i51

k bi , whereb 5 ~b0,b1, + + + ,bk! is the solution tob 5
R21V+ We have usedMAPLE to verify that bi 5 ~k 2 i 1 1!S0~1 1 ~k 1 1!S! ~i 5
1, + + + ,k!, whereS 5 se

2d2*0
1 Jc~r !2 dr+ Hence, (i51

k bi 5 k~k 1 1!S0~2~1 1 ~k 1 1!S!!
andk21 (i51

k bi r
1
2
_ ask r `+ This shows that(i51

k Zbi r ` asT r ` with k r `+
Finally, note that the same result holds ifk110T r ` andk0T r 0 asT r ` because

from Lemma A+8, 7 Zb 2 b7 would be bounded below by the casek110T r 0 and we still
obtain (i51

k Zbi r ` as T r `+ To complete the proof, it remains to show thatsek
2

remains bounded, regardless of the rate at whichk approaches infinity+ Note first that
sek

2 5 T21 (t5k11
T [etk

2 # T21 (t5k11
T etk

2 , using standard properties of projections+ Hence,
all we need to show is thatT21 (t5k11

T etk
2 remains bounded+ This is straightforward

using the following representation ofetk:

etk 5 et 1 (
i5k11

`

bi Dyt2i

and using the fact thatbi 5 2~11 c0d#T !~12 d0#T ! i+ Details are omitted+ n

The Nearly Twice Integrated Model

Proof of Theorem 4.2. It is useful first to state the following lemma proved in Nabeya
and Perron~1994!+

LEMMA A +9+ Let $ yt % and $ut % be processes given by ~4+1! and ~4+3!+ Define
Jc~r ! 5 *0

r exp~~r 2 s!c! dW~s!, Jf~r ! 5 *0
r exp~~r 2 s!f! dW~s! and Qc~Jf~r !! 5

*0
r exp~~r 2 v!c!Jf~v! dv+ As T r `:

~a!

T2302yT n seQc~Jf~1!!;

~b!

T24 (
t51

T

yt
2 n se

2E
0

1

Qc~Jf~r !!2 dr ;

~c!

T23 (
t51

T

yt21ut n ~se
202!HQc~Jf~1!!2 2 2cE

0

1

Qc~Jf~r !!2 drJ ;
~d!

T22 (
t51

T

ut
2 n se

2E
0

1

Jf~r !2 dr+

The autoregressive representation of the data-generating process is

Dyt 5 ~2cf0T 2!yt21 1 ~11 ~c 1 f!0T 1 cf0T 2!Dyt21 1 et +
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This impliesbi 50 for i . 1+ Thus, limkr`(i51
k bi 511 ~c1f!0T1cf0T 2+ To derive the

limit of Zb~1!, it proves convenient to write the regression~A+1! as

Dyt 5 d0 yt21 1 d1 Dyt21 1 (
i52

k

di D
2yt2i11 1 etk,

whered15(i51
k bi 5b15 ~11 ~~c1f!0T !1 ~cf0T 2!! anddi 52(j5i

k bj 50 ~i 52, + + + ,k!
~note thatd0 [ b0 and etk 5 et !+ We need to derive the limit ofT~ Zd1 2 d1!+ Let Zt

' 5
~D2yt21, + + + ,D2yt2k11!, Ut

'5 ~ yt21,Dyt21,Zt
'!, and define the following~k 1 1! 3 ~k 1 1!

matrices:

ZRT 5 (
t5k11

T

Ut Ut
'5 3

(
t5k11

T

yt21
2 (

t5k11

T

yt21 Dyt21 (
t5k11

T

yt21Zt
'

(
t5k11

T

Dyt21 yt21 (
t5k11

T

Dyt21
2 (

t5k11

T

Dyt21Zt
'

(
t5k11

T

yt21Zt (
t5k11

T

Dyt Zt (
t5k11

T

Zt Zt
'
4 ,

ERT 5 3
HT KT

KT JT

se
2

se
2

se
2

4
with HT 5 T24 (t5k11

T Vt21
2 , KT 5 cT24 (t5k11

T Vt22
2 1 T23 (t5k11

T Vt22Wt21 andJT 5
T22 (t5k11

T ~~c0T !Vt22Wt21!2 where Wt 5 (j51
t exp~~t 2 j !f0T !ej and Vt 5

(i51
t exp~~t 2 i !c0T !Wi + Also,

R 5 se
23

l0 l1

l1 l2

1

1

1

4 ,
where l0 5 *0

1 Qc~Jf~r !!2 dr, l1 5 1
2
_Qc~Jf~1!!2, and l2 5 cQc~J~1!!2 2

c2*0
1Qc~Jf~r !!2 dr 1 *0

1 Jf~r !2 dr+ Note that using standard results~see, e+g+, Nabeya
and Perron, 1994! we have

HT 5 T24 (
t5k11

T

Vt21
2 n se

2l0,

KT 5 cT24 (
t5k11

T

Vt22
2 1 T23 (

t5k11

T

Vt22Wt21 n se
2l1,

JT 5 T22 (
t5k11

T S c

T
Vt22 1 Wt21D2

n se
2l2+
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Hence, 7 ERT 2 R7r 0+ Also defineDT 5 diag$T22,T21,T2102, + + + ,T2102%+ We first show
that each element of the matrixDT ZRT DT converges in distribution to the corresponding
element ofR+

LEMMA A +10+ Let $ yt % be generated by~4+1! and~4+3!+ Then for i, j 51, + + + ,k21, as
T r `:

~a!

T23 (
t5k11

T

yt21 Dyt21 n ~se
202!Qc~Jf~1!!2 [ l1;

~b!

T22 (
t5k11

T

Dyt21
2 n se

2ScQc~Jf~1!!2 2 c2E
0

1

Qc~Jf~r !!2 dr

1 E
0

1

Jf~r !2 drD[ l2;

~c!

T21 (
t5k11

T

D2yt2i D
2yt2j n se

2 if i 5 j and 0 otherwise;

~d!

T2502 (
t5k11

T

yt21 D2yt2i n 0;

~e!

T2302 (
t5k11

T

Dyt21 D2yt2i n 0+

Proof. To prove~a!, note thatDyt21 5 ~c0T !yt22 1 ut21+ Therefore

T23 (
t5k11

T

yt21 Dyt21

5 T23 (
t5k11

T

~~11 c0T !yt22 1 ut21!S c

T
yt22 1 ut21D

5 c~11 c0T !T24 (
t5k11

T

yt22
2 1 T23~11 c0T ! (

t5k11

T

yt22ut21 1 op~1!

n
se

2

2
Qc~Jf~1!!2 [ l1se

2,

using LemmaA+9~b! and~c!+The proof of part~b! follows similarly using Lemma A+9~b!–
~d!+ To prove part~c!, note thatD2yt2i 5 ~c0T !2yt2i22 1 ~~c 1 f!0T !ut2i21 1 et2i + The
result is immediate after expanding terms+ Parts~d! and ~e! follow using analogous
arguments+ n
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Now letQ5 DT ZRT DT 2 ERT + It is straightforward to show that a typical element of this
matrix, qij , satisfiesTE~qij

2! # C for some constantC+Hence, E7Q72 # C~k11!20T+ Also,
becauseERT is a block diagonal matrix with lower~k21! 3 ~k21! block being the identity
matrix ~scaled!, we have7 ERT

2175 Op~1!+ Using arguments as in Said and Dickey~1984!,
we havek1027~DT ZRT DT!21 2 ERT

217r 0 in probability if k30T r 0+
Becauseetk 5 et it remains to establish the limit of7DT (t5k11

T Ut et7+We start with the
following lemma+

LEMMA A +11+ Let $ yt % be generated by~4+1! and~4+3!+ Then~a! E @ yt ys# # T 2C; ~b!
E @Dyt

2# # TC; ~c! E @~D2yt !
2# # C+

Proof. For part~a!, becauseyt 5 (r51
t ~11 c0T ! t2r (j51

r ~11 f0T ! r2jej , andE~ei ej ! 5
0 if i Þ j,

E~ yt ys! 5 EFS(
r51

t

~11 c0T ! t2r (
j51

r

~11 f0T ! r2jejD
3 S(

u51

s

~11 c0T !s2u (
i51

u

~11 f0T !u2ieiDG
# CT2E~et

2! 5 T 2C,

because~1 1 c0T ! and~1 1 f0T ! are bounded by some constant+ Analogous arguments
show thatE~ut us! # TC and E~ yt21ut ! # T 2C+ For parts~b! and ~c!, write Dyt 5
~c0T !yt21 1 ut , andD2yt 5 ~c0T !Dyt21 1 ~f0T !ut21 1 et + It follows that

E @Dyt
2# 5 EF c2

T 2 yt21
2 G1 E @ut

2# 1
2c

T
E @ yt21ut # # TC,

E @~D2yt !
2# 5 EFS c

T
Dyt21 1

f

T
ut21 1 etD2G # se

2 1 o~1! 5 C+ n

LEMMA A +12+ 7DT (t5k11
T Ut et75 Op~k102!+

Proof. Note first that

E**DT (
t5k11

T

Ut et **
2

5 EST22 (
t5k11

T

yt21etD2

1 EST21 (
t5k11

T

Dyt21etD2

1 (
i52

k

EST2102 (
t5k11

T

D2yt2i11etD2

and thatyt21, Dyt21, andD2yt2i11 are independent ofet + The result follows using Lemma
A+11, which allows us to derive the following:

EST22 (
t5k11

T

yt21etD2

5 T24 (
t5k11

T

E @ yt21
2 #E @et

2# 5 O~T21!,

EST21 (
t5k11

T

Dyt21etD2

5 T22 (
t5k11

T

E @~Dyt21!2#E @et
2# 5 O~1!,

(
i52

k

EST2102 (
t5k11

T

D2yt2i11etD2

5 (
i52

k

T21 (
t5k11

T

E @~D2yt2i11!2#E~et
2! 5 O~k!+ n
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We are now in a position to derive the limiting distribution of the estimatesZd+We have

DT
21~ Zd 2 d! 5 ~~DT ZRT DT !21 2 ERT

21!DT (
t5k11

T

Ut et 1 ERT
21DT (

t5k11

T

Ut et + (A.4)

Taking norms, the first and second terms areop~1! and Op~k102! ~because7 ERT
217 5

Op~1!!, respectively, so that7DT
21~ Zd 2 d!75 Op~k102!+ Because7DT

2175 O~T 2! andk 5
o~T 103!, we have7 Zd 2 d7 r 0+ Note that~A+4! implies DT

21~ Zd 2 d! 5 Op~1!, and the
limiting distribution ofDT

21~ Zd 2 d! is that of ERT
21DT (t5k11

T Ut et ,which is the same as the
limiting distribution ofR21DT (t5k11

T Ut et in view of the fact that7 ERT 2 R7r 0+We are
interested in the second element of this vector+ By block diagonality, the limit of the first
two elements is given by

lim
Tr`ST 2~ Zd0 2 d0!

T~ Zd1 2 d1! D 5 Fl0 l1

l1 l2
G21

lim
Tr` 3 T22 (

t5k11

T

yt21et

T21 (
t5k11

T

Dyt21et
4@se

2+ (A.5)

It is straightforward to show the following limits:

T22 (
t5k11

T

yt21et n se
2E

0

1

Qc~Jf~r !! dW~r ! [ se
2l3;

T21 (
t5k11

T

Dyt21et n se
2ScE

0

1

Qc~Jf~r !! dW~r ! 1E
0

1

Jf~r ! dW~r !D[ se
2l4+ (A.6)

Let T~ Zd 2 d1! r h, where

h 5 ~2l1l3 1 l0l4!0~l0l2 2 l1
2 !+ (A.7)

Using this result and~A+5!, we haveT~ Zd1 2 1! 5 T~ Zd1 2 d1! 1 T~d1 2 1! n h 1 c 1 f+
Because7 Zd 2 d7r 0, it is straightforward to show thatsek

2 r se
2 andT22sAR

2 n se
20~h 1

c 1 f!2+ This proves Theorem 4+2+ n

Nearly Seasonally Integrated Model

Proof of Theorem 4.3. We first define the following variables to be used throughout+
Let

A~r ! 5 ~f 2 c!@Qc~Jf,1~r !! 2 Qc~Jf,2~r !!# 1 2Jc,1~r !,

B~r ! 5 Jf,1~r ! 2 Jf,2~r !,

C~r ! 5 A~r ! 2 B~r !,

whereJc,1~s!5*0
sexp~~s2 v!c! dW1~v!, Jf, i ~s!5*0

sexp~~s2 v!f! dWi ~v!,Qc~Jf, i ~r !!5
*0

r exp~~r 2 s!c!Jf, i ~s! ds for i 5 1,2, W1~r ! and W2~r ! being independent Wiener
processes+

The following lemma is proved in Nabeya and Perron~1994!+
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LEMMA A +13+ Let $ yt % and$ut % be generated by~4+1! and~4+4!+ Then

~a!

T22 (
t51

T

yt21
2 n ~se

208!E
0

1

~C~r !2 1 B~r !2! dr ;

~b!

T22 (
t51

T

yt21ut n 2~se
204!E

0

1

B~r !2 dr ;

~c!

T21yT
2 n ~se

208!A~1!2;

~d!

T22 (
t51

T

ut
2 n ~se

202!E
0

1

B~r !2 dr+

The autoregressive representation of the model in terms of~A+1! is

Dyt 5 ~cf0T 2 1 2c0T !yt21 2 ~11 ~c 1 f!0T 1 cf0T 2!Dyt21 1 et + (A.8)

This impliesb1 5 2~11 ~~c 1 f!0T ! 1 ~cf0T 2!! andbi 5 0 for i . 1+ Thus,

lim
kr`

(
i51

k

bi 5 2S1 1
c 1 f

T
1

cf

T2
D

which converges to21 asTr`+Hence, to prove the theorem it is sufficient to prove that
the OLS estimates from~A+1! are consistent for the coefficients stated in~A+8!+ Consis-
tency ofsek

2 for se
2 then follows immediately+ It is convenient to write the regression~A+1!

as

Dyt 5 d0 yt21 1 d1 Dyt21 1 (
i52

k

di D2 yt2i11 1 etk,

whereD2yt2i115 yt2i112 yt2i21 with di 5 (j5i
k ~21! j2ibj ~i 51, + + + ,k!+Note thatd0[ b0,

etk 5 et , and (i51
k21~di 1 di11! 1 dk 5 (i51

k bi + Let Zt
' 5 ~D2yt21, + + + ,D2yt2k11!, Ut

' 5
~ yt21,Dyt21,Zt

'!, and define the following~k 1 1! 3 ~k 1 1! matrices:

ZRT 5 (
t5k11

T

Ut Ut
'5 3

(
t5k11

T

yt21
2 (

t5k11

T

yt21 Dyt21 (
t5k11

T

yt21Zt
'

(
t5k11

T

Dyt21 yt21 (
t5k11

T

Dyt21
2 (

t5k11

T

Dyt21Zt
'

(
t5k11

T

yt21Zt (
t5k11

T

Dyt21Zt (
t5k11

T

Zt Zt
'
4 ,
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ERT 5 3
HT 2

12JT

2
12JT JT

se
2

se
2

se
2

4
with HT 5 T22 (t5k11

@T02# @2Wt21
2 1 2Wt21Vt21 1 Vt21

2 # , JT 5 T22 (t5k11
@T02# Vt21

2 whereVt 5
X2, t
* 2 X1, t

* ,

Wt 5 (
j51

t

@~f 2 c!exp~2c~t 2 j !0T !~X1, j
* 2 X2, j

* ! 1 exp~2c~t 2 j !0T !e2j #

with X1, t
* 5 (j51

t exp~2f~t 2 j !0T !e2j andX2, t
* 5 (j51

t exp~2f~t 2 j !0T !e2j21+ Also,

R 5 se
23

l0 l102

l102 l1

1

1

1

4 ,
wherel0 5 ~ 1

8
_!*0

1@C~r !2 1 B~r !2# dr andl1 5 ~ 1
2
_!*0

1 B~r !2 dr+ Note that using standard
results~see, e+g+, Nabeya and Perron, 1994! we haveHT n se

2l0 andJT n se
2l1+ Hence,

7 ERT 2 R7r 0+ Also defineDT 5 diag$T21,T21,T2102, + + + ,T2102%+We first show that each
element of the matrixDT ZRT DT converges in distribution to the corresponding element of
R+ The relevant results are stated in the following lemma+

LEMMA A +14+ Let $ yt % be generated by~4+1! and ~4+4!+ Then for i, j 5 2, + + + ,k, as
T r `:

~a!

T22 (
t5k11

T

yt21 Dyt21 n ~se
204!E

0

1

B~r !2 dr 5 ~se
202!l1;

~b!

T22 (
t5k11

T

Dyt21
2 n ~se

202!E
0

1

B~r !2 dr 5 se
2l1;

~c!

T2302 (
t5k11

T

yt21 D2 yt2i11 n 0;
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~d!

T2302 (
t5k11

T

Dyt21 D2 yt2i11 n 0;

~e!

T21 (
t5k11

T

~D2 yt2i11!2 n se
2;

~f !

T21 (
t5k11

T

D2 yt2i11 D2 yt2j11 n 0+

Proof. To prove~a!, note that becauseyt21 5 aT yt22 1 ut21 ~with aT 5 1 1 c0T ! and
Dyt21 5 ~c0T !yt22 1 ut21,

T22 (
t5k11

T

yt21 Dyt21

5 T23caT (
t5k11

T

yt22
2 1 T23caT (

t5k11

T

yt22ut21 1 T22aT (
t5k11

T

yt22ut21

1 T22 (
t5k11

T

ut21
2 n ~se

204!E
0

1

B~r !2 dr 5 ~se
202!l1,

because the first two terms areop~1!, and using the results of Lemma A+13+ For part~b!,

T22 (
t5k11

T

Dyt21
2 5 T22 (

t5k11

T S c

T
yt22 1 ut21DS c

T
yt22 1 ut21D

5 T22 (
t5k11

T

ut21
2 1 op~1! n ~se

202!E
0

1

B~r !2 dr 5 se
2l2+

Parts~c! to ~f ! follow analogously using the representation

D2 yt2i11 5
~c 1 f!

T
yt2i 1 F ~c 1 f!

T
1

cf

T 2G yt2i21 1 et2i11,

along with the results thatT22 (t5k11
T yt2i11 yt2j11 5 Op~1! and T21 (t5k11

T yt2i11 3
et2j11 5 Op~1!+ n

Now letQ5 DT ZRT DT 2 ERT + It is straightforward to show that a typical element of this
matrix, qij , satisfiesTE~qij

2! # CT for some constantC+ Hence, E7Q72 # C~k 1 1!20T+
Also, because ERT is a block diagonal matrix with lower~k21! 3 ~k21! block being the
identity matrix~scaled!, we have7 ERT

2175 Op~1!+ Using arguments as in Said and Dickey
~1984!, we havek1027~DT ZRT DT!21 2 ERT

217r 0 in probability if k30T r 0+
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Becauseetk 5 et it remains to establish the limit of7DT (t5k11
T Ut et7+We start with the

following lemma+

LEMMA A +15+ Let $ yt % be defined as in~4+1! and ~4+4!+ Then~a! E @ut
2# # TC; ~b!

E @ yt2i ut # # TC; ~c! E @ yt
2# # TC; ~d! E @Dyt

2# # TC; ~e! E @~D2yt2i11!2# # C+

Proof. Part~a! follows becauseut is a near-integrated process, hence Lemma A+1~b!
applies+ Following Nabeya and Perron~1994!, define, for s5 1, + + + ,@T02# ,

X1,s 5 (
j51

s

~ rT
2!s2je2j and X2,s 5 (

j51

s

~ rT
2!s2je2j21,

y2s 5 ~12 gT ! (
j51

s

~aT
2!s2jX1, j 1 ~aT 2 rT ! (

j51

s

~aT
2!s2jX2, j 1 gT (

j51

s

~aT
2!s2je2j ,

u2s 5 X1,s 2 rT X2,s and u2s21 5 X2,s 2 ~10rT !X1,s 1 ~10rT !e2s,

whererT 5 ~11 f0T !, aT 5 ~11 c0T !, andgT 5 aT0rT , and note that 12 gT 5 O~T21!+
Using these definitions, we have, for t odd andt 2 1 5 2s,

E @ yt21ut # 5 E @ y2su2~s11! #

# E* 21

rT
~12 gT ! (

j51

s

~aT
2!s2jX1, j X1,s11* 1 E* 1

rT
~12 gT ! (

j51

s

~aT
2!s2jX1, j e2s11*

1 E*~aT 2 rT ! (
j51

s

~aT
2!s2jX2, j X2,s11* 1 E*~gT 0rT ! (

j51

t

~aT
2!s2je2j e2s11*

1 E*~gT 0rT !S(
j51

s

~aT
2!s2je2jDX1,s11*+

It is easy to deduce that the second and the fourth terms areo~1!+ For the first term,

E* 21

rT
~12 gT ! (

j51

s

~aT
2!s2jX1, j X1,s11* #

1

rT
TC1T~12 gT !S ~aT

2!s 2 1!

T~aT
2 2 1!D # TC+

(A.9)

Similar derivations can be made to show that the third and the fifth terms are alsoO~T !+
Analogous arguments hold fort even+ Thus, E6yt21ut 6# TC+ The arguments for the gen-
eral caseE6yt2i ut 6 are similar+ Consider now part~c!+We have, for t even,

E @ yt
2# 5 ~12 gT !2 (

j51

s

(
i51

s

~aT
2!s2j ~aT

2!s2iE~X1, j X1, i !

1 ~aT 2 rT !2 (
j51

s

(
i51

s

~aT
2!s2j ~aT

2!s2iE~X2, j X2, i ! 1 gT
2 VarS(

j51

s

~aT
2!s2je2jD

1 gT~aT 2 rT ! (
j51

s

(
i51

s

~aT
2!s2j ~aT

2!s2iE~X2j e2j !+

AUTOREGRESSIVE SPECTRAL DENSITY ESTIMATOR 601



Using Lemma A+1~b!, the first and second terms are bounded byTC+ Lemma A+1 can be
used to show the third and fourth terms are alsoO~T !+ Hence, E @ yt

2# # TC for t even+
BecauseE @ yt

2# 5 aT
2E @ yt21

2 # 1 2aT E @ yt21ut # 1 E @ut
2# , it follows thatE @ yt

2# # TC for
t odd also+ For part~d!,

E @Dyt Dys# 5 EFS c

T
yt21 1 utDS c

T
ys21 1 usDG

5 EF c

T 2 yt21 ys21G1 E @ut us# 1
c

T
E @ ys21ut # 1

c

T
@ yt21ut # # TC,

using parts~a! to ~c!+ Now for part~e!, we have

D2 yt2i11 5
~c 1 f!

T
yt2i 1 F ~c 1 f!

T
1

cf

T 2G yt2i21 1 et2i11

andE @~D2yt2i11!2# is less than the sum of the expectations of the square of each term,

E @~D2 yt2i11!2# # ~c 1 f!2T22E6yt2i
2 61 Sc 1 f

T
1

cf

T 2D2

E6yt2i21
2 61 E6et21

2 6# C

using part~c!+ n

The results in the next lemma follow+

LEMMA A +16+ Let $ yt % be generated by~4+1! and~4+4!+ Then

~a!

EST21 (
t5k11

T

yt21etD2

5 T22 (
t5k11

T

E @ yt21
2 #E @et

2# 5 O~1!;

~b!

EST21 (
t5k11

T

Dyt21etD2

5 T22 (
t5k11

T

E @Dyt21
2 #E @et

2# 5 O~1!;

~c!

E (
i51

k ST2102 (
t5k11

T

D2 yt2i11etD2

5 T21 (
i51

k

(
t5k11

T

E @~D2 yt2i11!2#E @et
2# 5 O~k!+

We are now in a position to prove the following result+

LEMMA A +17+ 7DT (t5k11
T Ut et75 Op~k102!+
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Because

E**DT (
t5k11

T

Ut et **
2

5 EST21 (
t5k11

T

yt21etD2

1 EST21 (
t5k11

T

Dyt21etD2

1 (
i52

k

EST2102 (
t5k11

T

D2 yt2i11etD2

,

the result follows directly from Lemma A+16+
We are now in a position to show consistency of the estimatesZd+We have

DT
21~ Zd 2 d! 5 ~~DT ZRT DT !21 2 ERT

21!DT (
t5k11

T

Ut et 1 ERT
21DT (

t5k11

T

Ut et +

Taking norms, the first and second terms areop~1! and Op~k102! ~because7 ERT
217 5

Op~1!!, respectively, so that7DT
21~ Zd 2 d!75 Op~k102!+ Because7DT

2175 O~T ! andk 5
o~T 103!, we have7 Zd 2 d7r 0, and Zb~1! 5 Zd1 r 21+ Thus, sAR

2 5 sek
2 0~1 2 Zd1!2 r se

204,
becausesek

2 r se
2+ n
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