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Many unit root and cointegration tests require an estimate of the spectral density
function at frequency zero of some proceSemmonly used are kernel estimators
based on weighted sums of autocovariances constructed using estimated residuals
from an AR1) regressionHowever it is known that with substantially correlated
errors the OLS estimate of the AR) parameter is severely biaséd this paperwe

first show that this least-squares bias induces a significant increase in the bias and
mean-squared errdMSE) of kernel-based estimatoid/e then consider a variant

of the autoregressive spectral density estimator that does not share these shortcom-
ings because it bypasses the use of the estimate from thk) AéyressionSimu-

lations and local asymptotic analyses show its bias and MSE to be much smaller
than those of a kernel-based estimator when there is strong negative serial correla-
tion. We also include a discussion about the appropriate choice of the truncation lag

1. INTRODUCTION

The statistical analysis of models with nonstationary variables has received con-
siderable attention in the last decads seen from the many theoretical results
that have been developed and the numerous applications that have been reported
Itis by now common practice to report the outcome of some unit root test on each
variable perform tests for the presence of cointegratiand using one of the

many asymptotically optimal procedurestimate the cointegrating vectoFor

a review see Campbell and Perrqh991), Stock (1994, and Watson(1994).
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Consider for example the following simple relation between a sggland an
m-dimensional vectox; with all variables being (1):

Ye = B'% + vt (1.1)

Of special interest is to test the null hypothesis of no cointegralibis is often

done applying a unit root test to the estimated residdaisy, — 8'x,, whereg is

the ordinary least squaré®LS) estimate of3. Note that(1.1) contains the uni-

variate unit root problem as a special case y@its 0 andd; = y;. This model is

quite general because substantial heterogeneity and autocorrelation are permitted

in the errordw,} and the first differences of the datax,. Usually some kind of

“mixing conditions” are imposecseeg e.g., Phillips and Perron1988, such that

one can apply a functional central limit theorem to the partial sums of the errors
The basis of many unit root tests is the following first-order autoregression

ﬁt = Ofﬁt,]_ + th,

with the least-squares estimate denoéednd 0; = 0, — ao,_4. It is by now

well known that under the null hypothesis of no cointegrati¢or the null
hypothesis of a unit root whe® = 0), the least-squares estimatat converges

to 1 at the fast rate of. However the limiting distributions ofT (& — 1) and of

its associated-statistic depend on nuisance parameters arising from serial cor-
relation in the errorgAuv}. A popular approach to remove this dependence of
the asymptotic distribution on the nuisance parameters has been to apply
some kind of transformation to the basic least-squares estinfadeshe uni-
variate casgearly examples of transformed unit root tests are those of Phillips
(1987 and Phillips and Perrofl988. In the multivariate caseransformed
statistics were proposed by Phillips and Ouligi990. To apply these trans-
formations consistent estimates of2, = lim;_,, T 13, E(Av?) ando? =
limr_.. T 1E(S?), with S; = 3{_; Av,, are neededThese are usually based on
the estimated residualy becausex converges to 1 at the fast rate ©f For
example to estimates?2, one usess? = T 13, 02, and to estimater? the
most popular method has been to use a kernel-based estimator of the form

T (T-1) T
Sia=T 1202 +2T71 X k(j,Mr) 2 00 (1.2)
t=1 =1 t=kt1

Herek( j, Mt) is some kernel that weighs the sample autocovarianceMarisl
a bandwidth that acts as a truncation lag parameter \whgy) = 0 for | j| >
M. Although many variants of unit root and cointegration tests have been pro-
posed almost all use in some way such estimators to eliminate the effect of
nuisance parameters on the asymptotic distribution
It is important to note that the preceding estimators gfando ? both depend
on the properties ok via the use of the estimated residuéJsHowever it has
also been shown that the least-squares estimatésfeverely biased in samples
of typical sizegand remains so even in quite large samplelsen there is sub-
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stantial correlation in the errarhis feature has been extensively documented in
Perron(1996 for the univariate case and is recently analyzed in Ng and Perron
(19974 for the multivariate casd his can explain the substantial size distortions
of the tests in the presence of important serial correlation

Given these biases in the least-squares estimabeswould like to construct
cointegration and unit root tests that are affected as little as possible by the de-
pendence oi. An obvious possibility is to use the residuals under the null hy-
pothesisi.e., Ad; (or Ay, in the univariate unit root problemHowever if both
o2, ando? are estimated using the residuals under the null hypothiesiss
shown by Phillips and Ouliari€l990 that the tests become inconsisteftis
result was more or less perceived as implying an impossibility to altogether avoid
the use of the least-squares estimat@s constructing estimates of the nuisance
parameters

The theme of this paper is thain the contraryit is possible to construct
estimates of the nuisance parameters that are consistent under the null hypoth-
esis and ensure consistent tests while avoiding any dependericelbe idea
is to use the residuals under the null hypothesig, to constructs? and to
use a particular formulation of the autoregressive spectral density estimator to
estimate the spectral density at frequency zeragf Such an estimator was
first proposed by Stock1990 and is defined bysZs = s3/(1 — b(1))2 where
b(1) = 3j_, b andsi = T3, &% with b, and &, obtained from the fol-
lowing autoregressian

k
Aﬁt = boﬁt—l + 2 bj Aﬁt—j + €.
=1

It is the aim of this paper to analyze the properties of such an autoregressive
spectral density estimatdithout much loss of generality we concentrate on the
univariate case wherg = 0 with 9; = y;, and the problem of interest is that of
testing for a unit roatThe focus is on the properties of the estimator when there
is substantial correlation in the error procéaf first show that such an estimator
of the spectral density at frequency zero has much smaller biases and mean-
squared errorf@MSE) compared to a kernel-based estimator of the f(kr2) that
is constructed using the least-squares residliaksse features are analyzed using
both simulations and local asymptotic analyses where the errors are modeled as
AR(1) or MA(1) processes with parameters approaching the boundatiesr
+1 as the sample size increas€ke qualitative results obtained extend imme-
diately to the multivariate framework

The plan of the paper is as followSection 2 motivates the analysis in terms of
theZ, test for the presence of a unit ro8ection 3 discusses the data-generating
processes used for the simulations and presents the teSediison 4 presents a
framework to analyze the local asymptotic properties of the spectral density es-
timators Section 5 summarizes the implications of the different estimators of the
spectral density at frequency zero for the unit root tdatparticular we discuss
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how the use of the autoregressive spectral density estimator allows unit root tests
that show little size distortions even in the presence of substantial serial correla-
tion in the errorsSection 6 offers concluding commemdechnical contribution

of this paper is to derive the limit of the autoregressive spectral density estimator
in several local asymptotic framewotkeBhese proofs are contained in a math-
ematical appendix

2. MOTIVATION

We motivate our analysis with the problem of testing for a unit.rdé consider
a seried y; }i—o generated by

Yo = ayi—1 + U, (2.1)

with a = 1 under the null hypothesi¥he erroru,} are assumed to be a linear
process of the fornu, = X2, b;e_; with e being independent and identically
distributed g, ~ i.i.d. (0,62). LetB(z2) =1+ 32,bz = 1/(1+ 22,4 7') =
1/A(z). We further assume th&(z) is nonzero on the unit circJéhatA(1) # O,
and thak'2 >, |a.,i| — 0 for some increasing sequericéote that the latter
condition is automatically satisfiedf is a stationary and invertible autoregres-
sive moving averagéARMA) process Also, yo = 0, for simplicity.

We shall focus on th&, test developed in Phillip§1987 and extended in
Phillips and Perro1t1988. The test is defined as

Z,= T(d—l)—(SZ—SE)/<2T_22y[2_1>, (2.2)
t=1

where & is the OLS estimate of the autoregressive parametd@.i), s? =
T 131,02 0, =Yy, — &y,_1, ands? is a consistent estimator of2 The anal-
ysis can easily be extended to the case where additional deterministic compo-
nents are included in the regressi@il). The form ofZ, remains the same if
Vi1 is replaced by its demeaned or detrended counterSad Ng and Perron
(1997h for a discussion of issues pertaining to detrending and the estimation
of the spectral density function

A consistent estimator af? often used is the nonparametric estimagds,
definedin(1.2). Simulation results of Schwef1989, DeJongNankervis Savin
and Whitemar§1992, and Phillips and Perrofi988, among othershave shown
thatZ, based uposj ,suffers from severe size distortigespecially when there
is substantial negative correlation in the residuglsee Haugl1993 concerning
cointegration tesjsThere is also evidence that the choice of the kernel and the
methods to choose the truncation lag do not affect much the finite-sample prop-
erties of the testsee Kim and Schmidti990.

The bad size properties of the test can be explained by the faétithaeverely
biased In Perron(1996, it was shown that the finite-sample distribution of the
normalized least-squares estimaffa — 1), is very badly approximated by its
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limiting distribution when there is substantial serial correlation in the residuals
and the adequacy of the asymptotic approximation deteriorates when additional
deterministic components are included in the regressiateed the properties

of & effect the properties &, not only in a direct way vid (& — 1), but also in
indirect ways via the estimates of the nuisance parameggrands? because

they are constructed using the least-squares residuasl hence depend on the
biased estimaté.

The size problem found i&, is not unique to the use of the kernel estimator
As an alternative t@3,, consider the standard autoregressive spectral density
estimator following the work of BerkL974). Itis defined bys3 = s3/(1— b(1))2
whereb(1) = 3/, b ands3 = T"* 3., & with b; andé, obtained from the
following autoregressian

k
j=1

The estimator can be seen as a parametric autoregressive approximatién of
Becausd (& — 1) = Op(1), one can use the results of B&#974) to show thas3
is consistent providek®/ T — 0 andk — co asT — co. Simulations showed that
unit root tests continue to have severely distorted sizes when baseggiddre
problem is that the autoregressive spectral density estimator still depends on the
estimated residualg,. Hence a starting point to modify th&, testis to try to get
rid of the dependence of the test statistican

As a first step in eliminating this dependenést us analyze the case where
instead of using2=T "1 3, 02 as an estimate of2, we use the residuals under
the null hypothesisi.e,, s3, = T-* 3, Ay2. This estimator is obviously also
consistent under the null hypothesis of a unit rédittle algebra shows thain
this caseZ, can be written as

T
MZ, = (T 1y - 52)/<2T2 > yt21>, (2.4)
t=1

which is exactly the modified unit root test proposed by Std&90 and further
analyzed by Perron and N@996. It is called a modifiedZ,, test because it can
also be written agsee Ng and Perrgii976h

MZ, = Z, + (T/2)(a& — )2 (2.5)

Becausey converges to 1 at rafg the correction factor is asymptotically negli-

gible andz, andMZ, are asymptotically equivalentiowever when large neg-

ative serial correlation is present in the residuals and hénseseverely biased

the correction factofT/2) (& — 1)? can be important even in quite large samples
The representatio(R.4) is interesting in several aspectrst, it shows that

using the residuals under the null hypothesis to construct a consistent estimate of

o2 eliminates the dependence of the unit root test evere it not for the fact that
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the spectral density estimasé remains constructed using the least-squares re-
siduals Secondwriting MZ,, = (y2— Ts2)/(2T "1 3{_, y2 1), itis easy to see that
a necessary condition for the test to be consistent against stationary alternatives is
thatTs? diverges under such alternativa@is is important because it shows that
we cannot construcdi, using the residuals under the null hypothesis ffis
estimated using the same residuyatks, Ay,. This is becaus&si = Op(1) under
stationary alternatives when constructed with as shown by Phillips and Ou-
liaris (1990.

The challenge therefore is to construct an estimstdnat is consistent far 2
under the null hypothesiwith Ts? diverging under stationary alternativesd is
such that the estimator does not dependofhis is achieved using a modified
autoregressive spectral density estimator based on the first differences of the data
Such an estimatpwhich we denote b2, is defined in the present context as

SRR = S3/(1 - b(1))? (2.6)

wheresZ= T 13, &%, b(1) = 3/, b, with b; and{&,} obtained from the
following autoregression estimated by OLS

k

Ay, = boyi-1 + %bj Ay j + €. (2.7)

i=
Under the conditions stated on the errfuig, consistency of the parameter esti-
mates in the preceding regression under the null hypothesig thas a unit root
follows from the results of Berk1974), Said and Dickey1984, and Ng and
Perron(1995 provided the truncation lag is such ttkat> co andk®/T — 0 asT —
co. Consistency 082 for o2 follows.

The preceding autoregressive spectral density estimator differs(B@&nin
two ways First, it usesAy, instead ofQ,, and secondthe lagged level;_, is
included as a regressdthe introduction of the lagged level is of no importance
under the null hypothesis of a unit root becabiges 0 at rateT. In other words
sz andsirare asymptotically equivalent under the null hypothéBie introduc-
tion of the lagged levelhowever ensures the consistency of unit root tests by
making the estimate bounded below by zero under stationary alternathisss
an important property because the requirementlsatiiverges is now satisfied
An overlooked advantage @fg overs3 is that the former based upd8.7) is
immune to potentially severe biasesarcaused by the presence of substantial
correlation in the errors

Given thatsig based upoii2.7) does not depend o, it is likely to provide a
better estimate of 2 thansj, in finite samplesThe next sections of this paper
establish that this is indeed the case

3. THE EXPERIMENTAL DESIGN

In this sectionwe discuss the experimental design used to evaluate the relative
properties 063, andszg. We keep the design very simple to better highlight the
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types of correlation thatinduce problems of inferefethat effectwe consider
errors as being generated by simple @ARor MA (1) models Hence the data-
generating processes are of the form

Yo = Y1 T g, (3.1)

where the initial condition is set tg, = 0 and the error$u,} are generated by
either of the following

MA (1): u; = & + 01,
AR(1): u; = pU;—;1 + &, (3.2)

with ug = e, = 0 ande, ~ i.i.d. (0,¢2). Note thatin this casethe true value oér2
isc2(1+ 0)2 andc2/(1 — p)? for moving average and autoregressive mogdels
respectivelyWe present both simulation experiments and theoretical analyses
based on these specifications

In the simulationswe consider the case where the data are assumed to have an
unknown meanCorrespondinglys3 ais constructed using residualsobtained
from the regressiof2.1) with a constant includedhIso, the regression used to
construct the autoregressive spectral density estimator is

k
Ay, = c+boy—1 + 2 bj AYij + €. (3.3)
i=1

The aim of the simulation experiments is to quantify the bias and M3, of
andsZi for a range of values o andp. The emphasis of our discussion is on
cases where there is substantial serial correlation in the effoesinnovations
{e} are generated as.d. N(0,1) random variables using the GASDEYV function
in PressTeukolsky Vetterling and Flannery(1992. In all cases2,000 replica-
tions are usedrhree sample sizes are considereer 100 200, and 500

3.1. Results for sZ, with Estimated Residuals

We report results for the kernel-based estimator constructed(@jrusing the
Parzen windowThis is a kernel that operates with a truncation poiithough
other kernels are possibhlie choice of this kernel is with little loss of generality
given that our focus is on processes tpwith roots close to the boundary of
unity. The Parzen kernel was found to produce estimates with relatively good
finite-sample properties in Ng and Perr#®996. It is among the best windows
that provide non-negative estimates by construction and for which the bandwidth
acts as a truncation lag parameWe also tried other windows such as the qua-
dratic spectral advocated by Andre@991). The results are qualitatively similar
Several methods to choose the truncation lag were considéfednalyzed
the properties of the estimator using fixed truncation lags ranging from 1 to some
maximal ordeM+(max) that increases with the sample si¥¢e setM(max =
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6, 10, and 14 forT = 100, 200 and 500QrespectivelyFor data-dependent selec-
tion rules our base case is the asymptotically optimal data-dependent method
suggested by Andrewd991) using an AR1) approximation Another experi-
ment that we tried was to calculate the optimal bandwidth using an ARMA
approximation with the true values of the parametélss led to estimates with
even worse propertiesspecially in the negative MA) case The reason is that
for such a process the optimal bandwidth is relatively large and for reasons ex-
plained subsequentlhe properties a3, deteriorate as the bandwidth increases
because the estimated residuals are not good approximations to the true residuals
We also considered experiments using the prewhitening device suggested by An-
drews and Monahafil992. This produced significant improvements only for
AR(1) errors with positive coefficientdHowever there were neither significant
improvements nor marked deteriorations in cases with large negatiyg) AR
MA (1) coefficients To conserve spacthese results will not be reporté¢out are
available on requestReaders will be reminded of the advantages of prewhiten-
ing where appropriate

The results are presented in Tables 1 and 2 for the bias and MStectively
Consider first the base case withd. errors For a given sample size the bias
decreasess expecteds the truncation lag increasé€®r a fixed truncation lag
it also decreases rapidly as the sample size incredabesMSE eventually in-
creases with the truncation ldgut it is relatively small in all cases and decreases
rapidly asT increasesespecially using an automatic bandwidth selection proce-
dure For models with positive moving average coefficierite bias and MSE
are large for small values of the truncation,lagt both decrease substantially as
the truncation lag increaseldowever for a given truncation lagthe error de-
creases less rapidly as the sample size increases than indhease

Consider now the case with a large negative moving average coefficiera
the bias and MSE initially decrease as the truncation lag increases but start in-
creasing at larger lag®ore importantly for § = —.8 the bias and MSE barely
decrease abincreases even when an automatic bandwidth selection procedure is
used The MSE is in all casesseveral orders of magnitude greater than in the
i.i.d. caseIndeed the bias and MSE at = —.8 are very large in relative terms
because the true valueds® = .04. Although the bias and MSE diminish some-
what more quickly in cases of large negative autoregressive ethersstimator
still gives imprecise estimates of given that the true values are small when
is negative When the autoregressive coefficient is positieeth the bias and
MSE decrease as the truncation lag increases but they are very large compared to
other cases and again decrease only very slowlyiasreases

We also presenin the last column of Tables 1 andthe minimal value of the
bias and MSE for each case over all possible integer valued bandwidtile
these figures correspond to the best case possible and cangeheral be at-
tained in practicgthey provide a useful benchmark for comparison with the bias
and MSE ofsZg later.
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TaBLE 1. Exact bias 063, using the Parzen windov

o? Mr=1 2 3 4 5 M+ (max) Auto Min
T=100 Mt(max =6 i.i.d. 1.00 —0.054 —0.051 —0.046 —0.040 —0.034 —0.029 —0.037 —-0.014
MA =0.80 324 —1.688 -1321 -0.877 —0.650 —0.536 —-0.476 —0.428 —0.426
0.50 225 —1.053 —0.820 —0.536 —0.388 —-0.311 —0.269 —0.220 —-0.227
0.20 144 —0.450 —0.358 —0.246 —0.188 —0.157 —0.140 —-0.134 —-0.125
-0.20 064 0341 Q262 Q170 Q130 Ql16 Q115 Q137 Q115
—0.50 025 0857 Q705 Q531 Q465 Q455 Q470 Q457 Q455
—-0.80 004 1071 1003 Q942 Q957 1014 1088 Q939 Q942
AR =080 2500 —22655 —21765 —20480 —19368 —18373 —17504 —12244 —12286
0.50 4.00 —2.746 —2.448 —2.042 —-1.741 —-1512 —1.340 —0.903 —0.887
0.20 156 —0.562 —0.465 —0.342 —-0.267 —0.220 —-0.192 —0.193 —-0.157
—-0.20 069 0296 Q213 Q121 Q088 Q082 Q086 Q093 Q082
—0.50 044 0791 Q544 Q294 Q251 Q273 Q309 Q260 Q251
-0.80 031 1925 1372 Q913 1031 1257 1484 1148 Q913
T =200, My(max =10 ii.d. 1.00 —0.028 —0.026 —-0.021 —-0.017 —0.013 Q003 —0.015 Q000
MA = 0.80 324 —1.640 —1.256 —-0.789 —0.545 —-0.415 —0.240 —-0.229 —0.233
0.50 225 —-1.032 —0.792 —0.500 —0.346 —0.264 —0.155 —0.149 —0.151
0.20 144 —0.426 —-0.328 —0.209 —0.145 —-0.110 —0.057 —-0.077 —0.052
-0.20 064 0367 Q279 Q174 Q122 Q100 Q098 Q113 Q088
—-0.50 025 0926 Q735 Q509 Q408 Q372 Q447 Q368 Q366
—-0.80 004 1207 1084 Q958 Q947 Q999 1480 Q953 Q947
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AR =0.80 2500

0.50 400

0.20 156
—0.20 069
—0.50 044
—0.80 031

T =500 Mt(max = 14 i.i.d. 1.00
MA = 0.80 324
0.50 225

0.20 144
—0.20 064
—0.50 025
—0.80 004

AR =080 2500
0.50 400

0.20 156
—0.20 069
—0.50 044
—0.80 031

—22434
—2.709
—0.542

0320
0825
2172

—0.013
—1.618
—1.014
—0.413
0388
0967
1365
—22.305
—2.683
—0.533
0341
0867
2327

—21431
—2.395
—0.441

Q0228
Q0542
1395

—-0.011
—1.225
—0.769
-0.314
0292
Q743
1151
—21.237
—2.356
—0431
Q0239
0553
1378

—19.975
—1.967
—0.312

Q124
0248
0688

—0.009
—0.745
—-0471
—0.193
Q176
Q475
Q911
—19.681
—1.908
—0.300
Q123
0220
Q472

—18.696
—1.647
-0.231

Q083
Q178
Q700

—0.007
—0.490
—0.312
-0.127
Q117
0342
Q830
—18.306
—-1571
—0.219
Q073
Q126
Q0383

—17.531
—1.401
-0.178

Q071
Q178
0849

—0.005
—0.352
—0.226
—0.091
Q087
Q279
0836
—17.043
—1.309
—0.166
Q053
Q109
0451

—13284
—0.807
—0.082

Q086
0281
1579

0011
-0.121
—0.080
—0.025

Q070

Q308

1579
—9.893
—0.446
—0.048

Q055

0181

1116

—7.956
—0.669
—0.128
Q077
Q184
Q947

—0.007
-0.117
—0.082
—0.048
Q081
Q0245
Q0866
—4.900
—0.386
—0.094
Q049
Q109
0583

—8.011
-0.612
—0.067
Q069
Q178
0688

Q001
—0.118
—0.073
—0.013

Q059

0239

Q0830
—4.755
—0.273
—0.036

Q041

Q0108

0383

2The column labeled Min gives the smallest value of the bias over all possible integer-valued bandsadteEmesthe bias obtained using the automatic bandwidth selection procedure

with an AR(1) approximation is slightly smallgicolumn Autg. This can occur because the automatic procedure selects a bandwidth that is not necessarily integer-valued



0LS

TABLE 2. MSE of s3,, using the Parzen winddw

o? Mr=1 2 3 4 5 M+ (max) Auto Min
T=100 Mt(max =6 i.i.d. 1.00 0022 Q024 Q032 Q040 Q048 Q056 Q040 Q022
MA = 0.80 324 2926 1884 1023 Q788 Q760 Q802 1244 Q760
0.50 225 1149 Q741 Q411 Q326 Q321 Q342 Q485 Q321
0.20 144 0225 Q161 Q116 Q111 Q121 Q135 Q139 Q111
-0.20 064 0137 Q086 Q047 Q038 Q037 Q040 Q041 Q037
—0.50 025 0769 Q518 Q299 Q236 Q234 Q258 Q232 Q234
—-0.80 004 1194 1038 Q911 Q945 1067 1236 Q908 Q911

AR =0.80 2500 513E2 474E2 421E2 378E2 343E2 314E2 217E2 202E2
0.50 4.00 7.599 6104 4396 3390 2792 2454 2695 2203
0.20 156 0340 Q252 Q176 Q153 Q152 Q160 Q177 Q152
—-0.20 069 0111 Q064 Q033 Q030 Q034 Q039 Q032 Q030
—0.50 044 0677 Q320 Q101 Q084 Q105 Q136 Q093 Q084
-0.80 031 4094 2072 1040 1429 2146 2991 1706 1040
T =200 Mr(max =10 ii.d. 1.00 0010 Q011 Q015 Q019 Q023 Q045 Q019 Q010
MA = 0.80 324 2730 1651 Q755 Q486 Q416 Q558 Q712 Q413
0.50 225 1086 0664 Q315 Q212 Q188 Q264 Q283 Q188
0.20 144 0193 Q125 Q072 Q060 Q062 Q102 Qo077 Q060
-0.20 064 0146 Q087 Q039 Q025 Q021 Q031 Q025 Q021
—0.50 025 0876 Q550 Q267 Q177 Q153 Q250 Q151 Q153
—-0.80 004 1494 1193 Q932 Q920 1032 2302 Q934 Q920
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AR =0.80 2500 503E2 459E2 400E2 352E2 311E2 190E2 137E2 124E2

0.50 400 7.367 5796 3988 2900 2225 1302 1433 1295

0.20 156 0305 0212 Q127 Q096 Q086 Q115 Q102 Q086
—0.20 069 0114 Q061 Q025 Q018 Q018 Q032 Q018 Q018
—0.50 044 0707 Q306 Q068 Q041 Q045 Q119 Q048 Q041
—0.80 031 4992 2052 0566 0663 0996 3487 1214 0556

T =500 Mt(max = 14 ii.d. 1.00 0004 Q004 Q006 Q008 Q010 Q026 Q007 Q004
MA = 0.80 324 2634 1530 0610 Q0320 0228 0321 Q0362 0198
0.50 225 1038 0608 0250 Q138 Q103 Q147 Q138 Q094

0.20 144 0175 Q105 Q048 Q031 Q027 Q055 Q034 Q027
—0.20 064 0155 Q089 Q035 Q018 Q013 Q018 Q013 Q011
—0.50 025 0943 Q557 0228 0121 Q083 Q0130 Q068 Q067
—0.80 004 1888 1334 Q0839 Q713 Q740 2776 Q801 Q713

AR =0.80 2500 497E2 451E2 388E2 336E2 292E2 108E2 69908 62849
0.50 400 7.208 5574 3691 2547 1823 0596 0644 0596

0.20 156 0288 Q0192 Q101 Q064 Q048 Q066 Q046 Q042
—0.20 069 0121 Q061 Q019 Q010 Q008 Q018 Q009 Q008
—0.50 044 0762 0310 Q051 Q019 Q016 Q055 Q018 Q016
—0.80 031 5544 1941 0250 Q0199 0287 1864 Q496 Q199

2The column labeled Min gives the smallest value of the MSE over all possible integer-valued banddadtesmesthe bias obtained using the automatic bandwidth selection procedure
with an AR(1) approximation is slightly smallgicolumn Autg. This can occur because the automatic procedure selects a bandwidth that is not necessarily integer valued
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3.2. Results for the Autoregressive Spectral Density Estimator, s34

This subsection discusses results pertaining to the behaviggra@onstructed
using the augmented autoregresgi®g). For the construction of the autoregres-
sive spectral density estimatsgg, the only nuisance parameter to determine is
the order of the autoregressiknNe first considered deterministic rules whereby
kis a fixed value in the integer interval between 1 &nthx We useckmax= 4,
8, and 14 forT = 100 200 and 500 respectivelyWe also considered data-
dependent rules wherellyis chosen according to statistical criterighis in-
cludes(i) a general to specific recursive procedure gsrb and a 10%test for
the significance of the last lagiven the upper bounkimax) and(ii) rules based
on the AIC and the Schwartz information criterfdnet-test tends to select orders
of truncation that are higher than information-based rwiéth the order of trun-
cation increasing with the significance level of the t&sus of the data-dependent
rules consideredhe Schwartz criterion produces the tightest model and the 10%
t-test is the most liberal

The results for the bias and MSE are presented in Tables 3,aadpkctively
Anotable property o§3xis that its bias and MSE decrease rapidly as the sample
size increasesowever for T =100 or smallerthe bias and variance sfx can
be large especially at an overly liberal value kf

For small sample size®or exampleatT =100, the results are sensitive to the
choice ofkmax For larger values dfmax the estimates exhibit occasional out-
liers that increase the bias and MSE substanti@ys occurs because whérs
large relative to the total sample the biases of the least-squares estbnates
such that_, b is occasionally close to, tausing a singularity in the denomi-
nator of sZz. This problem is less severe when no constant is included in the
autoregression but more so when a time trend is includéten the sample size
is larger sayT = 150 or greatethis sensitivity to the choice dimax disappears

Consider first the base case withd. errors For low values of the truncation
lag, the bias and MSE are small but increase substantially as the truncation lag
increasesdWith positive moving average errgtbe bias eventually decreases and
the MSE increases as the truncation lag increases for a fixetbwever the
errors decrease noticeably &sncreasesWhile the variations in performance
across selection procedures reduce as the sample size incteasight Schwartz
criterion tends to produce the smallest MSE with positive moving average models

Itis of interest to note that both the bias and the MSE display a clear oscillating
pattern as the truncation lag varies from odd to even vaMese preciselybias
and MSE are substantially smaller at even than at odd Tdgs can be seen from
the fact that the autoregressive representation of a moving average model has
coefficients(—#)' at theith lag An evenk always ensures that the calculation of
2!(:1 b, is balancedin the sense that the number of odd and even terms always
match

For negative moving average errpssveral features are notewortkirst the
bias and MSE o082 both decrease as the truncation lag increases for a fixed
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when# = —0.5. Accordingly a more liberal data-dependent methed)., the
recursivet-tes) produces in this case smaller MSE than one that tends to select a
tight structurde.g., Schwartz’s criterion Thus while the MSE obtained using a
recursive-testis higher than that obtained using the Schwartz criterion Wien
positive the reverse is true whehis negative

We now turn to cases of AR) errors It is useful to note at the outset that
because the true autoregressive order, &f one in all data-generating processes
consideregdany overparameterization of the autoregression will lead to increases
in the MSE Accordingly it is easy to understand why a tight selection procedure
such as that based on the Schwartz criterion might produce estimates that have
the lowest MSEThis is indeed the case witly| < 0.8, where we observed that
bias and MSE increase as the truncation lag increases given aTfiaad they
both decrease rapidly ddncreasesWhenp is close to ongthe bias and MSE of
the estimator are large but diminish BincreasesWhenp is close to—1, bias
and MSE increase somewhatlascreases with a givem but fall rapidly asT
increases

In view of the oscillating magnitude of the bias and MSE for the case of MA
errors with positive coefficienthe errors associated with data-dependent rules
could be further reduced if the rules are specified to choose over a range of
even-valued truncation lagSimulations to that effect are presented in the last
four columns of Tables 3 and As can be seernhe bias and MSE are substan-
tially reduced in the positive moving average calseleed with a search re-
stricted to even lagshe MSE withk selected using recursivetests on the
significance of the last lag is decreased in all casesn with AR1) errors For
the data-dependent methods using the AIC and the Schwartz critexisISE is
reduced with MA1) errors but slightly increased with AR) errors The latter
can be explained by the fact that the true order 1) is outside the permissible
range fork, being 2 tokmax In practical settingsone should expect a pure
numerical advantage in using an even number of autoregressive lags in empirical
work.

3.3. Comparison of s3, and s3g

For the ii.d. case a tight selection criterignsuch as the Schwartz’s criterion
permitssixz to have as low a bias &g, with the MSE remaining slightly higher
For positive moving average errothe MSE ofs3g at the optimal truncation lag
for a givenT is higher than the MSE o3, similarly evaluated at an optimal
truncation lag especially afl = 100 though the difference is only marginal at
larger sample sizes

Significant differences betwees§,, and s2g surface wherd is negative in
particular if it is close to—1. The bias and MSE of2x are dramatically smaller
and decrease much more rapidly trsgp asT increasesFor examplewith T =
200 andf = —0.8, the smallest MSE fos3» (with a bandwidth of %is .920
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TasLE 3. Bias of the autoregressive spectral density estimaggr

o? k=1 2 3 4 5
T =100 kmax= 4 ii.d. 100 0023 Q073 Q0158 Q232 —
MA =0.80 324 1654 -0.652 1406 Qo010 —
050 225 0786 —0.109 Q615 Q504 —
020 144 0136 Q083 Q0240 Q360 —
—0.20 064 0092 Q067 Q114 Q167 —
—050 025 0332 Q0168 Q128 Q114 —
—0.80 004 0673 0435 0334 0261 —
AR =080 2500 -3.328 -1972 -0.001 3638 —
050 400 -0.044 Q195 0631 Q964 —
020 156 0036 Q108 Q0237 Q306 —
—0.20 069 0027 Q052 0113 Q170 —
—050 044 0026 Q047 Q093 Q130 —
—0.80 031 0019 Q034 Q060 Q086 —
T =200 kmax= 8 ii.d. 100 0014 Q038 Q072 Q094 Q132
MA =0.80 324 1597 -0.692 1035 -0.186 1027
050 225 0703 -0.211 Q0329 Q131 Q8355
020 144 0121 Q038 0113 Q144 Q201
—-020 064 0076 Q035 Q049 Q061 Q084
—050 025 0310 Q0141 Q083 Q061 Q057
—080 004 0612 Q345 0222 Q154 Q115
AR =080 2500 -1704 -1.050 -—-0.142 Q574 1440
050 400 -0.054 Q060 Q187 0268 Q400
020 156 0017 Q057 Q125 Q155 Q213
—020 069 0014 Q031 Q059 Q071 Q097
—050 044 0009 Q0020 Q035 Q047 Q061
—0.80 031 0007 Q013 0024 Q032 Q044
T =500 kmax= 14 ii.d. 100 0004 Q014 Q030 Q035 Q047
MA =080 324 1545 -0.726 Q794 —-0.348 Q572
050 225 0670 -—0.252 0209 -0.010 Q131
020 144 0102 Q008 Q046 Q052 Q070
—-020 064 0067 Q019 Q018 Q021 Q030
—050 025 0293 Q124 Q063 Q038 Q027
—0.80 004 0564 0291 Q176 0116 Qo081
AR=0.80 2500 -0.638 —0.328 Q038 0243 Q473
050 400 -—0.004 Q037 Q090 Q116 Q168
020 156 -—0.003 Q011 Q039 Q052 Q071
—-020 064 0003 Q008 Q016 Q023 Q032
—050 025 0003 Q005 Q011 Q016 Q019
—0.80 004 0002 Q005 Q010 Q014 Q017
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All lags Even lags

kmax  t-10 t-5 AIC SW t-10 t-5 AIC SW
— 0.115 Q084 Q058 Q032 Q110 Q097 Q098 Q073
— 0.422 0524 Q454 0561 —-0.680 -0.716 —0.109 —0.331
— 0.448 Q476 Q419 0488 -0.081 -0.101 Q0102 -0.052
— 0.232 0194 Q156 Q135 Q0156 Q120 Q0158 Q096
— 0.122 Q0114 Q093 Q088 Q098 Q088 Q088 Q068
— 0175 Q211 Q0200 0265 Q156 Q160 Q0153 Q166
— 0.351 Q406 Q412 0534 Q362 0384 Q357 Q413
— —0.289 -1016 -2197 -3106 -0215 -0454 -1217 -1.846
— 0.382 0184 Q114 -0.035 Q337 Q0254 Q309 0221
— 0.146 Q120 Q097 Q053 Q0148 Q0135 Q157 0118
— 0.100 Q075 Q061 Q040 Q082 Q068 Q086 Q055
— 0.065 Q047 Q035 Q0028 Q063 Q057 Q057 Q049
— 0.048 Q037 Q031 Q020 Q045 Q040 Q042 Q034
0.248 Q129 Q090 Q037 Q018 Q091 Q067 Q051 Q038
0.669 Q716 Q724 0643 0558 —0.403 -0.555 0213 -0.173
0.661 Q374 Q0292 Q181 Q189 -0.068 -—0.138 Q015 -0.166
0.402 0253 Q196 Q106 Q112 Q136 Q087 Q067 Q043
0.162 Q112 Q103 Q067 Q073 Q074 Q062 Q045 Q035
0.077 Q096 0119 Q117 Q195 Q115 0124 Q111 Q0136
0.066 Q105 Q140 Q165 Q297 Q0162 Q204 Q162 Q270
4.830 2008 0561 —0.969 —1.638 0613 —-0.072 -—-0.232 —-0.976
0.949 Q442 Q0250 Q026 —0.047 Q300 Q200 Q107 Q059
0.409 0225 Q154 Q048 Q028 Q165 Q0119 Q086 Q059
0.191 Q120 Q086 Q032 Q016 Q088 Q066 Q052 Q032
0.110 Q056 Q041 Q017 Q010 Q046 Q034 Q026 Q0020
0.079 Q040 Qo027 Q010 Q007 Q033 Q027 Q018 Q014
0.184 Q115 Q082 Q011 Q005 Q074 Q046 Q019 0014
0.438 0393 0411 Q317 Q198 -0.185 -0.284 Q070 —0.211
0.409 Q260 Q200 Q080 -0.021 -0.034 —-0.139 —0.047 -0.201
0.266 Q185 Q149 Q055 Q092 Q095 Q052 Q015 Q003
0.109 Q081 Qo071 Q044 Q060 Q047 Q036 Q021 Q019
0.046 Q045 Q057 Q059 Q105 Q073 Q090 Q066 0111
0.015 Q025 Q036 Q048 Q099 Q044 Q063 Q047 Q098
3.087 1710 0838 -0.236 —0.586 Q707 Q171 -0.164 -0.333
0.791 Q478 Q313 Q024 -0.002 Q310 0213 Q054 Q037
0.278 Q153 Q092 Q011 -0.004 Q079 Q046 Q023 Q012
0.116 Q070 Q044 Q006 Q003 Q044 Q0026 Q011 Q008
0.080 Q050 Q038 Q006 Q003 Q030 Q024 Q007 Q005
0.056 Q041 Qo027 Q005 Q002 Q029 Q017 Q007 Q005
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TaBLE 4. MSE of the autoregressive spectral density estimagar

o? k=1 2 3 4 5

T =100 kmax= 4 ii.d. 100 Q070 0145 Q295 Q0545 —
MA =080 324 5514 1584 8556 3649 —
050 225 1544 Q714 2373 3273 —

0.20 144 0242 Q0339 Q776 1475 —
—0.20 064 0037 Q056 Q113 Q334 —
—050 025 0125 Q041 Q037 Q045 —
—0.80 004 0483 Q0229 Q197 Q179 —

AR =0.80 2500 229E2 343E2 689E2 223E3 —
0.50 400 2638 4236 8210 13592 —

0.20 156 0242 Q422 Q778 1168 —
—0.20 069 0029 Q067 Q166 Q308 —
—050 044 0009 0023 Q056 Q104 —
—0.80 031 0003 Q011 Q024 Qo047 —

T =200 kmax= 8 ii.d. 100 0032 Q059 Q096 0141 Q0196
MA =080 324 3767 Q932 3057 1336 4944
050 225 0919 Q0329 Q804 Q785 1369
020 144 0111 Q0140 Q240 0332 Q0464
—0.20 064 0018 Q021 Q036 Q053 Q076
—050 025 0102 Q025 Q012 0011 Q014
—0.80 004 0387 Q129 Q057 Q029 Q018

AR =0.80 2500 127E2 151E2 190E2 234E2 280E2
0.50 400 1203 1672 2273 3111 4048
0.20 156 0104 Q0166 Q273 Q372 0510
—020 069 0012 Q0026 Q045 Q068 Q101
—050 044 0004 Q009 Q016 Q025 Q035
—0.80 031 0001 Q004 Q007 Q011 Q018

T =500 kmax= 14 ii.d. 100 0011 Q021 Q030 Q040 Q053
MA =080 324 2849 0693 1251 0529 1206
050 225 0612 0168 0266 0223 0324

0.20 144 0045 Q047 Q072 Q094 Q115
—0.20 064 0010 Q008 Q012 Q017 Q022
—050 025 0088 Q017 Q006 Q004 Q003
—0.80 004 0322 Q087 Q032 Q014 Qo007

AR =0.80 2500 49436 55797 68198 77351 90378
0.50 400 0468 0616 Q784 Q916 1090

0.20 156 0036 Q057 Q084 Q116 0141
—020 069 0005 Q009 Q015 0020 Q027
—050 044 0001 Q003 Q005 Q008 Q010
—0.80 031 0000 Qo001 Q002 Q003 Q004
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All lags Even lags

kmax t-10 t-5 AIC SW t10 t-5 AIC SW
— 0.296 0226 Q0169 Q090 Q0259 Q225 Q0224 Q145
— 5858 6720 5630 6229 1915 1818 3351 2844
— 2706 2290 2254 1546 1518 1100 2055 1352
— 0.987 Q712 0582 Q309 0827 0591 0895 Q0467
— 0.249 Q222 Q179 Q039 Q0235 Q217 Q204 Q057
— 0.061 Q075 Q067 Q094 Q043 Q042 Q040 Q041
— 0.207 Q245 Q245 0350 Q193 Q199 Q0186 0218

— 9.80E2 832E2 357E2 249E2 937E2 896E2 466E2 355E2
— 7.662 5104 4253 2781 6514 4905 5331 4464
— 0.752 0633 0548 0343 Q0664 0588 0694 0460
— 0.195 Q142 Q100 Q061 Q148 Q110 Q177 Q074
— 0.051 0038 0024 Q012 Q046 Q041 Q041 0028
— 0.022 Q015 Q012 Q004 Q019 Q017 Q017 Q011
0532 0274 Q200 Q064 Q036 Q201 Q152 Q099 Q059
6.354 6118 5915 4957 3888 1733 1289 3854 2072
5765 2289 1791 1072 Q767 1108 Q758 2260 0562
1431 0856 0618 Q0183 Q121 Q651 0476 0219 Q150
0.219 Q125 Q090 Q032 Q019 Q094 Q072 Q035 Q021
0.038 Q031 Q035 Q027 Q054 Q029 Q028 0021 0024
0.012 Q023 Q041 Q052 Q131 Q048 Q066 Q047 Q095

576E2 396E2 279E2 167E2 136E2 278E2 232E2 215E2 157E2
10969 5629 3617 1616 1263 4172 3196 1975 1674
1.643 Q779 Q587 Q180 0112 Q591 Q459 0271 Q0169
0.396 Q186 Q126 Q036 Q014 Q118 Q074 Q066 Q027
0.097 Q051 Q034 Q009 Q004 Q038 Q025 Q016 Q009
0.044 Q024 Q017 Q004 Q002 Q018 Q014 Q007 Q004
0.280 0186 Q136 Q019 Q012 Q124 Q082 Q025 0021
2662 2325 2225 1652 1070 1137 Q963 1293 0662
1482 Q949 Q757 Q302 0280 Q608 Q442 Q274 Q191
0555 Q370 Q248 Q054 Q047 Q228 Q134 Q064 Q047
0.112 Q075 Q048 Q012 Q010 Q050 Q030 Q011 Q008
0.017 Q012 Q012 Q008 Q016 Q015 Q015 Q009 Q016
0.001 Q001 Q002 Q004 Q014 Q004 Q007 Q004 Q013
282E2 178E2 144E2 66407 50885 134E2 112E2 63150 55917
6.056 2844 2020 0596 Q476 2059 1495 Q725 0616
0.714 Q0421 Q295 Q063 Q038 Q0261 Q170 Q083 Q057
0.155 Q109 Q061 Q009 Q005 Q084 Q037 Q013 Qo010
0.057 Q035 Q024 Q003 Q002 Q021 Q016 Q005 Q003
0.026 Q019 Q014 Q001 Q001 Q014 Q009 Q002 Q001
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whereas the smallest MSE fsgx (with k = 8) is.012 The comparisons are even
more dramatic withl = 500

For AR(1) errors with |p| < 0.8, a tight selection procedure such as those
based on information criteria permits the MSE’s to be as small as those obtained
with s, evaluated with an optimal selection procedure for the bandwikik
statistics2g is inferior to s3,, only in the case of positive AR) errors when
prewhitening is applied

Whenp is close to the boundary of ong is nearly nonstationary with a power
spectrum that becomes unbounded whapproaches.1t is then not surprising
that neithers?g nor s3 A produces satisfactory estimatesoot Whereas the bias
remains high compared to other casiess substantially smaller witlsZg than
with s,.. Also, unlike the bias 083, the bias ofs3g decreases noticeably &s
increases

Forp close to—1, the bias and MSE af2g are dramatically smaller than those
of sZ,. Indeed even though a tight selection procedure produces the smallest
MSE for s?g, any data-dependent rule would have resulted in a dramatically
smaller bias and MSE thasj,, constructed using an optimal bandwidgor
example with T = 100 andp = —0.8, the MSE ofsZg using a data-dependent
method to seledtvaries from022(t-10) to.004(SW) whereas the smallest MSE
of s3a(atMy = 3) is 1.04. The differences remain as important for larger sample
size

Our simulation results therefore lead to the following general observations
well-behaved case® > —.5 and|p| < .8), both s2g and s, produce good
estimates ofr 2, buts is somewhat better in a mean-squared sense if evaluated
at the optimal bandwidthn such caseghe choice of the optimal truncation lag
appears to be more important than the choice between the two estinhatibres
AR(1) case with a large value @f, both estimators have rather poor properties
However s2ghas noticeably smaller biases and slightly smaller M8Eases of
large negative serial correlatigmoving average or autoregressivine proper-
ties ofs2g are dramatically superior to thosesfj,irrespective of the method to
choosek. Therefore the cases in which the choice of the estimator for the spectral
density at frequency zero matters are wiems —1, and|p| — =1 In all three
casessa appears inferior

4. THEORETICAL RESULTS

To analyze the behavior of the estimates from a theoretical perspegt\aopt
the approach of Nabeya and Per(@Q94), treating the moving average or auto-
regressive coefficients as local to the relevant boundanesconsider a slight
extension of the models specified (8:1) and(3.2) with {y;} generated by the
following nearly integrated model

Vi =1+ c/T)yi1+ U (4.1)

The series has an autoregressive root local to unity with noncentrality param-
eterc. Under the null hypothesis of a unit rgat = 0. The advantage of this
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generalization is that it allows deriving the local asymptotic power of unit root
tests Our results are used to that effect in Perron and2896. There are three
relevant cased he first is when the moving average coefficient is locatth in
which case the process is described by

U = € + 0re,
0r = —1+ 6/JT. (4.2)

Throughout{e} is assumed to beiid. (0,52). This specifies that the moving
average coefficient approached at rateyT. As T increasesthe errors have a
noninvertible moving average representation @y¢lis white noiseHence this
model was labeled as a “nearly-integrated nearly white noise” prothsssec-
ond case is when the autoregressive coefficient is localltcand the process is
described by

U = prU-1 T &,
pr=1+¢/T (4.3)

This specifies that the autoregressive coefficient approa¢tieat rateT. As T
increasesthe errors have a unit roocand{y;} has accordingly two unit roots
Hence this model was labeled as a “nearly twice integrated” pracess third
case is when the autoregressive coefficient is locat-ig and the process is
described by

U = ptU 1+ €,
pr = —(1+¢/T). (4.4)

This specifies that the autoregressive coefficient approactieat rateT. As T
increasegthe errors have a negative unit root apek y,_, + €, a process with a
unit root at period 2Hence this model was labeled as a “nearly seasonally inte-
grated” process

All these specifications were found to be useful in providing good approxima-
tions to the finite-sample distribution of the least-squares estimator in an auto-
regression of order on®©ur aim in characterizing the limits & ands3g in
these local frameworks is similarly to obtain better approximations and addi-
tional insights about their behavior when there is substantial serial correlation in
the errorsWe also summarize relevant results about the implied behavior of the
unit root tests

4.1. Local Asymptotic Properties of s,

In this section we consider the limit o&3,, for the case wherd/; acts as a
truncation lag The results are stated in the following lemma

LEMMA 4.1. Let{y,} be generated by4.1) and let €, be constructed as in
(1.2).
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(a) Suppose thafiu} is generated by4.2), then My *s3,ais Oy(1).
(b) Suppose thafu,} is generated by4.3), then(MT) *s§ais Op(1).
(c) Suppose thaffu;} is generated by4.4), then(M;T) *s3ais Op(1).

This lemma is proved in Perron and N§996 en route to explaining the
properties of unit root tests that adopt a kernel estimate foThese asymptotic
limits of s, arg however interesting in their own rightn all cases considered
S A is not only an inconsistent estimator ®f but diverges a3 increasegbe-
causeMy is required to increase dsincreasel The rate of divergence is more
severe in the autoregressive cases compared to the negative moving average case
These theoretical results are in accord with the simulations reported gaatiely
that biases and MSE are large and do not decrease much as the sample size in-
creases when the autoregressive coefficient is closeltor the moving average
coefficient is close to-1.

The results of the preceding lemma hold irrespective of the choice of the kernel
and are the reason for our earlier claim that the choice of the Parzen kernel in the
simulations is without loss of generalityhe choice of the kernel affects the
O,(1) factors in the lemma but not the rate of divergence of the estimators
The unimportance of the choice of the kernel in these situations is corroborated
by the empirical findings of Kim and Schmi@t990. Whereas the choice of the
kernel is of secondary importance for the issue considered tiergalue of the
truncation pointMy is of special importance because it dictates the rate of diver-

gence ofszt

4.2. Local Asymptotic Properties of the Autoregressive Spectral
Density Estimator, s35

The regression used to construct the autoregressive spectral density estimator is
evidently the same regression used to construct the unit root test of Said and
Dickey (1984). However the noise function of the three cases of interest each
has in the limit, a root on the unit circleHence we cannot appeal to results in
Said and Dickey1984 to derive the limit ofsZg in the local asymptotic frame-
works To that effectwe provide in the Appendixdetailed proofs of the results
stated in this sectian

Consider first the case pertaining to a large negative moving average coeffi-
cient Becausar? = o2(1 + 67)? we have that the limiting value is 0 because
6+ — —1 asT — co. The next theorem shovsg to be consistent in this case

THEOREM 41. Let{y,} be generated b.1) and(4.2). Let $x be obtained
by applyingOLSto (2.7). Then £z — 0 provided k— oo and KT — 0as T— co.

Becausey, is a white noise process in the limity, is overdifferencedn spite
of this, Theorem 41 shows that the augmented autoregression can still be used to
construct a consistent estimate ®f. Because in the limit-2 is 0, all that is
required is thab(1) — oo asT — oo, a result that follows ik — co andk/T — 0
asT — . The consistency af2gin this case is to be contrasted with the limit of
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s&a, Which divergesThis explains why in the simulatiopthe bias and MSE are
much smaller witrsZ than withs3a.

Consider now the case pertaining to a large positive autoregressive coefficient
Note that because? = o2/(1 — pr)? we have that the limiting value satisfies
T 202 = 02/¢$p? asT — oo given thator = (1 + ¢/T).

THEOREM 42. Let{y,} be generated bg.1) and(4.3). Let $x be obtained
by applyingOLSto (2.7) with k— oo and k= o(T¥/3). Let T(b(1) — b(1)) = n,
wheren is a randomvariable defined in the Appendijequation(A.7)). Then
T 283 — g2/(c+ ¢ + n)2

Note that in this cassZgis not consistent for the true value even under the null
hypothesis of a unit rodic = 0). Furthermoreit converges to a random variable
in the limit. Whereas, is a unit root process with noncentrality parametgn an
augmented autoregressionAm, it is a unit root process with noncentrality pa-
rameterc + ¢ + 5. Thus the augmented autoregression will fintgeneraliden-
tify u; as a unitroot process even whger 0. This accounts for the relatively poor
performance o§2gin models with positive residual autocorrelati®ecall how-
ever thatsia = O,(M+T) so that it understates? becausé/+/T — 0 asT — oo.
But, unlike s, Saris of the same order as the true vatug Hence our theoret-
ical result indicates that we can still expegk to be a better estimator thag,
even though both are likely to have poor properties because neither is consistent
Consider now the case pertaining to a large negative autoregressive coeffi-
cient Note that because? = ¢2/(1 — pr)% we have that the limiting value
satisfieso? — 02/4 asT — oo becausepr = —(1 + ¢/T). The next theorem
showsszg to be consistent fos 2 in this case

THEOREM 43. Let{y;} be generated b.1) and(4.4). Let $x be obtained
by applyingOLS to (2.7) with k — oo and k= o(T¥3) as T— oo. Then gz —
o2/4.

In the standard framewoyRy, is a stationary process whgnis integrated of
order oneFor the data-generating process in questphas a seasonal unit root
of period twg and henc@y, remains nonstationarkieuristically consistency of
sz follows from the fact that all the variables in the augmented autoregression
arel (1). Although the number of regressors increases with the sampleveize
show in the Appendix that consistency of the parameter estimates continues to
hold as in aregression with a fixed numbet ¢f) regressorsThe consistency of
S2riN this case is again to be contrasted with the limisgf, which diverged

5. IMPLICATIONS FOR UNIT ROOT TESTS

We now consider the implications of the local limitssif, ands2 for unit root
tests using the same local asymptotic frameworke spectral density estimator
is, of coursenot the only quantity that affects the properties of unit root t83ts
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sample moments of other quantities also matftke following two lemmas sum-
marize the relevant asymptotic results derived in Perron antLBg6.

LEMMA5.2. Let{y;} be generated by4.1) and let § . be constructed as in
(1.2).

(a) Suppose thafu,} is generated by4.2),then (M T) *Z, and (M{T) *MZ, are
Op(D).

(b) Suppose thafu;} is generated by4.3), then Z, and MZ, are O,(1).

(c) Suppose thatu;} is generated by4.4), then(M:T)'Z, and (M{T) *MZ, are
Op(D).

In all casesthe dvergence of Zand MZ, is to —co.

The implications for the unit root tests depend on the particular cases consid-
ered With negative serial correlatioZ, andMZ, diverge to—co at rate(M;T).
If a statistic has a limiting distribution that diverges-+tao and critical values
from a bounded distribution are used in hypothesis testiregconsequence will
be large size distortion3his is essentially why size distortions are reported for
Z,. Even though such results are widely reported for the negative moving aver-
age casgthe problem is important in the negative autoregressive caselalso
such caseghe selection ol in unit root tests entails considerations beyond the
usual bias-variance trade-off e, as analyzed in Andrewd 991), because in-
creasing the truncation lag can aggravate size distortions in theltetie case
of autoregressive errors with positive coefficierids andMZ,, remain bounded
asT increases even though,, diverges Hence smaller size distortions are ex-
pectedThese results are consistent with the simulations reported in the preceding
section

We now consider the limit behavior of the same unit root tests vefigis used
as the spectral density estimator at frequency.zero

LEMMAS5.3. Let{y;} be generated bi#4.1) and let K be obtained by appty
ing OLSto (2.7) as an estimator ofr2.

(a)? Suppose thafu;} is generated by4.2), then Z, = O,(T) but MZ, = O,(1).
(b) Suppose thaju} is generated by4.3), then Z,, MZ,, are both Q(1).
(c) Suppose thaju} is generated by4.4), then Z, = O,(T) but MZ, = Oy(1).

For the two cases of negative serial correlati@ and(c)), the implications
are first thatz,, remains with large size distortions eversif is used instead of
sZa. This is because the bias in the least-squares estimator still affedisectly
via @ and indirectly via the least-squares residyalsen constructing?). How-
ever the statisticMZ, is now bounded in probability in the local asymptotic
framework where the MAL) or the AR(1) coefficient converges te 1 asT — co.

The foregoing analysis suggests thifitve constructMZ, usingszg, we will
essentially have a unit root test that does not have any dependeacéereas
the limiting distributions are different from those obtained using the standard
asymptotic frameworkwe also found the standard asymptotic distribution to be
a reasonable approximation to the finite-sample distributioMaf,. For this
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reasonuse of the standard asymptotic critical values yielded unit root tests with
good size properties for all the parameters considered in the simuldbetesls
are contained in Perron and N§996. The consequence is dramatic improve-
ments in size properties over unit root tests that do have a dependeade.gn
Z,) in the problematic parameter spade give an idea of the magnitude of the
size improvementonsider the MAL) case withd = —0.8 andT = 10Q The size
of MZ,, usings?ris .09, whereas the size &, usingsiis .98, when the nominal
size of the test i905. Such contrasts in size remain in larger samples

The preceding lemmas also indicate that to have unit root tests with good prop-
erties simply replacingsz by s2g will not be sufficient we need to remove total
dependence of the test statisticdarAs discussed in Perron and Nb996), there
exist several other tests that also do not have a dependericdamexample a
modified Sargan—Bhargava test suggested by Stb880 or a modification of
the Z, test developed in Phillip€Ll987). The autoregressive spectral density es-
timator discussed here can therefore be used in arather broad range of applications

6. CONCLUSIONS

This paper has considered estimating the nuisance paramtetethe context of
unit root or cointegration testsVe have shown that a particular formulation of
the autoregressive spectral density estimator can provide estimates far superior to
the traditional kernel-based estimator constructed using least-squares residuals
The gains are importantin cases of strong negative correlatimhthere are little
losses in accuracy in the other cad&fien used in conjunction with tests that do
not depend o, it allows unit root or cointegration tests to have substantially
improved size in the presence of strong serial correlation in the residusts
this marked reduction in size distortions does not come at the expense of a re-
duction in powerThe estimator is very easy to construct and requires basically
only a standard autoregression estimated by (Hd8 these reasonwe believe
that this estimator is of substantial interest for applications

An issue that remains unsolved is an optimal method to select theloofithre
autoregressiamm he relative merits of data-dependent methods for selektamg
discussed in Ng and Perr¢h995 in the context of testing for a unit root from an
augmented regression such(2¥). Whereas we advocated the use of a general
to specific recursive procedure on the ground that it produces unit root tests with
better finite-sample size and pow#idoes not follow that this procedure is better
in the context of producing estimateg that have the smallest MSBs seen
from the results hergoo large akmax can induce excessive variability in the
estimates when the sample size is sordl well, a liberal selection rule is pre-
ferred with negative moving average errdist a conservative rule is preferred
with positive moving average errqiend with(finite orden autoregressive errors
in general This being saidit is not clear that the MSE of the spectral density
estimators is the appropriate criterion for selectingpecause our ultimate ob-
jective is to test for the presence of a unit root and not to obtain an estimafe of
thatis as precise as possib®early the optimal lag length should depend on the
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underlying data-generating procesknce an important avenue for future re-
search is to devise optimal data-dependent rulesggthat produce unit root
tests with good size both when the root of the error process is away from the unit
circle and when it is close to.iThese issues are discussed in Ng and Perron
(1997h.

Finally, it is important to note that the estimators considered here are clearly
aimed at providing estimates of the nuisance parameters in the context of testing
for unit roots or cointegratianin this casethe class of possible estimators is
constrained by the requirement that the estimates be boujeded least con-
verge to zero at a rate slower thehunder stationary alternativeghis is needed
to ensure consistency of the tesfone is interested solely in an estimate(@fr
times the spectral density function at frequency zero of some seagay;, then
better estimates are availabBecause one is no longer constrained to use the
least-squares residuals to constrsg, the first-differencestzy, can be used
Also, in the construction of the autoregressive spectral density estisgtmne
need not include the lagged lewgl ; in the autoregressiof2.7). These alterna-
tive constructions not only ensure consistency of the estimators under stationary
alternatives but also more efficient estimates when the level of the series contains
a unit root

NOTE

1. Lee and Phillipg1994 suggested an ARMA prewhitened long-run variance estimator that has
better properties than standard kernel estimators and can reduce size distorBgns in

2. Theorem 43 and the results in Perron and P96 are actually not sufficient to show that
MZ, = Op(1). What is required is thalsig = Op(1). This holds ifk — co, with k = cTY2 for some
constant. In Ng and Perrori1997h, we showed that model selection procedures based on the AIC
and a modified version of,itvhich works better in finite samplginply a selectedt that satisfies this
requirementMethods based on the BIC do nbbwever satisfy the requirement
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APPENDIX: MATHEMATICAL RESULTS

The following regression equation estimated by OLS is considered throughout this
appendix

K
Ay, = boYeo1 + X DAY + ey (A.1)
=

We denote the OLS estimates{ﬁ{}!‘:o and the estimated variance of the residualgas
T3 .., 6. As a matter of notatiowe let= denote weak convergence in distribution
and— convergence in probabilibplso, W(r) is the unit Wiener process defined 60, 1],
andJ(r) = f5 exp((r — s)c) dW(s) is the Ornstein—Uhlenbeck process with drift param-
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eterc. The norm of a matrixB is defined by|B| = sup{|Bx| : [|x| < 1}, where| x| =
(x'x)¥2 is the standard euclidian norm of a column vectoiVe also letC denote an
arbitrary constant that is not necessarily the same throughout

Proof of Theorem 4.1. We need to shoiEX ;b — oo, thatsZc= T 13,1 6% is
bounded a3 — oo, and hence thafg = s3/(1 — 3i_; b,)% — 0 withk/T — 0 andk — oo
asT — oo. It is useful first to note the following representation derived in Nabeya and
Perron(1994) for {y;} generated by4.1) and(4.2). DefineX; = (1 + ¢/T)X;-1 + &, ar =
(1-8/NT)(1—¢/T),br=1—(1—¢/T)(1— 8/JT) with ay — 1 andT ¥2b; — § asT —
oo, then

Yy = are + by X + 0,(T2), (A.2)

where the presence of tlg(T ~%/?) term is due to the fact that we specify= 1+ ¢/T
instead ofa = exp(c/T) as in Nabeya and Perr@¢h994).

Some of the arguments that follow are similar to those in Ci{a88§9 and Chang and
Dickey (1994. We define the following vectors of dimensigk + 1):

U/ = (Yi-1,Z{), with Z{ = (AY;_4,...,AY; ),
. T
Vi=T71 > Uy,

t=k+1

V = Uez(_L_LO,...,O),,
and the following(k + 1) by (k + 1) matrices

T T
T 2 yZa 2 Vie1Z{
A t=k+1 t=k+1
Rr=T7" > U/ =T"1

t=k+1

)

T

-
2 Vi-1Z 2 VAVAS

t=k+1 t=k+1
_ . -
02Tt X (afe? +b2X2y) 1
t=k+1
B 1 2 -1
Rr=od -1 2 -1 :
-1 2 -1
L -1 2]
_ ) -
1+ 62f J(r)2dr 1
0
, 1 2 -1
R=oc -1 2 -1
-1 2 -1
b _1 2-

Using this notationwe haves = Ry1V;, whereg = (b, by, ..., By). We first state a few
results that are useful for subsequent derivations
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LEMMA A .1 LetX = (1+c/T)X_1+ &, then(a) |E(Xies)| = C; (b) |E(XXs)| =
TC for ts = T; (0 E(SL1Xe)? = O(T?); (d) SLiXi 18 = Oy(T); and (e)
T 230X = 02f5 ()2 dr.

Parts(a) through(d) are straightforward generalizations of results in FUll&76); part
(e) is a standard result for near-integrated proceskes following lemma collects some
useful results derived in Nabeya and Per(b894).

LEMMA A .2. Let{y;} be generated according t64.1) and (4.2) and let g, =
limi..€r/oe. Then as T— oo, (@ T1SL,1y2 1 = 02 + 026%f5 J.(r)?dr; (b)
T 1301 Y1l = —0&; (0) Y1 = e + 0edde(1); and(d) T2, uZ = 202,

Using Lemma A2, it is straightforward to derive the convergence results stated in the
following lemma

LEMMAA .3. Let{y,} be generated b{4.1) and(4.2). Thenforij=1,...,k,

(@

.
T D Vel =

t=k+1

o2 ifi=1
0 otherwise

(b)

1
a§<l+ Szj Jc(r)zdr> ifi =j,
[0]

.

T Y VY= 1

a'ez6zf Je(r)2dr if i #j;
0

t=k+1

(©
202 ifi =],
.
T71 E ut,iut,j:;’ _0.92 if ‘| _J|::L
t=k+1 )
0 otherwise

The following bounds can also be derived using Lemnia A

LEMMA A 4. Let{y,} be generated according t@!.1) and (4.2): (@ |E[y;Ys]| =
Cifs=tors=t+1 and |E[y,ys]| = CT %2 otherwise (b) E[u;us] = O for
|t — s| > 1 and |[E[uus]| = C otherwise (¢) E[S{_is1 Yt ;]2 = CT?if j = -1
and E[SC i1 yU]? = CT if j # —1; (d) E[S et ;]2 = CT for |j| > 1;
(®) E[Sii1 Y Yi-j]2 = CT?for any |

We now consider the limiting behavior of the moment maﬁi,x
LEMMAA 5. (a) |Rr — R| = 0; (b) [Rr — Re| = Oy (k/TV2).

Proof. To prove(a), we show that each element&f converges in distribution to the
corresponding element & Consider first thé1,1) element oRr. Using Lemma A2, we
have
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T 1
T Y y31=>a§<1+62f Jc(r)zdr>.
0

t=k+1

For the remaining elements in the first row Rf, using (4.2) and parts(a) and (b) of
Lemma A3, we have

T T c
T 2 Yie1AY =T 71 2 ytl<utl+ ?Yt2> - ad,

t=k+1 t=k+1

T T c
T Veadyi =T Y ytl<uti + ?ytil> -0

t=k+1 t=k+1

fori=2,...,k Consider now the elements of the lower right k matrix of Ry. We have
fori,j=1,...,k

T T /¢ c
T Y Ay Ay j=T71 > (?yti1+uti)<?ytjl+utj>

t=k+1 t=k+1

T T
=T 2 uHu[,j+c2T*3 2 Yi—i—-1Yi-j-1

t=k+1 t=k+1
T T
+CT 2 D Yeicale +CT72 D) YejoqUei. (A.3)
t=k+1 t=k+1

The last three terms converge to zero using p@tsnd (b) of Lemma A3. Thus by
LemmaA3(c), T 1 S 1 Ay Ay, = 202if i =, —o2if |i — j| =1, and 0 otherwise
This proves parta).

For part(b), define the matrixQ = Rr — Ry. We show that each elememy; (i,j =
1...,k+1),is suchthaTE(g?) = C, for some constar@. Consider first thé1,1) element
We have

T T
T E Y. =T71 E (are—q + br Xi—1)?

t=k+1 t=k+1
.
=T71 > (afe?,+bEXZ,+ 2arbr X_161)
t=k+1
and
T 2
TE(qfy) = 4a%Tb%T2E[ > Xt—let—1:| =C,
t=k+1

using(c) of Lemma Al and the fact thaar = O(1) andTb% = O(1). Consider next the
(1,2) elementWe have

T 2
TE(qf,) = E[T_l/z 2 (Vo1 A1 — U'ez)]

t=k+1

T 2 L 2
SE[T_l/2 > (ytlutl_o'ez):| -i-E[CT_S/2 > ytlyl2:|

t=k+1 t=k+1

.
+ E[ZCTS/z > Ve1Yeo(VqUeg — U'ez)] .

t=k+1
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The second term after the inequalityoi€l) using Lemma A4(e). Consider the first term

t=k+1

T 2
E[Tl/z E (Yt—lut—l_a'ez)]

T 2 T 2
SE[TUZ > (aTeEl—ag)} +E[T1/2bTT1 > xtletl}

t=k+1 t=k+1

T 2 T 2
+E|:aT0TT1/2 > etleIZ:| +E|:0TT1/2bTT1 > xtlet2:|

t=k+1 t=k+1
=C,

using Lemma Al(c), the fact thalar — 1, and standard arguments faird. random vari-
ables Fori = 2,...,k, we have

T 2
TE(G?i1) = E[T Y2 X yt—lAyt—i:|

t=k+1

T T 2
=E|T Y2 X Yeqle +cT 32 ytlyul}

t=k+1 t=k+1

r T 2 T 2
=E[T Y2 3 Ytluti:| +E[CT3/2 > ytlyti1:|

t=k+1 t=k+1
=C,

using(c) and(e) of Lemma A4. Consider now the elements of the lower right submatrix
of Q. We haveusing(A.3), fori =1,...,k,

T T T
Gevivr=T 1 X (UEi—20) +c* T2 D y2i1+2cT 2 X YeoioaUp
t=k+1 t=k+1 t=k+1
T 2 T 2
TE(OZ 1iv1) = E[Tl/z > (Ui — 2%2)} + E[CZTS/Z > ytzil]
t=k+1 t=k+1

T 2
+2E[CT3/2 > yt_i_lut_i}

t=k+1
=C,
using Lemma A4 and the fact that

T 2
e § )]

t=k+1

t=k+1

. 2
= E[Tl/2 > ek —od) + (07eli 1 — 0d) + 20re; et_i_l}}

T 2 T 2
el 3 e e § o)

t=k+1 t=k+1

T 2
+E[29TT1/2 > et—iet—i—1:|

t=k+1

=cC,
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where the last inequalities follow using standard arguments and the fagtthat 1 For
the elements withi — j| = 1, we have

T 2 T 2
TE(qi2+:Lj+1)<E|:T1/2 > (ut—iut—j+0'e2):| +E[CZTS/2 > yt—i—lyt—j—lj|

t=k+1 t=k+1

T 2 T 2
+E[cT3/2 > ytilutj} +E[CT3/2 > ytiluti}

t=k+1 t=k+1
=C,

and for|i —j| > 1,

T 2 T 2
TE(qi2+l,j+l)SE|:T_1/2 > utiutj:| +E[C2T_5/2 > ylilylj1:|

t=k+1 t=k+1

T 2 T 2
+E[cT 2 > yisaU | FE|CT¥2 3 Vi1l
t=k+1 t=k+1

=C.

Hence we haveE(|Q||?) = C(k + 1)%T because is a matrix of dimensiorik + 1) X
(k+1). u

We consider now results pertaining to the vedlpistated in the following lemma
LEMMAA 6. (a) [Vr| = Op(k¥2); (b) |Vr — V|| = Op(k/T)¥2

Proof. We start by showing that each elementgfconverges to the corresponding
element ofV. Consider the first elemenfrom Lemma A2:

T T T
T ARYea=cT 2 D Y2 +T1 Y yau— —dd.
t=k+1 t=k+1 t=k+1

For the remaining elementae have using Lemma A3,

t=k+1 t=k+1

T T /¢ c
T ApAY =T Y (?Ytl"‘ut)(?)ﬁil""uti)

T T
=c?T 2 D YeaVeica + T2 D Yiale

t=k+1 t=k+1

T T
+¢T72 D viioau+T71 D uu

t=k+1 t=k+1

— —¢2 ifi=1 and O otherwise

This proves parta) because each of t& + 1) elements of the vectdl; is Op(D).
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Letv;(i=1,...,k+1) be theith element of the vectdt; — V. To prove parth), we show
thatTE(v?) is boundedConsider the lagtk —1) elementsUsing the preceding result and
Lemma A4, we havefor2=i =Kk,

T 2 T 2
E<T‘1/2 > AytAyti> sE(T‘l/z > ututi> +o(l) =C.

t=k+1 t=k+1

Consider now the first element of the vector2(Vr — V). We have

T 2
TE<T1 2 AYi V-1 + 0'3)

t=k+1

T T 2
=TE<cT2 > yE, AT ytlu[+a-ez>

t=k+1 t=k+1

T 2
=TE<T-1 > ytlul+aez> +0(1)

t=k+1

T T
ZE[Tl/zaT Y ee 1 +T Y2 X (arbrel i+ 0d)

t=k+1 t=k+1

T 2
+TY2, T D thul] +0(1)

t=k+1

T 2 T 2
<E[T1/2aT > etet_l} +E[Tl/2aT > (aez—ef_l)}

t=k+1 t=k+1

+Tb%E[T1 > thu[] +0(1)

t=k+1

=C,
becaus#; — —1, Th? — §2 andar — 1, and using Lemmas 4 and Al(c) and the fact

thatT Y23, .(e2, — o2) is bounded in probability-or the second elemergimilar
arguments show that

T 2
TE(v3) = Tl/ZE[T1 > Ay Ay g + 0'82:| =C,

t=k+1
and part(b) follows. u
The next lemma concerns the inverse of the moment mefrix

LEMMA A.7. |Rrl| = Op(k?) and if K*/T — 0as T— oo, then K2Ry — Ryt —
0.
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Proof. Note thatR; = A + E where

2 -1
-1 2 -1
A=c2 -1 2 -1 )
-1 2 -1
L -1 2
- . -
T S (afef s+ bIXE )2 2
t=k+1
2 0 O
E=o2 0 0 0 O .
0 0 O
0 0
L 0]

We havermin(E) = 0 andAmin(A) = 20&(1 — cos(m/k + 2)) = O,(k?) (see Dickey1990.
By Corollary 81-3 of Golub and van Loa(l984), Ain(A + E) = Anin(A) + Amin(E),
becauseh andE are symmetricThis impliesAin(Rr?) = Ryt = O,(k?) because the
maximal eigenvalue dRy ' is the reciprocal of the minimal eigenvalue®f.

For part(b), we follow developments similar to those in Said and Dickej’'984
Theorem 41. Letq = | R7* — Ry1| andQ = Ry — Ry; we have

q=IRr*(Rr = RORy| = [Rr IRy — Rel[Rr | = (a + IRF* DI QIR .
Upon rearrangemenive have
k¥2q = kY21 - [Re*lIQD IRFZ[QI.

Note that becausE(|Q|?) = C(k + 1)%(T — k), we havek¥?|Q| — 0 if k*¥T — 0.
Hence

k¥2q = (1—k™¥2k 2Ry [k¥2|QI "k *|R7[*k¥?|Q| — 0 asT — oo,
which proves Lemma A. n
We are now in a position to prove the following result

LEMMA A .8. Suppose k> oo and k*%/T — 0as T— oo, then| 8 — 3| — 0, where§ =
R71V. Alsq because Tt 3,1 (a2e? 1 + b¥XZ 1) = 02(1 + §2[3 J.(r)?dr), we hae
I8 — B| — 0, whereg = R V.

Proof.
|18 = Bl = IRs ™V — Re*V| = [Re*Vr — Ry ™V + Re 'V — Ry V|
= Ry = Re Y[ Vr [ + [Re IV = V|
= K2 | Ry = Ry k22 V| + K5/2T /2 2[Ry 1T V2K 42Ny = V| - 0

using Lemmas 4 and A7 and the fact that*yT — O. n
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Becaus&X_, b is a continuous function of the vectgr= (b, by, ..., by), the limit of
Eikzl b, is the same as that (Eik:lﬁi, whereB = (Bo, B1,.-.,Bx) is the solution tqB =
R™1V. We have usedMAPLE to verify thatg, = (k — i + DS/A + (k + 1)) (i =
1,...,k), whereS = 0262 J.(r)?dr. Hence =, B; = k(k + 1)S/(2(1 + (k + 1)S))
andk 13K, B; > % ask — co. This shows thalEl ;b — o0 asT — oo with k — oo.

Finally, note that the same result holdkifyT — co andk/T — 0 asT — oo because
from Lemma A8, |3 — 3] would be bounded below by the cas®/T — 0 and we still
obtain =K ;b — o as T — . To complete the proofit remains to show thas2
remains boundedegardless of the rate at whi¢happroaches infinityNote first that
=T 13 182 =T 13,64, using standard properties of projectioktence
all we need to show is thaf 13, eZ remains boundedThis is straightforward
using the following representation ef:

ex=6&+ > by
i=k+1
and using the fact thdg; = —(1 + ¢/8VT)(1— 8/4T)'. Details are omitted |
The Nearly Twice Integrated Model

Proof of Theorem 4.2. Itis useful first to state the following lemma proved in Nabeya
and Perron(1994).

LEMMA A.9. Let {y;} and {u;} be processes gen by (4.1) and (4.3). Define
Jo(r) = [Sexp((r — s)c) dW(s), J,(r) = [5exp((r — s)¢)dW(s) and Qc(J,(r)) =
Joexp((r — v)c)J,(v) dv. As T — oo

(@
Tis/zyT = o'ch(J(/)(l));
(b)
T 1
TS s o2 [ Qi
t=1 0
()

T 1
T3 glytflut = (03/2){QC(J¢(1))2 - ZCJO Qc(J4(1))? dr};
(d)

T 1
T2 = U-ezf Jy(r)2dr.
(0]

t=1
The autoregressive representation of the data-generating process is

Ay, = (=Cp/T?)y_1 + (1 + (C+ ¢)/T + cp/T?) Ay, + €.
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This impliesb; =0 fori > 1 Thus lim,_,., SKob=1+(c+ ¢)/T+ c¢p/T2 To derive the
limit of b(1), it proves convenient to write the regressidnl) as

K
Ay = 8oYeo1 + 81AY1 + X 8 A%y g + €y,

i=2

whered; =3 ;b =hb;=(1+ ((c+ ¢)/T)+ (cp/T?)) ands; = —ij:i bj=0(i=2,...,k
(note thats, = by and ey = &). We need to derive the limit oT (5; — 8,). Let Z{ =
(A% 1,..., 0% 1), U = (Yi_1,AY;_1,Z{), and define the followingk + 1) X (k + 1)
matrices

r T T T .
2 y&1 2 Yi-1AYi1 E Yi-1Z{
t=k+1 t=k+1 t=k+1
A T T T T
Ry = 2 U Uy = 2 AV 1Yi-1 2 AyZ 4 2 Ay, 1 Z{ |,
t=k+1 t=k+1 t=k+1 t=k+1
T T T
> Ve1Zs > AwZ > ZZi
L tZk+1 t=k+1 t=k+1 i
Hr Ky 7
Ky Jr
ﬁTi 0-62
aé
i o]

with Hr = T4 301 V21, Kr = eT 4300 V2o + T2 30 s W g and gy
T 251 ((6/T)VieoWiep)? where W, = Si_jexp((t — j)¢/T)g and
Stexp((t —i)c/T)W. Also,

Ao Ay
Ar A

1
where Ao = [3Qu(Js(r)2dr, A1 = 3Qu(J,(1)% and A, = cQ(I(1)? —

2[5 Qc(J,(r)2dr + f5J,(r)2dr. Note that using standard resultsee e.g., Nabeya
and Perron1994 we have

.
Hr=T7* > V2= 08\,

t=k+1
T T
_ T4 2 -3 2
Kr=cT > VEL+T > VioWe g = 0dy,
t=k+1 t=k+1

T /¢ 2
H=T23 (?\/12+V\41> = 0As.

t=k+1
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Hence |Rr — R| — 0. Also defineDy = diag{T 2T LT ¥2...,TV2}. We first show
that each element of the matid¢ Ry Dt converges in distribution to the corresponding
element ofR.

LEMMAA .10. Let{y,} be generated b{4.1) and(4.3). Thenforij=1,...,k—1,as
T — oo:

@
.
T3 D YAy = (0.62/2)QC(J¢(1))2 = Ay
t=k+1
(b)
T 1
T? 2 Ay, = 0'eZ<CQc(J¢(1))2 - sz Qc(J¢(r))2dr
t=k+1 0
1
+f Jd)(r)zdr) = Ay
0
(c)
.
T' > A%, A%, ;=02 ifi=] and Ootherwise
t=k+1
(d)

T
T%2 E Vie14%y = 0;

t=k+1

(e)

.
T ¥2 > Ay 1A%, =0,

t=k+1

Proof. To prove(a), note thatAy,_; = (¢/T)y;—» + U;—1. Therefore

.
T3 Y Y1l

t=k+1

T c
=T° > (A+c/Tyn+ utl)(? Y2+ Ut1>

t=k+1

T T
=cl+o/TT* 3 y2o+T31L+¢/T) D Yeoaleq + 0p(1)

t=k+1 t=k+1
2
g
= = Q1) = Mo,

using Lemma A9(b) and(c). The proof of partb) follows similarly using Lemma A(b)—
(d). To prove part(c), note thatA?y, ; = (¢/T)2y,_i_» + ((c+ ¢)/T)u_;_1+ €_;. The
result is immediate after expanding ternfzarts(d) and (e) follow using analogous
arguments n
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Now letQ = D+ Ry Dt — Ry. Itis straightforward to show that a typical element of this
matrix, oj;, satisfiesTE(q?) = C for some constar®. Hence E|Q|? = C(k+ 1)%/T. Also,
becaus&; is a block diagonal matrix with lowek — 1) X (k — 1) block being the identity
matrix (scaled, we have| Ry || = Op(1). Using arguments as in Said and Dick@p84),
we havek2|(DrRrD1)* — Ry — 0 in probability ifk3/T — 0.

Becausey = & it remains to establish the limit 4Dy 3. ; U, &]|. We start with the
following lemma

LEMMAA .11 Let{y,} be generated b4.1) and(4.3). Then(a) E[ y;ys] = T2C; (b)
E[Ay?] =TG; (o) E[(A*w)*] = C.

Proof. For part(a), becausg: = =;_;(1+¢/T)" " S[_1(1+ ¢/T)" g, andE(e g) =
0ifi+#j,
t r
E(yiys) = E[( A+ S A+ ¢/T)"Jq>
r=1 =1

X ( 2 (1+c/M) Y A+¢/T) g )}
= CT?E(e?) =TZC,

becausdl + ¢/T) and(1 + ¢/T) are bounded by some constafihalogous arguments
show thatE(uus) = TC and E(y;_1u;) = T2C. For parts(b) and (c), write Ay, =
(¢/T)yi—1+ U, andA?y, = (¢/T)Ay,_1 + (¢/T) U1 + &. It follows that

2

21 — c 2 2 2c
E[Ayf] =E ﬁytfl +E[Ut]+?E[Yt71Ut]5TQ

c ¢ 2
E[(A%y)?] = E[(; Ay, 4 + ;utﬁet) ]Sa§+0(1)—0. L

LEMMAA .12, D301 U e = Op(k¥2).
Proof. Note first that

2 T 2 T 2
:E<T2 E ytlel> +E<T1 E Aytlel>

t=k+1 t=k+1

.
EHDT > Ue

t=k+1

k T 2
FSE(T 3 )
i=2 t=k+1
and thaty,_1, Ay;_1, andA?y,_; 1 are independent &. The result follows using Lemma
A.11, which allows us to derive the following

t=k+1 t=k+1

T 2 T
E<T2 > ytla) =T% > E[y2.]E[€f]=0(TY),

T 2 T
E<T‘l > Ay{let> =T72 > E[(Ay—1)?]E[€f]=0(1),

t=k+1 t=k+1

k T T
E<T”2 > Azyt—i+1et>2:2-r1 > El4%y-i:1)?]E(e?) = O(k). u
=2 i

t=k+1 i=2 t=k+1
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We are now in a position to derive the limiting distribution of the estimatase have

T T
D6 —8) = (DrRyD7y) ' —=RyHDr X Ui + Ry'Dr X Ue. (A.4)
t=k+1 t=k+1

Taking norms the first and second terms aog(1) and O,(k¥2) (because|Rr?| =
0,(1)), respectivelyso that| D1 (8 — 8)| = Op(k*?). Becausd Dt | = O(T?) andk =
o(T*3), we have|s — 8] — 0. Note that(A.4) implies D7 1(6 — 8) = Op(1), and the
limiting distribution ofD+ (8 — 8) is that ofRy D+ 3., U, &, which is the same as the
limiting distribution ofR"1Dt =, ; U, & in view of the fact thaf Ry — R| — 0. We are
interested in the second element of this vedBgrblock diagonalitythe limit of the first
two elements is given by

}
. T2 _
! <T2<ao—ao>> {Ao Al]l DREY

. = lim 2, A5
Too\ T(8,— 8y) Ao Ap| Tem| T e (A5)
T Y Ay
t=k+1

It is straightforward to show the following limits

T 1
T2 yt—191:>0'eZJ;J Qc(Jy(r) dW(r) = 0@ As;

t=k+1

T 1 1
TS Ayt_letza(s(c f Qu(J,(r) dW(r) + f J¢<r>dw<r>>za§A4. (A-6)
0 [0]

t=k+1
LetT(8 — 8;) — m, where
N = (=A1Az+ AgA1)/ (Ao Ao — AF). (A7)
Using this result andA.5), we haveT (§; — 1) = T(6; — 81) + T(61— 1) = n+c+ ¢.
Becausds — 8| — 0, it is straightforward to show thag, — o2 andT “2s2g= o 2/(n +
¢ + ¢)2 This proves Theorem.2. u

Nearly Seasonally Integrated Model

Proof of Theorem 4.3. We first define the following variables to be used throughout
Let

A(r) = (¢ = ©)[Qc(Ig,2(r) = Qc(Jp,2(r)] + 2Jc.4(r),

B(r) = Jp,a(r) — Jp,2(r),

C(r) = A(r) = B(r),

wherel; 1(s) = [gexp((s—v)c) dWA(v), 3y, (s) = 5 expl(s—v) ¢) dW(v), Qc(J,i(r)) =
Joexp((r — s)c)Jsi(s)ds for i = 1,2, Wy(r) and Wx(r) being independent Wiener

processes
The following lemma is proved in Nabeya and Per(t894).
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LEMMAA .13 Let{y;} and{u} be generated by4.1) and(4.4). Then

(@
T 1
T’22y1%1:>(a§/8)f (C(r)? +B(r)?)dr;
t=1 (0]
(b)
T 1
T2 Yl = 7(05/4)f B(r)2dr;
t=1 0
(©)

Ty = (02/8) A

(d)
T 1
T2 u§:>(a§/2)f B(r)2dr.
t=1 0

The autoregressive representation of the model in ternta.4j is

Ay, = (c¢/T? +2¢/T)yi1 — (14 (c+ ¢)/T + cd/T?) Ay 1 + €. (A.8)

This impliesb, = —(1+ ((c + ¢)/T) + (c¢/T?2)) andb; = 0 fori > 1. Thus

c
. i’)

T,
which converges te-1 asT — co. Henceto prove the theorem it is sufficient to prove that
the OLS estimates frorfA.1) are consistent for the coefficients statedAn8). Consis-

tency ofs3 for o2 then follows immediatelyit is convenient to write the regression.1)
as

ct+do

k
lim Zbi——<l+ =

k—o0 {27

K
Ay = 8oYeo1 + 8141 + > 8 ArVioiv1 T s
i—2

WhereA, i i1 = Yioi+1— Yeoi—a With & = 3/ (= 1)1 7', (i =1,...,k). Note thaio = by,
ew = @, andZ[C1 (8 + 8iv1) + 8 = SiCib. Let Z{ = (AaYe 1, AoYi 1) Uf =
(Yi—1,AV:—1,2Z{), and define the followingk + 1) X (k + 1) matrices

T T T
> Ve > Ve1ly g > YeaZ
t=k+1 t=k+1 t=k+1
. T T T T
Rr= > UU/=| X AV 1Y > Ay, > Ay Z{ |,
t=k+1 t=k+1 t=k+1 t=k+1
T T T
E Yi-17Z¢ 2 Ay 1Z; 2 VAV
L t=k+1 t=k+1 t=k+1 -
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RN

palt
4

Il
38

with Hr = T 2720 [2W2 ) + 2W 1V + V241, 3 = T23{02 1 V2, whereV, =
X;,t - xit,

W = El[(qb —c)exp(2e(t — ))/T)(Xi; — X3;) + exp2e(t —)/T)ey]
i

with X5 = 3{_; exp(2¢(t — )/T)ey andX3 = =j_, exp2¢(t — j)/T)ey—1. Also,

AO A1/2
A2

wherelo = (3)[3[C(r)? + B(r)2]dr andA; = (3)f4 B(r)2 dr. Note that using standard
results(seg e.g., Nabeya and Perroii994 we haveH = 021, and}y = o2 A,. Hence

IRy — R| — 0. Also defineDy = diag{T LT LT ¥2..., T2}, We first show that each
element of the matri©+ Ry Dt converges in distribution to the corresponding element of
R. The relevant results are stated in the following lemma

LEMMA A .14. Let{y,} be generated by4.1) and (4.4). Then for ij = 2,...,k, as
T— oo:

(@
T 1
LD ylflAytflz(erM)f B(r)2dr = (c2/2)Ay;
t=k+1 0
(b)
T 1
T2 X Ayél:\f(oﬁ/z)f B(r)2dr = oZAq;
t=k+1 (o]
(c)

.
T2 2 Vie1AoV-i+1=0;

t=k+1



600 PIERRE PERRON AND SERENA NG

(d)
T
T2 E Ay 1AoY 41 =05
t=k+1
(®
T
T E (AzYi—is1)? = 0
t=k+1
(f)

.
T AoV iv1A2Yj+1=0.

t=k+1

Proof. To prove(a), note that becausg 1 = atVy;—» + U—1 (With ey =1+ ¢/T) and
Ay 1= (¢/T)Yr—2 + U1,

.
T2 Y1l

t=k+1

T

T T
=T 3car >, Y2o+T 3car D Yeoler+T 2ar D Yeoleg

t=k+1 t=k+1 t=k+1
T 1
+T72 Ut271:>(0§/4)f B(r)2dr = (0&/2) A4,
t=k+1 0

because the first two terms apg(1), and using the results of Lemmal8. For part(b),

T T /¢ c
T2 A, =T2 3 <? Yt2+U11><? Yt2+Ut1)

t=k+1 t=k+1

T 1
=723 u12*1+0p(1)=>(0'ez/2)f B(r)2 dr=c2,.
0

t=k+1
Parts(c) to (f) follow analogously using the representation

(C+¢)y“+[(0+¢) +C_¢;
T T T

AoVi-iv1 = :|ytil te—it1,

along with the results thaf 231 Vioiv1Yejs1 = Op(D) and T 1S, yi 41 X
C—j+1= Op(l) | ]

Now letQ = D+ Ry Dy — Ry. Itis straightforward to show that a typical element of this
matrix, g, satisfiesTE(q¢) = CT for some constar€. Hence E|Q|? = C(k + 1)T.
Also, becausdRt is a block diagonal matrix with loweik — 1) X (k — 1) block being the
identity matrix(scaled, we have| Ry | = O,(1). Using arguments as in Said and Dickey
(1984, we havek 2| (Dt RyDr) L — Ryt — 0 in probability ifk3/T — 0.
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Becausey = & it remains to establish the limit 4D+ 3{_ .1 U, & |. We start with the
following lemma

LEMMA A .15. Let{y;} be defined as irf4.1) and (4.4). Then(a) E[u?] = TC; (b)
Elyi-iu] =TC; (c) E[y?] = TC; (d) E[Ay?] = TC; (€) E[(A2yi-i+1)*] = C.

Proof. Part(a) follows because, is a near-integrated proces$ence Lemma A(b)
applies Following Nabeya and Perrdd994), defing fors=1,...,[T/2],

S

S
Xis= 2 (p3)% ey and X, o= > (p?)S ey y,
=1 =1

S S S
Yos = (1= 1) 2 (a%)S_JXLj + (a1 — p7) 2 (a%)s_lxz,j +yr E (a%)s_Jezj,
i=1 j=1 j=1

Uzs = X:I,s - PT X2,s and Ups—1 = X2,s - (1/pT)XLs + (1/PT)ezs,

wherept = (1+ ¢/T), ar = (1 +¢/T), andyr = at/p7, and note that & yr = O(T ).
Using these definitionsve havefor t odd andt — 1 = 2s

E[Vi-1U] = E[ YasUp(st1)]

S
> (a?)5IXy €11

j=1

S
) 1
> (a?)5 Xy j Xy s1| + E‘ P_T 1—=v7)

-1
SE‘_(]-*YT)
PT j=1

+E

s t
(a1 — p71) 2 (a%)s—szj Xosr1| + E|(yr/p7) 2 (a%)sﬂer €s+1
-1 -1

+ E(YT/PT)( Z (a‘lz')sjezj)xls+l .

j=1

It is easy to deduce that the second and the fourth terms(&yeFor the first term

-1 TC,T(1- yT)<M> =TC.
T

s
Z(a%)s_lxljxlﬁl p T(a%—l)

-1
El—@—vy7)
PT j=1
(A.9)
Similar derivations can be made to show that the third and the fifth terms ar®&iso
Analogous arguments hold foeven Thus E|y;_1u;| = TC. The arguments for the gen-
eral caseE|y,_;U;| are similar Consider now partc). We havefor t even

E[y2]=1-y1)2> > (a%)sfj(a%)sfiE(xj,j Xi)

i=1i=1
S S . . S .
+ (ar—p1)2 Y D (aB)s] (a?)STE(Xg; Xai) + y%VaI’< > (a%)51e21.>
i=1i=1 =1

+ yr(ar — p7) 2:1 _Ezl(a%)sfj(a%)sfiE(ij‘ &).
j=1i=
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Using Lemma Al(b), the first and second terms are boundedli@y Lemma Al can be
used to show the third and fourth terms are @@ ). Hence E[ y?] = TCfor t even
Becaus&E[ V2] = a2E[y2 1] + 2a7E[ yi_1u:] + E[uU?], it follows thatE[ y2] = TCfor
t odd also For part(d),

C C
E[Ay; Ays] = EK; Vi1t ut> (; Ys-1t us)}

C C C
= E[ﬁ yt—lys—l:| + E[uus] + T E[Ys 21U ]+ T [Vio1u]=TC,

using partga) to (c). Now for part(e), we have

+ +
AoVi-iv1 = —(C 2 Ye—i T [(C 9,

T T + ﬁ}%—i—l"‘et—iﬂ

andE[(A,Y;—i+1)2]is less than the sum of the expectations of the square of each term

Cc+ C
EL(AaYei-1)2] = (+ )2T 2E|y2,| + (qu .-

2
) Ely?i il + EleZ./=C
using part(c). u

The results in the next lemma follow

LEMMAA .16. Let{y,} be generated by4.1) and(4.4). Then

(@

t=k+1 t=k+1

T 2 T
E<T_1 2 ytlet> =72 2 E[yZ.]E[e?]= O(1);
(b)

E<T1 > Aytlet> =T72 > E[Ay2,]E[e?]=O(D);

t=k+1 t=k+1

(@]

k T 2 K T
E21<T1/2 > Azytwlet) =T Y S ElAsyei1)2]E[€?]= O(K).

t=k+1 i=1lt=k+1
We are now in a position to prove the following result

LEMMAA .17. D13 y:1 U & = Op(k¥2).
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Because
T 2 T 2 T 2
EHDT 2 Ue| = E<Tl Z yt—let> + E<Tl E Ayt—let>
t=k+1 t=k+1 t=k+1

k T 2
+> E<Tl/2 > AZyti+let> ,
i=2 t=k+1
the result follows directly from Lemma.A6.
We are now in a position to show consistency of the estimat®éé have

T T
Dr(6—8) = (DrRrD7) ' = ReHDr X Ui + Rr'Dr X Uie.
t=k+1 t=k+1
Taking normsthe first and second terms aog(1) and O,(k%?) (because|Rs?| =
0O,(1)), respectivelyso that|D1 (8 — 8)| = Op(k¥?). Because D1 *| = O(T) andk =
o(T¥3), we have|§ — 8] — 0, andb(1) = §; — —1 Thus sZg= S2/(1 — 81)%2 — 02/4,
becausa? — . |



