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Abstract

We consider the situation when there is a large number of series, N , each with T
observations, and each series has some predictive ability for some variable of interest.
A methodology of growing interest is to first estimate common factors from the panel of
data by the method of principal components, and then augment an otherwise standard
regression with the estimated factors. In this paper, we show that the least squares
estimates obtained from these factor augmented regressions are

√
T consistent and

asymptotically normal if
√

T/N → 0. The conditional mean predicted by the estimated
factors are min[

√
T ,

√
N ] consistent and asymptotically normal. Except when T/N goes

to zero, inference should take into account the effect of “estimated regressors” on the
estimated conditional mean. We present analytical formulas for prediction intervals.
These formulas are valid regardless of the magnitude of N/T , and can also be used
when the factors are non-stationary. The generality of these results is made possible
by a covariance matrix estimator that is robust to weak cross-section correlation and
heteroskedasticity in the idiosyncratic errors. We provide a consistency proof for this
CS-HAC estimator.
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1 Introduction

The use of factors to achieve dimension reduction has been found to be empirically useful

in analyzing macroeconomic time series, and adding factors to an otherwise standard re-

gression or forecasting model is being used by an increasing number of researchers1. Several

institutions, including the Treasury and the European Central Bank, are experimenting with

real time use of these factor forecasts.2 Bernanke et al. (2002) showed that the information

exploited in factor-augmented autoregressions (FAVAR) is important to properly identify

the monetary transmission mechanism. However, the theoretical properties of the estimates

obtained from factor augmented regressions are not well understood. In particular, how to

conduct inference remains unknown. This is a nontrivial problem as the regression model

involves “estimated regressors.” In this paper, we derive the rate of convergence and the lim-

iting distribution of the parameter estimates to enable construction of confidence intervals

for the parameters, the conditional mean, as well as the forecast.

Suppose information is available on a large number of predictors xit (i = 1, 2, ..., N ; t =

1, 2, ..., T ) and a smaller set of other observable variables Wt, such as lags of yt. Let

yt+h = α′Ft + β ′Wt + εt+h, (1)

where h ≥ 0 is the lead time between information available and the dependent variable.

The vector Ft is unobservable. Instead of Ft, we observe a panel of data xit which contain

information about Ft. We refer to

xit = λ′
iFt + eit (2)

as the factor representation of the data, where Ft is a r × 1 vector of common factors, λi is

the corresponding vector of factor loadings, and eit is an idiosyncratic error. If yt is a scalar,

(1) and (2) constitutes the ‘diffusion index forecasting model’ (DI) of Stock and Watson

(2002a). If h = 1 and yt+1 = (F ′
t+1, W

′
t+1)

′, (1) is the FAVAR of Bernanke et al. (2002). Both

types of analyses exploit the possibility that information in xit can be summarized in a low

dimensional vector, Ft. In economic analysis, Ft can be interpreted as the common factors

that generate comovements in the data.

If Ft is observable, and assuming the mean of εt conditional on past information is zero,

1See, for example, Stock and Watson (2002b), Stock and Watson (2001), Cristadoro et al. (2001), Forni
et al. (2001b), Artis et al. (2001), Banerjee et al. (2004), and Shintani (2002).

2See, for example, Angelini et al. (2001).
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the (mean-squared) optimal prediction of yt is the conditional mean and is given by

yT+h|T = E(yT+h|zT , zT−1, . . .) = α′FT + β ′WT ≡ δ′zT ,

where zt = (F ′
t , W ′

t )
′. But such a prediction is not feasible because α, β, and Ft are all

unobserved. The feasible prediction that replaces the unknown objects by their estimates is:

ŷT+h|T = α̂′F̃T + β̂ ′WT = δ̂′ẑT ,

where ẑt = (F̃ ′
t , W ′

t )
′. We use a ‘tilde’ for estimates of the factor model (2), while hatted

variables are estimated from (1). To be precise, α̂ and β̂ are the least squares estimates

obtained from a regression of yt+h on F̃t and Wt, t = 1, . . . T − h. The factors, Ft, are

estimated from xit by the method of principal components using data up to period T and

will be discussed further below.

It is clear that α̂ and β̂ are functions of “estimated regressors” F̃1, F̃2, ..., F̃T−h, and ŷT+h|T

itself also depends on F̃T . Thus, to study the behavior of ŷT+h|T and of the forecast error

ε̂T+h, we must examine the statistical properties of the estimated parameters as well as

those of the estimated factors. Stock and Watson (2002a) showed that ŷT+h|T is consistent

for yT+h|T . But for hypothesis testing, to construct standard error bands of the impulse

response functions of a FAVAR, to provide a confidence interval for the latent conditional

mean, and to evaluate the uncertainty of a diffusion index forecasts, we need the limiting

distributions of (α̂, β̂), ŷT+h|T , and ε̂T+h.

We are specifically interested in the case of large dimensional panels. By a ‘large panel’,

we mean that our theory will allow both N and T to tend to infinity, and N possibly larger

than T . An overview of the analysis is as follows. If we observe Ft but α is being estimated,

the variance of yT+1 − ŷT+1|T is Op(T
−1). Section 2 will show that when the factors have to

be estimated, α̂ remains
√

T consistent if
√

T/N → 0. But estimating the factor process Ft

will contribute another O(N−1) term to the forecasting error variance. Section 3 then shows

that the forecast for the conditional mean is min[
√

N,
√

T ] consistent and asymptotically

normal, where the precise rate will depend on whether T/N is bounded. On the other hand,

the forecast error ε̂t+h is asymptotically normal and dominated by the unconditional error

variance. We will make precise how to estimate the error covariance matrices so that valid

predictive inference can be conducted. A by-product of the present exercise is estimation

of the error covariance matrix when heteroskedasticity and cross-section correlation are of

unknown form. This is considered in Section 4. Simulations are given in Section 5. The

main proofs are given in the Appendix.
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2 Inference with Estimated Factors

In matrix notation, the factor model is X = FΛ′+e, where X is a T ×N matrix of stationary

data, F = (F1, ..., FT )′ is T ×r, r is the number of common factors, Λ = (λ1, ..., λN)′ is N ×r,

and e is a T × N error matrix.

Assumption A: Common factors

1. E‖Ft‖4 ≤ M and 1
T

∑T
t=1 FtF

′
t

p−→ ΣF for a r × r positive definite (non-random)

matrix ΣF .

Assumption B: Heterogeneous factor loadings

The loading λi is either deterministic such that ‖λi‖ ≤ M , or it is stochastic such that

E‖λi‖4 ≤ M . In either case, Λ′Λ/N
p−→ ΣΛ as N → ∞ for some r × r positive definite

non-random matrix ΣΛ.

Assumption C: Time and cross-section weak dependence and heteroskedasticity

1. E(eit) = 0, E|eit|8 ≤ M ;

2. E(eitejs) = σij,ts, |σij,ts| ≤ σ̄ij for all (t, s) and |σij,ts| ≤ τts for all (i, j) such that

1

N

N∑

i,j=1

σ̄ij ≤ M,
1

T

T∑

t,s=1

τts ≤ M, and
1

NT

∑

i,j,t,s=1

|σij,ts| ≤ M

3. For every (t, s), E|N−1/2
∑N

i=1

[
eiseit − E(eiseit)

]
|4 ≤ M .

4. For each t, 1√
N

∑N
i=1 λieit

d−→N(0, Γt), where Γt = limN→∞
1
N

∑N
i=1

∑N
j=1 E(λiλj

′eitejt).

Assumption D: {λi}, {Ft}, and {eit} are three mutually independent groups. Dependence

within each group is allowed.

Assumption E: Let zt = (F ′
t W ′

t )
′, E‖zt‖4 ≤ M ; E(εt+h|yt, zt, yt−1, zt−1, . . .) = 0 for any

h > 0; zt and εt are independent of the idiosyncratic errors eis for all i and s. Furthermore,

1. 1
T

∑T
t=1 ztz

′
t

p−→Σzz > 0

2. 1√
T

∑T
t=1 ztεt+h

d−→N(0, Σzz,ε), where Σzz,ε = plim 1
T

∑T
t=1(ε

2
t+hztz

′
t)) > 0.

Assumptions A and B together imply r common factors. Assumption C allows for het-

eroskedasticity and limited time series and cross section dependence in the idiosyncratic

component. The assumptions include eit that are independent for all i and t as a special
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case. The allowance for weak cross-section correlation in the idiosyncratic components leads

to the approximate factor structure of Chamberlain and Rothschild (1983). It is more general

than a strict factor model which assumes eit is uncorrelated across i. Under Assumption D,

{λi}, {Ft}, and {eit} are three mutually independent groups, but within group dependence

is allowed. The assumption is standard in factor analysis. Assumption E.1 ensures that the

(non-random) population moment matrix Σzz is full rank so that the regression model is well

specified and that the parameters are identifiable. The assumption that εt is a martingale

difference is appropriate in the context of forecasting. E.2 assumes ztεt+h obeys the central

limit theorem.

These assumptions are similar to those of Stock and Watson (2002). But they also allow

time-varying factor loadings with small variations such that λit = λi,t−1+vit/T with vit being

random variables with finite fourth moments. We assume time-invariant factor loadings.

2.1 Estimation

We first consider the properties of the least squares estimates when principal component

estimates of the factors, F̃ , are used as regressors. Let F̃ = (F̃1, ..., F̃T ) be the matrix

consisting of r eigenvectors (multiplied by
√

T ) associated with the r largest eigenvalues

of the matrix XX ′/(TN) in decreasing order. Then Λ̃ = (λ̃1, . . . , λ̃N)′) = X ′F̃ /T , and

ẽ = X − F̃ Λ̃′. Also let Ṽ be the r × r diagonal matrix consisting of the r largest eigenvalues

of XX ′/(TN), and H = Ṽ −1(F̃ ′F/T )(Λ′Λ/N). Let α̂ and β̂ be the least squares estimates

from regressing yt+h on ẑt = (F̃ ′
t W ′

t )
′. Define δ̂ = (α̂′ β̂ ′)′, and δ = (α′H−1 β ′)′.

Theorem 1 (Estimation) Suppose Assumptions A to E hold. If
√

T/N → 0, then

√
T (δ̂ − δ)

d−→N(0, Σδ)

where Σδ = Φ′−1
0 Σ−1

zz Σzz,εΣ
−1
zz Φ−1

0 , with Φ0 = diag(V −1QΣΛ, I) being block diagonal, V =

plim Ṽ , Q = plim F̃ ′F/T , and ΣΛ defined in Assumption B. A consistent estimator for Σδ,

denoted by
̂

Avar(δ̂) is

̂
Avar(δ̂) =

( 1

T

T−h∑

t=1

ẑtẑ
′
t

)−1( 1

T

T−h∑

t=1

ε̂2
t+hẑtẑ

′
t

)( 1

T

T−h∑

t=1

ẑtẑ
′
t

)−1

. (3)

As is well known, the factor model is unidentified because α′LL−1Ft = α′Ft for any invertible

matrix L. Theorem 1 is a result pertaining to the difference between α̂ and the space spanned

by α. Consistency of the parameter estimates follows from the fact that the averaged squared
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deviations between F̃t and HFt vanish as N and T both tend to infinity, see Bai and Ng

(2002). Having estimated factors as regressors does not affect consistency of the parameter

estimates. Stock and Watson (2002a) showed consistency of δ̂ for δ. Here we establish the

rate of convergence and the limiting distribution. Asymptotic normality of δ̂ follows from

that fact that 1√
T

∑T
t=1 ztεt+h obeys a central limit theorem. Because F̃t is close to Ft, the

same asymptotic result holds when zt is replaced by ẑt.

Formula (3) is the White-Eicker estimate of asymptotic variance and is robust to het-

eroskedasticity. However, if we assume homoskedasticity so that E(ε2
t+h|zt) = σ2

ε ∀t, a

consistent estimate of Avar(δ̂) is

̂
Avar(δ̂) = σ̂2

ε

[
1

T

T−h∑

t=1

ẑtẑ
′
t

]−1

. (4)

where σ̂2
ε = 1

T

∑T−h
t=1 ε̂2

t+h. As stated, the asymptotic variance is valid when ztεt+h is serially

uncorrelated. Extension of (3) to allow for serial correlation in ztεt+h is straightforward.

As shown in Newey and West (1987) and Andrews (1991), a heteroskedastic-autocorrelation

consistent variance covariance (HAC) matrix that converges to the population covariance

matrix can be constructed provided the bandwidth is chosen appropriately. It is noted,

however, when εt is serially correlated, yT+h|T defined earlier will cease to be the conditional

mean, given past information.

Theorem 1 is useful in rather broader contexts, as having to conduct inference when

the latent common factors are replaced by estimates is not uncommon. The estimated

common factors are natural proxies for the unobserved state of the economy. In Phillips

curve regressions, yt+h would be inflation, Wt would be lags of inflation, and Theorem 1

provides the inferential theory for assessing the trade-off between inflation and the state of

the economy.

A new tool in empirical work is factor-augmented vector autoregressions (FAVAR), which

amounts to including the principal component estimates of the factors to an otherwise stan-

dard VAR.3 More specifically, if yt is a vector of q series, and Ft is a vector of r factors, a

FAVAR(p) is defined as

yt+1 =
∑p

k=0 a11(k)yt−k +
∑p

k=0 a12(k)Ft−k + ε1t+1

Ft+1 =
∑p

k=0 a21(k)yt−k +
∑p

k=0 a22(k)Ft−k + ε2t+1,

where a11(k) and a21(k) are coefficients on lags of yt+1, while a12(k) and a22(k) are coefficients

on lags of Ft−k. Consider estimation of the FAVAR with Ft replaced by F̃t. Theorem 1 covers

3See, for example, Bernanke and Boivin (2003), Bernanke et al. (2002), and Giannone et al. (2002), and
Marcellino et al. (2004).
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estimation of those equations of the VAR with yt+1on the left hand side, Wt and F̃t on the

right hand side, where in the present context, Wt are the lags of yt. The following theorem

provides the limiting distribution of δ̂j for those equations with F̃t+1 on the left hand side.

Theorem 2 (FAVAR) Consider a p-th order vector autoregression in q observable variables

yt and r factors, F̃t, estimated by the method of principal components. Let ẑt = (y′
t . . . y′

t−p,

F̃ ′
t , . . . , F̃

′
t−p)

′, let Ŷt = (y′
t, F̃

′
t)

′ and Ŷjt be the jth element of Ŷt. For j = 1, . . . q + r, let δ̂j

be obtained by least squares from regressing Ŷjt+1 on ẑt, with ε̂jt+1 = Ŷjt+1 − δ̂′j ẑt. Under

Assumptions A-E and if
√

T/N → 0 as N, T → ∞,

√
T (δ̂j − δj)

d−→N

(
0, plim(

1

T

T∑

t=1

ẑtẑ
′
t)

−1

(
1

T

T∑

t=1

(ε̂jt)
2ẑtẑ

′
t

)
(
1

T

T∑

t=1

ẑtẑ
′
t)

−1

)
.

Theorem 2 states that the parameter estimates for these equations remain
√

T consistent.

Since impulse response functions are based upon estimates of the FAVAR, Theorem 2 enables

calculation of the standard errors. Although the condition
√

T/N → 0 is not stringent, it

puts discipline on when estimated factors can be used in regression analysis.

The limiting distribution in Theorem 2 is the same as if ẑt were observable. It is interesting

to compare the result with Pagan (1984), whose model is yt = α′xe
t + εt, and xt = γ′zt + ut

with xe
t = γ′zt. Let x̂t = γ̂′zt. Thus,

yt = α′x̂t + εt + α′(xe
t − x̂t) = α′x̂t + εt + ût

where ût = −(γ̂ − γ)′zt. Using x̂t as regressor, we have α̂ − α = (x̂′x̂)−1x̂′(ε + û). But

1√
T

T∑

t=1

x̂tût =
1√
T

T∑

t=1

x̂tz
′
t(γ − γ̂) = γ̂′ 1

T

T∑

t=1

ztz
′
t

√
T (γ − γ̂) = Op(1)

which is non-negligible, so estimated regressors have an effect on parameter estimation. In

our case, the corresponding term is Op(
√

T
min[N,T ]

). If N = 1, this term would be Op(
√

T ),

much larger than Pagan’s Op(1). This is because in Pagan’s model only finite number of

parameters γ is estimated in the first stage and we need to estimate T unknown quantities

F1, ..., FT . But if N is large, the corresponding term in our analysis is negligible.

2.2 Prediction Intervals

We first provide some intuition for the appeal of diffusion index forecasts. Consider a simple

forecasting equation yt+1 = αFt + εt+1 where εt are iid (0, σ2
ε). Also assume Ft is an AR(1)
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process Ft = ρFt−1 + ut with ut being iid (0, σ2
u) and being independent of εs for all t and s.

Suppose also for the moment that the model parameters are known.

If Ft is observable, the one-step ahead forecast of yt+1 at time t is given by αFt so that the

forecast error is εt+1, and the forecast error variance is σ2
ε . If Ft is not observable, then yt is

an unobserved components model. The univariate time series forecast is based on the ARMA

representation of yt. In this case, yt is an ARMA(1,1) process such that yt+1 = ρyt+ηt+1+θηt,

where ηt is white noise and θ depends on other parameters. Assuming the infinite past history

of yt (...., yt−2, yt−1, yt) is available, the one-step ahead forecast of yt+1 at time t is ρyt + θηt.

The forecast error is ηt+1 and the forecast error variance is σ2
η = E(η2

t+1). It can be shown

that σ2
η > σ2

ε , so smaller forecasting error variance is obtained when Ft is observable. This is

not surprising and conforms to the intuition that more information permits a better forecast.

The assumption that Ft is observable is of course not realistic. Nevertheless, if we observe

a large number of indicators that have Ft as their common sources of variation, we can exploit

this commonality to estimate the process Ft very well by the method of principal components

(up to a transformation). This is the essence of the diffusion index forecasting. In the limit

when N goes to infinity, the DI forecasts are the same as when Ft is observable. In this

example, the reduction in forecast error is σ2
η − σ2

ε , which is strictly positive. In cases with

more complex dynamics and/or when Wt are present, knowledge of Ft can still be expected

to yield better forecasts, because one can, in general, do no worse with more information.

Suppose the object of interest is the (latent) conditional mean of (1). If yt is inflation, the

estimated conditional mean can be interpreted as an estimate of the expected rate of inflation.

We now suggest how a confidence interval for the conditional mean can be constructed. From

(ŷT+h|T − yT+h|T ) = (δ̂ − δ)′ẑT + α′H−1(F̃T − HFT ),

we see that the forecast error has two components. The first term arises from having to

estimate α and β. Theorem 1 makes clear what this error is asymptotically. The second

term arises from having to estimate Ft. Under Assumptions A-D, Bai (2003) showed that if√
N/T → 0, then for each t,

√
N(F̃t − HFt)

d−→ N

(
0, V −1QΓtQ

′V −1

)
≡ N

(
0, Avar(F̃t)

)
,

where Q = plim F̃ ′F/T , V = plim Ṽ , and Γt = limN→∞
1
N

∑N
i=1

∑N
j=1 E(λiλj

′eitejt).

Theorem 3 Let ŷT+h|T = δ̂′ẑT . Under the assumptions of Theorem 1, and
√

N/T → 0,

(ŷT+h|T − yT+h|T )

BT

d−→N(0, 1)
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where B2
T = 1

T
ẑ′T Avar(δ̂) ẑT + 1

N
α̂′ Avar(F̃T ) α̂.

Because the two terms in B2
T vanish at different rates, the overall convergence rate for

ŷT+h|T is min[
√

T ,
√

N ]. More precisely, it depends on whether or not T/N is bounded.
√

T

convergence to the normal distribution follows from considering the limit distribution of

√
T (ŷT+h|T − yT+h|T ) =

√
T (δ̂ − δ)′ẑT + (T/N)1/2α′H−1

√
N(F̃T − HFT ).

When T/N is bounded, the estimation error associated with δ̂ and F̃t both contribute to the

asymptotic forecast error variance. However, the cost of having to estimate Ft is negligible

when T/N → 0 because
√

N(F̃t − HFt) is Op(1). Intuitively, when N is large, the factors

can be estimated so precisely that estimation error can be ignored. On the other hand, when

N/T is bounded, the convergence rate is
√

N . This follows from the fact that

√
N(ŷT+h|T − yT+h|T ) = (

√
N/T )

√
T (δ̂ − δ)′ẑT + α′H−1

√
N(F̃T − HFT ).

If N/T → 0, the error from having to estimate δ is dominated by the error from having to

estimate Ft.

In a standard setting, the error variance in predicting the conditional mean falls at rate

T , and for a given T , it increases with the number of observed predictors through a loss

in degrees of freedom. In contrast, the error variance here decreases at rate min[N, T ], and

for a given T , forecast efficiency improves with the number of predictors used to estimate

Ft. This is because in the present setting, a large N enables more precise estimation of the

common factors and thus results in more efficient predictions. This property of the factor

estimates is also in sharp contrast to that obtained in standard factor analysis that assumes

a fixed N . With the sample size fixed in one dimension, consistent estimation of the factor

space is not possible however large T becomes.

When the objective is forecasting, one would be more interested in the distribution of

the forecast error. Since yT+h = yT+h|T + εT+h, it follows that the forecasting error

ε̂T+h = ŷT+h|T − yT+h = (ŷT+h|T − yT+h|T ) + εT+h.

So if εt is normally distributed, ε̂T+h is also approximately normal with

var(ε̂T+h) = var(ŷT+h|T − yT+h) = σ2
ε + var(ŷT+h|T ).

We state this result as a corollary.
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Corollary 1 Under the assumptions of Theorem 3, and assume εt is iid N(0, σ2
ε), then the

forecasting error ε̂T+h is

ε̂T+h ∼ N(0, σ2
ε + var(ŷT+h|T ))

Assuming a constant conditional variance σ2
ε , a predictive interval for yT+h can be obtained

upon replacing σ2
ε by its consistent estimator 1

T

∑T
t=1 ε̂2

t . The above formula extends the

textbook definition of forecast uncertainty that only allows for estimation error in δ̂ (as in

Greene (2003), Chapter 6), to also permit using F̃t as regressors. Therefore, var(ŷT+h|T )

reflects model parameter uncertainty and regressor uncertainty. Note that in large sam-

ples, var(ε̂T+h) is dominated by σ2
ε , just as when all predictors are observed. However,

var(ŷT+h|T ) vanishes at rate min[T, N ], rather than the usual rate of T . Nonetheless, if we

ignore var(ŷT+h|T ), σ2
ε will under-estimate the true forecast uncertainty for a given T and

N . If εt is only conditionally normal with conditional heteroskedasticity, then σ2
ε should

be replaced by the conditional variance, which may be modeled by an ARCH or GARCH

process.

To conduct inference for either the conditional mean or the forecasting error, a consistent

estimator for B2
T = var(ŷT+h|T ) is required. In view of (5), an estimate of Avar(F̃t) (for any

given t) can be obtained by first substituting F̃ for F , and noting that Q̃ = F̃ ′F̃ /T is an

r-dimensional identity matrix by construction (Q̃ is an estimate for QH ′ whose limit is an

identity). We can then consider the estimator

̂
Avar(F̃t) = Ṽ −1Γ̃tṼ

−1,

where the r × r matrix Γ̃t can be one of the following:

Γ̃t =
1

N

N∑

i=1

ẽ2
itλ̃iλ̃

′
i (5a)

Γ̃t = σ̃2
e

1

N

N∑

i=1

λ̃iλ̃
′
i (5b)

Γ̃ =
1

n

n∑

i=1

n∑

j=1

λ̃iλ̃
′
j

1

T

T∑

t=1

ẽitẽjt (5c)

with n/ min[N, T ] → 0 in (5c), where ẽit = xit − λ̃′
iF̃t. The various specifications of Γ̃t

accommodate flexible error structures in the factor model. Both (5a) and (5b) assume that

eit is cross-sectionally uncorrelated with ejt. Consistency of both estimators was shown

in our earlier work. The estimator (5b) further assumes E(e2
it) = σ2

e for all i and t. Under

10



regularity conditions, σ̃2
e = 1

NT

∑N
i=1

∑T
t=1 ẽ2

it

p−→σ2
e . Although (5a) and (5b) both assume the

idiosyncratic errors are cross-sectionally uncorrelated, it is not especially restrictive because

much of the cross-correlation in the data is presumably captured by the common factors. At

an empirical level, allowing for cross-section correlation in the errors would entail estimation

of N(N−1)/2 additional parameters. Because N is large by assumption, sampling variability

could generate non-trivial efficiency loss. For small cross-section correlation in the errors,

constraining them to be zero could sometimes be desirable. The estimators defined in (5a)

and (5b) are useful even if residual cross-correlation is genuinely present.

When it is deemed inappropriate to assume zero cross-section correlation in the errors,

the asymptotic variance of F̃t can be estimated by (5c). Consistency of Γ̃t will be established

below and it requires nontrivial arguments. Suffice it to note for now that the estimator,

which we will refer to as CS-HAC, is robust to cross-section correlation and heteroskedasticity

in eit of unknown form, but requires covariance stationarity with E(eitejt) = σij for all t,

and that n = n(N, T ) satisfies the conditions of Theorem 4 to be discussed below.

Once appropriate estimators for Avar(δ̂) and Avar(F̃T ) are chosen, the above results

allow us to construct prediction intervals. This exercise is straightforward given asymptotic

normality of the forecasts errors. For example, the 95% confidence interval for the yT+h|T is

(
ŷT+h|T − 1.96

√
v̂ar(ŷT+h|T ), ŷT+h|T + 1.96

√
v̂ar(ŷT+h|T )

)
,

and the 95% confidence interval for the variable yT+h is

(
ŷT+h|T − 1.96

√
σ̂2

ε + v̂ar(ŷT+h|T ), ŷT+h|T + 1.96
√

σ̂2
ε + v̂ar(ŷT+h|T )

)
,

where v̂ar(ŷT+h|T ) is equal to B2
T , as defined in Theorem 3, with Avar(δ̂) and Avar(F̃t)

replaced by their consistent estimates.

Theorem 3 fills an important void in the diffusion index forecasting literature, as it goes

beyond the consistency result to establish asymptotic normality. The result has uses beyond

forecasting, as it provides the basis of testing economic hypothesis that involves fundamental

factors. Observed variables are often used in place of the latent factors when testing various

theories of asset returns. Using Theorem 3, tests can be developed to determine whether

the observables are good proxies for the latent factors. An application was considered in Bai

and Ng (2004). That analysis, which amounts to assessing the in-sample predictability of

the latent factors, makes use of the results presented here, with h set to zero.

11



3 Covariance Matrix Estimator: the CS-HAC

The CS-HAC estimator defined in (5c) is robust to cross-section correlation and cross-section

heteroskedasticity but requires the assumption of covariance stationarity which is not neces-

sary for (5a) and (5b), since these assume cross-sectionally uncorrelated idiosyncratic errors.

To understand the problem, it helps to first consider the cross-section regression yi = β ′
iλi+ei,

where λi is a r×1 vector of observed regressors. Then Γ = 1
N

Λ′ΩΛ, where Ω = limN→∞ E(ee′)

with e = (e1, ..., eN)′, and Λ is the N × r regressor matrix. Here, the “natural” estimator,
1
N

∑N
i=1

∑N
j=1 λiλ

′
j êiêj , is not consistent because it is equal to ( 1√

N

∑N
i=1 λiêi)(

1√
N

∑N
i=1 λiêi)

′

and 1√
N

∑N
i=1 λiêi converges to a random vector. The problem is analogous to inconsistency

of the unweighted sum of T sample autocovariances as a long run variance estimator in a

time series context. As time series data have a natural ordering, it is possible to consider a

kernel estimator that truncates at M < T lags with M → ∞ and M/T → 0.

Cross-section data have no natural ordering. It is only in special cases such as the

one considered in Conley (1999) that a truncated sum can be justified. Neither economic

theory nor intuition is usually of much help in obtaining a ‘mixing condition’ type ordering

of the data. More generally any cross-section permutation of the data is an equally valid

representation of information available, and the different orderings also cannot be ranked.

The common practice in cross-section regressions is to assume E(eiej) = 0 i 6= j, so that

Ω = plimN→∞
1
N

∑N
i=1 λiλ

′
ie

2
i .

A third alternative is available if we have observations on the cross-section units over

time. The basic intuition is as follows. If covariance stationarity holds, the time series

observations will allow us to consistently estimate the cross-section correlations provided T

is large. Furthermore, the covariance matrix of interest is of dimension (r×r), much smaller

than N , and can be estimated with n < N observations. An estimator along these lines

was considered in Driscoll and Kraay (1998) who showed in a panel context that using all N

cross-section units will yield an inconsistent estimate of the covariance matrix. They require

n = n(T ), as their residuals are based upon estimators that are
√

T consistent. They place

no other restriction on n, nor do they limit the amount of cross-section correlation. In their

setup, the regressors are observable.

We also seek to estimate the covariance matrix from panel data, but λi in our analysis is

not observed. To consistently estimate Γt, we require Γt not to depend on t, see Assumption

C4, so that we can use observations from other periods in addition to period t to estimate

Γ. This covariance stationarity rules out time series (unconditional) heteroskedasticity.
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Theorem 4 Suppose Assumptions A-D hold. In addition, E(eitejt) = σij for all t, and Γt

does not depend on t, denoted by Γ. Let n = n(N, T ) and define

Γ̃ =
1

n

n∑

i=1

n∑

j=1

λ̃iλ̃
′
j

1

T

T∑

t=1

ẽitẽjt.

Then
∥∥∥Γ̃ − H−1′ΓH−1

∥∥∥ p−→0 if n
min[N,T ]

→ 0.

The object of interest is the r × r matrix Γ, not the N × N covariance matrix for eit.
4

Accordingly, consistent estimation of Γ is possible using only n < N pairs of (λ̃i, ẽi). Use

of all N pairs is undesirable because the sampling variability induced by the ‘estimated

regressors’ λ̃i will be excessive. This reason for using n < N observations is distinct from the

truncation required in estimation of the long run variance, which is justified by the ‘mixing’

properties of the data.

The conditions that n/N → 0 and n/T → 0 are not restrictive. The simple rule we

use in the simulations below is n = min[
√

N,
√

T ]. Once n is defined, an estimator can

be constructed upon picking n out of N series from the sample. In large samples, Γ̃ will

converge to the same Γ whichever n series we pick.

4 Finite Sample Properties

To assess the finite sample properties of the procedures, simulated data are generated as:

xit = λ′
iFt + eit, i = 1, . . .N, t = 1, . . . , T

Fjt = ρjFjt−1 + (1 − ρ2
j )

1/2ujt j = 1, . . . , r, ρj = (.8)j,

et = vtΩ̄(b)1/2

where et = (e1t, ...eNt)
′ and vt = (v1t, ..., vNt)

′, and ujt and vit are mutually uncorrelated

N(0, σ2
v) random variables and Ω̄1/2(b) is the Choleski decomposition of Ω̄(b), an N × N

Toeplitz matrix whose j-th main diagonal is bj if j ≤ 10, and zero otherwise.5 By design,

the cross-section correlation ‘dies out’ if the units are spatially far apart, much like an

AR(1) process. We draw λi (once) from the uniform distribution with support on [0,1]. Four

4Note that Γ̃ is not directly estimating Γ. This is because we use λ̃i to estimate H−1′λi, and we also
estimate QH ′ instead of Q, where Q is the limit of F̃ ′F/T . From QΓtQ

′ = QH ′H ′−1ΓtH
−1HQ, the matrix

H is effectively canceled out.
5The results are similar if the innovation variance of ut is not scaled by 1 − ρ2

j . The scaling is enables us
to control the size of the common to the idiosyncratic component.
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variations of the DGP are considered. In DGP 1 (homoskedasticity and cross-sectionally

uncorrelated errors), we set b = 0 and σ2
v = 1. In DGP 2 (heteroskedasticity and cross-

sectionally uncorrelated errors), we set b = 0 but σ2
v(i) is uniformly distributed on (.5, 1.5).

In DGP 3 (homoskedasticity and cross-sectionally correlated errors), we let b = .5, σ2
v(i) = 1,

and in DGP 4 (heteroskedasticity and cross-sectionally correlated errors), b = 0.5 and σ2
v is

again uniformly distributed on (.5,1.5).

In the simulations, r = 2 and is assumed known. The series to be forecasted is

yt+4 = 1 + F1t + F2t + εt+4.

That is, h = 4, Wt = 1, α = (1, 1)′, and β = 1. The simulation design is similar to Stock

and Watson (2002a), but allows stronger cross-section correlations in eit. Three types of

confidence intervals will be presented:

(A): (5b) +(4) ; (B): (5a) + (3) ; (C): (5c) + (3).

For the sake of comparison, we also consider the coverage rates that would obtain when Ft is

known (and thus the standard errors omit terms involving Avar(F̃t)). This is labelled (D).

The coverage rates are reported in Table 1 for (i) the estimated conditional mean, ŷT+h|T ;

and (ii) the diffusion index forecast, ŷT+h. The coverage rates are generally close to the

nominal rate of .95, though three results are noteworthy. First, when N is small, the coverage

of (C) is too low for DGPs 1 and 2, with CS-HAC when in fact there is no cross-section

correlation. Second, for DGPs 3 and 4, the coverage of (A) and (B) are always too low since

these ignore the correlation in the errors. Coverage is improved using the CS-HAC, see (C).

Third, the coverage rates for yT+h|T are more sensitive to the relation between N and T

than for yT+h. This is in accord with theory, because the error in yT+h is dominated by εt+h,

whereas the error in yT+h|T is induced by the error in estimating Ft and the parameters.

4.1 Empirical Application

To illustrate, we use as predictors the 150 series as in Stock and Watson (2002b).6 We

consider h = 12 period ahead forecast of the annual growth rate of industrial production,

DIP, ie yt+12 = DIP = log(IPt+12)− log(IPt). For the sake of comparison, we first consider

the autoregressive forecast β̂ ′W1969:1, where Wt, are the lags of DIP plus a constant. We

first select the order of this autoregression using the BIC. The diffusion index model then

6The data are taken from Mark Watson’s web site http://www.princeton.edu/ mwatson.
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augments this autoregression with the estimated factors. If the factors have no useful infor-

mation, α should be zero, and the autoregressive forecast will be the optimal forecast. The

forecasting exercise begins by estimating the factors using data on xit from 1959:1 to 1969:1.

We then obtain α̂ and β̂ from a regression of yt on F̃t−12 and Wt−12, for t=1959:1 to 1969:1.

The forecast for y1970:1 is computed as α̂′F̃1969:1 + β̂ ′W1969:1. The sample is then extended by

one month, the factors and all the parameters are re-estimated, and the forecast for y1970:2

is formed. The procedure is repeated until the forecast for 1996:12 is made in 1995:12.

Because the series to be forecasted are one of the xits, the number of factors in yt is

the same as the number of common factors in the panel of data. This is determined using

r̂ = argmaxk=0,...kmax log σ̃2(k) + k · g(N, T ), where σ̃2(k) = 1
NT

∑N
i=1

∑T
t=1 ẽ2

it, see Bai and

Ng (2002). We report results for g(N, T ) = (N + T ) log(NT )
NT

. This penalty tends to select

a smaller number of estimated factors, but we correct for cross-section correlation in the

idiosyncratic errors.7

The average mean-squared error for the diffusion index and AR forecasts are 24.95 and

26.46, respectively. Figures 1a,b present the series to be forecasted, along with the 95%

prediction interval as suggested by the diffusion index and the AR forecasts, respectively.

5 Non-Stationary Factors

The preceding analysis can be extended to nonstationary factors. Although nonstationary

factors imply different rates of convergence for the estimated model parameters, we will now

show that for the purpose of constructing confidence intervals for forecasts, the formula for

stationary factors remains valid, at least under conditional homoskedasticity.

Assume again that the forecasting equation is yt+h = α′Ft + β ′Wt + εt+h, and the data

have a factor representation xit = λ′
iFt + eit. Instead of assuming Ft is covariance stationary,

we now assume

Ft = Ft−1 + ut,

where ut is a sequence of I(0) processes. To analyze this case of non-stationary factors, all

previous assumptions are maintained, except for the following:

Assumption A′: (1) E‖ut‖4+δ ≤ M and 1
T 2

∑T
t=1 FtF

′
t

d−→ΣF , where ΣF is positive defi-

nite (random) matrix with probability 1, and (2) εt is an iid sequence with zero mean and

variance σ2
ε , where εs is independent of zt = (F ′

t , W
′
t )

′ for all t and s.

7Additional results with g1(N, T ) = log(min[N,T ])
min[N,T ] are given in the working paper version of the paper
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Assumption A′(1) rules out cointegration among the components of Ft, although the

results are applicable for this case. Cointegration among Ft is equivalent to the existence

of both I(1) and I(0) factors, see Bai (2004). This case would require more complicated

notation and will not be presented to simplify the exposition.

Assumption A′(2) imposes conditional homoskedasticity on εt. But it also rules out lagged

dependent variable. When Ft is I(1), yt is also I(1), implying cointegration between the

dependent variable and Ft. Lagged dependent variable will be asymptotically multicollinear

with Ft. We therefore assume the absent of lagged dependent variable. As a result, the

following mixture normality is a reasonable assumption:

D−1
T

T∑

t=1

ztεt+h
d−→MN(0, σ2

εΩ) (6)

where MN(0, σ2
εΩ) is shorthand notation for conditional normal distribution with covariance

matrix σ2
εΩ, conditional on Ω, where Ω is the limiting random matrix of D−1

T z′zD−1
T where

DT = TIr+p if Wt is also I(1), and DT = (TIr,
√

TIp) if Wt is I(0). If some components of Wt

are I(1), and others are I(0), DT is adjusted accordingly. By definition, if ξ ∼ MN(0, σ2
εΩ),

then σ−1
ε Ω−1/2ξ ∼ N(0, I).

Let F̃ be a T × r matrix consisting of r eigenvectors (multiplied by T ) of the matrix

XX ′/(T 2N), corresponding to the first r largest eigenvalues (in deceasing order). Let Ṽ

be the diagonal matrix consisting of these eigenvalues. Define Λ̃ = X ′F̃ /T 2 and H =

Ṽ −1(F̃ ′F/T 2)(Λ′Λ/N).

Theorem 5 Suppose assumptions A′, B-E and (6) hold.

(i) Let α̂ and β̂ be the least squares estimators from a regression of yt+h on ẑt = (F̃ ′
t W ′

t )
′.

Again denote δ̂ = (α̂′ β̂ ′)′ and δ = (α′H−1 β ′)′. As N, T → ∞ with
√

T/N → 0,

(D−1
T ẑ′ẑD−1

T )1/2DT (δ̂ − δ)
d−→N

(
0, σ2

εI
)

(7)

where ẑ = (ẑ1, ..., ẑT−h)
′.

(ii) Let ŷT+h|T = α̂′F̃T + β̂ ′WT be the feasible h-step ahead forecast of yT+h. Under the

assumptions of Theorem 5
ŷT+h|T − yT+h|T

CT

d−→N(0, 1) (8)

where C2
T = σ̂2

ε ẑ
′
T (ẑ′ẑ)−1ẑT + 1

N
α̂′ Ṽ −1Γ̃tṼ

−1 α̂.

The theorem shows that α̂ converges to H ′−1α at rate T and β̂ converges to β at rate
√

T

when Wt is I(0). These are the same rates as known F . Of course, for known F , we will
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directly estimate α instead of H ′−1α. When the estimator is weighted by the random matrix

(D−1
T ẑ′ẑD−1

T )1/2, the limiting distribution is normal. The unweighted limiting distribution is

mixture normal.

The forecast error variance once again has two components. The first term of C2
T comes

from the estimation of δ and is Op(T
−1). The second term comes from the estimation of Ft

and is Op(N
−1). If T/N is bounded, both errors remain asymptotically (unless T/N → 0)

and the convergence rate is
√

T . If T/N is unbounded, asymptotic normality continues to

hold, but convergence is at rate
√

N . The overall convergence rate of ŷT+h|T to yT+h|T is

min[
√

N,
√

T ], as in the case of I(0) regressors.

If Ft is observed, it is known that it has to be normalized differently depending on whether

it is I(1) or I(0)8. Although less obvious, the triple (Ṽ , F̃ , Λ̃) also has to be normalized

differently, depending on the stationarity property of F̃t. One would then expect confidence

intervals for stationary and non-stationary factors to be constructed differently. However,

the expression
(byT+h|T −yT+h|T )

BT

in Theorem 3 under homoskedasticity and
(byT+h|T −yT+h|T )

CT

in

Theorem 5 are in fact mathematically identical. As shown in the Appendix, this is because

C2
T is invariant to normalization. Although Theorem 5 is stated under the assumption of

conditional homoskedasticity, the forecast confidence intervals derived for stationary common

factors are also valid for nonstationary factors. The practical implication is that knowledge

concerning the stationarity property of Ft is not essential for predictive inference.

6 Conclusion

The factor approach to forecasting is extremely useful in situations when a large number

of indicator or predictor variables are present. The factors provide a significant reduction

in the number of variables entering the forecasting equation while exploiting information in

all available data. This latter aspect is important because it is by using information in all

data available that permits consistent estimation of the factors. This paper contributes to

the small but growing literature on factor forecasting by (i) showing that the conditional

mean forecasts are min[
√

N,
√

T ] consistent, and (ii) presenting formulas to permit predictive

inference. We also suggest how the covariance matrix of cross-correlated errors can be

consistently estimated.

8Different scalings are used to derive proper rates of convergence and suitable limiting distributions.
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Appendix: Proofs

The following identity is used in the proof of Lemma A1 below, see Bai and Ng (2002):

F̃t − HFt = Ṽ −1

(
1

T

T∑

s=1

F̃sγst +
1

T

T∑

s=1

F̃sζst +
1

T

T∑

s=1

F̃sηst +
1

T

T∑

s=1

F̃sξst

)
, (A.1)

where γst = E( 1
N

∑N
i=1 eiseit), ζst = 1

N

∑N
i=1 eiseit − γst, ηst = 1

N

∑N
i=1 λ′

iFseit, and ξst =
1
N

∑N
i=1 λ′

iFt eis. Note that M will represent a general positive constant, not depending on

N and T and not necessarily the same in different expressions.

Lemma A1 Let z′t = (F ′
t W ′

t )
′, and ẑt = (F̃ ′

t W ′
t )

′. Let δ2
NT = min[N, T ], and H =

Ṽ −1(F̃ ′F/T )(Λ′Λ/N). Under Assumptions A-E,

(i) 1
T

∑T
t=1 ‖F̃t − HFt‖2 = Op(δ

−2
NT );

(ii) 1
T

∑T
t=1(F̃t − HFt)z

′
t = Op(δ

−2
NT );

(iii) 1
T

∑T
t=1(F̃t − HFt)ẑ

′
t = Op(δ

−2
NT );

(vi) 1
T

∑T
t=1(F̃t − HFt)εt+h = Op(δ

−2
NT )

Proof: Part (i) is proved in Bai and Ng (2002). Consider (ii). From A.1,

1

T

T∑

t=1

(F̃t − HFt)z
′
t = Ṽ −1

[
T−2

T∑

t=1

[
T∑

s=1

F̃sγst]z
′
t

+T−2
T∑

t=1

[
T∑

s=1

F̃sζst]z
′
t + T−2

T∑

t=1

[
T∑

s=1

F̃sηst]z
′
t + T−2

T∑

t=1

[
T∑

s=1

F̃sξst]z
′
t

]

= Ṽ −1[I + II + III + IV ],

We begin with I. We have

T−2

T∑

t=1

T∑

s=1

F̃sz
′
tγst = T−2

T∑

t=1

T∑

s=1

(F̃s − HFs)z
′
tγst + T−2

T∑

t=1

T∑

s=1

HFsz
′
tγst.

The first term is bounded by

T−1/2
( 1

T

T∑

s=1

‖F̃s − HFs‖2
)1/2(

T−1

T∑

t=1

T∑

s=1

|γst|2T−1

T∑

t=1

‖zt‖2
)1/2

= Op(T
−1/2δ−1

NT )

by part (i) and Assumption C. Note that Assumption C implies |γst| ≤ M , 1
T

∑T
t=1

∑T
s=1 |γst| ≤

M and 1
T

∑T
s=1

∑T
s=1 |γst|2 ≤ M . The expected value of the second term is bounded by (ig-

nore H)

T−2
T∑

t=1

T∑

s=1

|γst|(E ‖Fs‖2)1/2(E ‖zt‖2)1/2 ≤ MT−2
T∑

t=1

T∑

s=1

|γst| = O(T−1)
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by Assumption C and E.1. Thus, (I) = Op(T
−1/2δ−1

NT ).

For (II),

T−2
T∑

t=1

T∑

s=1

F̃sζstz
′
t = T−2

T∑

t=1

T∑

s=1

HFsζstz
′
t + T−2

T∑

t=1

(F̃s − HFs)ζstz
′
t.

The first term can be written as H 1√
NT

1
T

∑T
t=1 mtz

′
t, where mt = 1√

NT

∑T
s=1

∑N
i=1 Fs[eiseit −

E(eiseit)]. But E ‖mt‖2 < M by Assumptions C3, and E ‖mtz
′
t‖ ≤ (E(‖mt‖2 E(‖zt‖2))1/2 ≤

M . Thus, 1
T

∑T
t=1 mtz

′
t = Op(1), and the first term is Op(1/

√
NT ). For the second term,

∥∥∥T−2
T∑

t=1

T∑

s=1

(F̃s − HFs)ζstz
′
t

∥∥∥ ≤
( 1

T

T∑

s=1

∥∥∥F̃s − HFs

∥∥∥
2)1/2( 1

T

T∑

s=1

∥∥∥ 1

T

T∑

t=1

ζstz
′
t

∥∥∥
2)1/2

.

But 1
T

∑T
t=1 ζstz

′
t = 1√

N
1
T

∑T
t=1(

1√
N

∑N
i=1[eiseit − E(eiseit)])z

′
t = Op(N

−1/2). Combining the

results, (II) = Op(1/
√

NT ) + Op(δ
−1
NT ) · Op(N

−1/2) = Op(N
−1/2δ−1

NT ).

For (III), we have

T−2
T∑

t=1

T∑

s=1

F̃sz
′
tηst = T−2

T∑

t=1

T∑

s=1

HFsz
′
tηst + T−2

T∑

t=1

T∑

s=1

(F̃s − HFs)z
′
tηst.

The first term on the right hand side can be rewritten as

T−2
T∑

t=1

T∑

s=1

HFsz
′
tηst = H(

1

T

T∑

s=1

FsF
′
s)

1

NT

T∑

t=1

N∑

i=1

λiz
′
teit,

which is Op(1)Op(
1√
NT

). The treatment of the second term is similar to that of the second

term of (II). The proof for (IV) is similar to (III). Thus,

I + II + III + IV = Op(
1√

TδNT

) + Op(
1√

NδNT

) + Op(
1√
NT

) = Op(
1

min[N, T ]
) = Op(δ

−2
NT )

proving part (ii). Next, consider part (iii). Let z̄t = (HF ′
t , W

′
t )

′. Then T−1
∑T

t=1(F̃t −
HFt)ẑ

′
t = T−1

∑T
t=1(F̃t−HFt)z̄

′
t+T−1

∑T
t=1(F̃t−HFt)(ẑt−z̄t)

′. From ẑt−z̄t = ((F̃t−HFt)
′, 0)′,

the second term is Op(δ
−2
NT ) by part (i). The first term is Op(δ

−2
NT ) by part (iii) in view of the

definition of z̄t and zt. The proof for (iv) is similar to (ii), with εt replacing zt.

Proof of Theorem 1. Adding and subtracting terms, the model can be written as:

yt+h = α′Ft + β ′Wt + εt+h = α′H−1F̃t + β ′Wt + εt+h + α′H−1(HFt − F̃t)

= ẑ′tδ + εt+h + α′H−1(HFt − F̃t).
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In matrix notation: Y = ẑδ + ε + (FH ′ − F̃ )H−1′α, where Y = (yh+1, ..., yT )′, ε =

(εh+1, ..., εT )′, and ẑ = (ẑ1, ..., ẑT−h)
′. The OLS estimator is δ̂ = (ẑ′ẑ)−1ẑ′Y . Thus,

δ̂ − δ = (ẑ′ẑ)−1ẑ′ε + (ẑ′ẑ)−1ẑ′(FH ′ − F̃ )H−1α, or
√

T (δ̂ − δ) = (T−1ẑ′ẑ)−1T−1/2ẑ′ε + (T−1ẑ′ẑ)−1[T−1/2ẑ′(FH ′ − F̃ )]H−1α.

The second term on the right hand side is op(1). This follows from T−1/2ẑ′(FH ′ − F̃ ) =

Op(T
1/2/ min(N, T )) = op(1) if

√
T/N → 0, by Lemma A1. For the first term, T−1/2ẑ′ε =

T−1/2(ε′F̂ , ε′W )′. Now T−1/2F̃ ′ε = T−1/2HF ′ε + T−1/2(F̃ − FH ′)′ε. The second term is

op(1) if
√

T/N → 0 by Lemma A1. That is, T−1/2ẑ′ε = T−1/2(ε′FH ′, ε′W )′ + op(1) =

T−1/2Φz′ε + op(1), where Φ is a block diagonal matrix Φ = diag(H, I). Thus,
√

T (δ̂ − δ) = (T−1ẑ′ẑ)−1T−1/2ẑ′ε + op(1) (A.2)

= (T−1ẑ′ẑ)−1ΦT−1/2z′ε + op(1)

Since z′ε/
√

T
d−→N(0, Σzz,ε) by Assumption E2, the above is asymptotically normal. The

asymptotic variance matrix is the probability limit of
(

ẑ′ẑ

T

)−1

Φ

(
1

T

T∑

t=1

ε2
t+hztz

′
t

)
Φ′
(

ẑ′ẑ

T

)−1

, where Φ =

[
H 0
0 I

]
(A.3)

Define H0 = plim H = V −1QΣΛ, Φ0 = plim Φ = diag(H0, I). Now T−1ẑ′ẑ = Φ(T−1z′z)Φ′ +

op(1)
p−→ Φ0ΣzzΦ

′
0. The asymptotic variance or the limit of (A.3) is

Σδ = (Φ0ΣzzΦ
′
0)

−1(Φ0Σzz,εΦ
′
0)(Φ0ΣzzΦ

′
0)

−1 = Φ′−1
0 Σ−1

zz Σzz,εΣ
−1
zz Φ−1

0 .

Since HFt = F̃t+op(1) and zt = (F ′
t , W

′
t )

′, we have Φ( 1
T

∑T
t=1 ε2

t+hztz
′
t)Φ

′ = ( 1
T

∑T
t=1 ε̂2

t+hẑtẑ
′
t)+

op(1). Therefore, Σ̂δ = (T−1ẑ′ẑ)−1(T−1
∑T

t=1 ε̂2
t+hẑtẑ

′
t)(T

−1ẑ′ẑ)−1 is a consistent estimator for

Σδ. This completes the proof of Theorem 1.

Proof of Theorem 2. Without loss of generality, consider a FAVAR(1). For FAVAR(1),

Yt and zt coincides, i.e., Yt = zt = (y′
t F ′

t )
′. The infeasible FAVAR is zt+1 = Azt + εt+1, or

(
yt+1

Ft+1

)
=

(
a11 a12

a21 a22

)(
yt

Ft

)
+

(
ε1t+1

ε2t+1

)
.

Left multiplying the second block equations by H and then adding and subtracting terms,

the FAVAR expressed in terms of F̃t is
(

yt+1

F̃t+1

)
=

(
b11 b12

b21 b22

)(
yt

F̃t

)
+

(
ε1t+1

Hε2t+1

)
+

(
−b12(HFt − F̃t)

b21(HFt − F̃t)

)
+

(
0q×1

−(HFt+1 − F̃t+1)

)

=

(
b11 b12

b21 b22

)(
yt

F̃t

)
+ u1

t+1 + u2
t+1 + u3

t+1
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where b11 = a11, b12 = a12H
−1, b21 = Ha21, and b22 = Ha22H

−1. Let ẑt = (y′
t, F̃ ′

t )
′. The j-th

equation of the feasible FAVAR is thus ẑjt+1 = δ′j ẑt + u1
jt+1 + u2

jt+1 + u3
jt+1. The least squares

estimator for δj is

√
T (δ̂j − δj) =

(
T−1

T∑

t=1

ẑtẑ
′
t

)−1(
T−1/2

T∑

t=1

ẑt(u
1
jt+1 + u2

jt+1 + u3
jt+1)

)
.

By Lemma A1, 1√
T

∑T
t=1 ẑtu

2
jt+1 = Op(

√
T

min[N,T ]
) and 1√

T

∑T
t=1 ẑtu

3
jt+1 = Op(

√
T

min[N,T ]
). Thus,

√
T (δ̂j − δj) =

(
T−1

T∑

t=1

ẑtẑ
′
t

)−1(
T−1/2

T∑

t=1

ẑtu
1
jt+1

)
+ op(1)

For j ≤ q, u1
j,t+1 is the jth component of ε1t+1. This case is treated in (A.2) and the limiting

variance is shown to be, compare with (A.3)

( 1

T

T∑

t=1

ẑtẑ
′
t

)−1( 1

T

T∑

t=1

(u1
jt+1)

2ẑtẑ
′
t

)( 1

T

T∑

t=1

ẑtẑ
′
t

)−1

. (A.4)

This can be consistently estimated with upon replacing u1
jt+1 by û1

jt+1 = ẑjt+1 − δ̂′j ẑt.

For j = q + 1, ..., q + r, u1
jt+1 is the kth component (k = j − q) of Hε2t+1, which can

be written as ι′kHε2t+1, where ιk is a vector of 0’s with the kth element being 1. Note that

ι′kHε2t+1 is a linear combination of the components of ε2ε. The analysis of (A.2) in the

previous proof implies that the limiting variance is given by (A.4) with u1
jt+1 = ι′kHε2t+1.

Proof of Theorem 3. Begin by rewriting

ŷT+h|T − yT+h|T = α̂′F̃T + β̂ ′WT − α′FT − β ′WT

= (α̂ − H−1′α)′F̃T + α′H−1(F̃T − HFT ) + (β̂ − β)′WT

= ẑ′T (δ̂ − δ) + α′H−1(F̃T − HFT )

=
1√
T

ẑ′T
√

T (δ̂ − δ) +
1√
N

α′H−1
√

N(F̃T − HFT )

Thus, if T/N is bounded,
√

T (ŷT+h|T−yT+h|T ) = Op(1) and is asymptotically normal because√
T (δ̂−δ) and

√
N(F̂T −HFT ) are asymptotically normal. Similarly, if N/T is bounded, then√

N(yT+h|T −yT+h|T ) = Op(1) and is asymptotically normal. Furthermore, note that
√

T (δ̂−
δ) and

√
N(F̃T −HFT ) are asymptotically independent because the limiting distribution of√

T (δ̂ − δ) is determined by (ε1, ..., εT ) and the limiting distribution of
√

N(F̃T − HFT )

is determined by cross-section disturbances at period T , eiT for i = 1, 2..., N . Due to this
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asymptotic independence, the sum of the variances of the right hand side terms is an estimate

for the variance of ŷT+h|T − yT+h|T . Let B2
T = 1

T
ẑ′T Avar(δ̂)ẑT + 1

N
α̂′Avar(F̃T )α̂, which is an

estimate for the variance of ŷT+h|T − yT+h|T . Thus (ŷT+h|T − yT+h|T )/BT
d−→N(0, 1).

To prove Theorem 4, we need additional results.

Lemma A2 (i) 1
n

∑n
j=1(H

−1′λi − λ̃i)λ
′
i = Op((nT )−1/2) + Op(

1
min[N,T ]

).

(ii) The r × r matrix 1
T

∑T
t=1[(HFt − F̃t)(

∑n
i=1 λ′

ieit)] = Op(
n

min[N,T ]
).

Proof of (i). From the identity

λ̃i − H−1′λi = T−1HF ′ei + T−1F̃ ′(F − F̃H−1′)λi + T−1(F̃ − FH ′)′ei, (A.5)

where ei = (ei1, ei2, . . . eiT )′, we have

1

n

n∑

i=1

(λ̃i − H−1′λi)λ
′
i = T−1HF ′(

1

n

n∑

i=1

eiλ
′
i) + T−1F̃ ′(F − F̃H−1′)(

1

n

n∑

i=1

λiλ
′
i)

+T−1(F̃ − FH ′)′(
1

n

n∑

i=1

eiλ
′
i) = a + b + c.

Now (a) equals H 1
Tn

(
∑n

i=1

∑T
t=1 Ftλ

′
ieit) = Op(

1√
nT

). (b) equals T−1F̃ ′(F − F̃H−1′) ·
Op(1) = Op(min[N, T ]−1) by Lemma B.3 of Bai (2003). (c) is Op([min[N, T ]]−1) following

Lemma B.1 of Bai (2003), replacing eit with 1
n

∑n
i=1 λieit. For part (ii), the expression is

equal to (c) multiplied by n, thus it is bounded by Op(n/ min[N, T ]]).

Lemma A3 For each j,
∑n

i=1 σij(λ̃i − H−1′λi) = Op(T
−1/2) + Op(min[N, T ]−1).

Using the expression for λ̃i − H−1′λi in (A.5) above, we have

n∑

i=1

σij(λ̃i − H−1′λi) = T−1H ′(

n∑

i=1

σijF
′ei)

+T−1F̃ ′(F − F̃H−1)(
n∑

i=1

σijλi) + T−1(F̃ − FH)′(
n∑

i=1

σijei)

= (a) + (b) + (c).

Now (a) is Op(T
−1/2) because 1

T
F ′ei = 1

T

∑T
t=1 Fteit is Op(T

−1/2) for each i, and by Assump-

tion C,
∑n

i=1 |σij | ≤ M . (b) is Op(min[N, T ]−1) because T−1F̃ ′(F−F̃H−1) = Op(min[N, T ]−1)

and ‖
∑n

i=1 σijλi‖ = Op(1). (c) is Op(min[N, T ]−1) following Lemma B.1 of Bai (2003), re-

placing eit by
∑n

i=1 σijeit = Op(1) in view of
∑n

i=1 |σij | ≤ M . �
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Proof of Theorem 4. Let σij = E(eitejt), and σ̃ij = 1
T

∑T
t=1 ẽitẽjt. Let Γn = 1

n

∑n
i=1

∑n
j=1 σijλiλ

′
j.

The limit of Γn exists by Assumption C. By definition,

Γ = lim
n→∞

Γn.

The proposed estimator is Γ̃ = 1
n

∑n
i=1

∑n
j=1 σ̃ijλ̃iλ̃j . Also let Γ̄n = 1

n

∑n
i=1

∑n
j=1 σ̃ijλiλ

′
j. It

follows that

Γ̃ − H−1′ΓH−1 = Γ̃ − H−1′Γ̄nH−1 + H−1′(Γ̄n − Γn)H−1 + H−1′(Γn − Γ)H−1. (A.6)

The last term converges to zero since Γn − Γ → 0. We will show (i) that Γ̄n − Γn
p−→0 if

n
N

→ 0 and n
T
→ 0, and (ii) that Γ̃ − H−1′Γ̄nH−1 = Op(T

−1/2) + Op(min[N, T ]−1).

(i) Γ̄n − Γn
p−→0.

From ẽit = xit − c̃it and eit = xit − cit, where cit = λ′
iFt and c̃it = λ̃′

iF̃t, we have ẽit =

eit − (cit − c̃it). Thus,

ẽitẽjt = eitejt − eit(cjt − c̃jt) − ejt(cit − c̃it) + (cit − c̃it)(cjt − c̃jt).

It follows that

Γ̄n − Γn =
1

n

n∑

i=1

n∑

j=1

1

T

T∑

t=1

(eitejt − σij)λiλ
′
j −

1

n

n∑

i=1

n∑

j=1

1

T

T∑

t=1

eit(cjt − c̃jt)λiλ
′
j

− 1

n

n∑

i=1

n∑

j=1

1

T

T∑

t=1

ejt(cit − c̃it)λiλ
′
j +

1

n

n∑

i=1

n∑

j=1

1

T

T∑

t=1

(cit − c̃it)(cjt − c̃jt)λiλ
′
j

= I + II + III + IV.

We will now show that I
p−→0 as T → ∞; II and III tend to zero if

√
n/T → 0; IV tends

to zero if n/T → 0 and n/N → 0.

Consider I. Define ξt = n−1/2
∑n

i=1 λieit. Then I = 1
T

∑T
t=1[ξtξ

′
t −E(ξtξ

′
t)]. Each element

of the r × r matrix ξtξ
′
t − E(ξtξ

′
t) is a zero mean process, thus each entry of I is Op(T

−1/2).

Now consider II. Rewrite cjt − c̃jt = (H−1′λj − λ̃j)
′F̃t + λ′

jH
−1(HFt − F̃t). We will use

the fact that each term is a scalar and thus equals to its transpose and is commutable with

any vector or matrix and hence λi. Rewrite II accordingly,

II =
1

n

n∑

i=1

n∑

j=1

1

T

T∑

t=1

eit(H
−1′λj − λ̃j)

′F̃tλiλ
′
j +

1

n

n∑

i=1

n∑

j=1

1

T

T∑

t=1

eit(HFt − F̃t)
′H−1′λjλiλj

′

= A + B

=
(1

n

n∑

i=1

λi
1

T

T∑

t=1

eitF̃
′
t

)( n∑

j=1

(H−1′λj − λ̃j)λ
′
j

)
+ B = (A.a)(A.b) + B
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where (A.a) and (A.b) are the two terms in parenthesis that are added to B. Now

‖A.a‖ ≤
( 1

T

T∑

t=1

∥∥∥1

n

n∑

i=1

λieit

∥∥∥
2)1/2( 1

T

T∑

t=1

∥∥∥F̃t

∥∥∥
2 )1/2

= Op(n
−1/2) · Op(1)

because 1
n

∑n
i=1 λieit = Op(n

−1/2) and 1
T

∑T
t=1 ‖F̃t‖2 = Op(1). For (A.b), by Lemma A2

‖A.b‖ =
∥∥∥n 1

n

n∑

j=1

(H−1′λj − λ̃j)λ
′
j

∥∥∥ = n
[
· Op(

1√
nT

) + Op(
1

min[N, T ]
)
]
.

It follows from A=(A.a)(A.b) that, if
√

n/T → 0,

A = Op(n
−1/2)n

[
Op(

1√
nT

) + Op(
1

min[N, T ]
)
]

= Op(
1√
T

) + Op(

√
n

min[N, T ]
) → 0.

For B, it is bounded in norm by

∥∥∥ 1

T

T∑

t=1

(
n∑

i=1

λieit)(HFt − F̃t)
′
∥∥∥
(1

n

n∑

j=1

‖λj‖2
)
‖H‖ = Op(nδ−2

NT )Op(1)

by Lemma A2(ii). Thus, B → 0 if n
min[T,N ]

→ 0. Analogously, III → 0 if n
min[T,N ]

→ 0.

For IV, note first that this term can be written as

1

n

n∑

i=1

n∑

j=1

1

T

T∑

t=1

(cit − c̃it)(cjt − c̃jt)λiλ
′
j =

1

T

T∑

t=1

∥∥∥ 1√
n

n∑

i=1

(cit − c̃it)λi

∥∥∥
2

.

Using cit − c̃it = (H−1′λi − λ̃i)
′F̃t + λ′

iH
−1(HFt − F̃t), we have

1√
n

n∑

i=1

(cit − c̃it)λi =
1√
n

n∑

i=1

(H−1′λi − λ̃i)
′F̃tλi +

1√
n

n∑

i=1

λ′
iH

−1(HFt − F̃t)λi,

and because (a + b)2 ≤ 2a2 + 2b2,

‖n−1/2

n∑

i=1

(cit − c̃it)λi‖2 ≤ 2
∥∥∥n−1/2

n∑

i=1

λi(H
−1′λi − λ̃i)

′
∥∥∥

2

‖F̃t‖2

+ 2‖H−1‖2
(1

n

n∑

i=1

‖λi‖2
)2

· n · ‖Ft − HFt‖2

Thus summing over t and divided by T ,

IV ≤ 2
( 1

T

T∑

t=1

∥∥∥F̃t

∥∥∥
2 )∥∥∥ 1√

n

n∑

i=1

λi(H
−1′λi − λ̃i)

′
∥∥∥

2

+2‖H−1‖2
(1

n

n∑

i=1

‖λi‖2
)2

· n · 1

T

T∑

t=1

∥∥∥HFt − F̃t

∥∥∥
2

= a + b.

By Lemma A2, a → 0 if
√

n/T → 0. And b = Op(n)Op(min[N, T ]−1) → 0 if n/T → 0 and

n/N → 0. �
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ii. Γ̃ − H−1′Γ̄nH
−1 p−→0. By the definition of Γ̃ and Γ̄, we have

Γ̃ − H−1′Γ̄nH−1 =
1

n

n∑

i=1

n∑

j=1

σ̃ij(λ̃iλ̃
′
j − H−1′λiλ

′
jH

−1)

=
1

n

n∑

i=1

n∑

j=1

(σ̃ij − σij)(λ̃iλ̃
′
j − H−1′λiλ

′
jH

−1) +
1

n

n∑

i=1

n∑

j=1

σij(λ̃iλ̃
′
j − H−1′λiλ

′
jH

−1)

= I + II.

Using λ̃iλ̃
′
j − H−1′λiλjH

−1 = (λ̃i − H−1′λi)λ̃
′
j + H−1′λi(λ̃j − H−1′λj)

′, we write II

II =
1

n

n∑

i=1

n∑

j=1

σij(λ̃i − H−1′λi)λ̃
′
j +

1

n

n∑

i=1

n∑

j=1

σijλiH
−1(λ̃j − H−1′λj)

′ = a + b

By Lemma A3,

|a| ≤
( 1

n

n∑

j=1

‖λ̃j‖2
)1/2(1

n

n∑

j=1

∥∥∥
n∑

i=1

σij(λ̃i − H−1′λi)
∥∥∥

2)1/2

= Op(
1√
T

) + Op(
1

min[N, T ]
) → 0.

Similarly, b = Op(
1√
T
) + Op(

1
min[N,T ]

). The proof of I being op(1) is analogous to that of part

(i). This completes the proof of Theorem 4. �.

Proof of Theorem 5

The argument for Theorem 5 is almost identical to that of Theorems 1 and 3. The details

are omitted. We next argue that it is not necessary to know if the underlying factors are I(0)

or I(1), as far as prediction interval is concerned. The expression C2
T is equal to B2

T when (4)

is used in estimating Avar(δ̂) of Theorem 3. Nevertheless, the triple (Ṽ , F̃ , Λ̃) in Theorem 5

are estimated (or are scaled) differently, depending on whether Ft is I(1) or I(0).9 It might

appear that it is essential to know the stationarity property of Ft. It turns out that C2
T

is invariant to different scalings. First consider the first term of C2
T , which is ẑ′T (ẑ′ẑ)−1ẑT .

From ẑt = (F̃ ′
t , W

′
t )

′, it is clear that F̃t appears twice in the numerator and twice in the

denominator, thus immune to scaling. Next consider α̂′Ṽ −1Γ̃Ṽ −1α̂. Given a data matrix X,

let (Ṽ s, F̃ s, Λ̃s) be the estimated triple assuming Ft to be I(0), and let (Ṽ n, F̃ n, Λ̃n) be the

corresponding triple assuming Ft to be I(1). Then (Ṽ n, F̃ n, Λ̃n) = (Ṽ s/T,
√

T F̃ s, Λ̃s/
√

T ),

by the definition of the estimation procedures. This implies that α̂n = α̂s/
√

T (note α̂n is the

estimated regression coefficient when F̃ n is the regressor, and likewise for α̂s). Furthermore,

9Different scalings are used to derive proper rates of convergence and suitable limiting distributions.
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the panel residuals ẽit are invariant to scalings because F̃ nΛ̃n′ is equal to F̃ sΛ̃s′, it follows

that Γ̃n = Γ̃s/T in view of λ̃n
i = λ̃s

i/
√

T , see equations (5a)-(5c). From these relationships,

it is easy to see that

α̂n′(Ṽ n)−1Γ̃n(Ṽ n)−1α̂n = α̂s′(Ṽ s)−1Γ̃s(Ṽ s)−1α̂s.

Thus, C2
T is the same whether Ft is assumed to be I(0) or I(1). The above argument is valid

for Ft being I(2) or other processes. This result has the practical implication that forecasting

confidence intervals derived for I(0) common factors are valid for nonstationary factors.
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Table 1: Coverage Rates, h = 4, r = 2
Method A: (5b)+(4) B: (5a)+(3) C: (5c)+(3) D: F known

N T ŷT+h|T ŷT+h ŷT+h|T ŷT+h ŷT+h|T ŷT+h ŷT+h|T ŷT+h

DGP 1: b = 0, σ2
v(i) = 1 ∀i

50 50 0.95 0.94 0.93 0.94 0.93 0.94 0.91 0.93
100 50 0.93 0.94 0.91 0.94 0.91 0.93 0.91 0.94
200 50 0.93 0.93 0.91 0.93 0.91 0.93 0.89 0.93
50 100 0.95 0.95 0.95 0.95 0.93 0.95 0.93 0.94
50 200 0.94 0.96 0.92 0.96 0.88 0.95 0.95 0.95
200 100 0.94 0.94 0.94 0.94 0.93 0.94 0.94 0.93
100 200 0.96 0.95 0.94 0.95 0.93 0.95 0.94 0.95
200 200 0.96 0.95 0.95 0.95 0.94 0.95 0.94 0.95
100 400 0.97 0.95 0.96 0.95 0.94 0.95 0.94 0.95

DGP 2: b = 0, σ2
v(i) ∼ U(.5, 1.5) ∀i

50 50 0.95 0.94 0.93 0.94 0.93 0.94 0.91 0.93
100 50 0.94 0.94 0.92 0.94 0.92 0.94 0.91 0.94
200 50 0.93 0.93 0.91 0.93 0.91 0.93 0.89 0.93
50 100 0.95 0.95 0.94 0.95 0.92 0.95 0.93 0.94
50 200 0.93 0.95 0.91 0.95 0.87 0.95 0.95 0.95
200 100 0.94 0.94 0.93 0.94 0.93 0.94 0.94 0.93
100 200 0.96 0.95 0.94 0.95 0.94 0.95 0.94 0.95
200 200 0.95 0.95 0.94 0.95 0.94 0.95 0.94 0.95
100 400 0.98 0.96 0.96 0.96 0.93 0.96 0.94 0.95

DGP 3: b = .5, σ2
e(i) = 1 ∀i

50 50 0.82 0.94 0.81 0.94 0.86 0.94 0.91 0.93
100 50 0.84 0.94 0.83 0.93 0.88 0.94 0.91 0.94
200 50 0.87 0.93 0.85 0.93 0.90 0.93 0.89 0.93
50 100 0.85 0.95 0.84 0.95 0.89 0.95 0.93 0.94
50 200 0.73 0.95 0.69 0.95 0.78 0.95 0.95 0.95
200 100 0.89 0.94 0.87 0.94 0.93 0.94 0.94 0.93
100 200 0.83 0.95 0.80 0.95 0.92 0.96 0.94 0.95
200 200 0.86 0.95 0.83 0.95 0.93 0.95 0.94 0.95
100 400 0.80 0.95 0.76 0.95 0.94 0.95 0.94 0.95

DGP 4: b = .5, σ2
e(i) ∼ U(.5, 1.5) ∀i

50 50 0.82 0.94 0.80 0.93 0.85 0.94 0.91 0.93
100 50 0.85 0.93 0.83 0.93 0.89 0.94 0.91 0.94
200 50 0.86 0.93 0.85 0.93 0.91 0.93 0.89 0.93
50 100 0.83 0.95 0.81 0.95 0.90 0.95 0.93 0.94
50 200 0.65 0.94 0.63 0.94 0.69 0.94 0.95 0.95
200 100 0.89 0.94 0.87 0.94 0.92 0.94 0.94 0.93
100 200 0.83 0.95 0.80 0.95 0.90 0.96 0.94 0.95
200 200 0.85 0.95 0.83 0.95 0.93 0.95 0.94 0.95
100 400 0.80 0.95 0.77 0.95 0.93 0.96 0.94 0.95
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Figure 1: 12−Step Ahead Forecast:  Growth Rate of Industrial Production 
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Figure 2a: Diffusion Index Forecast and Confidence Intervals: Growth Rate of Industrial Production

1960 1965 1970 1975 1980 1985 1990 1995
−15

−10

−5

0

5

10

15
Figure 2b: AR Forecast and Confidence Intervals: Industrial Production  
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Figure 3: 12−Month Ahead  Forecast: Inflation 
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Figure 4a: Diffusion Index Forecast and Confidence Intervals: Inflation
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Figure 4b: AR Forecast and Confidence Intervals: Inflation
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