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Minimum Distance Estimation of Possibly
Noninvertible Moving Average Models

Nikolay GOSPODINOV
Research Department, Federal Reserve Bank of Atlanta, Atlanta, GA 30309 (nikolay.gospodinov@atl.frb.org)

Serena NG
Department of Economics, Columbia University, New York, NY 10027 (sn2294@columbia.edu)

This article considers estimation of moving average (MA) models with non-Gaussian errors. Information in
higher order cumulants allows identification of the parameters without imposing invertibility. By allowing
for an unbounded parameter space, the generalized method of moments estimator of the MA(1) model
is classical root-T consistent and asymptotically normal when the MA root is inside, outside, and on the
unit circle. For more general models where the dependence of the cumulants on the model parameters is
analytically intractable, we consider simulation-based estimators with two features. First, in addition to an
autoregressive model, new auxiliary regressions that exploit information from the second and higher order
moments of the data are considered. Second, the errors used to simulate the model are drawn from a flexible
functional form to accommodate a large class of distributions with non-Gaussian features. The proposed
simulation estimators are also asymptotically normally distributed without imposing the assumption of
invertibility. In the application considered, there is overwhelming evidence of noninvertibility in the
Fama-French portfolio returns.

KEY WORDS: Generalized lambda distribution; GMM; Identification; Non-Gaussian errors; Noninvert-
ibility; Simulation-based estimation.

1. INTRODUCTION

Moving average (MA) models can parsimoniously charac-
terize the dynamic behavior of many time series processes.
The challenges in estimating MA models are twofold. First,
invertible and noninvertible MA processes are observationally
equivalent up to the second moments. Second, invertibility re-
stricts all roots of the MA polynomial to be less than or equal
to one. This upper bound renders estimators with nonnormal
asymptotic distributions when some roots are on or near the
unit circle. Existing estimators treat invertible and noninvertible
processes separately, requiring the researcher to take a stand on
the parameter space of interest. While the estimators are super-
consistent under the null hypothesis of an MA unit root, their
distributions are not asymptotically pivotal. To our knowledge,
no estimator of the MA model exists, which achieves identifi-
cation without imposing invertibility and yet enables classical
inference over the whole parameter space.

Both invertible and noninvertible representations can be con-
sistent with economic theory. For example, if the logarithm of
asset price is the sum of a random walk component and a station-
ary component, the first difference (or asset returns) is generally
invertible, but noninvertibility can arise if the variance of the sta-
tionary component is large. While noninvertible models are not
ruled out by theory, invertibility is often assumed in empirical
work because it provides the identification restrictions without
which maximum likelihood and covariance structure-based es-
timation of MA models would not be possible when the data
are normally distributed. Invertibility can also be used to narrow
the class of equivalent dynamic stochastic general equilibrium
(DSGE) models, as in Komunjer and Ng (2011). Obviously,
falsely assuming invertibility will yield an inferior fit of the data.
It can also lead to spurious estimates of the impulse response

coefficients, which are often the objects of interest, as shown by
Fernández-Villaverde et al. (2007) using the permanent income
model. Hansen and Sargent (1991), Lippi and Reichlin (1993),
and Fernández-Villaverde et al. (2007), among others, empha-
sized the need to verify invertibility because it affects how we
interpret what is recovered from the data.

While economic analysis tends to only consider parameter
values consistent with invertibility, it is necessary in many sci-
ence and engineering applications to admit parameter values
in the noninvertible range. For example, in analysis of seismic
and communication data, noninvertible filters are necessary to
recover the earth’s reflectivity sequence and to back out the
underlying message from a distorted one, respectively. A key
finding in these studies is that higher order cumulants are nec-
essary for identification of noninvertible models, implying that
the assumption of Gaussian errors must be abandoned. Lii and
Rosenblatt (1992) approximated the non-Gaussian likelihood
of noninvertible MA models by truncating the representation of
the innovations in terms of the observables. Huang and Paw-
itan (2000) proposed least absolute deviations (LAD) estima-
tion using a Laplace likelihood. This quasi-maximum likelihood
(QML) estimator does not require the errors to be Laplace dis-
tributed, but they need to have heavy tails. Andrews, Davis,
and Breidt (2006, 2007) considered LAD and rank-based esti-
mation of all-pass models, which are special noncausal and/or
noninvertible autoregressive and moving average (ARMA)
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models in which the roots of the autoregressive polynomial
are reciprocals of the roots of the MA polynomials. Meitz and
Saikkonen (2011) developed maximum likelihood estimation
of noninvertible ARMA models with ARCH errors. However,
there exist no likelihood-based estimators that have classical
properties while admitting an MA unit root in the parameter
space.

This article considers estimation of MA models without im-
posing invertibility. We only require that the errors are non-
Gaussian but we do not need to specify the distribution. Iden-
tification is achieved by the appropriate use of third and higher
order cumulants. In the MA(1) case, “appropriate” means that
multiple third moments are necessary, as a single third moment
still does not permit identification. In general, identification of
possibly noninvertible MA models requires using more uncondi-
tional higher order cumulants than the number of parameters in
the model. We make use of this identification result to develop
generalized method of moments (GMM) estimators that are
root-T consistent and asymptotically normal without restricting
the MA roots to be strictly inside the unit circle. The estimators
minimize the distance between sample-based statistics and their
model-based analog. When the model-implied statistics have
known functional forms, we have a classical minimum distance
estimator.

A drawback of identifying the parameters from the higher
order sample moments is that a long span of data is required
to precisely estimate the population quantities. This issue is
important because for general ARMA(p, q) models, the num-
ber of cumulants that needs to be estimated can be quite large.
Accordingly, we explore the potential of two simulation estima-
tors in providing bias correction. The first (simulated method
of moments, SMM) estimator matches the sample to the simu-
lated unconditional moments as in Duffie and Singleton (1993).
The second is a simulated minimum distance (SMD) estima-
tor in the spirit of Gourieroux, Monfort, and Renault (1993)
and Gallant and Tauchen (1996). Existing simulation estima-
tors of the MA(1) model impose invertibility and therefore only
need the auxiliary parameters from an autoregression to achieve
identification. We show that the invertibility assumption can be
relaxed but additional auxiliary parameters involving the higher
order moments of the data are necessary. In the SMD case,
this amounts to estimating an additional auxiliary regression
with the second moment of the data as a dependent variable.
An important feature of the SMM and SMD estimators is that
errors with non-Gaussian features are simulated from the gener-
alized lambda distribution (GLD). These two simulation-based
estimators also have classical asymptotic properties regardless
of whether the MA roots are inside, outside, or on the unit
circle.

The article proceeds as follows. Section 2 highlights two
identification problems that arise in MA models. Section 3
presents identification results based on higher order moments
of the data. Section 4 discusses GMM estimation of the MA(1)
model while Section 5 develops simulation-based estimators
for more general MA models. Simulation results and an anal-
ysis of the 25 Fama-French portfolio returns are provided
in Section 5. Section 6 concludes. Proofs are given in the
Appendix.

2. IDENTIFICATION PROBLEMS IN MODELS
WITH AN MA COMPONENT

Consider the ARMA (p, q) process:

α(L)yt = θ (L)et , (1)

where L is the lag operator such that Lpyt = yt−p and the
lag polynomial α(L) = 1 − α1L− · · · − αpL

p has no common
roots with θ (L) = 1 + θ1L+ · · · + θqL

q . Here, yt can be the
error of a regression model

Yt = x ′
tβ + yt ,

where Yt is the dependent variable and xt are exogenous re-
gressors. In the simplest case when xt = 1, yt is the demeaned
data. The process yt is causal if α(z) �= 0 for all |z| ≤ 1 on
the complex plane. In that case, there exist constants hj with∑∞

j=0 |hj | < ∞ such that yt = ∑∞
j=0 hjet−j for t = 0,±1, . . .

Thus, all MA models are causal. The process is invertible if
θ (z) �= 0 for all |z| ≤ 1; see Brockwell and Davies (1991). In
control theory and the engineering literature, an invertible pro-
cess is said to have minimum phase.

Our interest is in estimating MA models without prior knowl-
edge about invertibility. The distinction between invertible and
noninvertible processes is best illustrated by considering the
MA(1) model defined by

yt = et + θet−1, (2)

where et = σεt and εt ∼ iid(0, 1) with κ3 = E(ε3
t ) and κ4 =

E(ε4
t ). The invertibility condition is satisfied if |θ | < 1. In that

case, the inverse of θ (L) has a convergent series expansion in
positive powers of the lag operator L. Then, we can express
yt as π (L)yt = et with π (L) = ∑∞

j=0(−θL)j . This infinite au-
toregressive representation of yt implies that the span of et
and its history coincide with that of yt , which is observed by
the econometrician. When |θ | > 1, the inverse polynomial is∑∞

j=0(−θL)−j−1, implying that yt is a function of future values
of yt , which is not useful for forecasting. This argument is often
used to justify the assumption of invertibility. It is, however, mis-
leading to classify invertible processes according to the value of
θ alone. Consider another MA(1) process yt represented by

yt = θet + et−1. (3)

Even if θ in (3) is less than one, the inverse of θ (L) = (θ + L)
is not convergent. Furthermore, the errors from a projection of
yt on lags of yt have different time series properties depending
on whether the data are generated by (2) or (3).

Identification and estimation of models with an MA compo-
nent are difficult because of two problems that are best under-
stood by focusing on the MA(1) case. The first identification
problem concerns θ at or near unity. When the MA parame-
ter θ is near the unit circle, the Gaussian maximum likelihood
(ML) estimator takes values exactly on the boundary of the in-
vertibility region with positive probability in finite samples. This
point probability mass at unity (the so-called “pile-up” problem)
arises from the symmetry of the likelihood function around one
and the small sample deficiency to identify all the critical points
of the likelihood function in the vicinity of the noninvertibility
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boundary; see Sargan and Bhargava (1983), Anderson and Take-
mura (1986), Davis and Dunsmuir (1996), Gospodinov (2002),
and Davis and Song (2011).

The second identification problem arises because covariance
stationary processes are completely characterized by the first and
second moments of the observables. The Gaussian likelihood
for an MA(1) model with L(θ, σ 2) is the same as one with
L(1/θ, θ2σ 2). The observational equivalence of the covariance
structure of invertible and noninvertible processes also implies
that the projection coefficients in π (L) are the same regardless
of whether θ is less than or greater than one. Thus, θ cannot
be recovered from the coefficients of π (L) without additional
assumptions.

This observational equivalence problem can be further
elicited from a frequency domain perspective. If we take as
a starting point yt = h(L)et = ∑∞

j=−∞ hjet−j , the frequency
response function of the filter is

H (ω) =
∑

hj exp(−iωj ) = |H (ω)| exp−iδ(ω),

where |H (ω)| is the amplitude and δ(ω) is the phase response
of the filter. For ARMA models, h(z) = θ(z)

α(z) = ∑∞
j=−∞ hjz

j .
The amplitude is usually constant for given ω and tends toward
zero outside the interval [0, π ]. For given a > 0, the phase δ0

is indistinguishable from δ(ω) = δ0 + aω for any ω ∈ [0, π ].
Recovering et from the second-order spectrum

S2(z) = σ 2|H (z)|2

is problematic because S2(z) is proportional to the amplitude
|H (z)|2 with no information about the phase δ(ω). The second-
order spectrum is thus said to be phase-blind. As argued by Lii
and Rosenblatt (1982), one can flip the roots of α(z) and θ (z)
without affecting the modulus of the transfer function. With
real distinct roots, there are 2p+q ways of specifying the roots
without changing the probability structure of yt .

3. CUMULANT-BASED IDENTIFICATION OF
NONINVERTIBLE MODELS

Econometric analysis on identification largely follows the pi-
oneering work of Fisher (1961, 1965) and Rothenberg (1971)
in fully parametric/likelihood settings. These authors recast the
identification problem as one of finding a unique solution to
a system of nonlinear equations. For nonlinear models, a suf-
ficient condition is that the Jacobian matrix of the first partial
derivatives is of full column rank. See Dufour and Hsiao (2008)
for a survey. However, local identification is still possible if the
rank condition fails by exploiting restrictions on the higher order
derivatives, as shown in Sargan (1983) and Dovonon and Re-
nault (2013). To obtain results for global identification, Rothen-
berg (1971, Theorem 7) imposed additional conditions to ensure
that the optimization problem is well behaved. In a semipara-
metric setting when the distribution of the errors is not specified,
identification results are limited, but the rank of the derivative
matrix remains to be a sufficient condition for local identifica-
tion (Newey and McFadden 1994). Komunjer (2012) showed
that global identification from moment restrictions is possible
even when the derivative matrix has a deficient rank, provided

that this happens only over sufficiently small regions in the
parameter space.

More precisely, let γ ∈ � be aK × 1 parameter vector of in-
terest, where the parameter space� is a compact subset of the K-
dimensional Euclidean spaceRK . In the case of an ARMA(p, q)
model defined by (1), γ = (α1, . . . , αp, θ1, . . . , θq, σ

2)′. Let γ0

be the true value of γ and g(γ ) ∈ G ⊂ RL denote L (L ≥ K)
moments, which can be used to infer the value of γ0. Identifica-
tion hinges on a well-behaved mapping from the space of γ to
the space of moment conditions g(·).

Definition 1. Let g(γ ) : RK → RL be a mapping from γ to
g(γ ) and let G(γ ) = ∂g(γ )/∂γ ′ with G0 ≡ G(γ0). Then, γ0 is
globally identified from g(γ ) if g(·) is injective and is locally
identified if the matrix of partial derivatives G0 has full column
rank.

From Definition 1, γ1 and γ2 are observationally equivalent
if g(γ1) = g(γ2), that is, g(·) is not injective. Section 3.1 shows
in the context of an MA(1) model that second moments can-
not be used to define a vector g(γ ) that identifies γ without
imposing invertibility. However, possibly noninvertible models
can be identified if g(γ ) is allowed to include higher order mo-
ments/cumulants. Sections 3.2 and 3.3 generalize the results to
MA(q) and ARMA(p, q) models.

3.1 MA(1) Model

This subsection provides a traditional identification analysis
of the zero mean MA(1) model. Let γ = (θ, σ 2)′. The data
yt are a function of the true value γ0. For the MA(1) model,
E(ytyt−1) = 0 for j ≥ 2. Consider the population identification
problem using only second moments of yt :

g2(γ ) =
(
g21

g22

)
=
(
E(ytyt−1)

E(y2
t )

)
−
(

θσ 2

(1 + θ2)σ 2

)
.

The moment vector g2(γ ) is the difference between the popula-
tion second moments and the moments implied by the MA(1)
model. If the assumption that the data are generated by the
MA(1) model is correct, g2(γ ) evaluated at the true value
of γ is zero: g2(γ0) = 0. Under Gaussianity of the errors,
these moments fully characterize the covariance structure of
yt . However, g2(γ ) assumes the same value for γ1 = (θ, σ 2)′

and γ2 = (1/θ, θ2σ 2)′. For example, if γ1 = (θ = 0.5, σ 2 = 1)′

and γ2 = (θ = 2, σ 2 = 0.25)′, g2(γ1) = g2(γ2). Parameters that
are not identifiable from the population moments are not con-
sistently estimable.

The problem that the mapping g2(·) is not injective is typi-
cally handled by imposing invertibility, thereby restricting the
parameter space to �R = [−1, 1] × [σ 2

L, σ
2
H ]. But there is still

a problem because the derivative matrix of g(γ ) with respect to
γ is not full rank everywhere in �R . The determinant of

G(γ ) =
(
σ 2 θ

2θσ 2 (1 + θ2)

)
(4)

is zero when |θ | = 1. This is responsible for the pile-up problem
discussed earlier. Furthermore, |θ | = 1 lies on the boundary of
the parameter space. As a consequence, the Gaussian maximum
likelihood estimator and estimators based on second moments
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are not uniformly asymptotically normal; see Davis and Dun-
smuir (1996). Note, however, that the two problems with the
MA(1) model, namely, inconsistency due to nonidentification
and nonnormality due to a unit root, do not arise if there is prior
knowledge about σ 2. We will revisit this observation in Section
4.1.

While the second moments of the data do not identify γ =
(θ, σ 2)′, would the three nonzero third moments given by

g3(γ ) =
⎛⎝g31

g32

g33

⎞⎠ =

⎛⎜⎝ E(y3
t )

E(y2
t yt−1)

E(yty2
t−1)

⎞⎟⎠−

⎛⎜⎝ (1 + θ3)σ 3κ3,

θ2σ 3κ3

θσ 3κ3

⎞⎟⎠
achieve identification? The following lemma provides an answer
to this question.

Lemma 1. Consider the MA(1) model yt = et + θet−1 with
et = σεt . Suppose that εt ∼ iid(0, 1) with κ3 = E(ε3

t ). Assume
that θ �= 0, κ3 �= 0, and E|εt |3 < ∞. Then,

(a) g(γ ) = (g′
2, g32)′ is not injective for any γ =

(θ, σ 2, κ3)′ ∈ �.
(b) g(γ ) = (g′

2, g3j )′ for j = 1, 2, or 3 cannot locally identify
γ when |θ | = 1 for any σ 2 and κ3.

In Lemma 1, g3(·) and γ = (θ, σ 2, κ3)′ are of the
same dimension. Part (a) states that there always exist
γ1, γ2 ∈ � that are observationally equivalent in the sense
that they generate the same moments. For example, γ1 =
(θ, σ 2, κ3)′ and γ2 = (1/θ, θ2σ 2, θκ3)′ both imply the same
(E(ytyt−1), E(y2

t ), E(y2
t yt−1))′. Part (b) of Lemma 1 follows

from the fact that the determinant of the derivative matrix is zero
at |θ | = 1. As a result, a single third moment cannot be guaran-
teed to identify both κ3 and the parameters of the MA(1) model
θ and σ 2. Global and local identification of θ at |θ | = 1 requires
use of information in the remaining two third-order moments.
In particular, the derivative matrix of g(γ ) = (g′

2, g
′
3)′ with re-

spect to γ = (θ, σ 2, κ3)′ is of full column rank everywhere in
� including |θ | = 1. However, since g(·) is of dimension five,
this together with Lemma 1 implies that γ can only be over-
identified if κ3 �= 0. The next subsection describes a general
procedure, based on higher order cumulants, for identifying the
parameters of MA(q) and ARMA (p, q) models.

3.2 The MA(q) Model

The insight from the MA(1) analysis that the parameters of
the model cannot be exactly identified but can be over-identified
with an appropriate choice of higher order moments extends to
MA(q) models. But for MA(q) models, the moments of the
process are nonlinear functions of the model parameters and
verifying global and local identification is more challenging.
Our analysis is built on results from the statistical engineering
literature.

Let c�(τ1, τ2, . . . , τ�−1) be the �th (� ≥ 2)-order cumulant of
a zero-mean stationary and ergodic process yt . The second- and
third-order cumulants of yt are given by

c2(τ1) = E(ytyt+τ1 ),

c3(τ1, τ2) = E(ytyt+τ1yt+τ2 ).

If yt = h(L)et and et = σεt is a mean-zero iid process, we have

c�(τ1, . . . , τ�−1) = η�

∞∑
i=0

hihi+τ1 . . . hi+τ�−1 , (5)

where η� = c�e(0, 0, . . . , 0) denotes the �th-order cumulant of
et with η2 = σ 2, η3 = κ3σ

3, and η4 = σ 4(κ4 − 3). Thus, the cu-
mulants η� (� ≥ 3) measure the distance of et (and hence of yt )
from Gaussianity. If τ1 = τ2 = · · · = τ� = τ , then c�(τ ) =
c�(τ, . . . , τ ) is known as the diagonal slice of the �th-order
cumulant of yt .

Higher order cumulants are useful for identification of pos-
sibly noninvertible models because the Fourier transform of
c�(τ1, τ2, . . . , τ�−1) is the �th-order polyspectrum

S�(ω1, . . . , ω�−1) = η�H (ω1) . . . H (ω�−1)H

(
−

�−1∑
i=1

ωi

)
.

(6)
Recovery of phase information necessarily requires that et has
non-Gaussian features. In other words, η� must exist and is
nonzero for some � ≥ 3 for recovery of the phase function; see
Lii and Rosenblatt (1982, Lemma 1), Giannakis and Swami
(1992), Giannakis and Mendel (1989), Mendel (1991), Tugnait
(1986), and Ramsey and Montenegro (1992).

To establish that the MA(q) parameters are identifiable from
cumulants of a particular order �, the typical starting point is to
generate identities that link the second and higher order cumu-
lants to the parameters of the model. Different identities exist
for different choice of τ1, τ2, . . . , τ�−1. Mendel (1991) provided
a survey of the methods used in the engineering literature. One
of the simplest and earliest ideas is to consider the diagonal
slice of the third-order cumulants, which implies the following
relation between the population cumulants and the q + 1 vector
of parameters γ = (θ1, . . . , θq, κ3σ )′:

q∑
j=1

θj c3(τ − j ) − κ3σ

q∑
j=0

θ2
j c2(τ − j ) + c3(τ ) = 0,

−q ≤ τ ≤ 2q. (7)

Define

β(γ ) = (
θ1, . . . , θq, κ3σ, κ3σθ

2
1 , . . . , κ3σθ

2
q

)′
,

and

b = [−c3(−q) − c3(−q + 1) · · · − c3(0) − c3(1)

· · · − c3(q − 1) − c3(q) 0 0 · · · 0]′.

The system of Equation (7) can be expressed as

Aβ(γ ) = b. (8)

The reason why (8) is useful for identification is that Aβ(γ ) =
b is an over-identified system of 3q + 1 equations in 2q + 1
unknowns β(γ ). The parameters γ are identifiable if β(γ ) can
be solved from (8). Given that the derivative matrix of β(γ ) with
respect to γ has rank q + 1, the identification problem reduces
to the verification of the column rank of the matrix A (given in
the Appendix).

Lemma 2. Consider the MA(q) process yt = et +
θ1et−1 + · · · + θqet−q , where et = σεt , εt ∼ iid(0, 1) with
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κ3 = E(ε3
t ) �= 0 and E|εt |3 < ∞. Let c�(τ ) denote the diag-

onal slice of the �th-order cumulant of yt . If c2(q) and c3(q) are
nonzero, then the matrix A has full column rank 2q + 1.

A proof is given in the Appendix. Full rank of the ma-
trix A enables identification of β(γ ) and subsequently of γ .
This requires that the qth autocorrelation c2(q) is nonzero,
and also that c3(q) �= 0. In view of the definition of c3(q) in
(5), it is clear that skewness in et is necessary for identifica-
tion of γ . A similar idea can be used to analyze identifica-
tion using fourth-order cumulants, defined as c4(τ1, τ2, τ3) =
E(ytyt+τ1yt+τ2yt+τ3 ) −c2(τ1)c2(τ2 − τ3) − c2(τ2)c2(τ3 − τ1) −
c2(τ3)c2(τ1 − τ2). For example, the diagonal slice of the fourth-
order cumulants yields a system of equations given by

q∑
i=1

θic4(τ − i) − σ 2(κ4 − 3)
q∑
i=0

θ3
i c2(τ − i) = −c4(τ ). (9)

As shown in the Appendix, β(θ1, . . . , θq, σ
2(κ4 − 3)) = (θ1,

. . . , θq, σ
2(κ4 − 3), σ 2(κ4 − 3)θ3

1 , . . . , σ
2(κ4 − 3)θ3

q )′ is iden-
tifiable provided that (κ4 − 3), c2(q), and c4(q) are nonzero.
Nondiagonal slices of the fourth-order cumulants were consid-
ered by Friedlander and Porat (1990) and Na et al. (1995).

Giannakis and Mendel (1989, p. 364) made use of the struc-
ture of the A matrix to recursively compute the parameters in
β(γ ) and hence γ . This algorithm treats κ3σθ

2
1 , . . . , κ3σθ

2
q as

free parameters when, in fact, they are not. Although the method
is not efficient or practical for estimation, the approach is one of
the first to suggest the possibility of identification of MA models
using cumulants. Tugnait (1995) subsequently obtained closed-
form expressions for the MA parameters using c3(τ, τ + q) and
autocovariances. Friedlander and Porat (1990) proposed an op-
timal minimum distance estimation of the system (8) although
this method still cannot separately identify the parameters κ3

(or κ4) and σ 2. As we will see below, this approach is a re-
stricted version of our proposed GMM method.

3.3 ARMA(p,q) Model

The previous two subsections have focused on MA(q) models
because the p parameters in the autoregressive polynomial α(L)
can be easily identified. Consider the ARMA(p, q) model

yt = α1yt−1 + · · · + αpyt−p = et + θ1et−1 + · · · + θqet−q,

where et ∼ iid(0, σ 2). If et were Gaussian, one can exploit the
fact that Eet−qyt−j = 0 for j > q, or equivalently, c2(τ + 1) −∑p−1

k=0 c2(τ − k)αk+1 = 0 for τ ∈ [q, q + p]. This leads to the
system of equations⎛⎜⎜⎜⎜⎝

c2(q + 1)

c2(q + 2)
...

c2(q + p)

⎞⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎝
c2(q) c2(q + 1) . . . c2(q + p − 1)

c2(q + 1) c2(q) . . .

...
...

c2(q + p − 1) . . . c2(q)

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
α1

α2

...

αp

⎞⎟⎟⎟⎟⎠.
(10)

The p × p Toeplitz matrix on the right-hand side is a submatrix
of autocovariances and hence full rank. Thus, α is identifiable.
By considering the spectrum at p frequencies, identities can also
be derived in the frequency domain. If et were non-Gaussian,
the AR coefficients of an ARMA process can still be uniquely
determined from the equations

∑p

i=0

∑p

j=0 αiαj c�(τ1 − i, τ2 −
j, τ3, . . . , τ�−1) = 0 for � ≥ 3 and |τ1 − τ2| > q. The idea of
using cumulants to identify the autoregressive parameters seems
to date back to Akaike (1966), see Mendel (1991, p. 281) and
Theorem 2 of Giannakis and Swami (1992).

The question then arises as to whether (α1, . . . , αp,

θ1, . . . , θq)′ can be jointly identified from the third-order cu-
mulants alone. The Aβ(γ ) = b framework presented above re-
quires that q is finite and hence does not work for ARMA(p, q)
models. Assuming that the ARMA model has no common fac-
tors (hence, it is irreducible), the following lemma, adapted from
Tugnait (1995), provides sufficient conditions for identifiability
of the parameters of ARMA(p, q) models.

Lemma 3. Assume that the ARMA(p, q) process (1 − α1L−
· · · − αpL

p)yt = (1 + θ1L+ · · · + θqL
q)et is irreducible and

satisfies
∑p

i=0 αiz
i �= 0 for |z| = 1, where et = σεt , εt ∼

iid(0, 1) with κ3 = E(ε3
t ) �= 0 andE|εt |3 < ∞. Let c�(τ ) denote

the diagonal slice of the �th-order cumulant of the MA(p + q)
process (1 − α1L− · · · − αpL

p)(1 + θ1L+ · · · + θqL
q)et and

assume that c2(p + q) and c3(p + q) are nonzero. Then, the
parameter vector (α1, . . . , αp, θ1, . . . , θq)′ of the ARMA(p, q)
process is identifiable from the second and third cumulants of
the MA(p + q) process.

The thrust of the argument, elaborated in the Appendix, is
that observational equivalence of the two ARMA(p, q) process
amounts to equivalence of two appropriately defined MA(p + q)
processes, say, z, parameterized by p + q vectors �1 and �2,
respectively. But from Tugnait (1995), two MA(p + q) pro-
cesses are equivalent if c3z(τ1, p + q|�1) = c3z(τ1, p + q|�2)
for 0 ≤ τ1 ≤ p + q. We can now exploit results from the previ-
ous subsection. Tugnait (1995) used information in the nondi-
agonal slices to isolate the smallest number of third and higher
order cumulants that are sufficient for identification of ARMA
parameters.

The representation Aβ(γ ) = b provides a transparent way to
see how higher order cumulants can be used to recover the pa-
rameters of the model without imposing invertibility. However,
this approach may use more cumulants than is necessary. To see
why, (5) implies that for an MA(q) process, c3(q, k) = κ3σ

3θqθk

and c3(q, 0) = κ3σ
3θq . It immediately follows that θk = c3(q,k)

c3(q,0) .
This so-called C(q, k) formula suggests that only q + 1 third-
order cumulants c3(q, τ ) for 0 ≤ τ ≤ q are necessary and suffi-
cient for identification of θ1, . . . , θq if κ3 �= 0, which is smaller
than the number of equations in the Aβ(γ ) = b system.

The key point in this section to highlight is that once non-
Gaussian features are allowed, identification of noninvertible
models is possible from the higher order cumulants of the data.
In practice, we would want to use the covariance structure along
with identities based on the third- and fourth-order cumulants.
Using information in the third or fourth cumulants alone would
be inefficient, even though identification is possible. This is
because the covariance structure would have been sufficient for
identification if invertibility was imposed, and the fourth-order
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cumulants can be useful when the error distribution is (near-)
symmetric. The identities considered shed light on which order
cumulants are required for identification. For example, in the
MA(1) case, the Aβ(γ ) = b system

⎡⎢⎢⎢⎣
0 −c2(1) 0

c3(−1) −c2(0) −c2(1)

c3(0) −c2(1) −c2(0)

c3(1) 0 −c2(1)

⎤⎥⎥⎥⎦
⎡⎢⎣ θ

κ3σ

κ3σθ
2

⎤⎥⎦ =

⎡⎢⎢⎢⎣
−c3(−1)

−c3(0)

−c3(1)

0

⎤⎥⎥⎥⎦
(11)

tells us that the third-order cumulants c3(1), c3(0), c3(−1) will
be needed to identify the MA(1) parameters. This is used to
guide estimation, which is the subject of the next section.

4. GMM ESTIMATION

The results in Section 3 suggest to estimate the parameters of
ARMA(p, q) models by matching second and higher order cu-
mulants. Friedlander and Porat (1990, p. 30) proposed a two-step
procedure for estimating ARMA(p, q) models where the AR pa-
rameters are obtained first from the autocovariances (spectrum)
of the process and the MA parameters are then estimated from
the filtered process using information in the higher order cu-
mulants (a similar estimation strategy has been proposed by an
anonymous referee). Our proposed estimation strategy is similar
in spirit but it estimates all of the unknown parameters in one
step.

Let gt (γ ) be conditions characterizing the model parame-
terized by γ and such that at the true value γ0, E[gt (γ0)] =
0. Given data y ≡ (y1, . . . , yT )′, one can construct g(γ ) =
1
T

∑T
t=1 gt (γ ), the sample analog of g(γ ) = E[gt (γ )]. Let �̂

denote a consistent estimate of the positive definite matrix
� = limT→∞ var(

√
T g(γ0)). The optimal GMM estimator of

γ is defined as

γ̂ = arg minγ g(γ )′�̂−1g(γ ). (12)

Full rank of the derivative matrixG(γ ) = ∂g(γ )
∂γ ′ evaluated at γ0 is

sufficient for γ0 to be a unique solution to the system of nonlinear
equations characterized by G(γ )′�−1g(γ ) = 0. The full rank
condition in the neighborhood of γ0 is also necessary for the
estimator to be asymptotically normal. Under the assumptions
given by Newey and McFadden (1994),

√
T (γ̂ − γ0)

d−→N
(
0, (G(γ0)′�−1G(γ0))−1

)
. (13)

Consistent estimation of possibly noninvertible ARMA(p, q)
models depends on the choice gt (γ ). We consider three possi-
bilities beginning with a classical GMM estimator.

For the MA(1) model, let γ = (θ, σ 2, κ3)′ be the parameters
to be estimated and define

g(γ ) = m(γ0) −m(γ ),

where m(γ0) = 1
T

∑T
t=1mt (γ0) is a consistent estimate of

E[mt (γ0)]. The identification results in Lemma 1 and (14) sug-

gest to consider

E[mt (γ0)] =

⎛⎜⎜⎜⎜⎜⎜⎝
E(ytyt−1)

E(y2
t )

E(y2
t yt−1)

E(y3
t )

E(yty2
t−1)

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
c2(1)

c2(0)

c3(1)

c3(0)

c3(−1)

⎞⎟⎟⎟⎟⎟⎟⎠,

m(γ ) =

⎛⎜⎜⎜⎜⎜⎜⎝
θσ 2

(1 + θ2)σ 2

θ2σ 3κ3

(1 + θ3)σ 3κ3

θσ 3κ3

⎞⎟⎟⎟⎟⎟⎟⎠. (14)

Note that the equations in (11) are particular linear combinations
of the moment conditions in (14). The conditions in Lemma 2
that c2(1) �= 0 and c3(1) �= 0 correspond to the conditions θ �= 0
and κ3 �= 0 in Lemma 1.

Proposition 1. Consider the MA(1) model. Suppose that
in addition to the assumptions in Lemma 1, we have that
E|et |6 < ∞ and γ0 is in the interior of the compact param-
eter space �. Also, assume that

√
T g(γ0)

d−→N (0,�) and
Ĝ(γ ) = ∂g(γ )/∂γ ′ converges uniformly to G(γ ) over γ ∈ �.
Then, γ̂ is

√
T consistent with asymptotic distribution given by

(13).

The derivative matrixG(γ ) = ∂g(γ )
∂γ ′ is of full column rank ev-

erywhere in� (even at |θ | = 1). As a result, this GMM estimator
is root-T consistent and asymptotically normal.

4.1 Finite-Sample Properties of the GMM Estimator

To illustrate the finite-sample properties of the GMM esti-
mator, data with T = 500 observations are generated from an
MA(1) model yt = et + θet−1 and et = σεt , where εt is iid(0, 1)
and follows a GLD, which will be further discussed in Section
5.1. For now, it suffices to note that GLD distributions can be
characterized by a skewness parameter κ3 and a kurtosis parame-
ter κ4. The true values of the parameters are θ = 0.5, 0.7, 1, 1.5,
and 2, σ = 1, κ3 = 0, 0.35, 0.6, and 0.85, and κ4 = 3. The re-
sults are invariant to the choice of σ . Lack of identification
of γ arises when κ3 = 0 and weak to intermediate identifi-
cation occurs when κ3 = 0.35 and 0.6. Unreported numerical
results revealed that the estimator based on the moment condi-
tions (14) possesses substantially better finite-sample properties
than the estimator based on (11). We only consider the finite-
sample properties of the estimator for the MA(1) model when
the orthogonality conditions are both necessary and sufficient
for identification.

Table 1 presents the mean, the median, and the standard
deviation of three estimators of θ over 1000 Monte Carlo
replications. The first is the GMM estimator of γ = (θ, σ 2, κ3)′,
which uses (14) as moment conditions. The second is the
infeasible GMM estimator based on (14) but assumes σ 2

is known and estimates only (θ, κ3)′. As discussed earlier,
fixing σ 2 solves the identification problem in the MA(1)
model, and by not imposing invertibility, |θ | = 1 is not on the
boundary of the parameter space for γ . We will demonstrate
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Gospodinov and Ng: Minimum Distance Estimation of Possibly Noninvertible MA Models 409

Table 1. GMM and Gaussian QML estimates of θ from MA(1) model with possibly asymmetric errors

GMM estimator Gaussian QML estimator Infeasible GMM estimator

θ0 Mean Med. P (θ̂ ≥ 1) Std. Mean Med. P (θ̂ ≥ 1) Std. Mean Med. P (θ̂ ≥ 1) Std.

κ3 = 0
0.5 1.392 1.692 0.578 0.790 0.500 0.502 0.000 0.040 0.489 0.486 0.000 0.071
0.7 1.152 1.117 0.564 0.428 0.700 0.701 0.000 0.033 0.674 0.675 0.000 0.084
1.0 1.057 1.004 0.509 0.279 0.965 0.971 0.063 0.028 0.970 0.974 0.386 0.082
1.5 1.144 1.105 0.547 0.467 0.666 0.667 0.000 0.034 1.473 1.471 1.000 0.073
2.0 1.353 1.600 0.563 0.783 0.500 0.501 0.000 0.040 1.969 1.967 1.000 0.081

κ3 = 0.35
0.5 0.823 0.518 0.223 0.615 0.500 0.500 0.000 0.040 0.488 0.484 0.000 0.071
0.7 0.903 0.773 0.262 0.368 0.699 0.700 0.000 0.033 0.675 0.673 0.000 0.085
1.0 1.057 1.020 0.543 0.264 0.964 0.969 0.053 0.028 0.972 0.976 0.377 0.081
1.5 1.367 1.427 0.808 0.414 0.666 0.667 0.000 0.034 1.475 1.474 1.000 0.073
2.0 1.757 1.950 0.827 0.642 0.500 0.501 0.000 0.040 1.971 1.969 1.000 0.080

κ3 = 0.6
0.5 0.552 0.493 0.034 0.260 0.500 0.501 0.000 0.040 0.488 0.485 0.000 0.071
0.7 0.738 0.690 0.062 0.203 0.699 0.700 0.000 0.033 0.677 0.673 0.000 0.085
1.0 1.042 1.009 0.528 0.237 0.964 0.968 0.048 0.028 0.975 0.982 0.389 0.077
1.5 1.514 1.527 0.964 0.307 0.666 0.667 0.000 0.034 1.478 1.478 1.000 0.069
2.0 1.986 2.039 0.969 0.423 0.500 0.501 0.000 0.040 1.975 1.973 1.000 0.076

κ3 = 0.85
0.5 0.511 0.487 0.003 0.121 0.500 0.500 0.000 0.040 0.489 0.485 0.000 0.069
0.7 0.688 0.674 0.003 0.118 0.699 0.699 0.000 0.033 0.678 0.677 0.000 0.084
1.0 1.012 0.999 0.496 0.187 0.964 0.966 0.046 0.027 0.978 0.987 0.416 0.072
1.5 1.556 1.544 0.997 0.268 0.666 0.667 0.000 0.034 1.482 1.483 1.000 0.063
2.0 2.025 2.043 0.993 0.366 0.500 0.501 0.000 0.040 1.980 1.979 1.000 0.070

NOTES: The table reports the mean, median (med.), probability that θ̂ ≥ 1, and standard deviation (std.) of the GMM, Gaussian quasi-maximum likelihood (QML), and infeasible
GMM estimates of θ from the MA(1) model yt = et + θet−1, where et = σεt and εt ∼ iid(0, 1) are generated from a generalized lambda distribution (GLD) with a skewness
parameter κ3 and no excess kurtosis. The sample size is T = 500, the number of Monte Carlo replications is 1000 and σ = 1. The GMM estimator is based on the moment conditions
(E(yt yt−1) − θσ 2, E(y2

t ) − (1 + θ2)σ 2, E(y2
t yt−1) − θ2σ 3κ3, E(y3

t ) − (1 + θ3)σ 3κ3, E(yt y2
t−1) − θσ 3κ3)′. The infeasible GMM estimator is based on the same set of moment conditions

but with σ = 1 assumed known. Both GMM estimators use the optimal weighting matrix based on the Newey–West HAC estimator with automatic lag selection.

that our proposed GMM estimator has properties similar to
this infeasible estimator. The third is the Gaussian quasi-ML
estimator of (θ, σ 2)′ with invertibility imposed, which is used
to evaluate the efficiency losses of the GMM estimator for
values of θ in the invertible region (θ = 0.5 and 0.7).

The results in Table 1 suggest that regardless of the degree
of non-Gaussianity, the infeasible estimator produces estimates
of θ that are very precise and essentially unbiased. Hence, fix-
ing σ solves both identification problems without the need of
non-Gaussianity although a prior knowledge of σ is rarely avail-
able in practice. By construction, the Gaussian QML estimator
imposes invertibility and works well when the true MA param-
eter is in the invertible region but cannot identify the parameter
values in the noninvertible region. While for κ3 = 0.35 the iden-
tification is weak and the estimates of θ are somewhat biased,
for higher values of the skewness parameter the GMM estimates
of θ are practically unbiased.

Table 1 also presents the empirical probability that the partic-
ular estimator of θ is greater than or equal to one, which provides
information on how often the identification of the true parameter
fails. The Gaussian QML estimator is characterized by a pile-
up probability at unity (which can be inferred from P (θ̂ ≥ 1)
when θ0 = 1) as argued before. Even when κ3 = 0.35, the GMM
estimator correctly identifies if the true value of θ is in the in-
vertible or the noninvertible region with high probability. This
probability increases when κ3 = 0.85.

Finally, to assess the accuracy of the asymptotic normal-
ity approximation in Proposition 1, Figure 1 plots the density

functions of the standardized GMM estimator (t-statistic) of θ
for the MA(1) model with GLD errors and a skewness parameter
of 0.85 (strong identification). The sample size is T = 3000 and
θ = 0.5, 1, 1.5, and 2. Overall, the densities of the standardized
GMM estimator appear to be very close to the standard normal
density for all values of θ . The coverage probabilities of the 90%
confidence intervals for θ = 0.5, 0.7, 1, 1.5, and 2 are 91.8%,
90.5%, 92.6%, 89.5%, and 92.9%, respectively.

5. SIMULATION-BASED ESTIMATION

A caveat of the GMM estimator is that it relies on pre-
cise estimation of the higher order unconditional moments, but
finite-sample biases can be nontrivial even for samples of mod-
erate size. This can be problematic for GMM estimation of
ARMA(p, q) models since a large number of higher order terms
needs to be estimated. To remedy these problems, we consider
the possibility of using simulation to correct for finite-sample
biases (see Gourieroux, Renault, and Touzi 1999; Phillips 2012).
Two estimators are considered. The first is a simulation analog
of the GMM estimator, and the second is a simulated minimum
distance estimator that uses auxiliary regressions to efficiently
incorporate information in the higher order cumulants into a
parameter vector of lower dimension. Both estimators can ac-
commodate additional dynamics, kurtosis, and other features of
the errors.

Simulation estimation of the MA(1) model was considered in
Gourieroux, Monfort, and Renault (1993), Michaelides and Ng
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Figure 1. Density functions of the standardized GMM estimator (t-statistic) of θ based on data (T = 3000) generated from an MA(1) model
yt = et + θet−1 with θ = 0.5, 1, 1.5, 2, and et ∼ iid(0, 1). The errors are drawn from a generalized lambda distribution with zero excess kurtosis
and a skewness parameter equal to 0.85. For the sake of comparison, the figure also plots the standard normal (N (0, 1)) density.

(2000), Ghysels, Khalaf, and Vodounou (2003), and Czellar and
Zivot (2008), among others, but only for the invertible case. All
of these studies use an autoregression as the auxiliary model. For
θ = 0.5 and assuming that σ 2 is known, Gourieroux, Monfort,
and Renault (1993) found that the simulation-based estimator
compares favorably to the exact ML estimator in terms of bias
and root mean squared error. Michaelides and Ng (2000) and
Ghysels, Khalaf, and Vodounou (2003) also evaluated the prop-
erties of simulation-based estimators with σ 2 assumed known.
Czellar and Zivot (2008) reported that the simulation-based es-
timator is relatively less biased but exhibits some instability and
the tests based on it suffer from size distortions when θ0 is close
to unity (see also Tauchen 1998 for the behavior of simulation
estimators near the boundary of the parameter space).

5.1 The GLD Error Simulator

The key to identification is errors with non-Gaussian features.
Thus, in order for any simulation estimator to identify the pa-
rameters without imposing invertibility, we need to be able to
simulate non-Gaussian errors εt in a flexible fashion so that yt
has the desired distributional properties.

There is evidently a large class of distributions with third
and fourth moments consistent with a non-Gaussian process
that one can specify. Assuming a particular parametric error
distribution could compromise the robustness of the estimates.
We simulate errors from the GLD �(λ1, λ2, λ3, λ4) considered
in Ramberg and Schmeiser (1975). This distribution has two
appealing features. First, it can accommodate a wide range of
values for the skewness and excess kurtosis parameters and it
includes as special cases normal, log-normal, exponential, t,

beta, gamma, and Weibull distributions. The second advantage
is that it is easy to simulate from. The percentile function is
given by

�(u)−1 = λ1 + [Uλ3 + (1 − U )λ4 ]/λ2, (15)

where U is a uniform random variable on [0, 1], λ1 is a lo-
cation parameter, λ2 is a scale parameter, and λ3 and λ4 are
shape parameters. To simulate εt , a U is drawn from the uni-
form distribution and (15) is evaluated for given values of
(λ1, λ2, λ3, λ4). Furthermore, the shape parameters (λ3, λ4) and
the location/scale parameters (λ1, λ2) can be sequentially eval-
uated. Since εt has mean zero and variance one, the parameters
(λ1, λ2) are determined by (λ3, λ4) so that εt is effectively char-
acterized by λ3 and λ4. As shown in Ramberg and Schmeiser
(1975), the shape parameters (λ3, λ4) are explicitly related to
the coefficients of skewness and kurtosis (κ3 and κ4) of εt (see
the Appendix). A consequence of having to use the GLD to
simulate errors is that the parameters λ3 and λ4 of the GLD
distribution must now be estimated along with the parameters
of yt , even though these are not parameters of interest per se. In
practice, these GLD parameters are identified from the higher
order moments of the residuals from an auxiliary regression.

5.2 The SMM Estimator

Define the augmented parameter vector of the MA(1) model
as γ+ = (θ, σ 2, λ3, λ4)′. Our SMM estimator is based on

g(γ+) = 1

T

T∑
t=1

mt (γ
+
0 ) − 1

T S

T S∑
t=1

mSt (γ+), (16)
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where mt (γ
+
0 ) is evaluated on the observed data y =

(y1, . . . , yT )′ and mSt (γ+) is evaluated on the data yS(γ+) =
(yS1 , . . . , y

S
T , . . . , y

S
T S)′ of length T S (S ≥ 1), simulated for a

candidate value of γ+. Essentially, the quantity m(γ+) which
is chosen to summarize the dependence of the model on the
parameters γ+ is approximated by Monte Carlo methods.

It remains to define mt (γ
+
0 ). In contrast to GMM estimation,

we now need moments of the innovation errors to identify λ3

and λ4. The latent errors are approximated by the standardized
residuals from estimation of an AR(p) model

yt = π0 + π1yt−1 + · · · + πpyt−p + σεt .

For the MA(1) model, the moment conditions given by

mt (γ
+
0 ) = (

ytyt−1 y
2
t y

2
t yt−1 y

3
t yty

2
t−1 y

3
t yt−1 yty

3
t−1

y2
t y

2
t−1 y

4
t ε̂

3
t ε̂

4
t

)′
(17)

reflect information in the second-, third-, and fourth-order cu-
mulants of the process yt , as well as skewness and kurtosis of
the errors.

To establish the consistency and asymptotic normality of the
SMM estimator γ̂+, we need some additional notation and reg-
ularity conditions. Let Fe denote the true distribution of the
structural model errors and �∗ be the class of GLDs.

Proposition 2. Consider the MA(1) model and let
G(γ+) = ∂g(γ+)/∂γ+′, Ĝ(γ+) = ∂g(γ+)/∂γ+′, and � =
limT→∞ var(

√
T g(γ+)). In addition to the assumptions in

Lemma 1, assume that Fe ∈ �∗, E|et |8 < ∞, supγ∈�|Ĝ(γ+) −
G(γ+)| p−→0, γ+

0 is in the interior of the compact parameter
space �+, and

√
T g(γ+

0 )
d−→ N (0,�). Then,

√
T (γ̂+ − γ+

0 )
d−→N

(
0,

(
1 + 1

S

) (
G(γ+

0 )′�−1G(γ+
0 )
)−1

)
≡ N

(
0,Avar(γ̂+)

)
.

Consistency follows from identifiability of γ and the higher
order cumulants play a crucial role. In our procedure, κ3 and κ4

are defined in terms of λ3 and λ4. Thus, λ3 and λ4 are crucial for
identification of θ and σ 2 even though they are not parameters
of direct interest.

A key feature of Proposition 2 is that it holds when θ is less
than, equal to, or greater than one. In a Gaussian likelihood
setting when invertibility is assumed for the purpose of iden-
tification, there is a boundary for the support of θ at the unit
circle. Thus, the likelihood-based estimation has nonstandard
properties when the true value of θ is on or near the boundary
of one. In our setup, this boundary constraint is lifted because
identification is achieved through higher moments instead of
imposing invertibility. As a consequence, the SMM estimator
γ̂+ has classical properties provided that κ3 and κ4 enable iden-
tification.

Consistent estimation of the asymptotic variance of γ̂+ can
proceed by substituting a consistent estimator of � and evalu-
ating the Jacobian G(γ̂+) numerically. The computed standard
errors can then be used for testing hypotheses and constructing
confidence intervals. Inference on the MA parameter of interest,
θ , can also be conducted by constructing confidence intervals

based on inversion of the distance metric test without an ex-
plicit computation of the variance matrix Avar(γ̂+). It should be
stressed that despite the choice of a flexible functional distribu-
tional form for the error simulator, our structural model is still
correctly specified. This is in contrast with the semiparametric
indirect inference estimator of Dridi, Guay, and Renault (2007).
They considered partially misspecified structural models and
thus required an adjustment in the asymptotic variance of the
estimator.

5.3 The SMD Estimator

Higher order MA(q) models and general ARMA(p, q) mod-
els can in principle be estimated by GMM or SMM. But
as mentioned earlier, the number of orthogonality conditions
increases with p and q. Instead of selecting additional mo-
ment conditions, we combine the information in the cumu-
lants into the auxiliary parameters that are informative about
the parameters of interest. Let ψ̂(γ+

0 ) = arg minψ QT (ψ ; y) and
ψ̃S(γ+) = arg minψ QT (ψ ; yS(γ+)) be the auxiliary parameters
estimated from actual and simulated data,QT (·) denotes the ob-
jective function of the auxiliary model, and �̂ is a consistent
estimate of the asymptotic variance of ψ̂ . Our simulated mini-
mum distance (SMD) based on

g(γ+) = ψ̂(γ+
0 ) − ψ̃S(γ+) (18)

shares the same asymptotic properties as the SMM estimator in
Proposition 2. The SMD estimator is in the spirit of the indi-
rect inference estimation of Gourieroux, Monfort, and Renault
(1993) and Gallant and Tauchen (1996). Their estimators require
that the auxiliary model is easy to estimate and that the mapping
from the auxiliary parameters to the parameters of interest is
well defined. We use such a mapping to collect information in
the unconditional cumulants into a lower dimensional vector of
auxiliary parameters to circumvent direct use of a large number
of unconditional cumulants.

We consider least-square (LS) estimation of the auxiliary
regressions

yt = π0 + π1yt−1 + · · · + πpyt−p + σεt , (19a)

y2
t = c0 + c1,1yt−1 + · · · + c1,ryt−r + c2,1y

2
t−1

+ · · · + c2,ry
2
t−r + vt (19b)

with an appropriate choice of p and r. Equation (19a) has been
used in the literature for simulation estimation of MA(1) mod-
els when invertibility is imposed, and often with σ 2 assumed
known. We complement (19a) with the regression defined in
(19b). The parameters of this regression parsimoniously sum-
marize information in the higher moments of the data. Compared
to the SMM in which the auxiliary parameters are unconditional
moments, the auxiliary parameters ψ are based on conditional
moments. Equation (19b) also provides a simple check for the
prerequisite for identification. If the c coefficients are jointly
zero, identification would be in jeopardy.

Let κ̂3 and κ̂4 denote the sample third and fourth moments
of the ordinary LS (OLS) residuals in (19a). The auxiliary
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Table 2. SMM and SMD estimates of θ from MA(1) model with asymmetric errors

SMM SMD

Mean Med. P (θ̂ ≥ 1) Std. Mean Med. P (θ̂ ≥ 1) Std.

GLD, σt = σ

θ0 = 0.5 0.488 0.484 0.001 0.054 0.503 0.503 0.000 0.043
θ0 = 0.7 0.693 0.688 0.000 0.083 0.705 0.703 0.002 0.053
θ0 = 1.0 0.949 0.988 0.421 0.137 0.973 0.982 0.406 0.089
θ0 = 1.5 1.563 1.520 0.962 0.280 1.482 1.493 0.980 0.104
θ0 = 2.0 1.903 1.959 0.940 0.337 1.996 1.995 0.988 0.180

GLD + ARCH
θ0 = 0.5 0.437 0.426 0.013 0.064 0.549 0.479 0.062 0.055
θ0 = 0.7 0.648 0.636 0.006 0.099 0.748 0.687 0.143 0.059
θ0 = 1.0 0.929 0.959 0.318 0.160 1.068 1.087 0.790 0.117
θ0 = 1.5 1.573 1.561 0.940 0.274 1.483 1.486 0.983 0.113
θ0 = 2.0 1.861 1.956 0.883 0.374 1.926 1.924 0.978 0.240

NOTES: The table reports the mean, median (med.), probability that θ̂ ≥ 1, and standard deviation (std.) of the SMM estimates of θ from the MA(1) model yt = et + θet−1, where
et = σt εt , εt ∼ iid(0, 1) are generated from a generalized lambda distribution (GLD) with a skewness parameter κ3 = 0.85 (and no excess kurtosis) and σt = σ = 1 or σ 2

t = 0.7 + 0.3e2
t−1.

The sample size is T = 500 and the number of Monte Carlo replications is 1000. The SMM estimator is based on the moment conditionsmSMM,t , defined in (17), and the SMD estimator
is based on the auxiliary parameter vector ψSMD, defined in (19c). The SMM and SMD estimators use the optimal weighting matrix based on the Newey–West HAC estimator.

parameter vector based on the data is

ψ̂(γ+
0 ) = (

π̂0, π̂1, . . . , π̂p, ĉ0, ĉ1,1, . . . , ĉ1,r , ĉ2,1,

. . . , ĉ2,r , κ̂3, κ̂4
)′
. (19c)

The parameter vector ψS(γ+) is analogously defined, except
that the auxiliary regressions are estimated with data simulated
for a candidate value of γ .

5.4 Finite-Sample Properties of the Simulation-Based
Estimators

To implement the SMM and SMD estimators, we simulate T S
errors from the generalized lambda error distribution. Larger
values of S (the number of simulated sample paths of length
T) tend to smooth the objective functions, which improves the
identification of the MA parameter. As a result, we set S = 20

Figure 2. Logarithm of the objective function of simulation-based estimator of θ and σ based on data (T = 1000) generated from an MA(1)
model yt = et + θet−1 with θ = 0.7 and et ∼ iid(0, 1). The errors are drawn from a generalized lambda distribution with zero excess kurtosis
and a skewness parameter equal to 0, 0.35, 0.6, and 0.85.
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Table 3. SMD, SMM, and Gaussian QML estimates of θ and α from an ARMA(1, 1) model with exponential/mixture of normals errors

θ α

Errors/Estimator Mean Med. Std. P (|θ̂ | ≥ 1) Mean Med. Std.

Exponential errors
θ0 = −1.5 α0 = 0.5

SMD −1.552 −1.489 0.544 0.954 0.493 0.501 0.162
SMM −1.497 −1.480 0.378 0.994 0.496 0.504 0.109
Gaussian QML −0.652 −0.686 0.206 0.000 0.482 0.511 0.217

θ0 = −2 α0 = 0.5
SMD −2.039 −2.001 0.626 0.976 0.483 0.490 0.134
SMM −1.919 −1.958 0.648 0.967 0.473 0.501 0.194
Gaussian QML −0.011 0.010 0.571 0.000 0.011 −0.003 0.567

Mixture errors
θ0 = −1.5 α0 = 0.5

SMD −1.501 −1.480 0.415 0.967 0.505 0.516 0.137
SMM −1.277 −1.379 0.671 0.805 0.444 0.512 0.319
Gaussian QML −0.660 −0.688 0.168 0.000 0.487 0.510 0.186

θ0 = −2 α0 = 0.5
SMD −1.728 −1.723 0.498 0.978 0.570 0.580 0.191
SMM −1.537 −1.678 1.015 0.785 0.457 0.516 0.380
Gaussian QML −0.012 −0.003 0.563 0.000 0.009 0.001 0.558

NOTES: The table reports the mean, median (med.), standard deviation (std.), and the probability that P (|̂θ | ≥ 1) of the SMD, SMM, and Gaussian QML estimates of θ and α from the
ARMA(1, 1) model (1 − αL)yt = (1 + θL)et , where et = σεt and εt is an exponential random variable with a scale parameter equal to one (exponential errors) or a mixture of normals
random variable with mixture probabilities 0.1 and 0.9, means −0.9 and 0.1, and standard deviations 2 and 0.752773, respectively (mixture errors). The exponential errors are recentered
and rescaled to have mean zero and variance one. The sample size is T = 500 and the number of Monte Carlo replications is 1000.

although S > 20 seems to offer even further improvement, es-
pecially for small T , but at the cost of increased computational
time. The SMM and SMD estimators both use p = 4. SMD
additionally assumes r = 1 in the auxiliary model (19b).

As is true of all nonlinear estimation problems, the numerical
optimization problem must take into account the possibility of
local minima, which arises when the invertibility condition is
not imposed. Thus, the estimation always considers two sets
of initial values. Specifically, we draw two starting values for
θ—one from a uniform distribution on (0, 1) and one from a
uniform distribution on (1, 2)—with the starting value for σ set

equal to
√
σ̂ 2
y /(1 + θ2) for each of the starting values for θ . The

starting values for the shape parameters of the GLD λ3 and λ4

are set equal to those of the standard normal distribution (with
κ3 = 0 and κ4 = 3). In this respect, the starting values of θ , σ ,
λ3, and λ4 contain little prior knowledge of the true parameters.

MA(1). In the first experiment, data are generated from

yt = et + θet−1, et = σtεt ,

where εt ∼ iid(0, 1) is drawn from a GLD with zero excess
kurtosis and a skewness parameter 0.85 with (i) σt = σ = 1
or (ii) σt = 0.7 + 0.3e2

t−1 (ARCH errors). The sample size is
T = 500, the number of Monte Carlo replications is 1000 and
θ takes the values of 0.5, 0.7, 1, 1.5, and 2. Note that the
structural model used for SMM and SMD does not impose the
ARCH structure of the errors, that is, the error distribution is
misspecified. This case is useful for evaluating the robustness
properties of the proposed SMM and SMD estimators.

Table 2 reports the mean and median estimates of θ, the
standard deviation of the estimates for which identification is
achieved and the probability that the estimator is equal to or
greater than one. When the errors are iid drawn from the GLD

distribution, the SMM estimator of θ exhibits only a small bias
for some values of θ (e.g., θ0 = 2). While there is a positive
probability that the SMM estimator will converge to 1/θ in-
stead of θ (especially when θ is in the noninvertible region),
this probability is fairly small and it disappears completely for
larger T (not reported to conserve space). When the error distri-
bution is misspecified (GLD errors with ARCH structure), the
properties of the estimator deteriorate (the estimator exhibits a
larger bias) but the invertible/noninvertible values of θ are still
identified with high probability. However, the SMD estimator
provides a substantial bias correction, efficiency gain, and iden-
tification improvement. Interestingly, in terms of precision, the
SMD estimator appears to be more efficient than the infeasible
estimator in Table 1 for values of θ in the invertible region. The
SMD estimator continues to perform well even when the error
simulator is misspecified.

Figure 2 illustrates how identification depends on skewness
by plotting the log of the objective function for the SMD estima-
tor averaged over 1000 Monte Carlo replications of the MA(1)
model with θ = 0.7 and σ = 1. The errors are generated from
GLD with zero excess kurtosis and three values of the skewness
parameter: 0, 0.35, 0.6, and 0.85. In evaluating the objective
function, the values of the lambda parameters in the GLD are
set equal to their true values. The first case (no skewness) cor-
responds to lack of identification and there are two pronounced
local minima at θ and 1/θ. As the skewness of the error distri-
bution increases, the second local optima at 1/θ flattens out and
it almost completely disappears when the error distribution is
highly asymmetric.

ARMA(1, 1). In the second simulation experiment, data are
generated according to

yt = αyt−1 + et + θet−1, (20)
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where et is (i) a standard exponential random variable with a
scale parameter equal to one, which is recentered and rescaled
to have mean zero and variance 1 or (ii) a mixture of normals
random variable with mixture probabilities 0.1 and 0.9, means
−0.9 and 0.1, and standard deviations 2 and 0.752773, respec-
tively. The second error distribution is included to assess the
robustness properties of the simulation-based estimator to error
distributions that are not members of the GLD family.

We consider two parameterizations that give rise to a causal
process with a noninvertible MA component. The first param-
eterization is α = 0.5 and θ = −1.5. The second parameteri-
zation, α = 0.5 and θ = −2, produces an all-pass ARMA(1,
1) process, which is characterized by θ = −1/α. This all-pass
process possesses some interesting properties (see Davis 2010).
First, yt is uncorrelated but is conditionally heteroscedastic. Sec-
ond, if one imposes invertibility by letting θ = −α and scale up
the error variance by (1/α)2, the process is iid and the AR and
MA parameters are not separately identifiable. Imposing invert-
ibility in such a case is not innocuous, and estimation of the
parameters of this model is quite a challenging task.

Table 3 presents the finite-sample properties of the SMD and
SMM estimators for the ARMA(1, 1) model in (20) using the
same auxiliary parameters and moment conditions for the esti-
mation of MA(1). For comparison, we also include the Gaussian
quasi-ML estimator. The SMD estimates of θ appear unbiased
for the exponential distribution and are somewhat downward
biased for the mixture of normals errors. But, overall, the SMD
estimator identifies correctly the AR and MA components with
high probability. The performance of the SMM estimator is
also satisfactory but it is dominated by the SMD estimator. The
Gaussian QML estimator imposes invertibility and completely
fails to identify the AR and MA parameters when α = 0.5
and θ = −2. Even with a misspecified error distribution and
a fairly parsimonious auxiliary model, the finite-sample proper-
ties of our proposed simulation-based estimators remain quite
attractive.

5.5 Empirical Application: 25 Fama-French Portfolio
Returns

Noninvertibility can be consistent with economic theory. For
example, suppose yt = Et

∑∞
s=0 δ

sxt+s is the present value of
xt = et + ωet−1. As shown by Hansen and Sargent (1991),
the solution yt = (1 + δω)et + ωet−1 = h(L)et implies that the
root of h(z) is − 1+δω

ω
, which can be on or inside the unit cir-

cle even if |ω| < 1. If there is no discounting and δ = 1, yt
has an MA unit root when ω = −0.5 and h(L) is noninvertible
in the past whenever ω < −0.5. Note that even if an autore-
gressive processes is causal, it is still possible for the roots of
h(L) = δω(δ)−Lω(L)

δ−L to be inside the unit disk.
Present value models are used to analyze variables with a for-

ward looking component including stock and commodity prices.
We estimate an MA(1) model for each of the 25 Fama-French
portfolio returns using the Gaussian QML and the proposed
SMM and SMD estimators. The data are monthly returns on
the value-weighted 25 Fama-French size and book-to-market
ranked portfolios from January 1952 until August 2013 (from
Kenneth French’s website). The portfolios are the intersec-
tions of five portfolios formed on size (market equity) and five

portfolios formed on the ratio of book equity to market equity.
The size (book-to-market) breakpoints are the NYSE quintiles
and are denoted by “small, 2, 3, 4, big” (“low, 2, 3, 4, high” ) in
Table 4.

Table 4 presents the sample skewness and kurtosis as well as
the estimates and the corresponding standard errors (in paren-
theses below the estimate) for each estimator and portfolio re-
turn. All of the returns exhibit some form of non-Gaussianity,
which is necessary for identifying possible noninvertible MA
components. The Gaussian QML produces estimates of the MA
coefficient that are small but statistically significant (with a few
exceptions in the “big” size category). The SMM relaxes the
invertibility constraint and delivers somewhat higher estimates
of the MA parameter but most of these estimates still fall in the
invertible region. By contrast, the SMD estimator suggests that
all of the 25 Fama-French portfolio returns appear to be driven

Table 4. SMD, SMM, and Gaussian QML estimates of MA(1) model
for stock portfolio returns

Skewness Kurtosis QML SMM SMD

Low 0.039 5.244 0.155
(0.028)

4.711
(0.650)

4.325
(0.470)

2 0.030 6.136 0.160
(0.027)

0.273
(0.028)

4.043
(0.417)

Small 3 −0.132 5.889 0.179
(0.032)

0.287
(0.027)

3.802
(0.348)

4 −0.164 6.131 0.180
(0.034)

4.754
(0.538)

4.092
(0.455)

High −0.208 6.464 0.241
(0.032)

3.368
(0.349)

2.944
(0.254)

Low −0.318 4.677 0.144
(0.032)

0.212
(0.027)

3.694
(0.289)

2 −0.419 5.551 0.143
(0.035)

0.219
(0.697)

3.880
(0.384)

2 3 −0.458 6.105 0.153
(0.035)

0.251
(0.026)

3.763
(0.312)

4 −0.439 6.148 0.156
(0.035)

0.241
(0.025)

4.120
(0.394)

High −0.414 6.186 0.166
(0.030)

0.232
(0.027)

3.745
(0.306)

Low −0.371 4.701 0.117
(0.030)

0.178
(0.022)

3.001
(0.162)

2 −0.506 5.936 0.151
(0.035)

0.278
(0.022)

3.702
(0.323)

3 3 −0.510 5.324 0.146
(0.034)

4.884
(0.386)

3.553
(0.272)

4 −0.276 5.314 0.142
(0.034)

0.246
(0.026)

3.537
(0.283)

High −0.305 6.081 0.154
(0.033)

4.981
(0.488)

3.875
(0.340)

Low −0.234 4.933 0.104
(0.033)

0.168
(0.022)

3.338
(0.180)

2 −0.585 6.135 0.143
(0.034)

0.203
(0.022)

3.649
(0.416)

4 3 −0.503 6.348 0.140
(0.032)

0.264
(0.023)

3.682
(0.354)

4 −0.231 4.930 0.092
(0.035)

0.212
(0.020)

4.045
(0.300)

High −0.193 5.385 0.118
(0.032)

0.244
(0.021)

4.680
(0.405)

Low −0.253 4.565 0.065
(0.030)

0.106
(0.028)

5.078
(0.799)

2 −0.362 4.677 0.052
(0.034)

0.157
(0.024)

5.602
(0.686)

Big 3 −0.264 5.209 0.035
(0.031)

0.100
(0.029)

6.457
(1.119)

4 −0.168 4.608 0.025
(0.032)

0.125
(0.021)

6.206
(1.140)

High −0.200 4.002 0.072
(0.032)

0.140
(0.020)

4.803
(0.611)

NOTES: The table reports the SMD, SMM, and Gaussian quasi-ML estimates and standard
errors (in parentheses below the estimates) for the MA(1) model yt = et + θet−1, where
et ∼ iid(0, σ 2) and yt is one of the 25 Fama-French portfolio returns. The first two columns
report the sample skewness and kurtosis of yt . The standard errors for SMM and SMD are
constructed using the asymptotic approximation in Proposition 2.
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by a noninvertible MA component. The results are consistent
with the finding through simulations that the SMD is more capa-
ble of estimating θ in the correct invertibility space. The SMD
estimates are fairly stable across the different portfolio returns
with a slight increase in their magnitude and standard errors for
the “big” size portfolios. Also, a higher precision of the MA
estimates is typically associated with returns that are character-
ized by larger departures from Gaussianity. Overall, our SMD
method provides evidence in support of noninvertibility in stock
returns.

6. CONCLUSIONS

This article proposes classical and simulation-based GMM
estimation of possibly noninvertible MA models with non-
Gaussian errors. The identification of the structural parameters
is achieved by exploiting the non-Gaussianity of the process
through third-order cumulants. This type of identification also
removes the boundary problem at the unit circle, which gives
rise to the pile-up probability and nonstandard asymptotics
of the Gaussian maximum likelihood estimator. As a conse-
quence, the proposed GMM estimators are root-T consistent
and asymptotically normal over the whole parameter range, pro-
vided that the non-Gaussianity in the data is sufficiently large to
ensure identification.

Other research questions arise once the assumption of invert-
ibility is relaxed. A potential problem with the GMM estimator
is that the number of orthogonality conditions can be quite large.
This is especially problematic for ARMA(p, q) models. Ideally,
the orthogonality conditions should be selected or weighted in
an optimal fashion. More generally, how to determine the lag
length of the heteroskedasticity and autocorrelation consistent
(HAC) estimator without imposing invertibility remains a topic
for future research.

APPENDIX: PROOFS

Proof of Lemma 1. The result in part (a) follows im-
mediately by noticing that g(γ1) and g(γ2), where g =
(E(ytyt−1), E(y2

t ), E(y2
t yt−1))′, are observationally equivalent for γ1 =

(θ, σ 2, κ3)′ and γ2 = (1/θ, θ2σ 2, θκ3)′. For part (b), let us define the
derivative matrix of g(γ ) = (g′

2, g
′
3)′ as

G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ 2 θ 0

2θσ 2 (1 + θ2) 0

2θσ 3κ3
3

2
θ2σκ3 θ 2σ 3

3θ2σ 3κ3
3

2
(1 + θ3)σκ3 (1 + θ3)σ 3

σ 3κ3
3

2
θσκ3 θσ 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
with G[1,2,i] for i = 3, 4, or 5 denoting its corresponding 3 × 3 block.
Direct calculations of the determinants give |G|[1,2,3] = (1 − θ2)θ2σ 5,
|G|[1,2,4] = (1 − θ2)(1 + θ3)σ 5, and |G|[1,2,5] = (1 − θ2)θσ 5, which
are all zero at |θ | = 1.

Proof of Lemma 2. Giannakis and Mendel (1989) solved β(γ ) from the
system of overdetermined equations but did not establish uniqueness
of the solution. The argument for identification from third- and fourth-
order cumulants (i.e., Equation (7)) and fourth-order cumulants (i.e.,
Equation (9)) are similar. We begin with (7).

Identification of MA(q) Models Using Third-Order Cumulants. The
system of equations can be expressed as Aβ(γ ) = b, where

A =
[
B C

D E

]
, C =

[
C1

C2

]
,

where

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0

c3(−q) 0 . . . 0

c3(−q + 1) c3(−q) . . . 0

...
...

...
...

c3(q − 1) c3(q − 2) . . . c3(0)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

E =

⎡⎢⎢⎢⎢⎣
0 −c2(q) −c2(q − 1) · · · −c2(1)

0 0 −c2(q) · · · −c2(2)

...
...

... · · ·
...

0 0 0 · · · −c2(q)

⎤⎥⎥⎥⎥⎦ ,

D =

⎡⎢⎢⎢⎢⎣
c3(q) c3(q − 1) · · · c3(1)

0 c3(q) · · · c3(2)

...
... · · ·

...

0 0 · · · c3(q)

⎤⎥⎥⎥⎥⎦ ,

C1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−c2(q) 0 0 · · · 0

−c2(q − 1) −c2(q) 0 · · · 0

−c2(q − 2) −c2(q − 1) −c2(q) · · · 0

...
...

... · · ·
...

−c2(0) −c2(1) −c2(2) · · · −c2(q)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

C2 =

⎡⎢⎢⎣
−c2(1) −c2(0) −c2(1) · · · −c2(q − 1)

...
...

... · · ·
...

−c2(q) −c2(q − 1) −c2(q − 2) · · · −c2(0)

⎤⎥⎥⎦ .
The rank of the (3q + 1) × (2q + 1) matrix A is the sum of the column
rank of the submatrix consisting of B and D, and the rank of the
submatrix consisting of C and E. The rank of the first subblock is
determined by the rank of the q × q square matrix D, which is q if
c3(q) �= 0. The rank of C is determined by the rank of the square
matrix C1, which is (q + 1) if c2(q) �= 0. The full rank result follows
from the assumption that c2(q) and c3(q) are nonzero.

Since c2(q) �= 0 and c3(q) �= 0 from the assumptions of Lemma 2,
the triangular matrices C1 and D have column ranks of q + 1 and q,
respectively. Therefore, A has a full column rank of 2q + 1 and the
parameter vector β(γ ) can be obtained as a unique solution to the
system of Equation (8). Since the derivative matrix of β(γ ) given by⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
...

...

0 · · · · · · · · · 1

2κ3σθ1 0 · · · 0 θ2
1

0 2κ3σθ2 · · · 0 θ2
2

...
...

...
...

...

0 0 · · · κ3σθq θ 2
q

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
is of full column rank, the parameter vector of interest γ =
(θ1, . . . , θq, κ3σ )′ is identifiable.

Identification of MA(q) Models Using Fourth-Order Cumulants. The
MA(q) model implies the following relation between the diagonal slices
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of the fourth-order cumulants and the q + 1 vector of parameters γ =
(θ1, . . . , θq, σ

2(κ4 − 3))′:

q∑
i=1

θic4(τ − i) − σ 2(κ4 − 3)
q∑
i=0

θ 3
i c2(τ − i) + c4(τ ) = 0,

−q ≤ τ ≤ 2q. (A.1)

Define

β(γ ) = (
θ1, . . . , θq, σ

2(κ4 − 3), σ 2(κ4 − 3)θ3
1 ,

. . . , σ 2(κ4 − 3)θ3
q

)′
,

b = [−c4(−q) − c4(−q + 1) · · · − c4(0) − c4(1)

· · · − c4(q − 1) − c4(q) 0 0 · · · 0]′,

and

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0 −c2(q) 0 0 · · · 0

c4(−q) 0 . . . 0 −c2(q − 1) −c2(q) 0 · · · 0

c4(−q + 1) c4(−q) . . . 0 −c2(q − 2) −c2(q − 1) −c2(q) · · · 0

...
...

...
...

...
...

...
...

...

c4(q − 1) c4(q − 2) . . . c4(0) −c2(q) −c2(q − 1) −c2(q − 2) · · · −c2(0)

c4(q) c4(q − 1) · · · c4(1) 0 −c2(q) −c2(q − 1) · · · −c2(1)

0 c4(q) · · · c4(2) 0 0 −c2(q) · · · −c2(2)

...
...

...
...

...
...

...
...

...

0 0 · · · c4(q) 0 0 0 · · · −c2(q)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then, the system of Equation (A.1) can be expressed as

Aβ(γ ) = b

and the identification of β(γ ) and γ follows similar arguments as those
for the third-order cumulants.

Proof of Lemma 3. The proof follows some of the arguments in the
proof of Theorem 1 in Tugnait (1995). Consider two ARMA (p, q) mod-
els α1(L)yt = θ1(L)et and α2(L)yt = θ2(L)et , which can be rewritten
as zt = α2(L)θ1(L)et = �1(L)et and zt = α1(L)θ2(L)et = �2(L)et ,
where zt = a1(L)a2(L)yt . Let φ1 = (α1,1, . . . , α1,p, θ1,1, . . . , θ1,q )′ and
φ2 = (α2,1, . . . , α2,p, θ2,1, . . . , θ2,q )′. Note that zt is an MA(p + q) pro-
cess since �1(·) = α2(L)θ1(L) and �2(·) = α1(L)θ2(L) are polynomi-
als of order p + q. As in Lemma 2, we can write

Aβ1(φ1, κ3σ ) = b

Aβ2(φ2, κ3σ ) = b,

where A and b are functions of second and third cumulants of zt . But
from Lemma 2, there exists a unique solution to the system of equations
Aβ(φ, κ3σ ) = b. Hence, there is a one-to-one mapping between (A, b)
and β(φ, κ3σ ) and the two ARMA models are identical in the sense that
φ1 = φ2. Therefore, φ = (α1, . . . , αp, θ1, . . . , θq )′ is identifiable from
the second and third cumulants used in constructing A and b, provided
that c2(p + q) �= 0 and c3(p + q) �= 0.

Proof of Proposition 1. The results in Section 3 ensure global and local
identifiability of γ0. The consistency of γ̂ follows from the identifia-
bility of γ0 and the compactness of �. Taking a mean value expansion
of the first-order conditions of the GMM problem and invoking the
central limit theorem deliver the desired asymptotic normality result.

The GLD Distribution. The two parameters λ3, λ4 are related to κ3 and
κ4 as follows (see Ramberg and Schmeiser 1975):

κ3 = c − 3ab + 2a3

λ3
2

,

κ4 = d − 4ac + 6a2b − 3a4

λ4
2

,

where a = 1
1+λ3

− 1
1+λ4

, b = 1
1+2λ3

+ 1
1+2λ4

− 2Beta(1 +
λ3, 1 + λ4), λ2 = √

B − A2, c = 1
1+3λ3

− 3Beta(1 + 2λ3, 1 +
λ4) + 3Beta(1 + λ3, 1 + 2λ4) − 1

1+3λ4
, d = 1

1+4λ3
− 4Beta

(1 + 3λ3, 1 + λ4) + 6Beta(1 + 2λ3, 1 + 2λ4) − 4Beta(1 + λ3,
1 + 3λ4) + 1

1+4λ4
, and Beta(·, ·) denotes the beta function.
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