
Understanding and Comparing

Factor-Based Forecasts∗

Jean Boivina and Serena Ngb

aColumbia University and NBER
bUniversity of Michigan

Forecasting using “diffusion indices” has received a good
deal of attention in recent years. The idea is to use the common
factors estimated from a large panel of data to help forecast
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that for simple data-generating processes and when the dy-
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and error structures such as the ones encountered in practice,
one method stands out to have smaller forecast errors. This
method forecasts the series of interest directly, rather than
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leaves the dynamics of the factors unspecified. By imposing
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Many economic decisions, whether made by policymakers, firms, in-
vestors, or consumers, are often based on the forecasts of relevant
macroeconomic variables. The accuracy of these forecasts can thus
have important repercussions. In theory, the optimal forecast of a
variable under quadratic loss is its expectation conditional on in-
formation available. In practice, the relevant information set might
be very large. For instance, central banks are known to monitor
hundreds of macroeconomic indicators, each potentially carrying
useful additional information. Forecasting using “diffusion indices”
has provided a formal way to systematically handle this informa-
tion. The idea is to use factors estimated from a large panel of
data to help forecast the series of interest, so that information
in a large number of variables can be used while keeping the di-
mension of the forecasting model small. Stock and Watson (2004b)
provide a survey of the factor approach and alternative methods
that exploit information in a large number of predictors in fore-
casting.

Various authors have provided convincing evidence in support of
the diffusion index forecast methodology. Stock and Watson (2002b),
Stock and Watson (1999), Stock, Watson, and Marcellino (2003),
Forni et al. (2001), and Forni and Reichlin (2001), among others, all
find that diffusion index forecasts have smaller mean-squared errors
than forecasts based upon simple autoregressions and more elabo-
rate structural models. Diffusion index forecasts are considered not
just by academic economists. Various institutions, including the Fed-
eral Reserve of Chicago, the U.S. Treasury, the European Central
Bank, the European Commission, and the Center for Economic Pol-
icy Research (CEPR) are all investigating the potential of the factor
forecasts.1

Although using factors estimated from large panels for forecast-
ing has generally been viewed as a sound idea, diffusion index fore-
casts can be implemented in a variety of ways. The two leading meth-
ods in the literature are the “dynamic” method of Forni et al. (2005)
(hereafter FHLR), and the “static” method of Stock and Watson
(2002a) (hereafter SW). For example, the CEPR coincident indica-
tor of the euro-business cycle (EUROCOIN) is based on FHLR, while

1See Grenouilleau (2004) and references therein.



Vol. 1 No. 3 Understanding Factor-Based Forecasts 119

the Federal Reserve Bank of Chicago’s Activity Index (CFNAI) as
well as the model of Kitchen and Monaco (2003) at the U.S. Trea-
sury are based on SW, and all these forecasts exploit the factors to
summarize information from a large panel of data. It is generally
thought that the methods differ primarily because of the methodol-
ogy used to estimate the factors, though whether this is the main
reason why the forecasts differ remains to be confirmed. Monte Carlo
experiments designed to shed light on the finite sample properties of
the procedures tend to be counterfactually simple, and thus have not
been too useful in guiding practitioners as to whether and when one
method works better than the other. There is thus a good deal of
confusion as to which is the best implementation of diffusion index
forecasts, and why.

To make some progress toward a better understanding of this is-
sue, we take as a starting point that there are two steps to diffusion
index forecasting. Step E estimates the factors from a large panel
of data, and step F uses the factor estimates to forecast the series
of interest. Two researchers can arrive at different forecasts because
the factors are estimated differently and/or the forecasting equa-
tions are specified differently. Accordingly, we seek to understand the
sensitivity of steps E and F to (i) the dynamics of the factors and
(ii) the specification of the forecasting equation.

We evaluate the out-of-sample forecast errors of five methods
that incorporate factors into the forecasts. We use simple and cali-
brated experiments to assess the sensitivity of the forecast errors in a
variety of data-generating processes. We then apply the methods to
real data and find that their performance is more in line with simula-
tions that assume complex error structures. Simple data-generating
processes appear not to give a good guide to the properties of the
different methods in practice. Our main finding is that the choice of
step E holding step F fixed does not generate significant discrepan-
cies in forecast errors. However, how step E is used in conjunction
with step F can be important both in simulations and in applica-
tions. Not imposing the factor structure on step F tends to give
more robust forecasts when the data-generating process is unknown.
This suggests unconstrained modeling of the series to be forecasted,
instead of careful modeling of the components underlying the series.
The diffusion index forecasting methodology proposed by Stock and
Watson apparently has these properties.
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1. Preliminaries

The precise environment we consider is the following. We have T
time series observations for N cross-section units, which we denote
by xit (i = 1, . . . , N , t = 1, . . . T ). We are interested in xiT +h, the
h-step-ahead out-of-sample forecast of a series in the panel. As a
matter of notation, we let X be the T × N matrix of observations;
xt • is a row vector denoting all N observations at time t, while x• i

is a column vector denoting all T observations for unit i.
We consider two factor representations of the data. The static

factor model is

xit = λi1F1t . . . + λirFrt + eit = λ′
iFt + eit, (1)

where Ft is a vector of r common factors, λi is the corresponding vec-
tor of loadings for unit i, and eit is an idiosyncratic error. We assume
1
N

∑N
i=1 λiλ

′
i

p−→ΣΛ as N → ∞, and 1
T

∑T
t=1 FtF

′
t

p−→ΣF as T → ∞,
where ΣF and ΣΛ are r × r positive definite matrices. As we cannot
separately identify the factors and loadings, ΣΛ is normalized to an
identity matrix of dimension r. The model is said to have r static fac-
tors because the N dimensional population covariance matrix of xit

has r nonzero eigenvalues that diverge with N . Weak cross-section
correlation in eit is allowed so long as 1

N

∑N
i=1

∑N
j=1 |E(eitejt)| is

bounded. The factor model is thus an “approximate factor model”
in the sense of Chamberlain and Rothschild (1983). Dynamics are
entertained by allowing both the factors and the errors to be serially
correlated. If (

Ir − A(L)L
)
Ft = ut, (2)(

1 − ρi(L)L
)
eit = vit i = 1, . . . N, (3)

where A(L) = A1+A2L+. . . , and ρi(L) = ρi1+ρi2L+. . . , we assume
that the characteristic roots of |I − A(z)z| = 0 and 1 − ρi(z)z = 0
are inside the unit circle. Furthermore, Ft and eis are assumed to be
mutually uncorrelated at all t and s.

The static factor model is to be distinguished from a dynamic
factor model

xit = bi1(L)f1t + bi2(L)f2t + . . . + biq(L)fqt + eit = b′i(L)ft + eit, (4)
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where ft = (f1t, . . . , fqt)′ is a q-vector of dynamic factors with
a(L)ft = ut, ut being a vector of q orthonormal white noise pro-
cesses. We suppose that bij(L) is of order s, for every j = 1, . . . q.
Note that some coefficients in bij(L) can be zero, since s is the maxi-
mum lag order (over all i and j) of bij(L). The data generated under
(4) are said to have q dynamic factors since the N dimensional spec-
tral density matrix of xit has rank q. Hereafter, we will refer to

χit = xit − eit

as the common component. Under the static model, χit = λ′
iFt, and

under the dynamic model, χit = b′i(L)ft.
Clearly, if we let Ft = (f ′

t , f
′
t−1, . . . f

′
t−s)

′, the dynamic factors also
have a static representation with λ′

iFt = bi(L)′ft. A model with q
dynamic factors thus has r = q(s+1) static factors. We can likewise
represent data generated by (1) using a dynamic model upon spec-
ifying both q and s. For example, if xit = λi1Ft + λi2Ft−1 + eit, the
corresponding dynamic model is defined by ft = Ft, q = 1, and s = 1.
An important distinction between the static and the dynamic model
is that r, the total number of static factors, completely characterizes
the static model. With the dynamic model, separate specifications
of q and s are required. Yet given r, we cannot separately identify q
and s without additional assumptions.

Because the dynamic model always has a static representation, it
is useful to use the latter to discuss some general issues. Predictabil-
ity of xit requires that Ft and/or eit are serially correlated. To un-
derstand the difference between diffusion index and autoregressive
forecasts, consider h = 1, and assume λi �= 0. We have

xiT +1|T = ρi(L)xiT + λ′
i(FT +1|T − ρi(L)FT ). (5)

Equation (5) makes it apparent that an autoregressive forecast is a
special case of a diffusion index forecast that imposes the restric-
tion that FT +1|T − ρi(L)FT is unpredictable. The factors should
contribute to forecast error reduction if the restriction is false. This
occurs when the factors and eit have different dynamics.

The result that an autoregressive forecast is a special case of a
diffusion index forecast implies that the factors can be used to im-
prove forecasts without adopting the factor model as the forecasting
model. This observation is important and it is worth considering the
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case of one factor. Suppose Ft = αFt−1 + ut and eit = ρieit−1 + vit.
We have

xit = λi(αFt−1 + ut) + (ρieit−1 + vit)
= ρixit−1 + λiut + vit + λi(α − ρi)Ft−1. (6)

When the factors and the parameters are known, the diffusion index
forecast is xiT +1|T = ρixiT + λi(α− ρi)FT . When α �= ρi and λi �= 0,
the factor forecast will have smaller errors than an AR(1) forecast.
To achieve this forecast error reduction, separate forecasts of the
common and idiosyncratic components are not necessary. One only
needs to augment an autoregression with the factors. Note, however,
that the effectiveness of diffusion index forecasts depends on ρi, λi,
and the dynamics of the factors, αi. It is thus series specific.

If the parameters, the factors, and the loadings (and thus the
components) were observed, the following three forecasts

xiT +h|T = λ′
iFT +h|T + eiT +h|T (7)

= χiT +h|T + eiT +h|T (8)

= ρi(L)xiT +h−1|T + (1 − ρi(L)L)λ′
iFT +h|T (9)

are mathematically equivalent. In other words, forecasting the com-
ponents separately should be the same as forecasting the sum plus
one of the two components separately. But when the parameters and
the factors are unknown and have to be estimated, the equivalence
of (7), (8), and (9) breaks down. The sampling error of the estimates
might dominate the information gain in the factors. An autoregres-
sive forecast might well have a smaller mean-squared forecast error in
finite samples. We will now consider the feasible variants of (7)–(9).

2. Step E: Estimation

In classical factor analysis, eit is serially uncorrelated and iid across
i. Under the assumption that N is fixed and T is large, the maxi-
mum likelihood estimator yields

√
T consistent estimates of the load-

ings. As shown in Anderson and Rubin (1956), the estimator relies
on convergence of the N × N sample to the population covariance
matrix of x. Brillinger (1981) showed that the sample spectral den-
sity matrices can also be used to consistently estimate the dynamic
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factors. From an empirical perspective, the fixed N assumption is
unappealing because the number of time series available for eco-
nomic analysis is by no means small. Connor and Korajzcyk (1986)
showed that the method of “asymptotic principal components” can
be used to consistently estimate the factors when N is large. Stock
and Watson (2002a) and Bai and Ng (2002) formalized the condi-
tions under which the factor space can be consistently estimated
by the static estimator when N and T are both large, with no re-
striction in the relation between N and T . Bai (2003) further showed
that the convergence rate of the estimated factors is

√
N . Forni et al.

(2000) showed that the method of dynamic principal components
provides pointwise consistent estimates of the common component
when N, T → ∞. Conditions for achieving convergence to the dy-
namic space spanned by the common shocks was further developed
in Forni et al. (2004).

Static [S]. Let V be the eigenvectors corresponding to the r

largest eigenvalues of the N × N matrix Γ̂X (0) = 1
T

∑T
t=1 xt •x′

t •.
The static principal components estimator yields

F̂ = XV Λ̂ = V χ̂ = F̂ Λ̂′ = XV V ′.

Given χ̂, ê = X − χ̂.
Dynamic [D]. (i) Construct the sample autocovariances

Γ̂X (k) = 1
T

∑T
t=k+1 x′

t •xt−k •, k = 1, . . . M . (ii) For each frequency
ωh = 2πh

2H , h = −H, . . . H, compute the eigenvalues of Σ̂X (ωh) =
1
2π

∑M
k=−M wkΓ̂X (k) exp(−iωhk), wk = 1 − |k|

M+1 ; (iii) let Dq(ωh) be
a diagonal matrix with the q largest eigenvalues of Σ̂X (ωh) on the di-
agonal, and let Uq(ωh) be the corresponding matrix of eigenvectors.
Inverse Fourier transform Σ̂χ(ωh) = Uq(ωh)Dq(ωh)Uq(ωh)′ to obtain
Γ̃χ(k) = 2π

2H+1

∑H
h=−H Σ̂χ(ωh) exp(iωhk); (iv) repeat step (iii) using

the q + 1 to N ordered eigenvalues values to obtain Γ̃e(k); (v) let
Z be the r generalized eigenvectors (with eigenvalues in descending
order) of Γ̃χ(0) with respect to Γ̃e(0) under the normalization that
Zj Γ̃e(0)Z ′

i = 1 if i = j and zero otherwise.2 The estimated dynamic
factors are:

F̃ = XZ.

2In practice, FHLR only used the diagonal elements of Γ̃e (0) in this step.
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The in-sample estimate of the common component is obtained from
an artificial projection of (the unobserved) χit on F̃t:

χ̃ = XZ
(
Z ′Γ̂X (0)Z

)−1
Z ′Γ̃χ(0).

Given χ̃, ẽ = x − χ̃ can be defined residually.
While the static and dynamic estimators can consistently esti-

mate the static and dynamic factor space respectively, there are no-
table differences in terms of implementation. First, the static method
requires only the specification of r. The dynamic method requires
input of four parameters q, M , H, and s (or r since r = q(s + 1)).
Second, the dynamic estimates are obtained from an eigenvalue de-
composition of the spectrum smoothed over different frequencies,
while the static estimates are obtained from the sample covariance
matrix. Evidently, F̂ obtains as a special case of F̃ with M = 0.
Third, the dynamic approach performs a generalized eigenvalue de-
composition, while the static approach performs a simple eigenvalue
decomposition of the covariance matrix. The former effectively scales
the data by the standard deviation of the idiosyncratic components,
while the latter works with data standardized to have unit variances.
The generalized principal components produce linear combinations
of xit that have the smallest ratio of the variance of the idiosyncratic
to common component. Whether this normalization is more efficient
for forecasting is an open question.

A drawback of the static estimator is that it does not take into
account the dynamics among the factors, if they exist. For example,
the model xit = Ft +Ft−1 +eit is viewed as having two static factors,
even though there is only one common source of variation. Such
“shifted” relation between Ft and xit is dealt with by the dynamic
estimator via evaluation of the peridogram at different frequencies.
On the other hand, if such shifted relation between Ft and xit is not
present in the data, unnecessary estimation of the spectral density
matrices could induce efficiency loss. Therefore, neither estimator
necessarily dominates the other. Which is more desirable ultimately
depends on the data on hand.

3. Step F: Forecasting

The object of interest is the h-step-ahead forecast xiT +h|T . It
follows from (7)–(9) that to form a feasible forecast, we need
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F̂T +h|T , êiT +h|T , and/or χ̂iT +h|T . Different possibilities for forecast-
ing these components arise because when the parameters are not
observed, χ̂iT +h|T = λ′

i
1FT +h|T �= λ̂

′
iF̂T +h|T . Furthermore, an h-step-

ahead forecast can be obtained as a sequence of one-step-ahead fore-
casts, or directly from a long-horizon forecasting equation.

Sequential One-Step Forecasts [S]. Obtain ρ̂i(L) from a re-
gression of êit on pS

e of its lags. Then, starting with êiT +1|T , form a
sequence of one-step-ahead forecasts to yield

êiT +h|T = ρ̂i(L)êiT +h−1|T . (10)

Direct h-step Forecasts [D]. Let ϕ̂i(L) be the coefficients from
a projection of êit+h on êit and pD

e of its lags. Then

êiT +h|T = ϕ̂i(L)êiT . (11)

As an example, if eit is an AR(1) with ρi(L) = ρi, then eiT +h|T =
ρh

i eiT . The sequential forecast is (ρ̂i)heiT , while the direct forecast
is ρ̂h

i eiT .
Analogously, two forecasts of FT +h are available:

F̂T +h|T = Â(L)F̂T +h−1|T

F̂T +h|T = Â(L)F̂T ,

where Â(L) and Â(L) are polynomials of order pD
F and pS

F , respec-
tively. Marcellino, Stock, and Watson (2004) find in univariate and
bivariate models that the sequential approach typically outperforms
the direct approach, if the lag length is appropriately chosen. The
present context is somewhat different as it involves F̂t, which has
estimation errors.

It should be made clear that when there is more than one factor,
vector-autoregressive forecasts of the factors should be considered,
not univariate autoregressive forecasts. The reason is that we can
only estimate the space spanned by the factors. The dynamics of an
estimated factor need not coincide with the dynamics of any under-
lying factor. Thus, the information set is the history of all estimated
factors.

Unrestricted Forecasts [U]. Consider the forecast

xiT +h|T = β̂i(L)′F̂T + ϕ̂i(L)xT , (12)
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where β̂i(L) and ϕ̂i(L) obtained when xit+h is regressed on pF lags
of F̂t and px lags of xit. We refer to this as an unrestricted forecast
because β̂′

i(L) is not constrained to equal (1 − ρ̂i(L)L)λ̂
′
i, and no

restriction is placed between the coefficients on the pF lags of F̂t and
the px lags of xit.

Nonparametric Forecasts [N]. A forecast of χiT +h can be ob-
tained by artificially projecting each χit+h on F̃t and then replacing
the population matrices by sample estimates. This yields

χ̃T +h|T = xT •Z
(
Z ′Γ̂X (0)Z

)−1
Z ′Γ̃χ(h). (13)

Notice that parametric estimation of time series models for χ̃it is
not necessary, nor are explicit estimates of Ft. One only needs Z and
Γ̃χ(k), which are provided by step E. For this reason, we refer to
these as nonparametric forecasts (denoted with a tilde). In contrast,
the other three methods are based on parametric regression models
with estimates of Ft as regressors.

4. Five Diffusion Forecasts Compared

Let XY be a diffusion forecast that uses method X in step E and
Y in step F. Given the two alternatives ([S]tatic or [D]ynamic) for
step E and the four alternatives ([S]equential, [D]irect, [U]nrestricted,
[N]onparametric) for step F, we have the following:

SU: x̂iT +h|T = β̂′
i(L)F̂T + γ̂i(L)xiT

DU: x̂iT +h|T = β̃
′
i(L)F̃T + γ̃i(L)xiT

SS: x̂iT +h|T = λ̂
′
iÂ(L)F̂T +h−1|T + ρ̂i(L)êiT +h−1|T

SD: x̂iT +h|T = λ̂
′
iÂ(L)F̂T + ϕ̂i(L)êiT

DN: x̂iT +h|T = χ̃iT +h|T + ϕ̂i(L)ẽiT .

We have not considered the sequential forecasts

x̂iT +h|T = θ̂i(L)χ̂iT +h−1|T + ρ̂i(L)êit+h−1|T

or the direct forecast

x̂iT +h|T = Θ̂i(L)χ̂iT + ϕ̂i(L)êiT ,
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even though we could have obtained θ̂i(L) and Θ̂i(L) from least-
squares regression of χ̂it on its lags. As explained above, there is less
information in the history of χ̂it than the history of the r estimated
factors separately. Simulations confirm that forecasts using lags of
χ̂it are inferior to forecasts using lags of F̂t.

The five methods above all “plug” forecasts of êiT +h, F̂T +h, or
χ̂iT +h into (7)–(9), and in this sense are all diffusion index forecasts.
They differ in the implementation of step E and/or step F. For ex-
ample, SS and SD should yield identical forecasts if Â(L)F̂T +h−1 =
Â(L)FT . If Ft is a scalar AR(1), this holds if Â = Âh. Whereas the
parameters of SU and DU are estimated directly from the forecasting
equation, the other three are two-step procedures that forecast the
factors and the components separately. The factor structure is thus
maintained in step F of SS, SD, and DN.

To get a sense of what it means to impose the factor structure
on step F, consider the SD. A regression of F̂t on F̂t−h yields β̄ =
(F̂ ′

−hF̂−h)−1F̂ ′
−hF̂ and thus F̂T +h|T = β̄F̂T . The SD forecast, being

λ̂
′
iF̂T +h|T = λ̂

′
iβ̄F̂T , is

x̂iT +h|T = Vi •(V ′ΓX (0)V )−1V ′ΓX (h)V V ′x′
T •.

The SU (see below) imposes V ′Γ̂X (h)V to be an identity matrix.
By not imposing this constraint, the SD allows the estimated factor
loadings to enter the forecast.

It has often been thought that the difference between SW and
FHLR is how the factors are estimated. If step E was the only dif-
ference, a comparison of SY with DY would have been appropriate,
where Y ∈ (S, D, N, U). But in fact, what is implemented by Stock
and Watson is SU, while FHLR adopt DN. The important differ-
ence is that FHLR exploit the factor structure in both steps E and
F, while Stock and Watson do not impose the factor structure in
step F.

The contrast between the two methods can be made more trans-
parent if we let eit be iid so xiT +h|T = χiT +h|T . The Stock and
Watson forecast (which in our notation is SU) begins with β̂ =
(F̂ ′

−hF̂−h)−1F̂ ′
−hx•i, or more precisely

β̂ = (V ′Γ̂X (0)V )−1V ′X ′
hx•i = (V ′Γ̂X (0)V )−1V ′[Γ̂X (h)]• i.
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The forecast is x̂iT +h|T = β̂′F̂T . With F̂ ′
T = xT •V , we have

x̂iT +h|T =
[
Γ̂X (h)

]
i •

V
(
V ′Γ̂X (0)V

)−1
V ′x′

T •,

where V are the eigenvectors of Γ̂X (0). On the other hand, the
FHLR forecast (which in our notation is DN), can be shown to
be

x̃iT +h|T =
[
Γ̃χ(h)

]
i •

Z
(
Z ′Γ̂X (0)Z

)−1
Z ′x′

T •,

where Z are the generalized eigenvectors associated with Γ̃χ(0).
Clearly, the difference is not just V versus Z. The SU fore-

cast involves the matrix [Γ̂X (h)]• i while the DN forecast involves
the matrix [Γ̃χ(h)]• i. Essentially, the SU treats F̂T like any other
conditioning variable, without insisting that xiT +h|T = λ′

iFT +h|T .
The DN makes full use of the factor structure to forecast χ̃iT +h

explicitly.
If a forecast of χiT +h is the objective, the SU method cannot

be expected to perform well because xiT +h is χiT +h measured with
error. But the objective is to forecast xiT +h, not χiT +h. The SU
can be effective as it produces a forecast of xiT +h|T directly. The
DN, on the other hand, forecasts the estimated components of xiT +h

separately. Thus, precise estimation of the factor space plays a more
important role under DN than SU.

A fundamental distinction between SU and DN is thus whether
the factor structure is imposed on step F. The question is relevant
only because the true parameters are unobserved, and to the extent
that the parameters and factor space can be consistently estimated,
both methods should yield forecasts that converge to the true con-
ditional mean. Stock and Watson (2002a) showed that the SU will
consistently forecast the conditional mean when N, T → ∞ with no
restriction on the relation between N and T . The DN also provides
a consistent forecast, but appears to require that N/T → 0. Fur-
thermore, as is well known, forecasting the components even when
they are observed will generally yield results that are different from
forecasting the series directly. Thus, even if step E was held fixed,
the SU and DN can be expected to yield different forecasts in finite
samples.
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5. Simulations

We consider two Monte Carlo experiments. In the first, we specify the
dynamics of Ft to better understand the sensitivity of the forecast
methods to the true factor processes. The second experiment takes
the dynamics of F̂t as given by the data to shift focus to the idiosyn-
cratic errors. Specifically, the error structure is fully calibrated to
the data. To our knowledge, this is the first assessment of diffusion
index forecasts in a calibrated environment.

5.1 Static Versus Dynamic Factors

For i = 1, . . . N , t = 1, . . . T , j = 1, 2, ujt ∼ N(0, 1), and λij ∼
N(0, 1), we consider:

DGP (1). 2 Static Factors, r = q = 2, α1 = .8, α2 = .4

xit = λi1F1t + λi2F2t + eit

Fjt = αjFjt−1 + ujt.

DGP (2). 2 Dynamic Factors, s = 3, q = 2, α1 = .8, α2 = .4

xit =
s∑

k=0

λi1kf1t−k +
s∑

k=0

λi2kf2t−k + eit

fjt = αjfjt−1 + ujt.

DGP (3). 1 Static + 1 Dynamic Factors, s = 3, q = 2, α1 = .8,
α2 = .7

xit = λi1F1t +
s∑

k=0

λi2kf2t−k + eit

F1t = α1F1t−1 + u1t

f2t = α2f2t−1 + u2t

DGP (4). 2 Static Factors, r = q = 2, α1 = .8, α2 = .5, θ1 = .5

xit = λi1F1t + λi2F2t + eit

F1t = α1F1t−1 + u1t + θ1u1t−1

F2t = α2F2t−1 + u2t.
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DGP (5). 2 Static Factors, r = q = 2, α1 = .8, α2 = .5, θ1 = −.5

xit = λi1F1t + λi2F2t + eit

F1t = α1F1t−1 + u1t + θ1u1t−1

F2t = α2F2t−1 + u2t.

DGP (6). 2 Dynamic Factors, s = 3, q = 2, α2 = .8

xit =
s∑

k=0

λi1kf1t−k +
s∑

k=0

λi2kf2t−k + eit,

f1t = u1t

f2t = α2f2t−1 + u2t.

DGP (7). 2 Dynamic Factors, s = 3, q = 2

xit =
s∑

k=0

λi1kf1t−k +
s∑

k=0

λi2kf2t−k + eit

fjt = ujt.

Throughout, N is fixed at 147, the number of variables in the
empirical application we consider below. For all i,

eit = κvit vit ∼ N
(
0, σ2

vi

)
,

with κ chosen so that on average, the common component explains
a fraction ϑ of the variance of xit. That is,

κ =
1 − ϑ

ϑ

(
1
N

∑N
i=1 var(λ′

iFt)
1
N

∑N
i=1 var(eit)

)
.

We use ϑ = 0.5, so that on average, 50 percent of the variation in
xit is explained by the common component. Following Forni et al.
(2005), σ2

vi ∼ U(.1, 1.1). This means that even though ϑ is .5 on
average, there is a good deal of variation in the size of the common
component. Moreover, the variable to be forecasted is the first se-
ries in the panel. For this series, i.e., i = 1, var(λ′

1Ft)/var(x1t) =
0.75.

The DGPs are designed to evaluate the sensitivity of the methods
to the dynamics of the factor processes. Static and dynamic factors
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are considered, as are mixtures of these. Recall that r = q(s + 1).
Thus, the DGPs encompass factor models with r as small as two,
as in DGP 1, and as large as eight, as in DGP 7. It should be re-
marked that Stock and Watson’s simulations are generally based
upon DGP 1, while FHLR emphasize on DGP 7, which is a special
case of DGP 2 with iid dynamic factors.

We use the AR(1) forecasts as benchmarks. Our criterion is
the mean-squared error of out-of-sample forecasts. Kapetanios and
Marcellino (2002) found that the static estimates provide better in-
sample fit of the components, while the dynamic method is less able
to distinguish the common and the idiosyncratic components. Forni
et al. (2005) also reported huge discrepancies between in- and out-of-
sample performance. It should be made clear that our objective here
is not precise estimation of the components, but precise forecasts of
a series that is the sum of two components. Any finding in favor of
one method to be reported below should be interpreted with this
objective in mind.3

We will refer to the ratio of the MSE for a given method to the
MSE of an AR(1) as RMSE (relative mean-squared error). An entry
less than one indicates that the diffusion index forecast is superior to
the näıve AR(1) forecast. We report results for h = 1, 2, 4, 6, 8, and
12. Hereafter, we will refer to h = 1, 2, 4 as short-horizon forecasts,
and h = 6, 8, 12 as long-horizon forecasts. In the simulations, we
assume that r, s, q, and the lag order of the factors are known, expect
for the ARMA factors, which will be discussed below. For estimation
of the dynamic factors, we use the programs provided by FHLR. Still,
we have to determine M and H. We use M = H = 20 throughout.4

We simulate data for T = 300 and consider the forecasts with T =
100, and then with T = 300. These correspond roughly to the number
of observations for the sample 1950:1–1969:12 and 1950:1–1996:12.
These are the beginning and end dates of the forecasting exercise in
Stock and Watson. Given that N = 147, these two parameterizations

3The results for DU and DN here differ from the working version of this paper.
The earlier results were based on demeaned instead of standardized data. The
DU and DN tend to be larger than the ones reported here.

4The computer program distributed by FHLR seems to impose M = H , a
restriction that is not necessary on theoretical grounds. Forni et al. (2005) set

M =
√

T , but this rule is not used systematically in all papers implementing
DN. Forni et al. (2000) use M =

√
T/4, EUROCOIN is based on M = 18, and

Kapetanios and Marcellino (2002) use M = 3. In the empirical application below,
we check the robustness of the results to alternative choices of M and H .
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also shed some light on how the forecasts behave when N exceeds
T , and vice versa.

Tables 1a and 1b report results for T = 100 and 300, respec-
tively.5 With respect to static versus dynamic factor estimates, SU
and DU are similar, showing that the estimator per se is not a choice
of first-order importance. With respect to sequential versus direct
forecasts, SS tends to yield smaller errors than SD, especially when
T = 100, but the differences are smaller when T = 300. This sug-
gests that the choice of the forecasting equation can be especially
important when the sample size is small.

Other results are noteworthy. First, the RMSEs are all below
unity except for DGPs 4 and 5, which are ARMA factors with a
moving average component. For these two DGPs, the DN is signifi-
cantly better than the other four methods, especially when T = 100.
Even with T = 300, the DN continues to be the better method
for these DGPs. One reason could be because the true lag order of
the first factor is infinity. In the simulations, we use an AR(3) ap-
proximation. As the autoregressive coefficients corresponding to an
ARMA(.8, –.5) die off slowly, the AR(3) approximation is likely in-
adequate. It appears that dynamic misspecification can hamper the
properties of the factor forecasts.

Second, while the differences across methods are small at T =
300, they are much larger at T = 100, where the DN and SS are
clearly better at long-horizon forecasts. The advantage of the DN at
long horizons is most evident under DGPs 2 and 7, which, inciden-
tally, are the DGPs often considered by FHLR. However, the gain is
smaller when we mix dynamic with static factors, as in DGP 3. Even
though DN has smaller errors at long horizons than SU at T = 100,
observe also that SS often has smaller errors than DN. This means
the dynamic factor estimates need not always outperform the static
estimates in forecasting. Attributing differences in forecast errors to
the choice estimator would be misguided.

Taken together, this set of simulation results suggests that the
choice of estimator per se does not seem to make a difference of
first-order importance to the forecast errors. What seems important
is how one combines steps E and F, especially when the time span
of the data is not too long.

5In results not reported, we find that the higher α is, the lower the RMSE,
though the relative rankings of the methods do not change.
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Table 1a. RMSE (MSE Relative AR(4))
from 1,000 Simulations of DGP 1–7

Horizon T Forecasting Methods

h T SU/AR SD/AR SS/AR DN/AR DU/AR

DGP1: Static AR(1) Factors

1 100 0.87 0.86 0.86 0.87 0.86

2 100 0.85 0.85 0.83 0.85 0.85

4 100 0.92 0.89 0.87 0.91 0.92

6 100 0.96 0.94 0.87 0.94 0.96

8 100 0.94 0.91 0.87 0.91 0.94

12 100 0.98 0.92 0.87 0.91 0.98

DGP2: Dynamic AR(1) with α = 0.8

1 100 0.54 0.53 0.53 0.55 0.52

2 100 0.54 0.51 0.51 0.53 0.53

4 100 0.59 0.56 0.55 0.59 0.58

6 100 0.63 0.61 0.59 0.65 0.63

8 100 0.76 0.72 0.67 0.73 0.75

12 100 0.96 0.90 0.84 0.81 0.94

DGP3: Factor 1: Static AR(1); Factor 2: Dynamic AR(1)

1 100 0.62 0.61 0.61 0.64 0.62

2 100 0.53 0.53 0.52 0.57 0.55

4 100 0.55 0.54 0.53 0.62 0.56

6 100 0.73 0.69 0.65 0.72 0.73

8 100 0.84 0.80 0.75 0.81 0.84

12 100 0.87 0.83 0.78 0.82 0.88

DGP4: Static, Factor 1: ARMA(0.8,0.5); Factor 2: AR(0.5)

1 100 0.86 0.79 0.79 0.82 0.85

2 100 0.91 0.79 0.79 0.79 0.90

4 100 0.97 0.86 0.81 0.88 0.96

6 100 1.16 0.98 0.92 0.93 1.15

8 100 1.18 0.97 0.92 0.91 1.17

12 100 1.10 0.96 0.85 0.90 1.10
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Table 1a (continued). RMSE (MSE Relative AR(4))
from 1,000 Simulations of DGP 1–7

Horizon T Forecasting Methods

h T SU/AR SD/AR SS/AR DN/AR DU/AR

DGP5: Static, Factor 1: ARMA(0.8,–0.5); Factor 2: AR(0.5)

1 100 1.12 1.01 1.01 1.00 1.12

2 100 1.08 0.97 0.97 0.98 1.07

4 100 1.09 0.98 0.98 0.98 1.09

6 100 1.19 1.06 1.00 0.99 1.19

8 100 1.14 1.04 0.99 1.00 1.14

12 100 1.24 1.09 1.00 0.96 1.23

DGP6: Dynamic, Factor 1: iid; Factor 2: AR(1)

1 100 0.51 0.50 0.50 0.51 0.51

2 100 0.54 0.52 0.51 0.54 0.52

4 100 0.61 0.59 0.56 0.60 0.60

6 100 0.77 0.73 0.69 0.73 0.76

8 100 0.85 0.81 0.74 0.77 0.84

12 100 0.94 0.87 0.81 0.84 0.95

DGP7: Dynamic iid Factors (FHLR DGP)

1 100 0.70 0.67 0.67 0.68 0.69

2 100 0.86 0.82 0.84 0.82 0.85

4 100 0.99 0.96 0.94 0.95 0.99

6 100 0.96 0.94 0.92 0.91 0.95

8 100 1.04 1.02 0.95 0.98 1.03

12 100 1.04 0.99 0.94 0.94 1.01

5.2 A Calibrated Monte Carlo

The simulations in the previous subsection assume that the id-
iosyncratic errors are serially and cross-sectionally uncorrelated to
focus on the factor processes. We now consider a Monte Carlo that
replicates the error structure of the macroeconomic data set with
147 series from 1959:1 to 1998:12. The same data have been used
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Table 1b. RMSE (MSE Relative AR(4)) from
1,000 Simulations of DGP 1–7

h T SU/AR SD/AR SS/AR DN/AR DU/AR

DGP1: Static AR(1) Factors

1 300 0.87 0.87 0.87 0.86 0.87

2 300 0.82 0.81 0.81 0.82 0.82

4 300 0.84 0.82 0.81 0.83 0.84

6 300 0.92 0.92 0.90 0.92 0.92

8 300 0.97 0.97 0.95 0.97 0.96

12 300 0.97 0.97 0.94 0.96 0.97

DGP2: Dynamic AR(1) Factors

1 300 0.52 0.52 0.52 0.52 0.51

2 300 0.46 0.45 0.45 0.45 0.44

4 300 0.61 0.60 0.59 0.59 0.59

6 300 0.70 0.69 0.68 0.67 0.68

8 300 0.72 0.71 0.70 0.71 0.72

12 300 0.81 0.81 0.78 0.79 0.80

DGP3: Factor 1: Static AR(1); Factor 2: Dynamic AR(1)

1 300 0.57 0.56 0.56 0.57 0.56

2 300 0.54 0.53 0.53 0.52 0.52

4 300 0.55 0.54 0.54 0.56 0.55

6 300 0.68 0.67 0.68 0.70 0.70

8 300 0.75 0.74 0.74 0.75 0.75

12 300 0.84 0.84 0.82 0.85 0.86

DGP4: Static, Factor 1: ARMA(0.8,0.5); Factor 2: AR(0.5)

1 300 0.83 0.78 0.78 0.78 0.82

2 300 0.79 0.77 0.77 0.80 0.78

4 300 0.85 0.82 0.82 0.86 0.84

6 300 0.92 0.89 0.86 0.88 0.91

8 300 0.96 0.93 0.91 0.94 0.96

12 300 0.96 0.94 0.92 0.96 0.96
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Table 1b (continued). RMSE (MSE Relative AR(4))
from 1,000 Simulations of DGP 1–7

h T SU/AR SD/AR SS/AR DN/AR DU/AR

DGP5: Static, Factor 1: ARMA(0.8,–0.5); Factor 2: AR(0.5)

1 300 0.95 0.96 0.96 0.95 0.95

2 300 0.97 0.97 0.97 0.95 0.97

4 300 0.96 0.94 0.94 0.96 0.96

6 300 0.99 0.98 0.96 0.97 0.99

8 300 1.02 0.99 0.97 0.99 1.03

12 300 1.04 0.97 0.94 0.97 1.04

DGP6: Dynamic, Factor 1: iid; Factor 2: AR(1)

1 300 0.47 0.47 0.47 0.46 0.45

2 300 0.49 0.49 0.49 0.48 0.47

4 300 0.56 0.56 0.56 0.56 0.55

6 300 0.64 0.63 0.63 0.64 0.63

8 300 0.75 0.75 0.74 0.75 0.74

12 300 0.76 0.75 0.72 0.77 0.76

DGP7: Dynamic iid Factors (FHLR DGP)

1 300 0.72 0.70 0.70 0.73 0.75

2 300 0.75 0.75 0.75 0.78 0.79

4 300 0.91 0.90 0.92 0.93 0.89

6 300 0.93 0.92 0.91 0.93 0.92

8 300 0.98 0.96 0.95 0.97 0.92

12 300 0.96 0.95 0.93 0.96 0.95

by Stock and Watson in a number of studies.6 We consider the
forecasts for eight series, as in the empirical analysis to follow. These
are industrial production (IP), real personal income less transfers
(GMYXSPQ), real manufacturing trade and sales (MSMTQ), num-
ber of employees on nonagricultural payrolls (LPNAG), the con-
sumer price index (PUNEW), the personal consumption expenditure

6See, for example, Stock and Watson (1999) and Stock and Watson (2002b).
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deflator (GMDC), the CPI less food and energy (PUXX), and the
producer price index for finished goods (PWFSA).

The calibration exercise aims to preserve the relative importance
of the common and the idiosyncratic errors, the serial and cross-
section correlation in the idiosyncratic errors, as well as potential
parameter instability in the data. In the empirical analysis to follow,
the first forecast is based on estimation over a sample with 133 obser-
vations (corresponding to 1959:3 to 1970:1), while the last estimation
sample has 445 observations (corresponding to 1997:1). Recalibrat-
ing the model parameters and performing a Monte Carlo at each T
would be extremely time consuming. Instead, starting with T = 133,
T is extended every twelve months, a new model is recalibrated, and
new T + h forecasts are obtained. This exercise still takes two weeks
to execute.

The calibration consists of estimating r static factors by the
method of principal components at every T , where r is determined as
discussed below. The estimated common component, χ̂it = λ̂

′
iF̂t, t =

1, . . . T is then treated as fixed. Data are simulated by adding to χ̂it

new draws of the idiosyncratic errors. More precisely, least-squares
regression of the AR(1) model êit = ρiêit−1 + vit yields ρ̂i,T and
v̂it, i = 1, . . . N , noting that if the t-statistic for ρ̂i,T is less than 2
in absolute value, we set ρ̂i,T to zero. Resampling v̂•,t with replace-
ment yields a new set of residuals—say, ṽ•,t—which, along with ρ̂i,T ,
yields a T by N matrix of idiosyncratic errors that preserve the
cross-correlation structure.7 That is to say, if τ ij,T = 1

T

∑T
t=1 v̂itv̂jt

is the cross-section covariance over a sample of size T , the simulated
errors ṽit and ṽjt will have the same covariance on average. Allowing
the serial and cross-section covariance structure to change over time
permits us to evaluate the forecasts when the data are not covariance
stationary. This might be of empirical relevance as macroeconomic
data are known to exhibit substantial parameter instability.

The appendix provides summary statistics on the common and
idiosyncratic components, computed at twenty-six values of T at
which the model is calibrated. The mean of the nonzero ρ̂i,T indicates

7An alternative procedure is to first estimate Ω̂v = 1
T

∑T
t=1 v̂t v̂

′
t , and then

multiple random draws of N(0,1) errors into the choleski decomposition of Ω̂. By

construction, the rank of Ω̂v is N minus the number of factors. The procedure
would require dropping six series from the simulations, since we estimated six
factors.
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that many of the êit are serially correlated, while the mean of τ̂ ij,T in-
dicates that some v̂it pairs are quite strongly cross-correlated. While
ρ̂i,T appears quite stable over time, τ̂ ij,T seems to have fallen over
time on average. The number of series that are serial and cross-
correlated has also fallen over the sample. It would be difficult to
use simple, parametric models to capture such heterogeneity and
parameter instability. The present calibrated Monte Carlo aims to
shed light on the factor forecasts in a realistic setting.

The number of factors, the dynamic structure of the factors, and
the dynamic structure of the idiosyncratic errors are now treated as
unknown parameters. The BIC is used to jointly determine px, pF ,
and r in SU, based on the static principal components. The r used
in SU is also used for SD and SS. The BIC is then used to determine
qx, qF , and r in DU, which is based on the generalized principal
components. The r used for DU is also used for DN with q fixed to
2. The BIC is also used to determine pD

e and pS
e , the lag order of the

idiosyncratic errors in SS and SD, as well as pS
F and pD

F , the lag order
of the VAR in the factors in SS and SD. Note that these parameters
are repeatedly reoptimized because the model is recalibrated each
time the sample is extended. We fix throughout q to 2, M = H = 20
when constructing Γ̂χ(0) and Γ̂e(0). The benchmark forecast is based
on an AR(4).

The results in tables 2a and 2b are averaged over forecasts made
at the twenty-six values of T . On average, the estimation consists of
289 observations. Our eight series can be classified into two groups—
four nominal and four real. For the four series reported in table 2a,
we see that the SU and DU now have significantly smaller RMSEs
than the other methods at long horizons. In fact, the DN loses the
edge in long-horizon forecasts that it enjoyed in the simple Monte
Carlo experiments. In this calibrated setting, the two unconstrained
forecasts of the real variables tend to outperform the three forecasts
that are based on models with more structure.

For the four series considered in table 2b, a notable result is that
the factor forecasts yield more modest improvements over the AR
forecasts. Only in long-horizon SU and DU forecasts for PUNEW
and GMDC did we witness an RMSE below .80. At long horizons,
the SD can produce forecasts that are much inferior to the AR. Of
all the methods considered, the SU and DU appear to make larger
gains over the AR forecasts at every horizon.
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Table 2a. RMSE for Calibrated DGP from
300 Simulations, Real Variables

Horizon Variable Forecasting Methods

SU/AR SD/AR SS/AR DN/AR DU/AR

1 IP 0.87 0.80 0.80 0.88 0.84

GMYXSPQ 0.75 0.79 0.79 0.84 0.74

MSMTQ 0.83 0.87 0.87 0.87 0.83

LPNAG 0.79 0.71 0.71 0.84 0.79

2 IP 0.73 0.70 0.69 0.81 0.72

GMYXSPQ 0.72 0.76 0.76 0.83 0.70

MSMTQ 0.77 0.80 0.80 0.83 0.75

LPNAG 0.83 0.70 0.69 0.86 0.83

4 IP 0.64 0.58 0.64 0.86 0.67

GMYXSPQ 0.69 0.75 0.75 0.90 0.69

MSMTQ 0.69 0.74 0.75 0.85 0.70

LPNAG 0.67 0.63 0.65 0.74 0.69

6 IP 0.56 0.58 0.59 0.80 0.62

GMYXSPQ 0.63 0.71 0.73 0.83 0.60

MSMTQ 0.64 0.70 0.73 0.81 0.64

LPNAG 0.57 0.69 0.65 0.69 0.59

8 IP 0.63 0.68 0.69 0.81 0.68

GMYXSPQ 0.67 0.76 0.80 0.82 0.60

MSMTQ 0.64 0.70 0.77 0.81 0.64

LPNAG 0.64 0.81 0.71 0.69 0.62

12 IP 0.65 0.77 0.75 0.80 0.68

GMYXSPQ 0.64 0.77 0.85 0.81 0.61

MSMTQ 0.63 0.71 0.79 0.81 0.66

LPNAG 0.61 0.88 0.76 0.73 0.61
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Table 2b. RMSE for Calibrated DGP from
300 Simulations, Nominal Variables

Horizon Variable Forecasting Methods

SU/AR SD/AR SS/AR DN/AR DU/AR

1 PUNEW 0.91 0.93 0.93 0.93 0.91

GMDC 0.88 0.90 0.90 0.90 0.89

PUXX 0.97 0.98 0.98 0.97 0.97

PWFSA 0.94 0.95 0.95 0.95 0.95

2 PUNEW 0.91 0.92 0.92 0.95 0.92

GMDC 0.87 0.93 0.93 0.92 0.89

PUXX 0.96 0.97 0.97 0.97 0.97

PWFSA 0.94 0.95 0.95 0.96 0.94

4 PUNEW 0.84 0.88 0.88 0.92 0.86

GMDC 0.78 0.94 0.94 0.88 0.80

PUXX 0.95 0.97 0.97 0.96 0.96

PWFSA 0.91 0.93 0.93 0.94 0.92

6 PUNEW 0.83 0.89 0.88 0.91 0.85

GMDC 0.76 0.97 0.96 0.85 0.78

PUXX 0.94 0.99 0.98 0.96 0.96

PWFSA 0.91 0.94 0.94 0.94 0.92

8 PUNEW 0.86 0.93 0.91 0.92 0.88

GMDC 0.77 1.03 0.99 0.85 0.80

PUXX 0.95 1.03 1.01 0.95 0.96

PWFSA 0.94 0.97 0.96 0.95 0.94

12 PUNEW 0.87 1.04 0.96 0.92 0.90

GMDC 0.76 1.13 1.04 0.83 0.83

PUXX 0.94 1.10 1.04 0.95 0.97

PWFSA 0.94 1.02 0.97 0.95 0.95
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Comparing DN with DU in tables 2a and 2b, the DU generally
has significantly smaller errors than the DN. Comparing SU with SD
and SS, the SU tends to be the better of the three. These differences
underscore the point that step F can generate important differences
in forecast errors. As noted earlier, even when the factors and the
idiosyncratic errors are observed, how much forecast improvement
the factors can provide depends on λi and the difference between
the dynamics of the factors and the errors. While no one method
systematically outperforms the others for the real series at short
horizons (i.e., h = 1, 2, 4), the SU always has the smallest error
for forecasting the nominal series, and the SU and DU are best for
forecasting the real series at longer horizons.

An overview of the results in tables 1 and 2 is as follows. For
simple data-generating processes such as those in table 1, the SU
or DU cannot be supported as the best method. However, once we
consider more complex error structures such as the ones encountered
in the data, the two unrestricted forecasts become noticeably better
than all other methods. Unlike the SS and SD, the SU and DU do
not specify the dynamics of F̂t. As well, many auxiliary parameters
need to be chosen in order to estimate the dynamic factors. Simple
implementation and leaving the forecasting equation with the flexi-
bility to adapt to the complex properties data may explain why the
unconstrained forecasts perform much better when the errors are
heterogeneous in many dimensions. It remains to consider whether
the various forecasting methods perform in the data as they do in
simulations.

6. Application to Eight Series

Results for various diffusion index forecasts are available in the lit-
erature. As is clear from the discussion above, there are many ways
to construct forecasts using the factor estimates. FHLR reported re-
sults for static forecasts, but they implemented what would have
been SN in our notation, not the SU that Stock and Watson used.
On the other hand, Stock and Watson evaluated the DU forecasts,8

but these are not the same as the DN that FHLR proposed. As well,
the results are reported for different forecast horizons, and using

8See for example, Stock and Watson (2004a) and Forni et al. (2005).
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different criteria. Here, we provide an objective comparison of the
various methods, making clear the role of steps E and F.

We apply the five methods to eight series: IP, GMYXSPQ,
MSMTQ, LPNAG, PUNEW, GMDC, PUXX, and PWFSA. The
goal is to forecast the growth rates of the real variables and infla-
tion rates h periods hence. For xit, we consider a balanced panel of
N=147 monthly series available from 1959:1 to 1998:12. Following
Stock and Watson (2002b), the data are standardized and trans-
formed to achieve stationarity where necessary before the factors
are estimated. The logarithms of the four real variables are assumed
to be I(1), while the logarithms of the four prices are assumed to
be I(2).

The forecasting exercise begins with data from 1959:3–1970:1. An
h-period-ahead forecast is formed by using values of the regressors
at 1970:1 to give yh

1970:1+h. The sample is updated by one month,
the factors and the forecasting equation are both reestimated, and
an h-month forecast for 1971:2 is formed. The final forecast is made
for 1998:12 in 1998:12–h. Recursive AR(p) forecasts are likewise con-
structed. Several auxiliary parameters must again be chosen. As in
the calibrated Monte Carlo, we determine qx, r, and qF jointly using
the BIC. Given this r, we then use the BIC to determine pD

F , pS
F , pD

e ,
pS

e . For the dynamic factors, we again set M to 20 and fix q to 2.
Table 3 reports the MSE relative to the optimal AR(p) model,

where p is also chosen by the BIC. Overall, the improvements of
the factor forecasts over the autoregressive forecasts for the infla-
tion series (table 3b) are modest.9 However, the SU and DU are
noticeably better than the three methods that maintain a factor
structure in the forecasting equation. Interestingly, the SU did not
do as well in forecasting GMYXSPQ and MSMTQ in the calibrated
simulations, and they also do not perform favorably in the empirical
exercise.

For the real series (table 3a), all methods are quite similar at
h = 1. However, there are nontrivial differences at other horizons.
The RMSEs are all below unity at all forecast horizons, and they
generally fall with h. Observe that (i) SS and SU tend to outperform
SD, (ii) DU outperforms DN in twenty-three of twenty-four cases,

9Results in Inoue and Kilian (2003) suggest that for data with a weak factor
structure, factor forecasts might be less effective.
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Table 3a. RMSE for Real Variables, 1970:1998

Horizon Variable Forecasting Methods

SU/AR SD/AR SS/AR DN/AR DU/AR

1 IP 0.83 0.86 0.86 0.85 0.82

GMYXSPQ 0.81 0.84 0.84 0.90 0.87

MSMTQ 0.87 0.88 0.88 0.90 0.88

LPNAG 0.83 0.97 0.97 0.89 0.85

2 IP 0.73 0.79 0.77 0.80 0.73

GMYXSPQ 0.77 0.78 0.76 0.82 0.75

MSMTQ 0.83 0.84 0.84 0.87 0.82

LPNAG 0.74 0.88 0.86 0.79 0.78

4 IP 0.66 0.70 0.67 0.73 0.78

GMYXSPQ 0.76 0.71 0.69 0.77 0.67

MSMTQ 0.76 0.75 0.74 0.83 0.75

LPNAG 0.64 0.87 0.82 0.71 0.66

6 IP 0.55 0.67 0.63 0.74 0.64

GMYXSPQ 0.69 0.72 0.69 0.75 0.65

MSMTQ 0.76 0.74 0.73 0.83 0.72

LPNAG 0.60 0.74 0.71 0.69 0.59

8 IP 0.56 0.71 0.64 0.75 0.58

GMYXSPQ 0.74 0.73 0.70 0.75 0.66

MSMTQ 0.80 0.78 0.76 0.86 0.75

LPNAG 0.59 0.73 0.68 0.70 0.60

12 IP 0.49 0.60 0.53 0.71 0.55

GMYXSPQ 0.70 0.74 0.72 0.76 0.63

MSMTQ 0.80 0.75 0.74 0.88 0.78

LPNAG 0.49 0.60 0.57 0.64 0.54

and (iii) all of the twenty-four best forecasts are generated by SU
or DU, which do not impose a factor or a dynamic structure on
the forecasts. Looking across series and forecast horizon, SU has the
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Table 3b. RMSE for Nominal Variables, 1970:1998

Horizon Variable Forecasting Methods

SU/AR SD/AR SS/AR DN/AR DU/AR

1 PUNEW 0.96 0.99 0.99 1.00 0.97

GMDC 0.95 0.99 0.99 0.99 0.95

PUXX 0.93 1.00 1.00 1.00 0.93

PWFSA 0.94 0.98 0.98 0.98 0.94

2 PUNEW 0.86 0.89 0.89 0.91 0.85

GMDC 0.93 0.96 0.96 0.95 0.91

PUXX 0.85 0.98 0.98 0.93 0.84

PWFSA 0.91 0.97 0.97 0.98 0.91

4 PUNEW 0.68 0.77 0.77 0.84 0.66

GMDC 0.84 0.92 0.92 0.91 0.85

PUXX 0.80 0.98 0.98 0.92 0.80

PWFSA 0.80 0.87 0.87 0.86 0.84

6 PUNEW 0.65 1.42 1.42 0.95 0.65

GMDC 0.83 0.96 0.95 0.96 0.87

PUXX 0.79 0.98 0.98 0.93 0.81

PWFSA 0.75 0.90 0.90 0.85 0.77

8 PUNEW 0.65 1.71 1.67 1.01 0.67

GMDC 0.82 1.31 1.30 0.98 0.90

PUXX 0.81 0.97 0.97 0.99 0.81

PWFSA 0.75 0.96 0.95 0.87 0.76

12 PUNEW 0.55 1.53 1.51 0.89 0.62

GMDC 0.73 1.29 1.27 0.94 0.82

PUXX 0.77 0.99 0.98 0.94 0.78

PWFSA 0.71 0.92 0.90 0.83 0.71

smallest error in thirteen cases. The DU is best in eleven cases. These
results are broadly similar to our calibrated Monte Carlo.

Result (i) is consistent with Marcellino, Stock, and Watson (2004)
that sequential forecasts tend to outperform direct forecasts. Re-
sults (i) and (ii) reinforce the point that step F can yield important
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differences in the forecasting errors. Result (iii) points to the ro-
bustness of the unconstrained forecasts. The choice of static versus
dynamic factor estimates is less important. This is at odds with
the perception that a fully specified dynamic factor model (the DN)
should yield better forecasts. We offer several explanations. The first
is simply that the static factor model is a better characterization of
the data. The dynamic estimates would then unnecessarily smooth
the spectrum over different frequencies and suffer efficiency loss. Sec-
ond, the DN has only been shown to be more efficient in counter-
factually simple examples. Whether the dynamic estimator remains
efficient when, for example, s > 0 for only a subset of the factors is
unclear. Furthermore, it should be kept in mind the object of inter-
est is forecast of a series, not precise estimation of the factors or the
common component per se. That the Stock-Watson unconstrained
method produces better forecasts does not mean it will produce a
more precise estimate of the common component.

Third, our results might reflect the fact that we have not tuned
the parameters to maximize the efficiency of the dynamic estimator.
To get a sense of this issue, table 4 reports additional results for the
DN. Instead of selecting s as described above, we first compute the
out-of-sample forecasts for every configuration of the parameters for
the full sample of 456 observations. The optimal s is the one that
minimizes the time-averaged MSE. This method, which we refer to as
method B in table 4, thus fixes s over the entire sample period.10 The
results in table 4 suggest that method B produces better forecasts
for the real series, but not the nominal series. We next consider the
sensitivity of the DN to the choice of M and H. In addition to the
base case of M = H = 20, table 4 also provides results for M = H =
12, 50 and

√
T , as well as alternative values of M holding H fixed

at 50. The RMSEs are generally smaller with H = M = 50. Overall,
table 4 suggests that the dynamic factor forecasts can indeed be
improved with better choices of the auxiliary parameters. However,
it is far less clear that the improvements will be large enough to beat
the SU or the DU, at least for the series considered.

Taking the empirical and simulation results together, we find
that the SU and DU perform better in practice and in simulations

10This method was considered in the working paper version of Forni et al.
(2005). Note that in contrast to other methods, this is not, strictly speaking, an
out-of-sample exercise since the auxiliary parameters are selected on the basis of
the out-of-sample performance.
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Table 4a. Robustness Check for DN: RMSE for
Real Variables, 1970:1998

Horizon Variable Forecasting Methods

M=20 Method B M=12 M=50 M=
√

T M=12 M=20 M=
√

T

H=20 H=12 H=50 H=
√

T H=50 H=50 H=50

1 IP 0.85 0.84 0.83 0.87 0.83 0.98 0.98 0.98

GMYXSPQ 0.90 0.80 0.88 0.83 0.88 1.01 1.01 1.01

MSMTQ 0.90 0.90 0.90 0.90 0.90 1.01 1.01 1.01

LPNAG 0.89 0.86 0.88 0.88 0.89 1.00 1.00 1.00

2 IP 0.80 0.76 0.75 0.79 0.76 0.96 0.96 0.96

GMYXSPQ 0.82 0.72 0.78 0.72 0.78 1.00 1.00 1.00

MSMTQ 0.87 0.84 0.87 0.83 0.88 0.99 0.99 0.99

LPNAG 0.79 0.78 0.76 0.79 0.77 1.01 1.01 1.01

4 IP 0.73 0.69 0.72 0.73 0.72 0.96 0.96 0.96

GMYXSPQ 0.77 0.66 0.75 0.65 0.76 1.00 1.00 1.00

MSMTQ 0.83 0.76 0.82 0.77 0.84 1.01 1.01 1.01

LPNAG 0.71 0.70 0.68 0.70 0.69 0.98 0.98 0.98

6 IP 0.74 0.64 0.70 0.67 0.72 0.98 0.98 0.98

GMYXSPQ 0.75 0.64 0.75 0.64 0.75 0.99 0.99 0.99

MSMTQ 0.83 0.76 0.84 0.74 0.85 1.03 1.03 1.03

LPNAG 0.69 0.65 0.65 0.64 0.66 0.99 0.99 0.99

8 IP 0.75 0.61 0.72 0.62 0.74 0.98 0.98 0.98

GMYXSPQ 0.75 0.63 0.77 0.62 0.76 0.99 0.99 0.99

MSMTQ 0.86 0.75 0.87 0.74 0.89 1.04 1.04 1.04

LPNAG 0.70 0.63 0.65 0.62 0.66 0.99 0.99 0.99

12 IP 0.71 0.60 0.69 0.56 0.71 0.97 0.97 0.97

GMYXSPQ 0.76 0.64 0.82 0.63 0.80 1.00 1.00 1.00

MSMTQ 0.88 0.78 0.92 0.78 0.92 1.02 1.02 1.02

LPNAG 0.64 0.64 0.65 0.61 0.63 0.99 0.99 0.99

in which the parameters of the model are unknown. As seen from
(5), what matters for forecasting is whether F̂t has predictive power
beyond information in lags of xit. The forecasting equation need not
be a full-blown factor model. The stronger the adherence to a fac-
tor structure, the more likely that the sampling variability of the
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Table 4b. Robustness Check for DN: RMSE for
Nominal Variables, 1970:1998

Horizon Variable Forecasting Methods

M=20 Method B M=12 M=50 M=
√

T M=12 M=20 M=
√

T

H=20 H=12 H=50 H=
√

T H=50 H=50 H=50

1 PUNEW 1.00 0.96 1.00 1.01 1.00 1.00 1.00 0.97

GMDC 0.99 1.00 0.99 0.99 0.99 0.99 0.99 0.95

PUXX 1.00 0.96 1.00 1.00 1.00 1.00 1.00 0.93

PWFSA 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.94

2 PUNEW 0.91 0.93 0.91 0.91 0.90 0.98 0.98 0.85

GMDC 0.95 0.99 0.96 0.96 0.96 0.98 0.98 0.91

PUXX 0.93 0.95 0.92 0.94 0.91 1.02 1.02 0.82

PWFSA 0.98 0.97 0.97 0.97 0.97 0.98 0.98 0.93

4 PUNEW 0.84 0.91 0.82 0.83 0.83 0.98 0.98 0.69

GMDC 0.91 0.97 0.92 0.90 0.92 0.99 0.99 0.83

PUXX 0.92 0.96 0.90 0.93 0.89 1.11 1.11 0.77

PWFSA 0.86 0.94 0.85 0.87 0.86 0.92 0.92 0.84

6 PUNEW 0.95 0.88 0.95 0.87 0.94 0.99 0.99 0.68

GMDC 0.96 0.96 0.94 0.90 0.95 0.98 0.98 0.85

PUXX 0.93 0.94 0.97 0.95 0.95 1.16 1.16 0.81

PWFSA 0.85 0.95 0.84 0.85 0.84 0.92 0.92 0.79

8 PUNEW 1.01 0.85 0.99 0.97 0.97 0.99 0.99 0.72

GMDC 0.98 0.96 0.91 0.92 0.94 1.00 1.00 0.88

PUXX 0.99 0.92 0.95 0.96 0.97 1.15 1.15 0.81

PWFSA 0.87 0.98 0.85 0.88 0.85 0.95 0.95 0.80

12 PUNEW 0.89 0.79 0.82 0.90 0.83 0.97 0.97 0.63

GMDC 0.94 0.92 0.87 0.89 0.86 1.00 1.00 0.80

PUXX 0.94 0.93 0.94 0.94 0.94 1.11 1.11 0.76

PWFSA 0.83 0.91 0.80 0.83 0.79 0.95 0.95 0.79

factor estimates will enter the forecasts. When the parameters of the
data-generating process are also unknown and/or are unstable, mis-
specification of the dynamics can magnify the sampling variability of
the factor estimates. The favorable properties of the unconstrained
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forecasts are likely due to the minimal factor structure imposed on
the forecasting equation and the simplicity in its implementation.

Finally, given that the SU and DU have rather similar finite sam-
ple properties, a comment on SU versus DU is in order. Of the two,
the SU is much easier to implement. The SU only requires the user to
determine r, px, and pF by applying the BIC to the forecasting equa-
tion. Estimation of the dynamic factors necessitates choosing various
parameters for which we have no guide. It should also be mentioned
that in practice and following FHLR, the dynamic factors are con-
structed as the generalized principal components of Σ̂x − diag(Γ̃e(0)),
not Γ̃χ(0) = Σ̂x − Γ̃e(0) as theory suggests. A symmetric treatment
would have the static factors estimated as the generalized principal
components of Σ̂x −diag(Ω̂). Boivin and Ng (2004) suggest that this
could further improve the SU. Such a method is not implemented
because Ω is not a diagonal matrix in an approximate factor model.
While the methods work in practice, more work is required at the
theoretical level to justify its use.

7. Conclusion

In this paper, we seek to better understand how factors estimated
from a large panel of data can be used in forecasting exercises. In
principle, how the factors are estimated and how the forecasts are
formed can both affect the mean-squared forecast error. We find that
for simple error structure, differences across methods exist, especially
when T is small, but the differences are not so strong as to immedi-
ately favor a particular method. When more complicated but realistic
error structures are considered, the unconstrained method proposed
by Stock and Watson works systematically better. The method also
behaves noticeably better in the empirical analysis. This method
simply augments estimates of the factors to an autoregressive fore-
casting equation. We attribute its performance to not imposing a
tight factor structure and having to choose a small number of aux-
iliary parameters. This leaves the forecasting equation with more
flexibility to adapt to the data. The fully specified dynamic factor
forecasts have the potential for improvements, but more needs to be
learned about how to adapt the auxiliary parameters to the data on
hand. Finally, the static factors are easier to construct than dynamic
factors, and are favored on practical grounds.
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Appendix. Descriptive Statistics of the Idiosyncratic Term
in the Calibrated DGP

Sample Size |ρi , T | maxj |τ i j | 1
N

∑
j
|τ i j | %|τ i j | > 0.2 R2

i

1−N ∗/N Mean Std Mean Std Mean Std Mean Std

133 0.21 0.43 0.19 0.71 0.22 0.12 0.03 0.15 0.36 0.28

145 0.23 0.42 0.18 0.71 0.22 0.12 0.04 0.16 0.36 0.27

157 0.18 0.41 0.19 0.71 0.22 0.11 0.03 0.14 0.41 0.27

169 0.16 0.39 0.18 0.69 0.23 0.11 0.03 0.15 0.46 0.28

181 0.21 0.39 0.19 0.66 0.23 0.11 0.03 0.13 0.55 0.26

193 0.15 0.39 0.20 0.67 0.23 0.11 0.03 0.12 0.52 0.27

205 0.15 0.39 0.20 0.67 0.23 0.11 0.03 0.12 0.52 0.27

217 0.13 0.39 0.21 0.67 0.23 0.10 0.03 0.11 0.52 0.27

229 0.17 0.40 0.21 0.67 0.23 0.10 0.03 0.11 0.52 0.27

241 0.17 0.39 0.21 0.67 0.23 0.11 0.03 0.13 0.53 0.26

253 0.18 0.38 0.19 0.67 0.23 0.11 0.03 0.12 0.53 0.26

265 0.20 0.38 0.20 0.64 0.23 0.10 0.03 0.11 0.60 0.26

277 0.17 0.37 0.20 0.63 0.23 0.10 0.03 0.10 0.60 0.26

289 0.17 0.38 0.20 0.63 0.23 0.10 0.02 0.10 0.60 0.26

301 0.14 0.38 0.20 0.63 0.23 0.10 0.02 0.10 0.60 0.26

313 0.12 0.37 0.20 0.63 0.22 0.10 0.02 0.10 0.60 0.26

325 0.14 0.38 0.20 0.63 0.22 0.10 0.02 0.10 0.59 0.26

337 0.12 0.38 0.21 0.63 0.22 0.09 0.02 0.10 0.59 0.26

349 0.16 0.38 0.21 0.60 0.22 0.09 0.02 0.10 0.64 0.24

361 0.15 0.39 0.21 0.61 0.22 0.09 0.02 0.10 0.64 0.24

373 0.12 0.38 0.21 0.63 0.22 0.09 0.02 0.10 0.59 0.26

385 0.16 0.38 0.21 0.61 0.22 0.09 0.03 0.10 0.64 0.24

397 0.15 0.38 0.20 0.59 0.22 0.09 0.02 0.09 0.66 0.24

409 0.14 0.38 0.20 0.59 0.22 0.09 0.02 0.09 0.66 0.24

421 0.15 0.39 0.20 0.59 0.22 0.09 0.02 0.09 0.65 0.24

433 0.14 0.39 0.20 0.59 0.22 0.09 0.02 0.08 0.65 0.24

445 0.14 0.39 0.21 0.59 0.22 0.09 0.02 0.08 0.65 0.24

Mean 0.16 0.39 0.20 0.64 0.23 0.10 0.03 0.11 0.56 0.26

Std 0.02 0.01 0.01 0.04 0.00 0.01 0.00 0.02 0.09 0.01

Note: The mean and standard deviation reported in the columns are overtaken over i.

N ∗ is the number of ρ̂i that are statistically different from zero at the two-tailed 5 percent

level.
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