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We consider estimation of parameters in a regression model with endogenous re-
gressors. The endogenous regressors along with a large number of other endogenous
variables are driven by a small number of unobservable exogenous common factors.
We show that the estimated common factors can be used as instrumental variables
and they are more efficient than the observed variables in our framework. Whereas
standard optimal generalized method of moments estimator using a large number of
instruments is biased and can be inconsistent, the factor instrumental variable esti-
mator (FIV) is shown to be consistent and asymptotically normal, even if the number
of instruments exceeds the sample size. Furthermore, FIV remains consistent even
if the observed variables are invalid instruments as long as the unobserved common
components are valid instruments. We also consider estimating panel data models in
which all regressors are endogenous but share exogenous common factors. We show
that valid instruments can be constructed from the endogenous regressors. Although
single equation FIV requires no bias correction, the faster convergence rate of the
panel estimator is such that a bias correction is necessary to obtain a zero-centered
normal distribution.

1. INTRODUCTION

The primary purpose of structural econometric modeling is to explain how en-
dogenous variables evolve according to fundamental processes such as taste
shocks, policy, and productivity variables. When the parameters of interest are
coefficients attached to endogenous variables, endogeneity bias invalidates least
squares estimation. There is a long history and continuing interest in estimation
by instrumental variables, especially when the instruments are weak. See, for
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example, Andrews, Moreira, and Stock (2006) and the references therein. This
paper is also concerned with the quality of instruments but has a different focus.
We suggest a new way of constructing instrumental variables that can lead to more
efficient estimates.

We show that if we have a large panel of instruments and if these variables
and the endogenous regressors share some common exogenous factors, then the
factors estimated from the panel are valid and efficient instruments for the en-
dogenous regressors. We provide the asymptotic theory for single equation esti-
mation and for systems of equations including panel data models. In the single
equation case, we show that the estimated factors can be used as though they are
the ideal but latent instruments. In the case of panel data models, we show that
if N and T are both large, consistent estimates can be obtained by constructing
valid instruments from variables that are themselves invalid instruments in a con-
ventional sense. High-dimensional factor analysis is a topic of much research in
recent years, especially in the context of forecasting; see, for example, Stock and
Watson (2002) and Forni, Hallin, Lippi, and Reichlin (2005). Our analysis pro-
vides a new way of using the estimated factors not previously considered in either
the factor analysis or the instrumental variables literature.

It is well recognized that using too many potentially relevant instruments in
the first stage of two-stage least squares estimation will induce bias. This moti-
vates Kloek and Mennes (1960) to construct a small number of principal com-
ponents from the predetermined variables as instruments. Our methodology is
similar in some ways, but we put more structure on the predetermined variables.
Our point of departure is that if the variables in the system are driven by common
sources of variations, then the ideal instruments for the endogenous variables in
the system are their common components. Thus, although we have many valid in-
struments, each is merely a noisy indicator of the ideal instruments that we do not
observe. However, we can extract the ideal instruments from the noise indicators.
We use a factor approach to estimate the feasible instruments space from the ob-
served instruments. The resulting factor-based instrumental variable estimator is
denoted FIV.

Our framework of many instruments is different from that of the existing liter-
ature, such as Bekker (1994), Donald and Newey (2001), and Chao and Swanson
(2005), among many others. In those analyses, no structure is imposed on the
many and weak instruments. Also, although the theoretical setup allows the num-
ber of instruments to increase with the sample size, the number of instruments is
smaller than the number of observations. This is evident from the simulations re-
ported in these studies. In contrast, our analysis allows the number of instruments
to exceed the number of observations. This is possible because of the structure we
impose on the panel of instruments. Not every application will satisfy the assump-
tions of our analysis, but when these assumptions are satisfied, our framework
allows irrelevant and even invalid instruments. In the terminology of Bernanke
and Boivin (2003), what we propose is a way to construct valid instrumental vari-
ables in a “data rich environment.”



IV ESTIMATION 1579

In macroeconomic analysis, the “data rich” environment is commonly encoun-
tered, as lots of variables are available over a long time span. These macroeco-
nomic panels of data also tend to have a factor structure, as indicated by common
comovements in a large number of variables. The factor framework has a long his-
tory in macroeconomic modeling. Favero and Marcellino (2001) used estimated
factors as instruments to estimate forward looking Taylor rules with the motiva-
tion that the factors contain more information than a small number of series and
are thus better instruments. Here, we provide a formal analysis and show that the
estimated factors are more efficient instruments than the observed variables. Our
analysis is confined to cases in which the model is linear in the endogenous re-
gressors, though we permit nonlinear instrumental variable estimation when the
nonlinearity is induced by parameter restrictions. Nonlinear instrumental variable
estimation is a more involved problem even when the instruments are observed,
and this issue is not dealt with in our analysis.

As far as we are aware, Kapetanios and Marcellino (2006) is the only other
paper that considers using estimated factors as instruments. The authors’ frame-
work assumes that there are many observed instruments having a weak factor
structure. In contrast, we assume that there are many observed instruments with
an identifiable factor structure. As such, we adopt standard instead of weak instru-
ment asymptotics. As will be made clear later, the strong factor asymptotics does
not preclude the possibility that some series only have a weak factor structure
(in fact, some factor loadings can be zero). We also consider the case of “invalid
instruments” and compare efficiency of the FIV with the traditional optimal gen-
eralized method of moments (GMM) estimator. We show that the latter is incon-
sistent unless the ratio of the number of instruments and the sample size goes to
zero, and that FIV is as efficient as the bias-corrected optimal GMM. Whereas
Kapetanios and Marcellino (2006) focused on single equation models, we also
consider a simultaneous equations system and show that valid instruments can be
constructed from endogenous regressors.

The rest of this paper is organized as follows. Section 2 presents the framework
for estimation using the feasible instrument set. Section 3 studies instrumental
variables estimation for panel data models without observable valid instruments.
Simulations are given in Section 4. Section 5 concludes, and proofs of the results
are contained in the Appendixes.

2. THE ECONOMETRIC FRAMEWORK

We begin with the case of a single equation. For t = 1, . . .T , the endogenous
variable yt is specified as a function of a K ×1 vector of regressors xt :

yt = x ′
1tβ1 + x ′

2tβ2 + εt

= x ′
tβ + εt . (1)
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The parameter vector of interest is β = (β ′
1,β

′
2)

′ and corresponds to the coeffi-
cients on the regressors xt = (x ′

1t , x ′
2t )

′, where the exogenous and predetermined
regressors are collected into a K1 ×1 vector x1t , which may include lags of yt and
x2t . The K2 × 1 vector x2t is endogenous in the sense that E(x2tεt ) $= 0 and the
least squares estimator suffers from endogeneity bias. We assume that

x2t = # ′Ft +ut , (2)

where # ′ is a K2 ×r matrix, Ft is an r ×1 vector of fundamental variables satisfy-
ing E(Ftεt ) = 0, and r ≥ K2 is a small number. The assumption that E(Ftεt ) = 0 is
required for Ft to be valid instruments. The assumption r ≥ K2 is analogous to the
order condition that the number of instruments is at least as large as the number of
parameters to be estimated. Endogeneity arises when E(utεt ) $= 0. This induces
a nonzero correlation between x2t and εt . Equation (2) can be modified to allow
variables other than Ft to be present. For example, if x2t = # ′Ft +$′Wt +ut with
Wt being observable and exogenous, the obvious extension is to use (F ′

t ,W ′
t )

′ as
instruments. The thrust of the analysis remain valid.

If Ft were observed, β = (β ′
1,β

′
2)

′ could be estimated, for example, by using
Ft to instrument x2t . Our point of departure is that the ideal instrument vector Ft
is not observed. We assume that there is a “large” panel of data other than lags of
the endogenous variables, z1t , . . . , zNt , that are weakly exogenous for β and are
generated as follows:

zit = λ′
i Ft + eit . (3)

The r × 1 vector Ft is a set of common factors, λi is the factor loadings, λ′
i Ft is

referred to as the common component of zit , and eit is an idiosyncratic error that
is uncorrelated with x2t and uncorrelated with εt . Neither eit nor Ft is observed.
Viewed from the factor model perspective, x2t is just K2 of the many other vari-
ables in the economic system that have a common component and an idiosyncratic
component.

2.1. Assumptions and Estimation of Ft

Although the variable zit , like x2t , is driven by Ft , eit is uncorrelated with εt by
assumption, and zit is correlated with x2t through Ft . Thus, zit is weakly exoge-
nous for β, and {zit } constitutes a large panel of valid instruments. Although valid,
zit is a “noisy” instrument for each x2t because the ideal instrument for x2t is Ft .
We cannot use Ft in estimation only because it is not observed. The idea is to use
estimated Ft as instrument. When the context is clear, we will simply refer to Ft
as instruments instead of as “factor-based instruments.”

We estimate the factors from a panel of instruments zit , i = 1, . . . , N , t =
1, . . . ,T , by the method of principal components. Let zt = (z1t , z2t , . . . , zNt )′

be the N × 1 vector of the instrumental variables and let Z = (z1, z2, . . . , zT ),
which is N × T . We define F = (F1, . . . , FT )′ to be the T × r factor matrix and
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& = (λ1, . . . ,λN )′ to be the N × r factor loading matrix. The estimated factors,
denoted F̃ = (F̃1, . . . , F̃T )′, are a T ×r matrix consisting of r eigenvectors (multi-
plied by

√
T ) associated with the r largest eigenvalues of the matrix Z ′Z/(T N ) in

decreasing order. Then &̃ = (λ̃1, . . . , λ̃N )′ = Z F̃/T , which is N ×r , is an estimate
for the factor loading matrix &. Let ẽ = Z − &̃F̃ ′ be the residual matrix (N × T ).
Also let Ṽ be the r × r diagonal matrix consisting of the r largest eigenvalues
of Z ′Z/(T N ). Hereafter, variables denoted with a tilde are (based on) principal
components estimates associated with the factor model (3), and hatted variables
are estimated from the regression model. The following assumption is concerned
with the factor model (3).

Assumption A.

(a) E‖Ft‖4 ≤ M and 1/T ∑T
t=1 Ft F ′

t
p→ 'F > 0, an r × r nonrandom matrix.

(b) λi is either deterministic such that ‖λi‖ ≤ M , or it is stochastic such that

E‖λi‖4 ≤ M . In either case, N−1&′&
p→ '& > 0, an r × r nonrandom

matrix, as N → ∞.

(c) (i) E(eit ) = 0, E|eit |8 ≤ M .

(ii) E(eit ejs) = σi j,ts , |σi j,ts | ≤ σ̄i j for all (t,s), and |σi j,ts | ≤ τts for
all (i, j) such that 1

N ∑N
i, j=1 σ̄i j ≤ M, 1/T ∑T

t,s=1 τts ≤ M, and 1
N T

∑i, j,t,s=1 |σi j,ts | ≤ M .

(iii) For every (t,s), E
∣∣∣N−1/2 ∑N

i=1

[
eiseit −E(eiseit )

]∣∣∣
4
≤ M .

(d) {λi }, {Ft }, and {eit } are three mutually independent groups. Dependence
within each group is allowed.

Assumption A was used in Bai and Ng (2002) and Bai (2003) to obtain prop-
erties of F̃ and &̃ as estimators for F = (F1, . . . , FT )′ and & = (λ1, . . . ,λN )′,
respectively. Assumptions A(a) and A(b) imply the existence of r factors, as
the largest r population eigenvalues of 'Z will increase with N , whereas the
remaining eigenvalues are bounded; see Chamberlain and Rothschild (1983). We
also assume that r is fixed, which is appropriate given that in the examples that
motivate our analysis, the number of macroeconomic shocks (typically technol-
ogy, hours worked, taste, and fiscal and monetary policy) is quite small. Although
allowing r to increase with N and T is possible, the theoretical results on large-
dimensional factor models available to date all assume that r is fixed.

The assumption that &′&/N > 0 means that there are r identifiable factors or,
in this context, that the instruments are strong. The assumption does not, however,
preclude the possibility that some of the series have weak factor loadings. Con-
sider, for example, the case of one factor and λi ∼ N (0,σ 2

λ ). Although many of the
factor loadings will be close to zero, 1

N ∑N
i=1 λ2

i has a positive limit. In contrast, the
weak instrument setup of Kapetanios and Marcellino (2006) assumes λi = λ0

i /N a

for some a ≥ 0. Under this assumption, also considered in Onatski (2006), there
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can be little separation between the r th and the (r + 1)th eigenvalues of 'Z , the
population covariance matrix of Z . The factors are then not identifiable from the
population eigenvalues for large a. It is debatable whether the strong or the weak
factor structure is a better characterization of the macroeconomic panel data we
work with. It should not, however, come as a surprise that the weak factor assump-
tion would lead to different results. We proceed with the strong factor assumption
as stated in Assumption A(b), which is also the assumption used in the majority
of the work in this literature. The strong factor assumption alone is not enough to
ensure that Ft is a relevant instrument. For this, we also need # ′# > 0, which we
assume.

The idiosyncratic errors eit are allowed to be cross-sectionally and serially
correlated, but only weakly as stated under condition A(c). If eit are indepen-
dent and identically distributed (i.i.d.), then Assumptions A(c)(ii) and A(c)(iii)
are satisfied. For Assumption A(d), within group dependence means that Ft can
be serially correlated, λi can be correlated over i , and eit can have serial and
cross-sectional correlations. All these correlations cannot be too strong so that
Assumptions A(a)–(c) hold. However, we assume no dependence between the
factor loadings and the factors or between the factors and the idiosyncratic errors,
and so on, which is the meaning of mutual independence between groups.

The variable x1t serves as its own instrument because it is predetermined. Let
F+

t = (x ′
1t , F ′

t )
′, the vector of ideal instruments with dimension K1 + r . Let β0

denote the true value of β. Define εt (β) = yt − x ′
tβ and let εt = εt (β0).

Assumption B.

(a) E(εt ) = 0, E|εt |4+δ < ∞ for some δ > 0. The vector process gt (β0) =
F+

t εt satisfies E[gt (β0)] = 0 with E[gt (β)] $= 0 when β $= β0. Let ḡ0 =
1/T ∑T

t=1 F+
t εt and

√
T ḡ0 = T −1/2 ∑T

t=1 F+
t εt

d→N (0, S0) for some
S0 > 0.

(b) x2t = # ′Ft +ut with # ′# > 0, E(Ft ut ) = 0, E(utεt ) $= 0, and E(Ftεt ) = 0.
(c) For all i and t , E(eit ut ) = 0, and E(eitεt ) = 0.

Part (a) of Assumption B states that the model is correctly specified and a set of
orthogonality conditions hold at β0. In general, S0 is the limit of T −1 ∑T

t=1 ∑T
s=1

E[F+
t F+′

s εtεs]. However, to focus on the main idea, we assume F+
t εt to be se-

rially uncorrelated so that S0 is the probability limit of T −1 ∑T
t=1 F+

t F ′+
t ε2

t . Het-
eroskedasticity of εt is allowed and will be reflected in the asymptotic variance,
S0. Validity of Ft as an instrument requires that Fjt has a nonzero loading on x2t
and that E(Fjtεt ) = 0 for each j = 1, . . . ,r . As both conditions hold under the
assumption of our analysis, Ft is the ideal but infeasible instrument for x2t .

The requirement that # ′# > 0 means that the factors attribute a nondegenerate
fraction of the variations in the endogenous variable in question. Under Assump-
tion B(b), Ft is exogenous and relevant and hence satisfies instrument validity.
Part (c) assumes that the correlation between the instruments and the endogenous
regressor comes through Ft and not eit . It further implies that all the instruments
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are valid. This assumption is stronger than is necessary and can be relaxed; see
Remark 2 in Section 2.2.

In empirical work, it is common practice to use past values of the observed
variables as instruments. In the present setup, this can be justified only if x2t is
serially correlated (for instrument relevance) and εt must be uncorrelated with the
past observations (for instrument validity).1 If lags of x2t are valid instruments,
they are in general better instruments than lags of yt because the latter are corre-
lated with x2t through the correlation between x2t and the lags of x2t .

Lags of Ft should provide no further information about x2t once conditioned
on Ft . This raises the question of whether lags of x2t have information beyond
Ft , and this depends on ut . Given the factor structure, lags of x2t can be better
instruments only if ut contributes to the dynamics in x2t and εt is uncorrelated
with the lags of ut .

2.2. A Feasible Factor Instrumental Variable Estimator

Although the ideal instrument under our setup is Ft , it is unobservable. We suggest
using F̃t in place of Ft . To fix ideas and for notational simplicity, we assume the
absence of regressor x1t (K1 = 0) so that the instrument is F̃t . It is understood that
when x1t is present, the results still go through upon replacing F̃t in the estimator
that follows by F̃+

t = (x ′
1t , F̃ ′

t )
′.

Define g̃t (β) = F̃tεt (β). Consider estimating β using the r moment conditions
ḡ(β) = 1/T ∑T

t=1 F̃tεt (β). Let WT be an r ×r positive definite weighting matrix.
Where appropriate, the dependence of ḡ on β will be suppressed. The linear GMM
estimator is defined as

β∗
FIV = argmin

β
ḡ(β)′WT ḡ(β)

= (S′
F̃ x

WT SF̃x )
−1S′

F̃ x
WT SF̃ y,

where SF̃x = 1/T ∑T
t=1 F̃t x ′

t . Let ε∗
t = yt − x ′

tβ
∗
FIV and let S∗ = 1/T ∑T

t=1 F̃t

F̃ ′
t (ε

∗
t )2. Then the efficient GMM estimator, which is our main focus, is to let

WT = S∗−1, giving

β̂FIV = (S′
F̃ x

S∗−1SF̃x )
−1S′

F̃ x
S∗−1SF̃ ′ y .

THEOREM 1. Under Assumptions A and B, as N ,T → ∞,
√

T (β̂FIV −β0)
d→N (0,+FIV),

where +FIV = plim(S′
F̃ x

(S∗)−1SF̃x )
−1 = +′

Fx (S0)−1+Fx , with +Fx = plim1/T

∑T
t=1 Ft x ′

t and S0 as defined in Assumption B.

Theorem 1 establishes consistency and asymptotic normality of the GMM es-
timator when F̃t are used as instruments and when the observed instruments are
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not weak.2 Just as if Ft were observed, β̂FIV reduces to (F̃ ′x)−1 F̃ ′y and is the
instrumental variable estimator in an exactly identified model with K = r . It is
the two-stage least squares (2SLS) estimator, that is, β̂FIV = (x ′ PF̃ x)−1x ′ PF̃ y,
under conditional homoskedasticity. Furthermore, J = T ḡ(β̂FIV)′ S∗−1 ḡ(β̂FIV)

d→
χ2

r−K is asymptotically χ2 distributed with r − K degrees of freedom. Essentially,
if both N and T are large, estimation and inference can proceed as though Ft were
observed. The procedure proposed by Carrasco (2006) is similar to ours, but no
factor structure is assumed.3 Other estimators such as those in Hausman, Newey,
and Woutersen (2006), in addition to limited information maximum likelihood
and jackknife instrumental variables estimator, can also be derived. Because F̃t
can be used as though it were Ft , we expect that a factor-based version of these
estimators will remain valid, but analyzing their properties is beyond the scope of
this paper.

The essence behind Theorem 1 is that F̃t is estimating a rotation of Ft , de-
noted by H Ft , where H is an r × r invertible matrix. If Ft is a vector of valid
instruments, then H Ft is also a vector of valid instruments and will give rise to
an identical estimator. To show that F̃t will lead to the same estimator (asymptot-
ically only), we need to establish

T −1/2
T

∑
t=1

(F̃t − H Ft )εt = op(1). (4)

This result is given in Lemma A1 in Appendix A. In fact, it can be shown that
F̃t − H Ft is equal to D 1

N ∑N
i=1 λi ei t plus a term that is negligible, where the

matrix D depends on N and T and is Op(1). Thus T −1/2 ∑T
t=1(F̃t − H Ft )εt .

DN−1/2 1√
N T ∑T

t=1 ∑N
i=1 λi ei tεt . If εt and eit are independent, the left-hand side

of (4) is Op(N−1/2) = op(1).

Remark 1. Theorem 1 assumes that the number of factors r is known. The
asymptotic distribution still holds with a consistent estimator r̂ .4 Let β̂FIV,r̂ denote
the FIV estimator using an estimated r . To see that β̂FIV,r̂ has the same limiting
distribution as β̂FIV,r , consider

P(
√

T (β̂FIV,r̂ −β) ≤ s) = P(
√

T (β̂FIV,r̂ −β) ≤ s|r̂ = r)P(r̂ = r)

+ P(
√

T (β̂FIV,r̂ −β) ≤ s|r̂ $= r)P(r̂ $= r).

Because P(r̂ = r) → 1 and P(r̂ $= r) → 0, the second term on the right-hand
side converges to zero, and the first term is equal to P(

√
T (β̂FIV,r̂ −β) ≤ s|r̂ = r)

[1+o(1)]. Furthermore, conditional on r̂ = r , β̂FIV,r̂ = β̂FIV,r . Thus

|P(
√

T (β̂FIV,r̂ −β) ≤ s)− P(
√

T (β̂FIV,r −β) ≤ s)| → 0.

Remark 2. Theorem 1 is derived under the assumption that E(εt ei t ) = 0 for all
i and t so that all instruments are valid. This assumption is, however, not necessary
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under a data rich environment. Suppose that E(εt ei t ) $= 0 for all i so that zit cannot
be used as instruments. When N is fixed, using zt will not consistently estimate β.
But with a large N and under the assumption that ∑N

i=1 |E(εt ei t )| ≤ M < ∞ for all
N with M not depending on N , Theorem 1 still holds provided that

√
T /N → 0.

To see this, let γi = E(eitεt ) $= 0. Then

T −1/2 N−1
T

∑
t=1

N

∑
i=1

λi ei tεt = N−1/2 1√
T N

T

∑
t=1

N

∑
i=1

λi [eitεt −E(eitεt )]

+
√

T N−1
N

∑
i=1

λiγi .

The first term on the right-hand side is N−1/2 Op(1) = op(1). Because E‖λi‖ ≤ M
by assumption, the absolute value of the second term is bounded in expectation
by M

√
T N−1 ∑N

i=1 |γi |. Thus if ∑N
i=1 |γi | is bounded and

√
T /N → 0, the second

term is also op(1), implying that (4) still holds. In fact, ∑N
i=1 |γi | is allowed to go

to infinity. All that is needed is the product (
√

T /N )∑N
i=1 |γi | → 0. This would

be impossible when N is fixed and there exists an i such that γi $= 0.

Remark 3. The assumption that N → ∞ ensures consistent estimation of the
factor space and is a key feature of the data rich environment. But even with N
fixed, we can always mechanically construct F̃t as the principal components of
zt . Under the assumption that all the instruments are valid, the resulting FIV esti-
mator is still consistent because linear combinations of valid instruments remain
valid instruments. However, consistent estimation will not be possible unless N
is large when variables satisfying the condition of Remark 2 are permitted. This
underscores the benefit of working in a data rich environment.

Remark 4. The single equation setup extends naturally to a system of equa-
tions. Suppose there are G equations, where G is finite. For g = 1, . . . ,G, and
t = 1, . . . ,T ,

ygt = x ′
gtβg + εgt ,

where xgt is Kg × 1. As an example of G = 2, (y1, y2) could be aggregate con-
sumption and earnings, and the endogenous regressor is hours worked. Let F̃gt
be the rg × 1 vector of instruments for the gth equation, g = 1, . . . ,G, and let
r = ∑g rg . Then gt is an r × 1 vector of stacked up moments. Assuming that for
each g = 1, . . . ,G, the rg × Kg moment matrix E(F̃gt x ′

gt ) is of full column rank,
Theorem 1 still holds, but the r ×r matrix S is now the asymptotic variance of the
stacked up moments. Note that this need not be a block diagonal matrix. Likewise,
SF̃x is a K ×r matrix. If each equation has a regressor matrix of the same size and
uses the same number of instruments, the SF̃x matrix under systems estimation
will be G times bigger, just as when Ft is observed. See, for example, Hayashi
(2000).
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2.3. A Control Function Interpretation

We have motivated the FIV as a method of constructing more efficient instru-
ments, but the estimator can also be motivated in a different way. Under the as-
sumed data generating process, (DGP), that is, x2t = # ′Ft +ut , the nonzero cor-
relation between x2t and εt arises because cov(ut ,εt ) $= 0. We can decompose εt
into a component that is correlated with ut and a component that is not. Let

εt = u′
tγ + εt |u,

where εt |u is orthogonal to ut and thus x2t . We can rewrite the regression yt =
x1tβ1 + x2tβ2 + εt as

yt = x ′
tβ +u′

tγ + εt |u .

If Ft were observed, we would estimate the reduced form for x2t to yield fitted
residuals ût . Then least squares estimation of

yt = x ′
tβ + û′

tγ + error

not only provides a test for endogeneity bias, it also provides estimates of β that
are numerically identical to 2SLS with Ft as instruments. This way of using the
fitted residuals to control endogeneity bias is sometimes referred to as a “control
function” approach. See Hausman (1978).

In our setting, we cannot estimate the reduced form for x2t because Ft is not
observed. Indeed, if we only observe x2t , and x2t = # ′Ft +ut , there is no hope of
identifying the two components in x2t . However, we have a panel of data Z with a
factor structure, and F̃t are consistent estimates of Ft up to a linear transformation.
The control function approach remains feasible in our data rich environment and
consists of three steps. In step 1, we obtain F̃t . In step 2, for each i = 1, . . . , K2,
least squares estimation of

x2i t = F̃ ′
t #i +uit

will yield
√

T consistent estimates of #i , from which we obtain ũt . In step 3, least
squares estimation of

yt = x ′
1tβ1 + x ′

2tβ2 + ũ′
tγ + εu

t (5)

will yield
√

T consistent estimates of β. It is straightforward to show that the
estimate is again numerically identical to 2SLS with F̃t as instruments. In this
regard, the FIV is a control function estimator. But the 2SLS is a special case
of the FIV that is efficient only under conditional homoskedasticity. Thus, the
FIV can be viewed as an efficient alternative to controlling endogeneity when
conditional homoskedasticity does not hold or may not be appropriate. The con-
trol function approach also highlights the difference between the FIV and the
instrumental variable estimator. With the instrumental variable estimator, ut is es-
timated from regressing x2t on z2t , where z2t are noisy indicators of Ft . With the
FIV, ut is estimated from regressing x2t on a consistent estimate of Ft and is thus
more efficient than the instrumental variable estimator.
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2.4. Optimality of the Feasible FIV

In early work, Kloek and Mennes (1960) were concerned with situations when
N is large relative to the given T (in their case, T = 30) so that the first-stage
estimation is inefficient. These authors motivated principal components as a prac-
tical dimension reduction device. Amemiya (1966) and more recently Carrasco
(2006) provided different statistical justifications for the approach without ref-
erence to a factor structure. In contrast, we motivated principal components as
a method that consistently estimates the space spanned by the ideal instruments
with the goal of developing a theory for inference. It can be shown that when
each observed instrument is measured with error, then under Assumptions A and
B, β̂FIV is more efficient than β̂I V , which uses an equal (or greater) number of z2t
as instruments.5 The intuition is straightforward. The observed instruments are
the ideal instruments contaminated with errors, and F̃ is consistent for the ideal
instrument space. Pooling information across the observed variables washes out
the noise to generate more efficient instruments for x2t .

One can also construct a GMM estimator that directly uses all N observed in-
struments zt = (z1t , . . . , zNt )′. This estimator was considered in Meng, Hu, and
Bai (2007) in the context of estimating “betas” in asset returns when the market
return is measured with errors. Because of the large number of instruments, the
bias of the GMM estimator can be large. Instead of the unconstrained weight-
ing matrix (Z ′Z)− (generalized inverse of Z ′Z ), they proposed using an identity
weighting matrix in the presence of many instruments, which yields a

√
T con-

sistent estimator.
We now provide an analysis of an optimal GMM estimator, defined as a GMM

estimator whose weighting matrix is constructed to exploit the factor structure in
the data.6 More precisely, the estimator uses N moment conditions E(ztεt ) = 0
and a weighting matrix constructed as

W = E(zt z′
tε

2
t ) = σ 2

ε [&'F&′ + D],

where D is assumed to be diagonal for ease of analysis. We can estimate W by
Ŵ = σ̂ 2

ε [&̂'̂F&̂′ + D̂], from which the inverse of Ŵ can be easily computed. The
optimal GMM estimator becomes

β̂GMM = (X ′Z Ŵ −1 Z ′ X)−1(X ′Z Ŵ −1 Z ′Y ).

Let Szx = (1/T )Z ′ X . The asymptotic variance is given by

+GMM = plim
(

S′
zx Ŵ −1Szx

)−1
.

PROPOSITION 1. Assume that zt is stationary and ε2
t is uncorrelated with

zt z′
t . Then

(i) β̂GMM −β0 = Op(N/T ). If N/T → 0, then
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(ii)
√

T (β̂GMM −β0 − (N/T )d)
d→N (0,+GMM), and

(iii) +GMM = +FIV , where (N/T )d is the bias term given in the proof in Ap-
pendix B.

In general, the optimal GMM estimator is biased and asymptotically inefficient,
confirming the finite-sample results found in Meng et al. (2007). The estimator
has a bias in the order of N/T . The estimator is consistent only if N/T → 0. It
is interesting to note that the inconsistency is not due to the estimation of a large-
dimensional weighting matrix W . It is inconsistent when N and T are comparable
even if W is known. The bias-corrected optimal GMM has the same asymptotic
covariance as that of the FIV if N/T → 0, in which case the FIV is as efficient as
the bias-corrected optimal GMM. However, to obtain consistency and asymptotic
normality, the FIV requires neither bias correction nor N/T going to zero. It is
not difficult to show that the GMM estimator with an identity weighting matrix,
although consistent and asymptotically normal, is also less efficient than the FIV.
It would be interesting but more demanding to compare FIV with the estimator
proposed recently by Kuersteiner and Okui (2007) that is based on the average
predicted value of the endogenous variables.

The GMM estimator in Proposition 1 uses all of the instruments. Given N
instruments, one has the option to choose a smaller subset of instruments. Let
K ≤ N be the number of instruments chosen. Donald and Newey (2001) show
that if K → ∞ and K 2/T → 0, then one obtains an unbiased and asymptoti-
cally efficient estimator with an asymptotic variance that equals +GMM . When
choosing a smaller number of instruments from a larger set, one faces the issue of
which subset to use among the 2N possible instrument sets. The results of Donald
and Newey essentially assume that the ordering of instrument variables is known
so that the information criterion can be used. The FIV estimator uses all of the
instruments and does not require the instruments to be ordered. Instead of using
a selection criterion, dimension reduction is achieved through principal compo-
nents.

3. PANEL DATA AND LARGE SIMULTANEOUS EQUATIONS
SYSTEM

In this section we consider a large panel data regression model in which all re-
gressors are endogenous. The presence of exogenous or predetermined regressors
is discussed later.7 For i = 1,2, . . . , N , t = 1,2, . . . ,T with N and T both large,
let

yit = x ′
i tβ + εi t , (6)

where xit is K ×1 and E(xitεi t ) $= 0 for all i and t . The same framework was also
used in Wooldridge (2005). Equation (6) could be in first differenced form, as in
Arellano and Bond (1991). This is a large simultaneous equation system because
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we allow E(xitεi t ) $= 0. The pooled ordinary least squares (POLS) estimator

β̂POLS =
(

N

∑
i=1

T

∑
t=1

xit x ′
i t

)−1 N

∑
i=1

T

∑
t=1

xit yit

is inconsistent. Unlike with the single equation system, we do not need the exis-
tence of valid instruments zit . When N is large, xit can play the role of zit despite
the fact that none of xit is a valid instrument in the conventional sense, provided
the regressors are driven by the common factors,

xit = &′
i Ft +uit = Cit +uit .

Here, &i is a matrix of r × K , and Ft is r × 1 with r ≥ K . We assume εi t is
correlated with uit but not with Ft so that E(Ftεi t ) = 0. The loading &i can be
treated as a constant or random; when it is regarded as random, we assume εi t is
independent of it. Therefore we have

E(Citεi t ) = 0.

As an example, let yit be factor demand by firm i . If xit are factor prices fac-
ing firm i , or revenue of firm i , they will be determined simultaneously with
yit . The economic model fits into our framework if factor prices are correlated
across firms and each firm’s revenue covaries with the business cycle. Spatial and
cross-country studies in which the regressors have common variations can also be
considered.

In this panel data setting, the common component Cit = &′
i Ft is the ideal in-

strument for xit . As we will see later, it is a more effective instrument than Ft in
terms of convergence rate and the mean squared errors of the estimator. As Cit
is not available, it needs to be estimated. Let Xi = (xi1, xit , . . . , xiT )′ be a T × K
matrix of regressors for the i th cross-section unit, so that X = (X1, X2, . . . , X N )
is T × (N K ). Let & be a (N K )×r matrix whereas F is T ×r . Let F̃ be the prin-
cipal component estimate of F from the matrix X X ′, as explained in Section 2.1,
with Z replaced by X . Let C̃i t = &̃′

i F̃t , which is K ×1.
Consider the pooled two-stage least squares estimator with C̃i t as instruments:

β̂PFIV =
(

N

∑
i=1

T

∑
t=1

C̃i t x ′
i t

)−1 N

∑
i=1

T

∑
t=1

C̃i t yi t . (7)

To study the properties of this estimator, we need the following assumptions.

Assumption A′. This is the same as Assumption A(a)–(d) with three changes.
Part (b) holds with λi replaced by &i ; part (c) holds with eit replaced by each
component of uit (note that uit is a vector). In addition, we assume uit are inde-
pendent over i .
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Assumption B′.

(a) E(εi t ) = 0, E|εi t |4+δ < M < ∞ for all i, t , for some δ > 0; εi t are indepen-
dent over i .

(b) xit = &′
i Ft +uit ; E(uitεi t ) $= 0; εi t is independent of Ft and &i .

(c) (N T )−1/2 ∑N
i=1 ∑T

t=1 Citεi t
d→N (0, S), where S is the long-run covariance

of the sequence ξt = N−1/2 ∑N
i=1 Citεi t , defined as

S = lim
N ,T →∞

1
N T

N

∑
i=1

T

∑
t=1

T

∑
s=1

E(Cit C ′
isεi tεis).

THEOREM 2. Suppose Assumptions A′ and B ′ hold. As N ,T → ∞, we have

(i) β̂PFIV −β0 = Op(T −1)+ Op(N−1), and thus β̂PFIV
p→ β0.

(ii) If T/N → τ > 0, then
√

N T (β̂PFIV −β0)
d→N (τ 1/2/0

1 + τ−1/2/0
2, +PFIV),

where +PFIV = plim[Sx̃ x̃ ]−1S[Sx̃ x̃ ]−1 with Sx̃ x̃ = (N T )−1 ∑N
i=1 C̃i t x ′

i t
and /0

1 and /0
2 are defined in Appendix C.

Theorem 2 establishes that the estimator β̂PFIV is consistent for β as N ,T →
∞. Even though there are no instruments in the conventional sense, we can still
consistently estimate the large simultaneous equations system under the model
assumptions.8 Because the bias is of order max[N−1,T −1], the effect of the bias
on β̂PFIV can be expected to vanish quickly.

If Cit is known, asymptotic normality simply follows from Assumption B′(c),
and there will be no bias. However, Cit is not observed, and biases arise from the
estimation of Cit . More precisely, C̃i t contains uit , which is correlated with εi t ,
the underlying reason for biases. When T and N are of comparable magnitudes,
β̂PFIV is

√
N T consistent and asymptotically normal, but the limiting distribution

is not centered at zero, as shown in part (ii) of Theorem 2.
A bias-corrected estimator can be considered to recenter the asymptotic distri-

bution to zero if we assume that εi t are serially uncorrelated.9 Let

δ̂1 =
(

1
N T

T

∑
t=1

N

∑
i=1

K

∑
k=1

&̃′
i Ṽ −1λ̃i,k ũi t,k ε̂i t

)

and /̂1 = (Sx̃ x̃ )
−1δ̂1,

δ̂2 =
(

1
N T

N

∑
i=1

T

∑
t=1

ũi t F̃ ′
t F̃t ε̂i t

)

and /̂2 = (Sx̃ x̃ )
−1δ̂2,

where ũi t = xit − C̃i t , ε̂i t = yit − x ′
i t β̂PFIV , and Sx̃ x̃ = 1

N T ∑N
i=1 ∑T

t=1 C̃i t x ′
i t . The

estimated bias is10

/̂ = 1
N

/̂1 + 1
T

/̂2.
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COROLLARY 1. Suppose Assumptions A′ and B ′ hold. If εi t are serially
uncorrelated, T/N 2 → 0, and N/T 2 → 0, then
√

N T (β̂PFIV − /̂−β0)
d→N (0,+PFIV).

Both β̂PFIV and its bias-corrected variant are
√

N T consistent. One can expect
the estimators to be more precise than the single equation estimates because of
the fast rate of convergence. However, although β̂PFIV is expected to be suffi-
ciently precise in terms of the mean squared errors, the bias-corrected estimator,
β̂+

PFIV = β̂PFIV −/̂ should provide more accurate inference in terms of the t statis-
tic because it is properly recentered around zero.

Remark 5. The analysis is easily extended to models with fixed effects. All
that is needed is to demean the data first and then proceed as usual. Consider

yit = αi + x ′
i tβ + εi t , xit = µi +λ′

i Ft +uit .

Demeaning gives

ẏi t = ẋ ′
i tβ + ε̇i t , ẋi t = λ′

i Ḟt + u̇i t ,

where ẏi t = yit − ȳi with ȳi = T −1 ∑T
t=1 yit and other dotted variables are defined

in the same manner. The instrument is now Ċi t = λ′
i Ḟt . The limiting distribution

also has the same form as before, except that variables are demeaned. Because T
is large by assumption, the bias induced by demeaning is negligible. To analyze
the limiting distribution, ε̇i t = εi t − ε̄i can be replaced by εi t . This follows from
the result that ∑T

t=1 Ḟt ≡ 0 so that

(N T )−1/2
N

∑
i=1

T

∑
t=1

Ċi t ε̇i t ≡ (N T )−1/2
N

∑
i=1

T

∑
t=1

Ċi tεi t . (8)

Similar to Assumption B ′(c), under the assumption that the right-hand side in
expression (8) has a normal limiting distribution,11 say, N (0, Ṡ), Theorem 2 still
holds with limiting variance

+̇PFIV = plim[Ṡx̃ x̃ ]−1 Ṡ[Ṡx̃ x̃ ]−1,

where Ṡx̃ x̃ = 1
N T ∑N

i=1 ∑T
t=1
˜̇Cit ẋ ′

i t . The detailed analysis will not be presented.
Suffice it to mention that once the data are demeaned, exactly the same computa-
tion is performed including the bias correction.

Remark 6. The PFIV estimator is different from the traditional panel instru-
mental variable estimator that uses F̃ as instruments. Such an estimator, PTFIV,
would be constructed as

β̂PTFIV =
(

S
′
F̃ x

S∗−1SF̃x

)−1
S

′
F̃ x

S∗−1SF̃ y,
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where SF̃x = 1
N T ∑N

i=1 ∑T
t=1 F̃t x ′

i t and S∗ = 1
N T ∑N

i=1 ∑T
t=1 F̃t F̃ ′

t (e
∗
i t )

2; e∗
i t is based

on a preliminary estimate of β using an r × r positive definite weighting matrix.
However, the probability limit of SF̃x is 'Fx = E(λi )′'F , which can be singular
if E(λi ) = 0, and in that case the estimator is only

√
T consistent. The β̂PTFIV is√

N T consistent only if one assumes a full column rank for 'Fx . In contrast, the
proposed estimator uses the moment 1

N T ∑N
i=1 ∑T

t=1 xit c′
i t = 1

N T ∑N
i=1 ∑T

t=1 cit c′
i t +

op(1) > 0 and is always
√

N T consistent, without the extra rank condition.

4. SIMULATIONS

In this section, we evaluate the effectiveness of the FIV using F̃+ = [x1 F̃] as in-
struments, where F̃ is T × r .12 We also consider an estimator with f̃ + = [x1 f̃ ]
as instruments, where the dimension of f̃ is T × rmax with rmax > r . This esti-
mator is denoted as fIV. The GMM estimator uses an identity weighting matrix in
the first step to yield β∗. For the sake of comparison, we also report results of two
other estimators. The first is a GMM estimator using a set of observed variables
most closely correlated with x2 and is of the same dimension as F̃ . These instru-
ments are determined by the R2 from regressions of x2 on both x1 and one instru-
ment. This estimator is labeled IV. The second is ordinary least squares (OLS),
which does not account for endogeneity bias.

We consider three DGPs. In all cases,

zit = λ′
i z Ft +√

rσzeit ,

Fjt = ρj Fjt−1 +ηj t j = 1, . . .r,

where eit ∼ N (0,1), ηj t ∼ N (0,1), λi z ∼ N (0, Ir ), ρj ∼ U (0.2,0.8), and σz = 3
for all i . The examples differ in how yt , x1t , and x2t are generated.

Example 1
We modify the DGP of Moreira (2003). The equation of interest is

yt = x ′
1tβ1 + x ′

2tβ2 +σyεt ,

xi1t = αx xi1,t−1 + vi t , i = 1, . . . , K1,

xi2t = λ′
i2 Ft +uit , i = 1, . . . , K2,

where εt = 1√
2
(ε̃2

t − 1) and uit = 1√
2
(ũ2

i t − 1); (ε̃t , ũ′
t )

′ ∼ N (0K2+1,') where
diag(') = 1, '( j,1) = '(1, j) ∼ U (0.3,0.6), and zero for other entries. This
means that ε̃t is correlated with ũi t with covariance '(1, i) but ũi t and ũ j t are
uncorrelated (i $= j). We assume αx ∼ U (0.2,0.8), vi t ∼ N (0,1) and uncorrelated
with ũ j t and ε̃t . By construction, the errors are heteroskedastic. The parameter σ 2

y

is set to be K1σ̄ 2
x1 + K2σ̄ 2

x2, where σ̄ 2
xj

is the average variance of xjt , j = 1,2. This
puts the noise-to-signal ratio in the primary equation to be of roughly one-half.
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The parameter of interest is β2. We consider various values of K2, σz , and r .
The results are reported in Table 1 with K2 = 1 and σz = 3. This is the least
favorable situation because the factors are less informative with a low common
component-to-noise ratio. The column labeled ρx2ε is the correlation coefficient
between x2 and ε and thus indicates the degree of endogeneity. Under the as-
sumed parametrization, this correlation is around 0.2. The true value of β2 is
2, and the impact of endogeneity bias on OLS is immediately obvious. The es-
timators that use the factors as instruments are more precise. The factor-based
instruments dominate the IV either in bias or root mean squared error (RMSE), if
not both. The J test associated with the FIV is close to the nominal size of 5%,
whereas the two-sided t statistic for testing β2 = 2 has some size distortion when
N and T are both small. The size distortions of both tests decrease with T .

Example 2
In this example, the regression model is

yt = β1 + x ′
2tβ2 + εt . (9)

The endogenous variables x2t are spanned by L factors, whereas the panel of
observed instruments is spanned by r factors and r ≥ L . To generate data with

TABLE 1. Finite-sample properties of β̂2, β0
2 = 2

Mean/RMSE
T N r rmax ρx2ε FIV fIV IV OLS JF tF Jf t f

50 50 1 2 0.38 1.97 2.00 2.18 2.73 N.A. 0.06 0.04 0.07
0.41 0.39 0.45 0.85

100 50 1 2 0.35 1.98 2.00 2.06 2.67 N.A. 0.05 0.04 0.06
0.25 0.25 0.28 0.73

100 100 1 2 0.32 2.00 2.01 2.05 2.59 N.A. 0.05 0.05 0.06
0.23 0.22 0.26 0.64

200 100 1 2 0.28 2.01 2.01 2.03 2.50 N.A. 0.06 0.04 0.06
0.14 0.14 0.15 0.53

50 50 2 4 0.56 2.04 2.15 2.57 3.18 0.05 0.09 0.04 0.14
0.59 0.51 0.78 1.28

100 50 2 4 0.52 2.01 2.05 2.23 3.08 0.04 0.06 0.03 0.09
0.32 0.29 0.41 1.14

100 100 2 4 0.52 2.01 2.04 2.23 3.07 0.05 0.08 0.05 0.10
0.31 0.29 0.40 1.13

200 100 2 4 0.50 2.00 2.03 2.04 3.04 0.05 0.06 0.05 0.07
0.21 0.20 0.23 1.06

Note: FIV and fIV are GMM estimators with F̃ and f̃ as instruments. These are of dimensions r and rmax, re-
spectively. Here IV is the GMM estimator with z2 as instruments, where z2 is of dimension r and has the largest
correlation with x2. The N.A. entries correspond to exact identification (no overidentifying restrictions).



1594 JUSHAN BAI AND SERENA NG

this structure, let F(:,1 : L) be a T × L matrix consisting of the columns 1 to L
of F . We simulate a T ×1 vector y, a T × N matrix Z , and a T × L matrix X2 as

y = F(:,1 : L)&y +σyey,

X2 = F(:,1 : L)&x + ex ,

where ej,xt ∼ N (0,σ 2
j ), σ 2

j = L ( j = 1, . . . , L), σ 2
y = L , and eyt ∼ N (0,1). The

factors Ft are AR(1) processes with dynamic coefficients uniformly distributed
between 0.2 and 0.8. The L-dimensional factors F(:,1 : L) can be expressed as
F(:,1 : L) = (X2 − ex )&−1

x . Thus

y = X2&
−1
x &y +σyey − ex&

−1
x &y

= X2β
∗
2 + ε,

where β∗
2 = &−1

x &y is L × 1 and ε = σyey − exβ∗
2 . For given &x , we then solve

for &y such that β∗
2 = (1′

K2
,0′

L−K2
). The x2t in (9) corresponds to the first K2

columns of X2t . This also implies that the true value of every element of β2 is
unity. The elements of the L × L matrix &x are drawn from the N (1,1) distribu-
tion. Written in terms of r factors, X2 = F(:,1 : r)&(r)

x +ex , where &(r)
x only has

the first L × L positions being nonzero. Viewed this way, the first L factors are
the relevant factors.

We estimate rmax = r + 2 factors and report simulations for K2 = 1 with
β0

2 = 1. The results are reported in Table 2. Unlike in Example 1, the correla-
tion between x2t and εt is now negative. In this example, the IV is actually more
biased than OLS. The factor instrumental variable estimators again perform well.

Example 3
Here, we consider estimation of β by panel regressions. The DGP is

yit = µi +β1xit,1 +β2xit,2 + εi t ,

xit,2 = λ′
i Ft +√

r uit ,

(
εi t

uit

)

i.i.d. N

([
0

0

]

,

[
1 ρi

ρi 1

])

,

where xit,1 = 1 for all i ; ρi ∼ U (0.3,0.6). We set the true value of β = (β1,β2)′ =
(0,1)′ and draw µi ∼ U (0,1) and λi ∼ N (0, Ir ); Ft are generated as in earlier ex-
amples. For each i , the data are demeaned to control for fixed effects. An intercept
is included in the regression in the demeaned data. According to Theorem 2, we
can use the factors estimated from xit (also demeaned) to instrument themselves.
For the PFIV, we use r factors. We also consider an estimator, denoted PfIV, that
uses rmax = r + 2 factors. Note that these estimates are not corrected for bias to
show that the bias is of second-order importance. For the sake of comparison, we



IV ESTIMATION 1595

TABLE 2. Finite-sample properties of β̂2, β0
2 = 1

Mean/RMSE
T N r L ρx2ε FIV fIV IV OLS JF tF Jf t f

50 50 2 2 -0.43 1.01 0.99 0.94 0.72 0.04 0.08 0.03 0.10
0.19 0.19 0.20 0.32

100 50 2 2 -0.43 1.01 1.00 1.00 0.72 0.04 0.08 0.05 0.10
0.13 0.14 0.14 0.30

100 100 2 2 -0.68 0.99 0.94 0.81 0.29 0.05 0.09 0.07 0.15
0.20 0.20 0.25 0.71

200 100 2 2 -0.56 1.00 0.99 0.94 0.53 0.05 0.07 0.05 0.07
0.10 0.10 0.13 0.48

50 50 4 3 -0.56 0.96 0.92 0.85 0.57 0.04 0.11 0.04 0.17
0.22 0.23 0.24 0.45

100 50 4 3 -0.59 0.97 0.96 0.90 0.53 0.06 0.09 0.05 0.11
0.15 0.15 0.17 0.48

100 100 4 3 -0.61 0.97 0.95 0.86 0.50 0.06 0.09 0.06 0.13
0.16 0.16 0.21 0.51

200 100 4 3 -0.67 0.99 0.97 0.88 0.40 0.05 0.07 0.04 0.10
0.13 0.13 0.17 0.60

Note: FIV and fIV are GMM estimators with F̃ and f̃ as instruments. These are of dimensions r and rmax = r +2,
respectively. Here IV is the GMM estimator with z2 as instruments, where z2 is of dimension r and has the largest
correlation with x2.

also consider PTFIV. Note that in this example, E(λi ) = 0 and the PTFIV should
be more volatile (larger variance) because SF̃x can be near singular.

The results are reported in Table 3. As expected, the POLS estimator is quite
severely biased. The PTFIV has noticeably larger RMSE than the four factor-
based estimators, which are all centered around the true value. The PFIV has
smaller bias than the PfIV with no increase in variance. Even with min[N ,T ] as
small as 25, the PFIV is quite precise. Increasing N and/or T clearly improves
precision even without bias correction. Because the PFIV has a small variance,
the t test becomes very sensitive to small departures of the estimate from the true
value. Thus, without bias correction, the t test based on the PFIV has important
size distortions. The bias-corrected test is, however, much more accurate though
there are still size distortions when r is large. The t statistics based on OLS have
much higher distortions (not reported). The test based on PTFIV is much closer
to the nominal size of 5% regardless of r , primarily because the variance of the
estimator is much larger than the PFIV. In terms of mean squared error, the PFIV
is clearly the estimator of choice.

Summing up, we have reported results for the FIV, which uses the true num-
ber of factors underlying the endogenous variable x2, and the fIV, which uses
more instruments than is necessary. Although the results do not show significant
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TABLE 3. Finite-sample properties of β̂2 for panel data, β0
2 = 1

Mean/RMSE
T N r ρx2ε PFIV PFIV+ PfIV PfIV+ PTFIV POLS tβ̂PFIV

tβ̂PFIV+ tβ̂PTFIV

15 15 2 0.29 1.06 1.04 1.09 1.08 1.12 1.11 0.41 0.25 0.12
0.07 0.06 0.10 0.09 0.22 0.12

25 25 2 0.29 1.03 1.01 1.06 1.04 1.08 1.11 0.37 0.13 0.08
0.04 0.03 0.07 0.05 0.18 0.11

25 50 2 0.30 1.02 1.01 1.05 1.03 1.08 1.11 0.38 0.11 0.08
0.03 0.02 0.05 0.04 0.19 0.11

50 25 2 0.29 1.02 1.01 1.04 1.03 1.07 1.10 0.37 0.11 0.12
0.03 0.02 0.05 0.03 0.13 0.10

50 50 2 0.29 1.01 1.00 1.03 1.02 1.06 1.10 0.31 0.07 0.08
0.02 0.01 0.04 0.02 0.13 0.10

100 50 2 0.30 1.01 1.00 1.02 1.01 1.05 1.10 0.34 0.07 0.10
0.01 0.01 0.03 0.01 0.10 0.10

50 100 2 0.29 1.01 1.00 1.03 1.01 1.04 1.10 0.34 0.07 0.06
0.01 0.01 0.03 0.02 0.13 0.10

100 100 2 0.29 1.01 1.00 1.02 1.01 1.04 1.10 0.29 0.06 0.08
0.01 0.01 0.02 0.01 0.11 0.10

15 15 4 0.29 1.07 1.06 1.08 1.07 1.09 1.08 0.84 0.70 0.18
0.07 0.06 0.08 0.08 0.14 0.09

25 25 4 0.29 1.05 1.03 1.06 1.05 1.07 1.08 0.91 0.56 0.18
0.05 0.04 0.06 0.05 0.12 0.08

25 50 4 0.29 1.04 1.02 1.05 1.04 1.06 1.08 0.91 0.46 0.12
0.04 0.02 0.05 0.04 0.11 0.08

50 25 4 0.28 1.03 1.02 1.05 1.03 1.05 1.08 0.88 0.39 0.16
0.04 0.02 0.05 0.03 0.08 0.08

50 50 4 0.29 1.02 1.01 1.04 1.02 1.04 1.08 0.88 0.23 0.12
0.02 0.01 0.04 0.02 0.08 0.08

100 50 4 0.29 1.02 1.00 1.03 1.01 1.03 1.08 0.89 0.18 0.14
0.02 0.01 0.03 0.02 0.06 0.08

50 100 4 0.28 1.02 1.00 1.03 1.01 1.03 1.08 0.88 0.19 0.08
0.02 0.01 0.03 0.02 0.08 0.08

100 100 4 0.29 1.01 1.00 1.02 1.01 1.03 1.08 0.85 0.11 0.11
0.01 0.00 0.02 0.01 0.06 0.08

Note: PFIV and PfIV are panel instrumental variable estimators with C̃i t = λ̃′
i F̃t and c̃i t = λ̃′

i f̃t as instruments,
respectively. The PFIV+ and PfIV+ are bias-corrected estimators, F̃t is r ×1, f̃t is rmax×1 with rmax = r +2, and
PTFIV is the “traditional” panel instrumental variable estimator that uses F̃t as instruments.

difference, using too many factors can sometimes increase bias but may reduce
mean squared error. Whether we use estimated factors or Z as instruments, it is
an open issue how to select the most relevant instruments from many valid ones
that have no natural ordering. This problem, along with empirical applications, is
considered in a companion paper, Bai and Ng (2009).
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5. CONCLUSION

This paper provides a new way of using the estimated factors not previously con-
sidered in either the factor analysis or the instrumental variables literature. We
take as a starting point that in a data rich environment, there can be many in-
struments that are weakly exogenous for the parameters of interest. Pooling the
information across instruments enables us to construct factor-based instruments
that are not only valid but are more strongly correlated with the endogenous vari-
able than each individually observed instrument. The result is a factor-based in-
strumental variable estimator (FIV) that is more efficient. For large simultaneous
systems, we show that valid instruments can be constructed from the endogenous
regressors. Whereas the correlation between a particular instrument and the en-
dogenous regressor may be weak, the estimated factors are less susceptible to this
problem under our maintained assumption that variables in the system have a fac-
tor structure. It is important to emphasize again that having a large quantity of
data will not solve all instrumental variables problems. Our assumptions require
a factor structure with factors being valid instruments. Practitioners still need to
ascertain that these assumptions are satisfied.

NOTES

1. When εt is serially correlated of unknown form, the lags of x2t cannot be used as instruments
because x2t− j is correlated with εt− j , which is correlated with εt .

2. Irrelevant instruments are allowed in the sense that some factor loadings λi can be zero. All that
is needed is 1

N ∑N
i=1 λi λ

′
i

p→ '& > 0, as in Assumption A(b). The analysis should also go through
when the instruments are not too weak in the sense of Hahn and Kuersteiner (2002). A weak factor
model in which all factor loadings λi are of O(N−α) (α > 0) necessitates a different asymptotic
framework and is considered in Kapetanios and Marcellino (2006).

3. In the Carrasco (2006) analysis, the instrument variables are transformed and ordered via the
principal components method, and the number of principal components is selected by minimizing the
mean squared errors.

4. Like all analysis that requires premodel selection, the critique of Leeb and Potscher (2008) ap-
plies. In particular, the finite-sample distributions of postmodel selection estimators typically depend
on unknown model parameters in a complicated fashion. The convergence of the finite-sample distri-
butions to their large-sample limits is typically not uniform with respect to the underlying parameters.
Therefore, the asymptotic distribution can be a poor approximation for the finite-sample distributions
for certain DGPs.

5. The proof is given in an earlier version of the paper.
6. Meng et al. (2007) also explored a weighting matrix that exploits the factor structure of asset

returns. The resulting GMM estimator did not have good finite-sample properties, and the theoretical
properties of the estimator were not explored.

7. See notes 8 and 10.
8. This estimator can be easily extended to include additional regressors that are uncorrelated with

εi t . For example, yit = x ′
1i t β1 + x ′

2i t β2 + εi t with x1i t being exogenous. We estimate F̃ and &̃ from

x2 alone. Then the pooled 2SLS is simply β̂PFIV =
(

∑N
i=1 ∑T

t=1 Z̃i t x ′
i t

)−1
∑N

i=1 ∑T
t=1 Z̃i t yi t where

Z̃i t = (x ′
1i t , C̃ ′

i t )
′. Equation (7) can be written alternatively as β̂PFIV =

(
∑N

i=1 X ′
i PF̃ Xi

)−1
∑N

i=1

X ′
i PF̃ Yi where Yi = (yi1, yi2, . . . , yiT )′ is (T × 1). This follows from the fact that (C̃i1, C̃i2, . . . ,
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C̃iT )′ = PF̃ Xi = F̃&̃i . However, this representation is not easily amendable in the presence of addi-
tional regressors x1i t .

9. It is possible to construct bias-corrected estimators when εi t is serially correlated. The bias
correction involves estimating a long-run covariance matrix, denoted by ϒ . The estimated long-run
covariance ϒ̂ must have a convergence rate satisfying

√
N/T (ϒ̂ − ϒ) = op(1). Assuming T 1/4

(ϒ̂ − ϒ) = op(1), this implies the requirement that N/T 3/2 → 0 instead of N/T 2 → 0 under no
serial correlation.

10. In the presence of exogenous regressors x1i t as in note 8, the corresponding terms become

/̂1 =
(

1
N T ∑N

i=1 ∑T
t=1 Z̃i t x ′

i t

)−1
[

0
δ̂1

]
and /̂2 =

(
1

N T ∑N
i=1 ∑T

t=1 Z̃i t x ′
i t

)−1
[

0
δ̂2

]
. A small-

sample adjustment can also be made by using N T − (N + T )r instead of N T when computing δ̂1
and δ̂2, where r(N + T ) is the number of parameters used to estimate ũi t .

11. Under Assumptions A′ and B′, expression (8) also has a normal limiting distribution if either
N/T → 0, or E(&i ) = 0 for all i , or E(Fsεi t ) = 0 for all t and s. We thank the coeditor for pointing
this out.

12. In practice, the I C2 criterion in Bai and Ng (2002) or the criterion of Hallin and Liska (2007)
can be used to determine r . Because the estimated r is consistent for r , r can be treated as known.
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APPENDIX A: Properties of the FIV

To prove the main result we need the following lemma.

LEMMA A1. Let H = Ṽ −1(F̃ ′F/T )(&′&/N ). Under Assumption A and as N ,T →
∞,

(i) 1/T ∑T
t=1 ‖F̃t − H Ft‖2 = Op(min[N ,T ]−1).

(ii) If there exists an M < ∞ such that ∑N
i=1 |E(εt ei t )| ≤ M for all N and t, then

T −1
T

∑
t=1

(F̃t − H Ft )εt = Op(min[N ,T ]−1).

(iii) If εt is uncorrelated with eit for all i and t, then

T −1
T

∑
t=1

(F̃t − H Ft )εt = Op

(
1√
N T

)
+ Op(T −1).

Proof. The proof of part (i) is in Bai and Ng (2002); the proof of part (ii) is the same
as that of Lemma B.1 of Bai (2003). The proof of part (iii) is also the same as that of
part (ii), and the bound is tightened by using the uncorrelation assumption. The details are
omitted. n

Proof of Theorem 1. Let g̃t (β0) = F̃tεt and ḡ = 1/T ∑T
t=1 g̃t (β0). Then

β̂FIV −β0 = (S′
F̃ x

S∗−1SF̃x )−1S′
F̃ x

S∗−1 ḡ.
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Now

√
T ḡ = T −1/2

T

∑
t=1

F̃tεt

= T −1/2
T

∑
t=1

(F̃t − H Ft )εt + H T −1/2
T

∑
t=1

Ftεt

= H T −1/2
T

∑
t=1

Ftεt +op(1).

By Lemma A1(iii), T −1/2 ∑T
t=1(F̃t − H Ft )εt = Op(N−1/2) + Op(T −1/2) = op(1), as

N ,T → ∞. By assumption, T −1/2 ∑T
t=1 Ftεt

d→N (0, S0). Thus
√

T ḡ
d→N (0, H0S0 H ′

0),
where H0 = plim H . But plim S∗ = H0S0 H ′

0. This implies that S∗−1/2√
T ḡ

d→N (0, I ).
Furthermore, SF̃x = (1/T )F̃ ′x = (1/T )H ′F ′x + op(1)

p→ H ′
0+Fx , where +Fx is the

probability limit of (1/T )F ′x = (1/T )∑T
t=1 Ft x ′

t . Thus S′
F̃ x

S∗−1SF̃x
p→ +′

Fx (S0)−1

+Fx . Summarizing, we have
√

T (β̂FIV −β)
d→N (0, (+′

Fx (S0)−1+Fx )−1).

Thus the limiting distribution coincides with the one that uses the true F as instruments.
Finally, because F̃t is a vector of r ×1 instruments and β is K ×1, the overidentification

J test of Hansen (1982) has a limit of χ2
r−K . n

Proof of the Claim in Remark 2. Following the proof of Theorem 1, instead of
invoking Lemma A1(iii), we use Lemma A1(ii) to obtain T −1/2 ∑T

t=1(F̃t − H Ft )εt =
Op(

√
T /min[N ,T ]), which is op(1) if

√
T /N → 0. The rest of the proof is identical to

that of Theorem 1. n

APPENDIX B: Proof of Proposition 1

We first show that +GMM = +FIV if N/T → 0. For simplicity, we assume W is known.
The idea is that even with a known weighting matrix, the optimal GMM is no more efficient
than FIV. It can be shown that the same result holds with estimated W . The matrix +−1

GMM
is the limit of (X ′Z/T )W−1(Z ′X/T ). From Z = F&′ + e with e = (e1,e2, . . . ,eT ), we
can write

(X ′Z/T )W−1(Z ′X/T ) = (X ′F/T )&′W−1&(F ′X/T )+ (X ′e/T )W−1(e′X/T )

+(X ′F/T )&′W−1(e′X/T )+ (X ′e/T )W−1&(F ′X/T )

= a +b + c +d.

We will show that the first term has a limit that is the inverse of the asymptotic variance of
the FIV and the last three terms are each op(1).

For the first term, from

W−1 = σ−2
ε

{
D−1 − D−1&['−1

F +&′D−1&]−1&′D−1
}
,
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we have

σ 2
ε &′W−1& = A − A['−1

F + A]−1 A = A
(

A−1 − ['−1
F + A]−1

)
A,

where A = &′D−1&. Using A−1 −(A+ B)−1 = A−1(A−1 + B−1)−1 A−1 (see Amemiya,
1985, p. 461) and with B = '−1

F ,

&′W−1& = σ−2
ε ['F + (&′D−1&)−1]−1 = σ−2

ε '−1
F + O(N−1),

because (&′D−1&)−1 = O(N−1), which is dominated by 'F . Noting that X ′F/T
p→

+x F , we have

(X ′F/T )&′W−1&(F ′X/T )σ−2
ε

p→ σ−2
ε +x F'−1

F +Fx .

The preceding expression is equal to the inverse of the asymptotic matrix of the FIV esti-
mator; see the proof of Theorem 1. That is,

+−1
FIV = σ−2

ε +x F'−1
F +Fx

since S0 = σ 2
ε 'F under homoskedasticity of εt .

For term b, again using the expression of W−1,

(X ′e/T )W−1(e′X/T ) = 1
T 2 X ′eD−1e′X

− 1
T

X ′eD−1&['−1
F +&′D−1&]−1&′D−1e′ X/T = b1 +b2.

Consider b1.

b1 = 1
T 2 X ′eD−1e′X = N

T
1
N

N

∑
i=1

(

T −1/2
T

∑
t=1

1
σi,e

xt ei t

)(

T −1/2
T

∑
t=1

1
σi,e

x ′
t ei t

)

= Op(N/T ) = op(1)

if N/T → 0. Next, consider b2. Note that

1
T

X ′eD−1& = (N/T )1/2 1√
N T

N

∑
i=1

T

∑
t=1

σ−2
i,e xtλ

′
i ei t = Op((N/T )1/2).

Moreover, '−1
F +&′D−1& ≥ &′D−1& = O(N ). Thus b2 is bounded in norm by Op(N/

T )O(N−1) = Op(1/T ).
Consider c. Again, let A = &′D−1& = O(N ). Omitting σ 2

ε ,

&′W−1 = &′D−1 − A('−1
F + A)−1&′D−1 = [I − A('−1

F + A)−1]&′D−1

= A[A−1 − ('−1
F + A)−1]&′D−1 = ('F + A−1)−1 A−1&′D−1

= ['F + O(N−1)]−1(&′D−1&/N )−1 1
N

&′D−1 = O(1)
1
N

&′D−1.
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Thus c can be written as

c = (X ′F/T )Op(1)
1

N T
&′D−1e′X = Op

(
1√
N T

)
1√
N T

N

∑
i=1

T

∑
t=1

σ−2
i,e λi x ′

t ei t

= Op

(
1√
N T

)
.

Finally, d has the same order of magnitude as c. In summary, we have shown that, when
N/T → 0,

+−1
GMM = plim(X ′Z/T )W−1(Z ′X/T ) = +−1

FIV .

Consistency. We next show that β̂GMM is inconsistent if N/T → c > 0, even if the
optimal weighting matrix is known. Notice that

β̂GMM −β0 = (X ′Z W−1 Z ′X)−1(X ′Z W−1 Z ′ε).

It was shown earlier that +−1
GMM = plimT −2 X ′Z W−1 Z ′ X = +−1

FIV if N/T → c = 0. If

c > 0 but bounded, its limit becomes +−1
FIV +ϒ , where ϒ is the limit of T −2 X ′eD−1e′X .

We now argue that

T −2 X ′Z W−1 Z ′ε = Op(N/T ). (B.1)

Again, from Z = F&′ +e, the left-hand side of the preceding expression can be expressed
as the sum of four terms:

T −2 X ′Z W−1 Z ′ε = (X ′F/T )&′W−1&(F ′ε/T )+ T −2 X ′eW−1e′ε

+ T −2 X ′F&′W−1e′ε + T −2 X ′eW−1&F ′ε

= I1 + I2 + I3 + I4.

From X ′F/T = Op(1), &′W−1& = Op(1), and F ′ε/T = Op(T −1/2), the term I1 is
Op(T −1/2). In fact, X ′F/T → +x F , &′W−1& → σ−2

ε '−1
F , and F ′ε/

√
T →

N (0,σ 2
ε 'F ). Thus, we have

√
T I1

d→N (0,+x Fσ−2
ε '−1

F +Fx ) =d N (0,+−1
FIV ).

Consider I2 and assume σ 2
ε = 1 for simplicity. Analogous to the analysis for the term b

for the case of N/T → 0,

I2 = 1
T 2 X ′eD−1e′ε − Op(1/T ).

But

1
T 2 X ′eD−1e′ε =

(
N
T

)
1
N

N

∑
i=1

[(

T −1/2
T

∑
t=1

1
σi,e

xt ei t

)(

T −1/2
T

∑
t=1

1
σi,e

εt ei t

)]

= N
T

(
1
N

N

∑
i=1

ξi ηi

)

,
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where ξi and ηi are implicitly defined. Note that ξi and ηi are dependent because xt and εt
are dependent. Let γ = 1

N ∑N
i=1 E(ξi ηi ), and thus E(I2) = (N/T )γ . This implies that the

bias term is proportional to the number of instruments, a well-known result, at least for the
case of fixed N . Thus, I2 = Op(N/T ).

Consider I3. The analysis is the same as that of c given earlier. From &′W−1 = O(1)
× (1/N ) &′D−1, I3 can be written as

I3 = (X ′F/T )Op(1)
1

N T
&′D−1e′ε = Op

(
1√
N T

)
1√
N T

N

∑
i=1

T

∑
t=1

σ−2
i,e λi ei tεt

= Op

(
1√
N T

)
.

Next consider I4. The transpose of &′W−1 gives

W−1& = 1
N

D−1&O(1).

Thus term I4 can be written as

1
T N

X ′eD−1&Op(1)F ′ε/T = Op

(
1√
N T

)(
1√
N T

N

∑
i=1

T

∑
t=1

σ−2
i,e xtλi ei t

)(
1
T

T

∑
t=1

Ftεt

)

= Op

(
1

T
√

N

)
,

which is dominated by I3. In summary

β̂GMM −β0 =
(

1
T 2 X ′Z W−1 Z ′X

)−1

×
[

I1 + N
T

(
1
N

N

∑
i=1

ξi ηi

)

+ Op

(
1
T

)
+ Op

(
1√
N T

)]

,

where we recall that
√

T I1
d→N (0,+−1

FIV ). The second term in square brackets is Op
(N/T ), showing inconsistency of optimal GMM when N/T → c > 0.

Limiting Distribution of the Bias-Corrected Optimal GMM. Assume 1√
N

∑N
i=1

(ξi ηi −γ ) = Op(1), where γ = E(ξi ηi ), so that

β̂GMM −β0 − N
T

d = +̂

[
I1 + Op(

√
N/T )+ Op(T −1)+ Op

(
1√
N T

)]
,

where +̂ stands for (T −2 X ′Z W−1 Z ′ X)−1 and d = +̂γ . If N/T → 0, the last
three terms in brackets multiplied by T 1/2 are all op(1). Now +̂

p→ +GMM by defini-
tion and

√
T I1

d→N (0,+−1
GMM) because +FIV = +GMM for N/T → 0, as shown earlier.

It follows that if N/T → 0,

√
T ( β̂GMM −β0 − N

T
d)

d→N (0,+GMM). !
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APPENDIX C: Properties of PFIV

Proof of Theorem 2. (i) We shall show β̂PFIV −β = Op(T −1)+ Op(N−1), or equiva-
lently,

√
N T (β̂PFIV − β) = Op(

√
N/T ) + Op(

√
T/N ). From β̂PFIV = β + S−1

x̃ x̃
1

N T
∑N

i=1 ∑T
t=1 Ĉi tεi t , it is sufficient to consider the limit of (N T )−1/2 ∑N

i=1 ∑T
t=1 Ĉi tεi t . Be-

cause (N T )−1/2 ∑N
i=1 ∑T

t=1 Citεi t
d→N (0, S), we need to show

(N T )−1/2
N

∑
i=1

T

∑
t=1

(Ĉi t −Cit )εi t = Op(
√

N/T )+ Op(
√

T/N ).

Notice

Ĉi t −Cit = &̃′
i F̃t −&′

i Ft = (&̃i − H ′−1&i )
′ F̃t +&′

i H−1(F̃t − H Ft )

= (&̃i − H ′−1&i )
′(F̃t − H Ft )+ (&̃i − H ′−1&i )

′H Ft +&′
i H−1(F̃t − H Ft ).

The first term is dominated by the last two terms and can be ignored. Let &i = (λi,1, . . . ,
λi,K ) (r × K ) and uit = (uit,1, . . . ,uit,K )′ (K ×1). From Bai (2003), equations (A.5) and
(A.6) (note that in this paper, H is the notation of H ′ of Bai, 2003),

F̃t − H Ft = V −1
N T

(
1
T

F̃ ′F
)

1
N K

N

∑
j=1

K

∑
k=1

λj,kujt,k + Op(δ−2
N T ).

Denote G = V −1
N T ((1/T )F̃ ′F), which is Op(1); we have

(N T )−1/2
N

∑
i=1

T

∑
t=1

&′
i H−1(F̃t − H Ft )εi t

= (N T )−1/2
T

∑
t=1

1
N

N

∑
i=1

N

∑
j=1

K

∑
k=1

&′
i εi t H−1Gλj,kujt,k +op(1).

Note that εi t is scalar and thus commutable with all vectors and matrices. Here &′
i εi t is

understood as &′
i ⊗ εi t , which is K × r . We can rewrite the preceding expression

(N T )−1/2
N

∑
i=1

T

∑
t=1

&′
i H−1(F̃t − H Ft )εi t

= (T/N )1/2 1
T

T

∑
t=1

(
1√
N

N

∑
i=1

&′
i εi t

)

H−1G

(
1√
N

N

∑
j=1

K

∑
k=1

λj,kujt,k

)

+op(1)

= (T/N )1/2 Op(1). (C.1)

Next, by (B.2) of Bai (2003),

&̃i − H
′−1&i = H

1
T

T

∑
s=1

Fsu′
is + Op(δ−2

N T ).
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Thus

(N T )−1/2
N

∑
i=1

T

∑
t=1

(&̃i − H
′−1&i )

′H Ftεi t

= (N T )−1 1
T

N

∑
i=1

T

∑
s=1

uis F ′
s H ′H

T

∑
t=1

Ftεi t +op(1)

= (N/T )1/2 1
N

N

∑
i=1

(
1√
T

T

∑
s=1

uis F ′
s

)

H ′H

(
1√
T

T

∑
t=1

Ftεi t

)

+op(1)

= (N/T )1/2 Op(1). (C.2)

Combining (C.1) and (C.2), we prove part (i) of the theorem.
(ii) The bias is equal to S−1

x̃ x̃ multiplied by the sum of the expected values of (C.1) and
(C.2). We analyze these expected values subsequently. Introduce

At = 1√
N

N

∑
i=1

&′
i εi t and Bt = 1√

N

N

∑
j=1

K

∑
k=1

λj,kujt,k .

The summand in (C.1) is At H−1G Bt , which is a vector. Thus

At G Bt = vec(At H−1G Bt ) = (B′
t ⊗ At )vec(H−1G).

It follows that (again ignoring the op(1) term)

(C.1) = (T/N )1/2

(
1
T

T

∑
t=1

(B′
t ⊗ At

)

vec(H−1G).

Because of the cross-sectional independence assumption on εi t and on uit , we have

E(B′
t ⊗ At ) = 1

N

N

∑
i=1

K

∑
k=1

(λ′
j,k ⊗ &′

i )E(uit,kεi t ).

Let

δ1 =
(

1
T

T

∑
t=1

E(B′
t ⊗ At )

)

vec(H−1G) = 1
T N

T

∑
t=1

N

∑
i=1

K

∑
k=1

&′
i H−1Gλi,kE(uit,kεi t ).

From 1/T ∑T
t=1[(B′

t ⊗ At )−E(B′
t ⊗ At )] = Op(T −1/2), it follows immediately that

(C.1) = (T/N )1/2δ1 +op(1).

Let δ0
1 denote the limit of δ1. If T/N → τ , it follows that

(C.1) → τ1/2δ0
1 .
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Next consider (C.2). Let

4i = T −1/2
T

∑
s=1

uis F ′
s and 5i = T −1/2

T

∑
t=1

Ftεi t ;

then (C.2) can be rewritten as (ignoring the op(1) term)

(C.2) = (N/T )1/2

(
1
N

N

∑
i=1

(5′
i ⊗ 4i )

)

vec(H ′H).

The expected value of 5′
i ⊗ 4i contains the elements of the long-run variance of the

vector sequence ηt = (vec(uit Ft )′, F ′
t εi t )

′. From 1
N ∑N

i=1[(5′
i ⊗ 4i ) − E(5′

i ⊗ 4i )] =
Op(N−1/2), we have

(C.2) = (N/T )1/2δ2 +op(1),

where δ2 =
(

1
N ∑N

i=1 E(5′
i ⊗ 4i )

)
vec(H ′H). It can be shown that

H ′H = (F ′F/T )−1 + Op(δ−2
N T ) = '−1

F +op(1).

Let

δ0
2 = lim

(
1
N

N

∑
i=1

E(5′
i ⊗ 4i )

)

'−1
F .

If N/T → τ , we have (C.2) → τ−1/2δ0
2 . Denote

/0
1 = [plim Sx̃ x̃ ]−1δ0

1 and /0
2 = [plim Sx̃ x̃ ]−1δ0

2 .

Then the asymptotic bias is

τ1/2/0
1 + τ−1/2/0

2,

proving part (ii). n

Proof of Corollary 1. The analysis in part (ii) of the proof of Theorem 2 shows that

√
N T (β̂PFIV −β) = S−1

x̃ x̃
1√
N T

N

∑
i=1

T

∑
t=1

Citεi t +
√

T/N S−1
x̃ x̃ δ1 +

√
N/T S−1

x̃ x̃ δ2 +op(1).

(C.3)

It can be shown that /̂1 − S−1
x̃ x̃ δ1 = Op(δ−1

N T ) and /̂2 − S−1
x̃ x̃ δ2 = Op(δ−1

N T ). These imply

that (T/N )1/2(/̂1 − S−1
x̃ x̃ δ1) = op(1) if T/N 2 → 0 and (N/T )1/2(/̂2 − S−1

x̃ x̃ δ2) = op(1)

if N/T 2 → 0. Thus, we can replace S−1
x̃ x̃ δ1 by /̂1 and replace S−1

x̃ x̃ δ2 by /̂2 in (C.3).
Equivalently,

√
N T
(

β̂PFIV − 1
N

/̂1 − 1
T

/̂2 −β

)
= S−1

x̃ x̃
1√
N T

N

∑
i=1

T

∑
t=1

Citεi t +op(1).

Asymptotic normality of the bias-corrected estimator follows from the asymptotic normal-
ity assumption for (N T )−1/2 ∑N

i=1 ∑T
t=1 Citεi t . This proves Corollary 1. n


