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Unit Root Tests in ARMA Models With Data-Dependent
Methods for the Selection of the Truncation Lag

Serena NG and Pierre PERRON* |

We analyze the choice of the truncation lag in the context of the Said-Dickey test for the presence of a unit root in a general
autoregressive moving average model. It is shown that a deterministic relationship between the truncation lag and the sample size is
dominated by data-dependent rules that take sample information into account. In particular, we study data-dependent rules that are
not constrained to satisfy the lower bound condition imposed by Said-Dickey. Akaike’s information criterion falls into this category.
The analytical properties of the truncation lag selected according to a class of information criteria are compared to those based on
sequential testing for the significance of coefficients on additional lags. The asymptotic properties of the unit root test under various
methods for selecting the truncation lag are analyzed, and simulations are used to show their distinctive behavior in finite samples.
Our results favor methods based on sequential tests over those based on information criteria, because the former show less size

distortions and have comparable power.

KEY WORDS: Dickey-Fuller ¢ test; General to specific; Information criteria; Order selection; Said-Dickey test.

1. INTRODUCTION

Testing for the presence of a unit root in a time series of
data has become a common starting point of applied work
in macroeconomics. Except in very special cases, one often
assumes that the series to be tested is driven by serially cor-
related innovations and tests for the presence of a unit root
using statistics that take serial dependence into account. One
such statistic that has become very popular is the augmented
Dickey-Fuller ¢ test due to Dickey and Fuller (1979) and
Said and Dickey (1984 ). Their test, hereafter referred to as
t,, is based on estimates from an augmented autoregression.
The test is valid for stationary and invertible autoregressive
moving-average (ARMA ) noise functions of unknown order
provided that the truncation lag, &, is chosen in relationship
to the sample size, T, to satisfy lower and upper bound con-
ditions.

An issue that arises with the implementation of ¢, is the
choice of k. Work of Schwert (1989), Agiakloglou and New-
bold (1991), and Harris (1992) have found the order of the
autoregression to have important size and power implica-
tions. This article provides a formal analysis of the relevance
of k in the test procedure. One of our objectives is to show,
via simulations, that a deterministic rule that relates k to T
is inferior to a data-dependent rule that takes sample infor-
mation into account. Another objective is to clarify the role
of the lower bound and the upper bound on & in the limiting
behavior of the statistic #,. We study the asymptotic prop-
erties of 7, and of the estimates from the augmented auto-
regression with k chosen using different data-dependent rules.
Among these are information-based model selection rules,
such as the Akaike information criterion (AIC) and the
Schwartz criterion, and sequential testing for the significance
of the coefficients on lags, such as F or ¢ tests. We show that
with parameter values for which size problems surface,
information-based rules tend to select values of k that are
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consistently smaller than those chosen through sequential
testing for the significance of coefficients on additional lags,
and the size distortions associated with the former method
are correspondingly larger. Thus the choice of the data-
dependent rule has bearing on the size and power of the test.
These issues are of particular relevance in finite samples.

The article is structured as follows. Section 2 puts forth
the Said and Dickey framework, the role of the upper and
lower bound conditions on k, and the implications for ¢,
with and without the lower bound. Section 3 provides a dis-
cussion of procedures typically used to select k. Formal def-
initions of “deterministic”” and “adaptive rules are given.
Sections 4 and 5 analyze the properties of ¢, with k chosen
according to information criteria and sequential testing for
the significance of coefficients on lags. Section 6 presents
implications of these results. We conclude with suggestions
for procedures to select k and directions for future research.
Proofs of theorems are given in the Appendix.

2. THE SAID-DICKEY APPROACH
2.1 The Test Statistic

Suppose the data-generating process (DGP) for {y,} is
given by

Ve = pYe-1 t Uy, (1)
p q

U = Z ol + e+ Z 0j€t—j:
i=1 j=1

where ¢, ~ iid (0, ¢2) with bounded fourth moment. As-
suming that {u,} is stationary and invertible with autore-
gressive and moving-average polynomials that do not share
common roots, {),} evolves according to

Ay, =(p— Dy + 2 divy—; + e, (2)

i=1

, 00 ) are functions of the
, q}. The true

where the coefficients d; (i =1, . ..
parameters {o;, 0;;i=1,...,p,j=1,...
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order of the autoregression is infinity when g > 0. The null
hypothesis of interest is p = 1, in which case a unit root is
said to exist and the DGP is an ARIMA(p, 1, q). Because
Ay, = u, under the null hypothesis, (2) can also be seen as
an autoregression in Ay, augmented by y,_;, namely

Ay, =(p— Dy + 2 diAy.-; + e,.

i=1

(3)

When the orders p and g are unknown, as is often the case
in practice, Said and Dickey (1984) suggested approximating
the infinite autoregression by a truncated version whose order
is a function of the number of observations, T*

k
Ay, = doyi-y + 2 diAyi + ey,

i=1

(4)

where dy = p — 1, and for future reference, we denote d (k)
=(d,,...,d). The ordinary least squares (OLS) estimates
are similarly defined as dy = p — 1 and d(k) = (d,, ...,
d,). The order of truncation, k, is assumed to satisfy some
conditions to ensure consistency of the least squares esti-
mates. More precisely, Said and Dickey (1984 ) assumed the
following:

Al. kischosen as a function of T such that
k*/T—>0 and k—> o0 as T—> .
A2. There exist c>0 and
r>0 suchthat ck> T,

Assumption Al is based on the work of Berk (1974) who
showed consistency of the parameter estimates in an auto-
regression of the form (4) but without the level regressor,
Yi-1, and when the process is stationary. The assumption is
imposed to ensure that the number of regressors does not
increase so fast as to induce excess variability in the esti-
mators. Assumption A2, often an overlooked condition, is
a lower-bound condition that restricts k to be at least a poly-
nomial rate in 7. It rules out values of k that are proportional
to log 7. Intuitively, A2 prohibits k from being so small as
to provide an inadequate approximation to the true model.
It is more restrictive than the following assumption:

A2 ksatisfies k' 3 |di|=> 0 and

=k+1

k—=> o as T — .

Assumption A2’ was used by Berk (1974), and in related
work by Lewis and Reinsel (1985), to show consistency of
the OLS estimates in an autoregression applied to a stationary
process. Note that A2’ is satisfied for any {,} that is a sta-
tionary and invertible ARMA process as long as k = oo as
T — oo, irrespective of the rate at which k increases. Of
particular importance is the fact that unlike A2, A2’ allows
k to grow at a logarithmic rate. Berk (1974) and Lewis and
Reinsel (1985) strengthened Assumption A2’ to the following:
A2". k satisfies T!/2 2l ldil=>0 as

—k+1
k—> o and T — oo,

to ensure VT consistency of d(k). Note that A2” implicitly
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rules out k growing at a log( 7') rate and is basically equivalent
to A2. Consistency of d(k) may be achieved at a rate slower
than VT if A2’ is satisfied but not A2”.

The foregoing discussion applies when the DGP is an in-
finite autoregression, as would be the case if moving-average
components were present. When dealing with a finite au-
toregression, A2” is automatically satisfied. In fact, & need
not grow to infinity as long as it is selected to be larger than
the true order. Hence most of the results that follow also
apply to the case of a finite autoregression. (For a more spe-
cific treatment of this case, see Hall 1994.)

Said and Dickey’s result states that when k satisfies Al
and A2, the least squares estimates d(k) are ﬁ-consistent,
and the coefficient on y,_; provides a basis for testing the
unit root hypothesis. The limiting distribution for the ¢ sta-
tistic on do = (p — 1) for testing p = 1 is such that

t,= (J: W(r)dW(r))(J(;l W (r)? dr)_l/z, (5)

where W (r) is a standard Brownian motion in the space
CT0,1]. Percentiles of this distribution were given by Fuller
(1976). The result stated in (5) extends naturally to the in-
clusion of deterministic components in (4). In that case the
Wiener process is replaced by its detrended counterpart.

2.2 A Useful Result

Of interest are the properties of the test statistic when k is
chosen as a function of T to satisfy Al but not necessarily
A2, because such procedures are commonly used in applied
work. The following lemma considers the validity of Said
and Dickey’s (1984) result when the lower-bound condition
A2 is not imposed.

Lemma 2.1. Let{y,} begiven by (1).Let ¢, be obtained
from the truncated autoregression (4) with k chosen such
that A1 is satisfied. Then (a) the asymptotic distribution of
t, continues to be given by (5) without A2, and (b) d(k)
= (d,, ..., d) is not in general VT-consistent for d(k)
=(d,,...,d;)if A2 or A2" does not hold. In that case there
exists a A, with |d;| < C A/ for some constant C; and 0
<A< 1,suchthat \™%(d, —d;) = 0,(1),(i=1,..., k).

Lemma 2.1 states that although VT consistency of the
coefficients on Ay,_; is not assured without A2, d, is still
consistent for dj at rate 7, and ¢, attains the same limiting
distribution as defined in (5) with Assumption Al alone.
The proof of consistency of dy and d(k) under Al and A2
was given by Said and Dickey (1984). The lower-bound
condition enters the analysis only when considering the
properties of coefficients pertaining to Ay,_;. Specifically,

T consistency of d(k) requires, from lemma 2 of Berk
(1974), that

E((T— k)™ é [

Jj=1

T 2
> u_j( ey — et)} )

t=k+1
<k(T-k) 3 d?—0. (6)
i=k+1

Because (e, — ¢,) is the error in approximating an infinite
autoregression by a truncated autoregression, it is larger the
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Table 1. Size and Power of Unit Root Tests, Moving-Average Case, T = 100 (5,000 Replications)

k=8 K

p 0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 =9 k=10
1.0 8 123 .031 .075 .037 .062 .041 .062 .041 .051 .041
1.0 5 103 .047 .065 .052 .057 .054 .053 .0563 .051 .048
1.0 3 .073 .051 .055 .056 .053 .047 .050 .048 .045 .046
1.0 .0 .049 .048 .046 .044 .046 .044 .045 .044 .044 .041
1.0 -3 .091 .062 .057 .052 .052 .048 .049 .048 .048 .045
1.0 -5 214 .099 .068 .055 .051 .051 .062 .050 .049 .048
1.0 -8 .880 .640 434 .283 .200 132 110 .082 .074 .060

.95 8 .307 .044 176 .059 129 .064 106 .067 .085 .064

.95 5 .237 .074 130 .089 .103 .086 .086 .079 .077 .072

.95 3 162 .088 101 .092 .092 .085 .087 .081 .075 .069

.95 .0 17 A1 .108 102 .099 .093 .083 .082 .080 .068

.95 -3 219 139 122 .108 .100 .091 .094 .089 .087 .081

.95 -5 477 .246 157 115 104 .087 .085 .081 .078 .069

.95 -8 .997 .941 782 .584 444 .329 .255 .203 164 .130

.86 8 .788 .201 524 212 .379 .203 278 .166 .207 149

.85 5 .708 .316 425 297 .308 .252 .239 .203 191 .169

.85 3 .598 .393 395 .334 .306 .267 241 214 196 A7

.85 .0 510 .436 .399 .343 316 271 .251 218 193 .166

.85 -3 .746 .540 452 .376 .344 .287 .266 .233 .209 176

.85 -5 .961 779 614 482 423 .3563 315 275 .242 .208

.85 -.8 1.000 1.000 .996 .956 .886 .759 671 .565 483 .399

NOTE: DGP: y, = py,y + Uy, U, = & + 88,_,. Regression: Ay, = Sgy— + 2k 84y + V.

smaller is k; the role of the lower bound is thus intuitive in
this context. Sufficient conditions for (6) to hold are provided
by either A2, as invoked by Said and Dickey (1984), or A2”,
as used by Berk (1974) and by Lewis and Reinsel (1985).
Recall, however, that k growing at a logarithmic rate is ruled
out by either A2 or A2".

To see the ramifications of this condition, suppose that
{u,} isan MA (1) with coefficient §, and hence d; = — (—0)".
The condition (6) is equivalent to requiring that log(k)
+ log(T — k) + k log 6 diverges to —co. Now take k = b
log(T') for some constant b > 0. Clearly, k*/ T — 0 and A1l
is satisfied, but the condition for V_Y_“ consistency is (approx-
imately) 1 + b log(6?) < 0. This condition fails when ||
> exp(—1/2b). Hence for any fixed rule satisfying k = b
log(T'), there will exist a range of values of § such that (6)
does not hold. In that case d( k) will achieve consistency not
at rate V7T but rather at the slower rate of 7(!~9/ 2 with a
= 1 + b log(#?) in the case of an MA (1) (or, equivalently,
10| (d; — d;) = O0,(1) as stated in lemma 2.1). As we will
see in subsequent sections, this logarithmic rate is of special
interest.

The result that the estimates for the coefficients on Ay,_;
might achieve consistency at a rate slower than VT extends
to the case when {, } satisfies a general ARMA (p, q) model,
using the fact that the coefficients d; are such that |d;|
< C;A\, 0 <\ < 1 for some constant C, (see, for example,
Fuller 1976). The important point is that (» — 1) will con-
tinue to be order T-consistent even without the lower-bound
condition. The asymptotic equivalence of #, with and without
A2 follows from this result and the result that consistency
of the least squares estimates is enough to ensure the con-
sistency of 67 for ¢2.

Although all estimates from the regression (4 ) will be con-
sistent whether or not A2 holds, the lower-bound condition
on k is important. The coefficients on the stationary regres-
sors will converge at a rate slower than VT when the lower-

bound condition is not satisfied. Therefore, choices of k that
satisfy A2 will yield coefficient estimates on the stationary
differences that achieve consistency at a faster rate and can
be expected to lead to unit root tests having better finite-
sample properties than those choices that do not satisfy A2.

3. SELECTION OF k

This section consists of three parts. First, in Section 3.1
we use simulations to show that any a priori rule that presets
the value of k is likely to result in size distortions and/or
power loss, unless that-value of k happens to be chosen ap-
propriately. This is so, even if k is chosen to be a fixed func-
tion of 7. In Section 3.2 we discuss the specifics of two data-
dependent rules whereby the relationship between k and T
depends on the given sample of data. In Section 3.3 we fur-
ther restrict our analysis to data-dependent rules that satisfy
Al only and analyze the limiting distribution of ¢, when
such data-dependent rules are used.

3.1 Rules of Thumb

3.1.1 Fixing k. Although the asymptotic distribution
of 7, is derived under the assumption that k increases at an
appropriate rate with 7', the theoretical conditions A1 and
A2 provide little practical guidance for choosing k. The
common practice is to fix k at a value independent of 7.
Using (1) as the DGP, we considered numerous parameter-
izations of «; and 6;, with & fixed to be 1 through 10. As the
results reported in Table 1 (moving-average case) indicate,
the properties of the statistic can be quite different, depending
on the chosen value of k. For example, when § = —.8, fixing
k to be 4 yields an exact size of 28% instead of the 5% nominal
size, noting that the exact size worsens to .939 when 6 is
—.95. But size distortions are much smaller as k becomes
larger. Although size distortions are much smaller when 6 is
positive, ¢, is oversized when k is odd but undersized when
k is even.
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Although in autoregressive models (see Table 2) the exact
size of the test for all choices of k is generally close to the
nominal size (provided that k is larger than the true order),
the choice of k has implications for power. As is evident
from Table 2, an overparameterized model is associated with
lower power. Thus, although a liberal choice of k will reduce
size distortions in moving-average models, it will generally
yield lower power.

We also performed similar simulations for 7"= 200 and
T = 500. As expected, power increases for every value of k
in both the moving-average and the autoregressive cases.
With respect to the size of the test, the results for the auto-
regressive case are qualitatively the same as when 7 = 100.
For positive moving-average models, the zig-zag pattern of
size distortions as k alternates between odd and even persists
even when T'is 500. But for negative moving-average models,
size distortions increase with T for a given value of k. For
example, with § = —.8 and k = 3, the exact size increases
from .455 to .598 as T increases from 100 to 500.

3.1.2 Choosing k as a fixed function of T. Any rule
that defines k as a deterministic function of T fits into this
category. A rule often used in unit root tests is due to Schwert
(1989). For given constants ¢ and d, the truncation lag, k,
is chosen according to

k = int{c(7/100)"/?}.

Values of ¢ = 4 and 12 and d = 4 were used in Schwert’s
extensive Monte Carlo analysis. He found that the size of
the test is significantly better with ¢ = 12 the closer the
moving-average coefficient, 6, is to —1. Problems encoun-
tered in fixing k arbitrarily will also arise if k is chosen as a
deterministic function of T, because one is faced with a given
sample size in practice. In general, there is no way to assure
that arbitrarily chosen values of ¢ and d are adequate for a
given data series unless ¢ and d happen to be chosen correctly.

The simulations highlight the fact that conditions on &
appropriate for asymptotic inference are not necessarily good
practical guidelines for selecting k. Indeed, the value of k
that ensures an exact size close to the nominal size and also
produces high power is highly dependent on the actual DGP;
that is, the values of the AR and MA parameters. Rules of
thumb ignore such sample information and are the main
reason why fixing k is to be avoided as a matter of practice.
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3.2 Data-Dependent Rules

3.2.1 Information-Based Rules. The order of an au-
toregressive process is often chosen by minimizing an ob-
jective function that trades off parsimony against reductions
in the sum of squared residuals. Following Hannan and
Deistler (1988), we consider an objective function of the
general form

I, =log 62+ kCr/ T, (7)

where Cyis a sequence that satisfies Cr > 0, Cy/ T — 0. The
familiar Akaike information criterion (AIC) (Akaike 1974)
is obtained as a special case with C7 = 2. Another popular
criterion is that of Schwartz (1978) with Cy = log T'. Other
criteria, such as the Bayesian information criterion (BIC),
can be shown to fall within the class of I;. For econometric
applications, the AIC and the Schwartz criteria are more
common and will be considered in subsequent sections.

3.2.2 Sequential Tests for the Significance of the Coef-
ficients on Lags. The premise of a sequential test is a
general-to-specific modeling strategy that chooses between a
model with m lags and a model with r = m + n lags. Let
d(m, r) denote the vector of coefficients (dps1, ..., d)
obtained by applying OLS to (4), with 62 = (T — r)™!
2 é 12r and

T
Mr = Z (yt—h Ayt—l’ el Ayt—r),

t=r+1
X (yl—la Ayt—l’ L) Ayt—r)‘

Let M;'(n) be the lower-right (n X n) block of M;'. We
define the Wald test for the null hypothesis that the coeffi-
cients on the last n lags are jointly equal to 0 as

J(m, r)=d(m, r)(M;'(n))"'d(m,r)/5}.  (8)

We now provide a formal definition of the procedure for
choosing k from a set of possible values {0, 1, ...,k max},
where k max is selected a priori.

Definition 3.1. The general-to-specific modeling strategy
chooses k to be either i) m + 1 if, at significance level a,
J(m, r) is the first statistic in the sequence J(i, i + n),
{i=kmax —1,..., 1}, whichis significantly different from

Table 2. Size and Power of Unit Root Tests, Autoregressive Case, T = 100 (5,000 Replications)

p o1 2 o3 b4 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10
1.0 .6 .0 .0 .0 .058 .055 .057 .053 .053 .053 .058 .055 .0565 .0562
1.0 —.6 .0 .0 .0 .054 .054 .054 .052 .062 .047 .045 .043 .044 .043
1.0 A 2 .0 .0 .033 .0562 .052 .051 .050 .062 .050 .048 .047 .046
1.0 3 .3 .25 14 .062 .034 .038 .051 .054 .052 .050 .047 .048 .052

.95 .6 .0 .0 0 .391 .346 .320 .281 .260 .225 .210 191 178 .154

.95 —.6 .0 .0 .0 .078 .075 .073 .068 .070 .061 .061 .058 .056 .055

.95 4 2 .0 .0 125 .354 .328 .288 275 .237 .225 .204 194 .165

.95 3 3 .25 14 137 .650 .865 .903 .876 814 .763 675 .608 522

.85 .6 .0 .0 .0 .976 .938 .883 .805 .720 .626 .560 .479 435 .357

.85 -.6 .0 .0 .0 .252 224 .207 .188 A7 .159 .154 134 129 122

.85 4 2 .0 .0 .818 .933 .889 799 718 .626 .560 479 .435 .357

.85 3 3 .25 14 .688 .964 .991 .993 .984 .960 .908 .827 .748 .647

NOTE: DGP: y, = pyi_y + Zhy ¢idy,- + Uy. Regression: Ay, = dgye-y + Ziey 8V + Vi
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zero, or ii) 0 if J(i, i + n) is not significantly different from
zeroforalli=kmax — 1, kmax —2,..., 1.

The idea is to start with the most general model with
k max + n — 1 lags and test whether the coefficients of the
last lags are significant. If they are, then k = k max; otherwise,
the next step is to estimate an autoregression of order k max
— 2 + n and perform the joint test again. This procedure is
repeated until a rejection occurs or the sequential testing
leads to the boundary of zero lags. This procedure has been
analyzed by Hall (1994) in the case of a pure autoregressive
process.

The J(m, r) statistic specializes to a ¢ statistic on the last
lag if the test is performed with n = 1. This special case of
the general-to-specific procedure has been used by Perron
(1989). (See also Perron 1990 and Perron and Vogelsang
1992 for simulation results for unit root tests allowing a break
in the trend function and the noise function assumed to be
an ARMA process.) Although in principle one can start with
k min lags and gradually increase k until the next included
lag is insignificant, Hall (1994) found that a specific-to-
general approach is not generally asymptotically valid in the
pure AR case. He also found the finite sample properties of
statistics associated with a specific-to-general approach to be
inferior to those based on a general-to-specific scheme in
more general ARMA models. In subsequent analyses only
the general-to-specific approach will be analyzed.

3.3 Rules Satisfying the Upper-Bound Condition

We now restrict our attention to deterministic and data-
dependent rules that satisfy Assumption Al. Formal defi-
nitions for the rules considered are as follows.

Definition 3.2: Deterministic Rules. Let K = (l~<, s I~cz, .l
be the set of pomts in K = XT_IST, where Sr= {0, 1,.
[T/2]}, with k; = o0 and k3/T — 0 as T — oo.

Simply put, K is the collection of deterministic rules that
satisfy the conditions of Lemma 2.1. Our definition of de-
terministic rules is adapted from Eastwood and Gallant
(1991), who studied the selection of the truncation point in
a univariate Fourier series expansion fitted by least squares.
In our context Schwert’s rule of thumb is, for example, an
element of K.

Definition 3.3: Adaptive Rules. An adaptive truncation
rule is a sequence of random variables K., = (k,, k,, .. .).
We say that an adaptive truncation rule maps into the set
of deterministic rules K if there exists a deterministic rule
kr such that K = (ky, k», ...) is a subset of K, and kr
- 127* > 0.

The following lemma considers the limiting distribution
of t, when it is based on adaptive rules that map into the set
of deterministic rules K.

Lemma 3.4. Suppose that we have an adaptive trun-
cation rule K, = (k,, k,, ...) that maps into the set of
deterministic rules K stated in Definition 3.2, and let
,,(kT) be the ¢ statistic for testmg p = 1 in regression (4)
estimated with kr lags. Then t,(kr) = fo W(r) dW(r)
(Jo W(r)?dr)'72,

Journal of the American Statistical Association, March 1995

- The proof is analogous to theorem 5 of Eastwood and
Gallant (1991) and thus is omitted. The importance of
Lemma 3.4 is that the limiting distribution of ¢, is the same
whether one uses a determlmstlc rule in K or an adaptive
rule that maps into K. The issue then becomes which of the
selection procedures delivers better finite-sample properties
in testing for the presence of a unit root.

Deterministic rules are useful for analytical purposes, be-
cause they help establish the properties of 7, under adaptive
rules. But as seen from the results reported earlier, size and
power will be affected whenever k is fixed in a deterministic
way unless the rule happens to be chosen correctly. Adaptive
rules take sample information into account and are thus
likely to dominate deterministic rules. In the next two sec-
tions our analysis will be further restricted to adaptive rules
only.

4. ADAPTIVE RULE 1: INFORMATION CRITERIA

This section presents properties of k and t, when an in-
formation criterion as defined in (7) is used to select the
truncation lag in regression (4). A related issue has been
studied by Hannan and Deistler (1988) in the context of
stationary variables with the autoregression

k
X =2 8;x-; + ey

i=1

9)

The next lemma summarizes a result of theirs that is relevant
to our analysis.

Lemma 4.1. Let x, be a stationary and invertible ARMA
process with finite fourth moment and 67 = (T — k)™
2 L1 8% with &, the OLS residuals from regression (9).
Let C7 be a function of T such that Cr> 0and Cr/T — 0,
and kr = arg ming(log(52) + kCr/T). Then limy . kr/b
log T = 1 for some constant b.

The result that the AIC with C = 2 chooses a value of k
that is proportional to log 7'in a univariate Gaussian ARMA
model is due to Shibata (1980). Hannan and Deistler ( 1988)
provided a unified asymptotic framework to show that the
feature of log T proportionality is generic to information-
based rules applied, in particular, to stationary and invertible
ARMA models. The logarithmic rule also extends to mul-
tivariate and/or autorecessive moving-average with (lagged)
exogenous terms (ARMAX) models, as Hannan and Deistler
(1988) have shown. Their result is useful in studying the
properties of kr within the context of an augmented auto-
regression of the form (4) derived for an autoregressive in-
tegrated moving-average (ARIMA) (p, 1, q) process. The
following lemma shows that their result extends to this latter
case.

Lemma4.2. Let y,satisfy (1)and define 62 = (T — k)!
> T ,+1 €%, where é, are the least squares residuals from the
augmented autoregression (4). Let 62 = (T — k)" 2Ly
&%, where &, are the OLS residuals from the restricted
regression (9) with x, = Ay,. Then 6} = 6} + 0,(T""?),
provided k satisfies A1l.

Lemma 4.2 implies that the difference between the residual

sum of squares from an augmented autoregression and a
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restricted one is 0,( 7~'/?) uniformly in k. Hence the infor-
mation criteria and the corresponding values of k that min-
imize such criteria are asymptotically the same in both cases.
Thus the AIC and Schwartz criteria, when applied to the
augmented autoregression defined in (4), also select trun-
cation lags proportional to log T under the null hypothesis
of a unit root. The implication for the unit root test is sum-
marized in the following theorem.

Theorem 4.3. If k is selected using an information cri-
terion in the class J; as defined in (7), then ¢, has a limiting
distribution defined by (5) under the null hypothesis of a
unit root.

The order of truncation selected by the AIC or the
Schwartz criteria is proportional to log 7. Because such a
rule satisfies Al that k>/T — 0 and k > o0 as T = oo, it
is also an adaptive rule that maps into the set of deterministic
rules K. Thus the result follows directly from Lemmas 2.1
and 3.4. Theorem 4.3 still holds when the DGP is a finite
instead of an infinite autoregression, provided that the in-
formation criterion does not asymptotically underparame-
terize the model (see Hall 1994). Note, however, that the
information criterion is not an adaptive rule that maps into
the set of deterministic rules that satisfy both A1 and A2.

4.1 A Special Case: An MA(1)

Because the truncation lag selected from regression (4)
when the series is an ARIMA(p, 1, ¢) and the truncation
lag selected on the basis of (9) when the series is a stationary
and invertible ARMA process have the same asymptotic
properties, we can, for simplicity, use the restricted frame-
work to provide more insight about the properties of the
truncation lag selected using information criteria. Specifi-
cally, we consider an MA (1) process defined as

o0
X =e+0e =2 ¢ix_, +e,
i=1
where ¢; = —(—0)". The true order of the autoregression is
infinity for all values of § # 0. The estimated regression is

k
X =2 ¢iX—i t ey

i=1

It is straightforward to show that 57 is approximately related
to k by

5}~ g2(1 — g2k (] — g2kt )1

Minimizing the AIC, log 7 + 2k/ T, the solution is asymp-
totically equivalent to

k(AIC) ~ (log(T) + log[(62 — 1)log 6] — log 2)
X ([log 02[)~". (10)

Table 3 presents the approximation to k(AIC) provided
by (10) for various values of |#| and T. For small 6, ¢; is
small and declines geometrically as i increases. One might
then expect the AIC to choose a low order, because extra
parameters have little information content but reduce the
degrees of freedom. Table 3 shows that indeed for |§| < .4,
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Table 3. Approximation to the Selected Truncation Lag
Using AIC in the MA(1) Model

|6] .2 4 .6 .8
T=100 1 2 3 3
T =10,000 3 4 7 13
T = 1,000,000 4 7 12 23

NOTE: DGP: x, = ¢, + e,_,. Regression: x, = Tk, §x,_; + V.

low values of k are selected by AIC. But as || gets large, ¢,
will remain nonnegligible even for i quite large. Increasing
the length of the autoregression should, in principle, improve
the approximation to the DGP. But the k selected by AIC
increases only at a logarithmic rate. Except when T becomes
impracticably large, the AIC will abandon information at
large lags in favor of a very parsimonious model. Hence, in
practice one can expect the chosen & to be no higher than 5
even with T as large as 500 when |6] is close to 1.

5. ADAPTIVE RULE 2: TESTING FOR THE
SIGNIFICANCE OF COEFFICIENTS ON LAGS

This section analyzes the properties of k and ¢, when & is
chosen by the J(m, r) statistic described in Section 3.2 to
sequentially test for the significance of coefficients on addi-
tional lags. The following lemma is useful in establishing the
limiting distribution of z,.

Lemma 5.1. Let {y,} be generated by (1) and suppose
that Assumptions Al and A2” hold. Let d(k) be obtained
from the augmented autoregression (4), and let J(k — n, k)
be as defined in (8). Then J(k — n, k) is asymptotically
distributed as x 2 with n degrees of freedom.

Berk (1974) proved consistency and asymptotic normality
of the coefficients in the restricted regression under Al and
A2" (see also Lewis and Reinsel 1985). The crucial element
in the proof of Lemma 5.1 is the fact that when { Ay,} is a
stationary and invertible ARMA process, the coefficients d (k)
converge to 0 at a rate that yields an asymptotic equivalence
between the Wald test that d(k) = d(k) and the Wald test
that d(k) = 0. Indeed, Lemma 5.1 requires Assumption A2”
to ensure that ﬁd(k) — 0, which in turn ensures asymptotic
normality of ﬁfl(k).

5.1 A Special Case: An MA(1) and the f Test

We now specialize the sequential procedure described in
Section 3.2.2 to the case where n = 1. The square root of
the statistic J(k — 1, k) then simplifies to a ¢ test for the
significance of the coefficient on the last lag in an autoregres-
sion of order k:

ta, = VTd (63 TM (1)) /2.

The sequential procedure chooses a value of k if tg, is sig-
nificant at some prespecified level « in an estimated auto-
regression of order k, whereas the 7 statistics 15, are insignif-
icant in estimated autoregressions of order k for all k in the
range (k, k max]. We can show that if Ay,isan MA(1) (i.e.,
Ay, = e, + 0e,_,), then
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ak ~ 0k-—1(1 _ 02)(1 _ 02(k+l))-—l
and
13, = ﬁ()"“(l —02)((1 — 92k)(1 — g2Gk+2))~1/2,

These results show that both 7; and \/Tdk will converge
to zero if k increases at a polynomial rate. Given the
result of Lewis and Reinsel (1985, thm. 4) that 754
= (d, — di)/(63Mz'(1))'/? is asymptotically distributed
N(O0, 1) if k increases at a polynomial rate satisfying A1l
and A2’ t; can be shown to have the same asymptotic
distribution under these restrictions on the rate of increase
of k.

It is of some interest to note that the foregoing results also
imply that a specific-to-general procedure starting from any
lower bound k min that tests for the significance of the coef-
ficient on the last lag would select a k that increases to infinity
at a logarithmic rate when { Ay, } contains a moving-average
component. Hence such a specific-to-general procedure
would have the same asymptotic properties as a selection
rule based on an information criterion.

Note that the asymptotic normality result of Berk (1974)
and Lewis and Reinsel (1985) we used to prove Lemma 5.1
requires that k increase at some polynomial rate, or at least
at a rate that ensures A2” is satisfied. A logarithmic rate is
not sufficient. We now show that the truncation lag selected
by a general-to-specific procedure will be of an order higher
than log T provided that k max increases at a rate faster than
log T. In fact the selected truncation lag will grow at the
same rate as k max.

Lemma 5.2. If k is selected by means of the general-to-
specific strategy described in Definition 3.1 and k max in-
creases at a rate such that A1 and A2” are satisfied, then k
increases at the same rate as k max.

The intuition behind the result stated in Lemma 5.2 is as
follows. Under the assumptions of Lemma 5.1, J(k — n, k)
is asymptotically distributed as a X2 random variable with
n degrees of freedom. Thus the limiting probability that J(k
— n, k) is statistically significant is «, the size of the test. For
a given k < k max to be chosen, it must be the case that all
prior statistics in the sequential procedure (J(i — n, i); i
= kmax — 1, ..., k — 1) are statistically insignificant.
This event occurs for large samples with probability o1
— a)kmax—k Because k < k max and k max — oo, this prob-
ability vanishes as 7" = oo unless k increases at the same
rate as k max.

The importance of Lemma 5.2 is that if kX max is chosen
to increase at a polynomial rate, then k will also increase at
a polynomial rate. This implies that Assumption A2 or A2”
can be satisfied with judicious choice of k max, thereby en-
suring that the results of Lemma 5.1 hold. Lemma 5.2 allows
us to state the following theorem concerning the limiting
behavior of the unit root test under this truncation lag se-
lection rule.

Theorem 5.3. If k max satisfies Al and A2” and k is
chosen from the general-to-specific sequential procedure
stated in Definition 3.1, then l,,(fc) has the same limiting
distribution as (5).

Because k maps into a deterministic rule in the set K by
Lemma 5.2, the result follows from Lemma 3.4. In fact k

Journal of the American Statistical Association, March 1995

maps into the set of deterministic rules that satisfies A1 and
A2, because k increases at a polynomial rate under the con-
ditions of Theorem 5.3.

6. FINITE-SAMPLE SIMULATIONS

The results of the preceding sections can be summarized
as follows. An information criterion will choose values of &
that are proportional to log 7', a rate ruled out by A2. But
the k selected using the J(m, r) statistic to test for the sig-
nificance of lags will increase at the same rate as the pres-
pecified k max, itself increasing at a polynomial rate. Because
a logarithmic rate of increase is slow compared to a poly-
nomial rate, an information criterion will choose values of
k that are generally much smaller than those chosen by a
general-to-specific ¢ test, for example. Although the log pro-
portionality rule might fail the lower-bound condition, the
limiting distribution of ¢, is unaffected. In such a case the
estimates of the coefficients on Ay,_; in the augmented au-
toregression will be consistent at a rate slower than VT for
some DGP’s. In the MA (1) case, a large value of | 6] is more
likely to be associated with a slower rate of consistency for
d(k). We now examine the implications of these results in
finite samples.

The results we report are based on 5,000 simulations for
different values of 6; and «; . For each parameterization, the
selected values of k and the corresponding values of ¢, are
recorded. The simulations were performed on a 486 /25 MHz
PC with code compiled using the Borland C (Version 3)
compiler. Random numbers were generated using the
ranl( ) function from Press, Teukolsky, Vetterling, and
Flannery (1988), with time (in seconds) as seed. We con-
sidered 7 = 100, 200, and 500. For a given T, different
values for kK max and k min were examined. We focus on
results for 7= 100 with k max = 10 and k min = 0 without
loss of generality and discuss results for other configurations
where appropriate. The complete set of results is available
on request.

We select, for presentation, results based on two infor-
mation criteria: the AIC and Schwartz. The results for the
BIC and the Hannan-Quinn criteria show no appreciable
difference. For the general-to-specific strategy, we considered
the ¢ as well as the F test, but only present results for the ¢
test at the 5% and 10% levels. In general, a tighter model is
selected using a lower significance level.

6.1 Frequency Distribution of k

We first examine the number of times that k = i (i = 1,
..., 10)is being selected by each procedure during the 5,000
simulations. Tables 4 and 5 are the frequency counts. As we
can see, both information criteria consistently select values
of k less than 3. Although the k’s selected for autoregressive
models seem appropriate given that the DGP’s considered
are of order no higher than 4, the information criteria yield
very parsimonious models when the DGP is driven by a
moving-average process. Although the true order of auto-
regression is infinity in those cases, the AIC and Schwartz
criteria continue to choose values of 2 and 3 for k. When 6
is large, the coefficients in the autoregression die off only
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Table 4. Frequency Count of Selected Lag Lengths k, Moving-Average Case, T = 100
‘k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10
6=.8
tg(10) .001 .028 115 131 149 113 135 .104 A21 102
tsig(5) .013 103 .210 157 147 .092 .097 .063 .065 .053
AIC .016 149 .325 219 150 .069 .039 .020 .009 .005
Schwartz 151 .381 .326 .100 .035 .004 .001 .001 .000 .000
6=.3 .
tsig(10) .304 .081 .067 .055 .059 .062 .074 .079 .086 .086
tsig(5) .468 .071 .047 .040 .038 .039 .043 .031 .049 .039
AlC .676 131 .037 .013 .007 .002 .002 .001 .000 .000
Schwartz .611 .037 .004 .001 .000 .000 .000 .000 .000 .000
6=-.5
tsg(10) .220 .189 .075 .061 .058 .068 .069 .077 .077 .083
ty(5) .387 212 .054 .041 .039 .041 .041 .041 .041 .039
AIC 484 .331 .073 .025 .01 .007 .003 .001 .000 .000
Schwartz .621 169 .016 .003 .000 .000 .000 .000 .000 .000
6=-.8
tyg(10) .074 113 109 116 .076 .097 .075 .092 .080 .085
tsg(5) 123 162 21 .100 .061 .065 .045 .047 .045 .041
AIC 197 .225 146 .091 .033 .019 .008 .003 .002 .001
Schwartz .264 172 .056 .019 .002 .000 .000 .000 .000 .000

NOTE: DGP: y; = i1 + Up; Uy = € + B,y Regression: Ay, = doyr-1 + Zhy Ay, + ;.

slowly. Truncating the autoregression at a low order will
yield a more parsimonious model but with a loss of infor-
mation. The cost of parsimony will be judged in terms of
the size and power of ¢, in the next subsection.

In the moving-average case, the values of k selected by a
general-to-specific modeling strategy are quite evenly dis-
tributed over the range [2, kK max = 10], with some mass
concentrated at &k = 1. This result follows directly from
Lemma 5.1. A further implication of this lemma is that the
chosen value of k will be closer to kK max the more liberal
the size of the test. Thus the frequency of k chosen to be 5
and above is higher under the 10% ¢ test than under the 5%
t test.

6.2 Size and Power

Having confirmed that information criteria choose values
of k that tend to be small, we now proceed to show that in
many cases, the method used to choose k can have size and
power implications. The results are reported in Tables 6 and
7 for T = 100, with the power of the test evaluated at p
=.95 and .85. Turning first to moving-average models ( Table
6), we see that for positive values of 6, the size of the test is
similar for all methods of selecting k. When ¢ = .8, the 10%
t test picks k to be 5 or smaller 40% of the time, whereas the
AIC picks k to be in the same range twice as often (see Table
4). Although such variations in the choice of k appear to

Table 5. Frequency Count of Selected Lag Lengths k, Autoregressive Case, T = 100

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10
¢1=.6,¢2=1¢3=0¢s=.0
t54(10) 407 .045 .047 .051 .057 .064 .071 .078 .091 .089
t5(5) .644 .037 .033 .033 .037 .042 .040 .043 .047 .044
AIC .878 .075 .027 .010 .004 .002 .001 .001 .001 .000
Schwartz .976 .020 .003 .000 .000 .000 .000 .000 .000 .000
¢1=—.6,¢2=¢3=s=.0
tsig(10) 407 .049 .051 .050 .060 .069 .068 .076 .081 .090
tso(5) 652 .036 .037 .035 .041 .040 .036 .040 .040 .044
AIC .866 .086 .027 .011 .006 .003 .000 .000 .000 .000
Schwartz 978 .018 .002 .001 .000 .000 .000 .000 .000 .000
O1=4,¢2=.2, ¢p3=0¢4=.0
t54(10) .200 .242 .055 .057 .060 .058 .073 .070 .092 .089
t5o(5) 391 .285 .038 .039 .038 .038 .043 .035 .042 .044
AIC 455 .443 .057 .021 .008 .003 .002 .001 .001 .000
Schwartz .680 277 .008 .001 .000 .000 .000 .000 .000 .000
¢; = .30, ¢, = .30, ¢35 = .25, p, = .14
tsig(10) .008 .095 .299 149 .059 .063 .067 .078 .084 .092
tsg(5) .023 192 .388 137 .034 .037 .042 .047 .043 .046
AIC .026 .196 494 .204 .035 .016 .007 .003 .001 .001
Schwartz .082 .369 419 .076 .005 .002 .000 .000 .000 .000

NOTE: DGP:y; =y + Sy ¢y + Uy. Regression: Ay, = doye—y + Zhe S8y + V.
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Table 6. Size and Power of Unit Root Tests; Moving-Average Case,
T =100, k max = 10

p 9 toe(10) tog(5) AIC Schwartz
1.0 .80 .069 073 .068 071
1.0 50 083 .087 .082 .088
1.0 30 .075 077 .070 .069
1.0 .00 063 .059 052 046
1.0 -.30 .097 126 127 174
1.0 -.50 116 158 167 244
1.0 -.80 304 424 561 733

95 .80 136 151 146 158

95 50 164 184 170 196

95 30 158 162 152 144

95 .00 153 151 140 126

95 -.30 228 292 294 393

95 -.50 254 336 377 510

95 -.80 534 704 877 963

85 .80 347 387 405 451

85 50 445 510 520 586

85 30 465 513 536 505

85 .00 486 540 580 575

85 -.30 555 682 758 859

85 -.50 627 753 860 936

85 ~.80 825 908 996 1.000

NOTE: DGP: y; = pYs—1 + Uy, Uy = € + f€,_y. Regression: Ay, = doyr—1 + Ziy 80— + ;.

yield small size differences, power is slightly higher the more
parsimonious the model. It is well known that the Schwartz
criterion imposes a heavy penalty for overparameterization.
Thus for positive moving-average models, the Schwartz cri-
terion tends to yield higher power for a given size.

The result that stands out in Table 6 is the large size dis-
tortions when 6 is negative. The problem of size distortion
with unit root tests in the presence of negative moving errors
is well documented (e.g., Schwert 1989). Although Schwert
used deterministic rules to select k, he also noted that the
exact size depends on the choice of k. Our results confirm
that the more conservative the criterion for selecting the
truncation order, the larger the size distortions associated
with 7,. For example, size distortions associated with the
conservative Schwartz criterion are significantly larger than
those associated with the 10% ¢ test, the most liberal criterion
considered. From the frequency counts, we see that the
Schwartz criterion chooses values of k less than 3 90% of the
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time, whereas the 10% ¢ test chooses values of k greater than
3 with a probability of .9.

Table 7 indicates that for autoregressive models, all meth-
ods produce estimates of & that are as large as the true order
with high probability. Accordingly, all selection procedures
produce an exact size close to the nominal size. The 10% ¢
test tends to have lower power, however. According to the
frequency counts, the ¢ test tends to overparameterize au-
toregressive models. For example, the 10% ¢ test selects k
greater than 4 more than 40% of the time when the DGP is
a fourth-order autoregression. Thus underparameterization
is associated with larger size distortions, and overparame-
terization with power loss when 7 = 100.

The size of the test for moving-average models with T
= 200 is reported in Table 8. Note that size distortions in
negative moving-average models persist as T increases. The
Schwartz criterion continues to be associated with signifi-
cantly larger size distortions than the 10% ¢ test. But in cases
for which size distortion is not an issue, as in autoregressive
models, the discrepancies in power across selection proce-
dures vanish almost completely when T = 500. We report
in Table 9 the size and power for autoregressive models at
T = 200. Compared to the results for 7 = 100, power is
higher throughout, and the differences in power across se-
lection procedures are smaller. Thus discrepancies in power
across selection procedures are small for typical sample sizes
encountered in economic analyses, but size distortions are
not. A ¢ or an F test, therefore, has an advantage over in-
formation criterion in that it produces tests with more ac-
curate size without much loss of power.

6.3 The Choice of k and Size Distortions

When 6 in the noise function is large and negative, y, is
close to having a common factor and behaves more like a
white noise than an integrated process. The asymptotic
properties of the normalized least squares estimator in this
case have been shown by Nabeya and Perron (1994) and
Perron (1992) to be different from those derived under stan-
dard assumptions. In view of those results, one would con-
jecture that there is also a discrepancy between the finite-
sample distribution of ¢, and its approximate distribution as
defined by (5). But as we can see, the extent of size distortions

Table 7. Size and Power of Unit Root Tests; Autoregressive Case, T = 100, k max = 10

14 ¢ 1 ¢2 ¢3 ¢4 tslg(1 0) tslg(s) AlC Sch wartz
1.0 .6 .0 .0 .0 .078 .075 .066 .060
1.0 -6 .0 .0 .0 .068 .066 .066 .060
1.0 4 2 .0 .0 .066 .062 .055 .047
1.0 3 3 .25 14 .066 .062 .058 .052

.95 .6 .0 .0 .0 .37 .399 .404 .394

.95 -6 .0 .0 .0 101 .099 .087 .080

.95 4 2 .0 .0 .346 .336 .338 .267

.95 3 3 .25 14 .822 .840 .886 .837

.85 .6 .0 .0 .0 .782 .870 .960 972

.85 -.6 .0 .0 .0 .269 274 .268 .256

.85 4 2 .0 .0 .763 .824 .899 .867

.85 3 3 .25 14 .901 937 .976 .947

NOTE: DGP:y, = py-1 + Ziy didYs—s + U, Regression: Ay, = dofi-y + Zkrdilyses + Vi.
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Table 8. Size of Unit Root Tests,: Moving-Average Case,
T =200, kmax = 12

) 0 tsg(10) tsig(5) AlC Schwartz
1.0 .80 .056 .060 .059 .063
1.0 .50 .061 .064 .056 .064
1.0 .30 .061 .064 .061 .066
1.0 .00 .064 .066 .059 .057
1.0 -.30 .067 .076 .076 102
1.0 -.50 .085 110 21 .168
1.0 —-.80 A77 .250 .366 .557

NOTE: DGP: y, = py1 + Uy, Uy = € + 0€,_,. Regression: Ay, = Syt + Ziey §AYe + Vi

varies with k. This suggests that k affects the adequacy of
(5) as an approximating distribution. The question is, how?

Using a local asymptotic framework, Pantula (1991) pa-
rameterized # as —(1 — 77 ") and showed that the limit of
¢, is given by (5) only if 0 < # < .25, but diverges to —oo at
rate 7"/ k if .25 < n < .625, with limiting distribution given
by

1 -1
kT™"t, = —(f W(r)? dr) . (11)

0
Because k = O(T'/*) by assumption, and (11) is valid for
n > .25, the limiting distribution of z, will always tend to
—o0. But the larger the rate of increase of k, the slower the
rate of divergence and the smaller the discrepancies between
the exact and the approximate distributions of ¢,. Conse-
quently, even though 7 is .35 when 7 = 100 and § = —.8,
size distortions are noticeably smaller at larger values of k
when critical values from (5) are used for hypothesis testing.

To reinforce the importance of a large k when 6 is large
and negative, we report in Table 10 the size of the test at
selected parameter values for 7= 200 and 7" = 500 when a
different lower bound, k& min, is prescribed. We set k min
and k max to 4 and 12 when 7" = 200, and to 6 and 14 when
T = 500. Evidently, the larger the k min the larger the k£ and
the smaller the size distortions.

The importance of £ min and k£ max in all selection pro-
cedures must be emphasized. If we raise the value of k min
and let the information criteria select k from the range
[k min, k max] and kK min > log T, then the criteria will
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choose k min in large samples, because log T is outside the
permissible range. Loosely speaking, the choice of k min can
be seen as a practical way of imposing the lower-bound con-
dition A2. On the other hand, the choice of k max is more
important in a general-to-specific model selection strategy.
By Lemma 5.1, the test statistic will choose k € [k min, k
max ] with declining probability as k moves away from k
max. Thus the larger the k max, the higher the probability
that a larger k will be chosen. The larger the k, the better
the size—at the expense, however, of power losses.

7. CONCLUSIONS

This article has analyzed issues related to the selection of
the truncation lag in unit root tests of the type proposed by
Dickey and Fuller (1979) and Said and Dickey (1984). We
have focused on the implications of the lower-bound con-
dition on ¢, used by Said and Dickey (1984). Procedures
that do not satisfy this condition tend to select truncation
lags that are too small for some parameter values. Infor-
mation-based rules such as AIC and Schwartz fit into this
category.

A general feature of our results is that an overly parsi-
monious model can have large size distortions, but an
overparameterized model may have low power. But the size
problem is more severe than power loss in the sense that
discrepancies in power across selection procedures diminish
as T increases, but size distortions persist even for large sam-
ple sizes for some methods of selecting k. In this regard, a ¢
or an F'test for the significance of lags will have an advantage
over information-based rules such as the AIC, because the
former produces tests with more robust size properties across
models.

There remain, of course, several avenues for further re-
search that follow from the framework used in this article.
First, given the problems associated with approximating a
general ARMA process by a finite autoregression, one might
be tempted to construct unit root tests from an estimated
ARMA (p, q) process whose order is selected using a con-
sistent procedure, such as the one discussed by Dickey and
Said (1981). But in view of the problems associated with
maximum likelihood estimates of processes with moving-
average components, it is not evident that this method can

Table 9. Size and Power of Unit Root Tests; Autoregressive Case, T = 200, k max = 12

P ¢ 1 ¢2 d’.’! ¢4 tslg( 1 O) t. slg(s) AlC Schwartz
1.0 .6 .0 .0 .0 .063 .060 .057 .054
1.0 -.6 .0 .0 .0 .063 .064 .058 .056
1.0 4 2 .0 .0 .062 .061 .056 .048
1.0 3 3 .25 14 .076 .072 .070 .059

.95 .6 .0 .0 .0 .738 .815 .897 .908

.95 -.6 .0 .0 .0 .166 .168 .160 .1563

.95 4 2 .0 .0 712 .709 .837 .784

.95 3 3 .25 14 979 .988 1.000 .998

.85 .6 .0 .0 .0 .955 974 1.000 1.000

.85 -.6 .0 .0 .0 .608 .603 .738 749

.85 4 2 .0 .0 .954 975 1.000 1.000

.85 3 3 .25 14 .994 .997 1.000 1.000

NOTE: DGP: y, = pyiy + Ziy diAYs— + Up. REQression: Ay, = by + Zfey §0Ye—1 + Vi.
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Table 10. Size of Unit Root Tests, Moving-Average Case;
Different Choices of T, k max, and k min
p 0 tsig(10) tsig(5) AlC Schwartz
T =200, kmax = 12, k min = 4
1.0 .80 .066 .068 .066 .056
1.0 .50 .057 .055 .050 .048
1.0 .30 .062 .060 .057 .054
1.0 .00 .056 .056 .053 .052
1.0 -.30 .061 .059 .051 .050
1.0 -.50 .061 .061 .060 .059
1.0 —-.80 .168 .228 .281 .343
. T =500, k max = 14, k min = 6
1.0 .80 .050 .048 .050 .046
1.0 .50 .053 .052 .048 .047
1.0 .30 .057 .057 .060 .060
1.0 .00 .052 .052 .053 .052
1.0 -.30 .065 .064 .062 .059
1.0 -.50 .059 .060 .058 .056
1.0 —-.80 104 134 167 213
T =500, k max = 14, k min = 9
1.0 .80 .059 .062 .057 .058
1.0 .50 .059 .059 .058 .057
1.0 .30 .058 .058 .059 .056
1.0 .00 .056 .056 .056 .056
1.0 -.30 .052 .053 .052 .052
1.0 -.50 .058 .056 .056 .056
1.0 -.80 .093 .103 .108 116

NOTE: DGP: y; = pY—1 + Uy, iy = €, + 0&,_,. Regression: Ay, = dgyy—1 + Zk18Aye + Vi.

provide statistical improvement. A comparison of the various
estimation methods in the context of unit root tests would
be useful.

The second avenue is an extension of the results to the
multivariate case whereby vector autoregressive processes
are used to approximate more general multivariate
linear processes. Although one expects, and prelimi-
nary work suggests, that the same qualitative results
would hold, the analysis is not a straightforward exten-
sion because of possible cointegration among the vari-
ables.

The third topic concerns the issue of optimal lag selection.
Our analysis has concentrated on two particular classes of
lag length selection that are widely used in practice. None
of these needs to be optimal. The difficulty, however, lies in
finding the proper way to assess the procedures for selecting
k, because the purpose of estimating these autoregressions
is not in obtaining a particular estimate that is as precise as
possible, but rather in obtaining the unit root test itself. The
optimality criterion thus needs to be based on an appropriate
trade-off between type I and type II errors in the application
of the unit root test.

APPENDIX: PROOFS

The following notation will be used in this Appendix. Unless
otherwise stated, we shall let C; be an arbitrary constant (not nec-
essarily the same throughout). Let Dy = diag{(T — k)~', (T
- k)_l/Z’ D] (T - k)_l/2}9 U; = (yl—l’ Xl,)s and xl’ = (Ayl—l’
ces Ay). Let M = 2T, UU; and R, = 2 L, XX;. Thus
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T

Rk = z (Ayl—17 Ayt—27 LN Ayl—k)l(Ayt—ls Ayt—Zﬁ BRI} Ayt—k)
t=k+1
and
DM Dr

T
(T-K)72 32 yaX{

t=k+1

(T—k)"'Re

T
(T-Kk)77? 2 yh

1=k+1

T
(T-K)72 3 yeX,

t=k+1

Note that from Said and Dickey (1984), the limit of D-M;D is
block diagonal with the two blocks corresponding to the limits of
(T—Kk)22L,., y2,and (T — k)"'Ri. We also let M!(1) be
the first diagonal element of the matrix M ;! and let M (k) be the
lower right k X k block of M.

For a matrix C, the matrix norm is defined by |C|
= supyy< |Cx|l, where for a vector z, |z|| = (z’z)!/?. Using this
norm, lemma 3 of Berk (1974)showed that k /2| (T— k)R =T}
— 0, where T is a k X k matrix with typical elements T
= E(Ay-iby,- ).

Proof of Lemma 2.1

The proof for consistency of the least squares estimates in the
augmented autoregression (4) was given by Said and Dickey
(1984) and will not be repeated here. Nevertheless, it is important
to point out the two steps involved in the proof. The first step
is to show that k!'/2|| (D+M;D7z)~' — M~!| converges to zero for
some limiting block-diagonal matrix M. For this step, Assump-
tion Al is sufficient and the argument follows from lemma 3 of
Berk (1974). The second step is to show that |D7 2 L., Uexl
= O0,(k'/?). The combination of the two steps implies that Td,
= 0,(1),VT(d, — d;) = 0,(1) (i = 1, ..., k), and 5} — 2.
Assumption A2 is used only in this second step and, more spe-
cifically, to ensure that

k T
E((T—k)-' » ( »
J=1 \t=k+1

2
Ay j( e — e,)) )

<C-k(T—-k) 3 d?—=0, (A.l)

i=k+1

as T — oo for some constant C,. Note that A2” is also sufficient
to guarantee that A1 holds; however, A1l is sufficient but not nec-
essary to ensure that ¢, has the limiting distribution given by (5).
To see this, we first express t,as

T
L, = ((T— Kbtz y,-ne,k)(?ri(T— k)2 ME ()] 72,
t=k+1

From Said and Dickey (1984), T72[M;'(1)]™' = o2 [; W(r)*dr
provided that A1 holds. Consider now the numerator,

T T
(T_k)_l 2 V1w =(T—k)™! 2 Ve

t=k+1 t=k+1

T o
H(T-k)" 2 v 2 didyi. (A2)

t=k+1 i=k+1

It is straightforward to show that (T — k)™' L1 V16 = o2
f(: W (r) dW(r), provided that k > oo and k/T —> 0 as T = 0.
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Consider now the second term in A2. We have

T © 2
E((T-k)7" 2 ya 2 diAyt—i]

t=k+1 i=k+1

=2 2 4d(T-k™
i=k+1 j=k+1
T T
X Z Z E[yt—lAyl—iys—lAys—j]
t=k+1 s=k+1
=C 2 d 2 d=C Z N X2 N
i=k+l  j=k+1 i=k+1  j=k+1

o 2
=C,< > >\i) =CA*/(1-N)2>0 as k—> .
i=k+1

The first inequality follows from Said and Dickey (1984, p. 601)
who stated that there exists a constant C; such that (T — k)2
2Eiet Zkn1 E[Y18Y-iys18y,- ;] < Cy. The second inequality
uses the fact that Ay, is a stationary and invertible ARMA process,
and hence there exists A, 0 < A\ < 1, such that |d;| < C)A\! for a
different constant C,. Therefore, (T — k)™' 2L yi1ex = o2
f(; W (r) dW(r) under the sole condition that k/T — 0 and k
— o0 as T —> oo. Neither A2 nor A2” is needed to establish the
limiting distribution of (5).

To consider the properties of d(k) without the lower-bound con-
dition, it can be seen, from lemma 2 of Berk (1974) or lemma
5.2 of Said and Dickey (1984), that consistency of d (k) still holds
if

E((T— k)~ § (

J=1

T 2
> U j( ey — et)) )

t=k+1

<Ck 3 d* <Chk */(1 —A?)—>0. (A.3)

i=k+1

The condition (A3) is satisfied for any stationary and invertible
ARMA process provided that k = oo, which is assured under Al.
More generally, the rate at which d(k) converges to d(k) can be
found by writing

T
d(k) —d(k) = (T- k)M (k) —T YT - k)" 2 Xen

t=k+1

T
+T(T-k)!' 3 Xe

t=k+1

T
+T(T-k)"' 3 X(ex—e).

t=k+1

(A4)

Taking norms, the first term is 0,(77'/?) and the second is
0,(k'>T~'/?) by the results of Said and Dickey (1984), whether
or not A2 is satisfied. Using (A3), the third term is O,(k'/2\¥) for
some X such that | d;| < C;\'. If A2 or A2” is satisfied, then the
second term in (A.4) dominates, because the third term is 0,(1).
In that case, |[VT(d(k) — d(k))| = O,(k'’?) and ﬁ(c?,— —d;)
=0,(1),i=1,..., k. If A2" is not satisfied, then the third term
in (A.4) dominates and |A7%(d(k) — d(k))| = O,(k™"/?) or
ANKdi—d)y=0,1)(i=1,...,k).

The proof of Lemma 2.1 is completed by showing 62 = ¢2
without any lower-bound condition. The result follows from
consistency of the least squares estimates. The proof is standard
and is omitted.

279

Proof of Lemma 4.2

Let d(k) = (d,, . .., d) be obtained by applying OLS to the
augmented autoregression (4), letd(k) = (d,, . . . , di) be obtained
by applying OLS to (9) with x, = Ay,. We have d(k) — d(k)
= Mi'(k) ZLin Xieq and d(k) — d(k) = Ri' ZLer X{(eu
+ doyi_1) = Rg! 2Lt X/ey, because do = 0 under the null hy-
pothesis of a unit root. Hence

T
d(k) —d(k) = (M (k) - RE') 2 Xiex.
t=k+1
Note from lemma 5.2 of Said and Dickey (1984) that || (T — k)™
L Xiexl = O,(k'2T~1/2). By partition inversion, (T — k)
Mi'(k) = (T - k) 'R, — A)~!, where

T T T -1
A=(T- k)_l( > yt—lxt)< > ys—IX;)< > yf-n)
t=k+1 s=k+1 t=k+1
T T T
(-0 T2 yerexx) [0 3 st
t=k+1 s=k+1 t=k+1

Note that (T — k)2 2 Z,41 ¥21 = O,(1), and by Said and Dickey
(1984, p. 601), each element of the numerator of A is bounded by
C,/(T — k) for some constant C,. Because A is a k X k matrix and
E(|All?) = C\k?/(T — k), we have that k'/?||A| converges to zero
provided that k3/T — 0. Thus

(T = k)M (k) = (T = k)R |
= (T = k)M () (T = k)™'Ry
— (T = ML (k)" )T = R |
= (T = M (DA(T - KR |
=< (T = M (O IAICT = KRE L.

Because (7 — k)Mi' (k)| and [(T — k)Ri'[| are O,(1) (see
Said and Dickey 1984) and k'/?|A| — 0, k2| (T — k)Mj'(k)
— (T — k)R;'| = 0. Combining these results, we have

T'2|ld(k) — d(k)|| < k"2 (T — k)M (k)

T
(T-K)™" 2 Xex

t=k+1

(T = R} [k~ 277

(A.5)

— 0 as T = oo, provided that K3/ T — 0.
We are now in a position to prove Lemma 4.2. Using the defi-
nitions of é, and &,, we have

T
(T - k)_l 2 (Ay,— ‘?0}’:—1 - a(k)lxt)z

t=k+1

ot

T
G (T—k)7'dy X yii—2T—k)'d,

t=k+1

I

T T
X T Yeilu+ (d(k) — AR [(T -k T XX/

t=k+1 t=k+1

X (d(k) — d(k)) — 2(d(k) — d(k))'(T — k)™

T T
X T X@u+ 2(T— k) 'do(d(k) — d(k)) T Xipei.

t=k+1 t=k+1
We now consider each term individually.

L (T— k)" (T = k)*d3(T — k)2 ZLies y2i = Ox(T™"), be-
cause (T — k)2d3 = O,(1)and (T — k)2 S Ly 21 = Oy(1).

2.(T = k)T = k)do(T — k)™ TLiar y-i8u = O (T).
Because 7do = O,(1), we need to show that (7 — k)™ i,
Vi1 18 O, (1). Using the fact that &, = e, + (d(k) —d(k))'X,, we
have
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T
(T—K)" 2 Vil

t=k+1

T
=(T—Kk)" X yerew+ (T— k) (d(k) — d(k))

t=k+1
T
X 2 yiX..
t=k+1

The first term is O,(1) (see the proof of Lemma 2.1). We now
show that the second term vanishes. We have for | d;| < C;\?, with
0<A<l,

T
ld(k) = d(R)II(T - k)" 2y Xl
t=k+1
= 0,(k""\*)0,(k'/?) if A2 is not satisfied;
= Op(k'/zT_”2)0p(k”2) if A2 is satisfied;

and is 0,(1), because k2/ T — 0 in the latter case and k — co with
X < 1 in the former case.
3. Taking norms, for the third term we have

T
|| (&(k)—Fi(k))'((T—k)-‘ > x,x;)<&(k)—&(k>) ||

t=k+1

T
< 1@k — Ak || (T-6)" 3 XX || 1@k) - Ak

t=k+1
=0,(T7"?)- 0,(1)+ 0,(T™ ) = 0,(T™")
using (A.5). Hence the third term is 0,(7").
4,

T
(k) —d()(T-k)" T Xelu

t=k+1

T
= (k) —d()(T- k)" 2 Xeew

t=k+1

T
+(d(k)— d(k))’((T— bt > XIXI)(&(k) -~ d(k)).
t=k+1
Taking norms, for the first term we have

T
(d(k) —d())(T- k)" T Xen

t=k+1

T
(T_k)_l Z Xlelk

t=k+1

= 0,(T7112)- O,(k*2T7112) = 0 (k**T").

< (d(k) — d(k)ll

For the second term we have

T
” (d(k) — a(k))’((T— K™z X,XZ)(fl(k) —d(k)) “

1=k+1

T
< 1 @(k) - Ak ||<T—k)“ » x,x:ll 1@k - ainl

t=k+1
= 0,(T7'"%)+ O,(1)- O, (k'*T'7?)
= 0,(k"*T™") if A2 is satisfied;
0,(T7"2)+ O, (1) O,(k'2\¥)

0,(k'2T~12\k) " if A2 is not satisfied.
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5. Because Td, = O,(1), we consider

T
” d(k) —d()(T = k)2 X X,yH“

t=k+1

T
(T_k)_z 2 XV ”

t=k+1

< 1ak) - d(o) | |

= 0,(T7'?)0,(k'*T™") = 0,(k'?T7*7?).
Collecting results from 1-5, we have
63 =&} + 0,(k"2T™") if A2 is satisfied;
63 = 62+ 0,(k'2T~1/2\k) if A2 is not satisfied.

Because k/T = 0 and k'/?2\* - Q0 as k = o0 and T = o0, we
have, whether or not A2 is satisfied,

53 =52+ 0, (T7'1).

Proof of Lemma 5.1

We first note (from the proof of Lemma 4.1) that d(n) = d(n)
+ 0,(1), where d(n) corresponds to the OLS estimates from the
restricted regression without the lagged dependent variable. Using
the block diagonality of My, we have the following asymptotic re-
lation:

J(k = n, k) = (T = k)d(n) (T = k)67R;" (n))"'d(n) + 0,(1),

where Ry !(n) is the lower n X n block of Rx!. We now apply the
following decomposition:

J(k—n, k)
= VT@(n) — d(m))' (T — k)"'62R%" ()" VT(@(n) — d(n))
+ 2VT(d(n) — d(n))'((T — k)52Ric" (n)) "' VTd(n)
+ VTd(n) (T - k)&2RE' (n))"VTd(n) + 0,(1).

By theorem 4 of Lewis and Reinsel (1984), the first term is asymp-
totically distributed as X2 with n degrees of freedom. To complete
the proof, it remains to show that the other terms vanish as T
— o0. We first note that [(T — k)52Rz'(n)]™' =, R, say. Given
that Ay, is a stationary and invertible ARMA process, a typical
element of V7d n), say ﬁdkﬂ« (i =1, ..., n), is such that
VT dysi] < CVTAK* for some C, and 0 < A < 1. Hence, under
the conditions of A2”, VTd(n) — 0. It follows that the last term
converges to zero. Finally, to show that the second term also van-
ishes, we simply note that under the conditions of A2”", ﬁ(&(n)
—d(n)) = O,(1).

Proof of Lemma 5.2

Because k max is assumed to increase in such a way that as-
sumption A2" is satisfied, the conditions of Lemma 5.1 hold and
J(k max, k max + n) is asymptotically distributed as a X > random
variable with n degrees of freedom. Let k; be the estimate of k
selected by the sequential procedure described in Definition 3.1.
Then

lim Plkr# k max] =1 — o,

T
and using the rules of conditional probability,

lim Plkr = k max — 1|kr # k max] = a.

T
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This implies that
lim P[kr =k max — 1 N ky # k max]

T—o0

lim P[kr =k max — 1|k # k max]P[ky # k max]

T—oo
=aofl — a).
Now
}i_?;P[I}T=kmax—2IIET%kmax— 1 Nkr# kmax] = a
= lim P[f<7-=kmz§x—207cr=#kme}x— 1 N kr # k max]
T P(kr # k max — 1 N ky # k max)
and
}EP(I‘(T#kmax— 1 N kr # k max)

lim P(kr # k max — 1|ky # k max)P(kr # k max)

T—>o0

(1 —a)?.

This implies that
lim Plkr = kmax — 2 Nk # k max — 1 N ky # k max]

T—o
=a(l — a)?.
We can deduce, by recursion, that

lim Plky=kmin N kr# kmin + 1+ -+ Nkr# k max]

T

= limze o [a(1 — a)km~kmin] - (A.6)

Now suppose that k min increases to infinity at a rate slower than
k max. From (A.6), the application of the sequential procedure
implies the probability that & reaches k min is zero in the limit,
because k max — k min = oo . It follows that for any given k£ min
and k max, k; must be bounded away from k min. Because k min
can be any arbitrary sequence, it follows that k7 has a zero proba-
bility of increasing at a rate slower than k max. Thus with the
inequality k min < k max, k; must increase at the same rate as
k max.

[Received August 1993. Revised February 1994.]
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