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This article proposes a simple estimator that is consistent for the fraction of a panel that has an autore-
gressive unit root. Given such an estimate, θ̂ , we can test the null hypothesis that θ = θ0 for any value
of θ0 ∈ (0,1]. The test is asymptotically standard normal and is valid whether or not the panel is cross-
sectionally correlated. The main insight is that in a panel in which some units are stationary and some
have unit roots, the cross-sectional variance of the mixed panel is dominated by a linear trend that grows
at rate θ , where θ is precisely the fraction of the panel with a unit root. Averaging the change in cross-
sectional variance over time then gives a

√
N consistent estimate of θ as N,T → ∞. Simulations show

that the estimator has good finite-sample properties when T ≥ 100, even with N as small as 30.

1. INTRODUCTION

This article considers the case where the units of a panel
have heterogeneous dynamics and some (and possibly all) of
the units are cross-sectionally correlated. We provide a simple
procedure to consistently estimate and test what fraction of the
units in the panel has an autoregressive unit root. We denote this
fraction by θ . We can test whether θ = θ0 for any θ0 ∈ (0,1].
The test is asymptotically standard normal. The critical values
are the same whether or not there is cross-sectional dependence,
provided that the cross-sectional variation is stationary.

Panel nonstationarity tests often maintain as the null hypoth-
esis that every series in the panel has an autoregressive unit root
and test it against the alternative that at least one series is sta-
tionary. Rejections of the null hypothesis leave the researcher
with no information as to whether the rejection is due to just
a few or to most of the series not agreeing with the null hy-
pothesis. Chang and Song (2002) tested the null hypothesis that
at least one unit is nonstationary against the alternative that all
units are stationary. Nonetheless, the hypothesis can be rejected
for many configurations of the dynamic parameters. Panel sta-
tionarity tests are subject to the same criticism.

Our proposed test is different in two ways. First, we are not
confined to testing the two extreme hypotheses that all units are
nonstationary or stationary. Second, we quantify the fraction of
the units that are nonstationary, making it possible to be more
precise about the extent of heterogeneity in the dynamics of the
units in the panel. The basic idea behind the estimator is that if
all series in the panel are nonstationary, then the cross-sectional
variance has a linear trend. The linear trend in variance has been
described as the “fanny-out” phenomenon by Deaton and Pax-
son (1994), who pointed out that if the permanent income hy-
pothesis holds and consumption follows a random walk, then
consumption inequality must increase as agents of the same co-
hort move through the life cycle. Lucas (2003) noted that the
fanning out over time of the earnings and consumption distrib-
utions within a cohort found by Deaton and Paxson is “striking
evidence of a sizeable, uninsurable random walk component in
earnings.” On the other hand, if all series are stationary, then
the cross-section variance will be nontrending. In a panel in
which some series are nonstationary and some are stationary,
the cross-sectional variance of the mixed panel will have a lin-
ear trend that increases at rate θ < 1, where θ is precisely the
fraction of the panel that is nonstationary.

Our analysis can be applied in various contexts. First, non-
stationarity of every series in a system is a precondition for the
presence of a common stochastic trend. It is convenient to use
θ = 1 to test whether the common trend representation is valid,
especially when the number of variables in the system is large.
Second, many tests have been developed to ascertain whether
all units in a panel of data are nonstationary (or all stationary).
Recent surveys of panel unit root tests have been given in Mad-
dala and Wu (1999) and Baltagi and Kao (2001). The early test
developed by Quah (1994) imposed substantial homogeneity in
the cross-sectional dimension. Subsequent tests, such as those
of Levin, Lin, and Chu (2002), Hadri (2000), and Im, Pesaran,
and Shin (2003), allow for heterogeneous intercepts and slopes
while maintaining the assumption of independence across units.
These tests were initially motivated by their potential for power
gains over univariate tests. However, it is now understood that
unless the units are cross-sectionally uncorrelated, some power
gains are in fact the consequence of size distortions. O’Connell
(1998) showed that cross-sectional correlation leads the stan-
dard pooled test to overreject the null hypothesis. Tests that con-
trol for cross-sectional dependence often assume a factor struc-
ture designed to model strong form dependence. There remains
no satisfactory way to handle the case when the units are nei-
ther independent nor strongly cross-sectionally dependent and
N is large.

Third, explicit modeling of the behavior of the micro units
is increasingly recognized as being necessary to better under-
stand aggregate behavior. In the case of consumption, the typ-
ical heterogeneous agent model assumes that household units
differ according to the ex post realizations of income shocks,
but that their earnings evolve according to the same law of mo-
tion. Following the seminal work of MaCurdy (1981), the earn-
ings process is often specified as the sum of a permanent and
a transitory component, implicitly assuming that earnings has
a unit root (see Carroll and Samwick 1997, among many oth-
ers). However, when the parameters governing the dynamics are
freely estimated, the evidence for a unit root is not altogether
convincing. For Panel Study of Income Dynamics (PSID) data,
Baker (1997), Alvarez, Browning, and Ejrnaes (2001), and Gu-
venen (2005) reported estimates of the autoregressive parameter
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to be between .5 and .85. In contrast, Storesletten, Telmer, and
Yaron (2004) obtained an estimate of .98 and subsequently im-
posed it to be 1. This lack of consensus concerning the magni-
tude of the autoregressive parameter is problematic, because the
dynamics of earnings is crucial to explaining any excess sen-
sitivity and excess smoothness observed in consumption data.
For example, a consumer with a stationary earnings process
should have a much smaller consumption response to an earn-
ings innovation than a consumer whose earnings have a unit
root, because for the latter consumer, all earnings changes are
permanent (see Campbell and Deaton 1989; Ludvigson and
Michaelides 2001). Recently, Reis (2005) also pointed out that
the costs of fluctuations are much smaller when income is sta-
tionary than when it has a unit root. But to better understand the
dynamics of the micro units, the assumption of homogeneous
dynamics must be questioned. As forcefully argued by Alvarez
et al. (2001), there is no economic reason why earnings at the
individual level should have the same dynamic structure. For
example, Choi (2004) found that the panel of data that he ex-
amined is a mixture of unit root and stationary processes. Our
analysis sheds light on this issue, because unless θ is estimated
to be 0 or 1, imposing homogeneous earnings dynamics would
be inappropriate.

Fourth, the seminal work of Hall (1978) predicts that under
rational expectations and perfect capital markets, the marginal
utility of consumption should be a martingale. Many expla-
nations (including liquidity constraints, myopic behavior, and
nonseparability between consumption and leisure) have been
used to rationalize rejections of the martingale hypothesis by
the data. But these studies often test the null hypothesis against
one specific alternative. Because the permanent income hy-
pothesis can be rejected for more than one reason, it instead
might be useful to take as a starting point the fact that all
departures from the permanent income hypothesis imply that
changes in marginal utility are predictable. Finding the frac-
tion of the sample for which the permanent income hypoth-
esis holds amounts to determining the fraction in the sam-
ple for which the marginal utility of consumption has a unit
root. Our analysis provides a simple way to estimate this frac-
tion.

Our use of panel data information is quite different from
other panel nonstationarity tests, because we aggregate rather
than pool cross-sectional information. Various authors have
studied the dynamics of a process constructed from aggregating
heterogeneous micro units. Granger and Morris (1976) showed
that the sum of N independent AR(1) processes,

yit = αiyit−1 + eit, (1)

is an ARMA(N,N − 1). Granger (1980) assumed a beta den-
sity for αi and showed the parameter restrictions under which
the aggregate process will be stationary with long memory. Zaf-
faroni (2004) assumed that αi has a semiparametric density
c(1 − α)b with support on [0,1] and showed that the aggre-
gate process is stationary if b > −1/2. Lewbel (1994) showed
that if αi ∈ [0,1] and the innovation variance is the same across
units, then the coefficients of the autoregression in the aggre-
gate data can be related to the moments of αi. In particular, the
first two coefficients of the autoregression in the aggregate data
are the mean and the variance of αi. The aggregate data need not

be stationary, because in Lewbel’s analysis, αi ∈ [0,1], so that
some units can be stationary while others are not. Like Lewbel
(1994), we are also interested in this case of a mixed panel, but
our approach is to use the cross-sectional variance to quantify
the extent of dynamic heterogeneity, defined as the fraction of
units in the sample with αi = 1. Furthermore, we also allow the
innovation variance to differ across units.

As a matter of terminology, a nonstationary series in this ar-
ticle is taken to mean that the series has an autoregressive unit
root. An “I(1) unit” is differenced stationary and thus nonsta-
tionary. In contrast, an “I(0) unit” is stationary in the sense of
having autoregressive roots strictly less than unity. The objec-
tive is to estimate what fraction of the units in a panel is I(1).

2. MOTIVATION

To fix ideas, we first consider the following AR(1) model,
where for i = 1, . . . ,N and t = 1, . . . ,T :

yit = λi + uit

and

uit = αiuit−1 + eit,

which we can also write as

yit = λi + αt
iui0 +

t−1∑

j=0

α
j
ieit−j. (2)

In this model yit is observed, but λi and uit are not observed.
We assume the following:

A1. αi ∈ [0,1] and is independent of ejt for i, j, and all t.
A2. 0 ≤ λi < ∞ for all i, and λi is independent of eit for all i

and for every t. Furthermore, 0 ≤ vari,N(λi) < ∞, where
vari,N(λi) = 1

N

∑N
i=1(λ

2
i − $N)2 and $N = 1

N

∑N
i=1 λi.

A3. For each i, eit is iid over i and t with ui0 = Op(1).

Assumptions A1 and A2 are used throughout the analysis.
The parameter λi is an individual-specific intercept that is inde-
pendent of αi and need not be random, although if it is, then we
have a random-effects model. The assumption that eit is iid with
mean 0, has unit variance, and is serially uncorrelated is made
for simplicity. We allow for heteroscedastic errors, higher-order
dynamics, and cross-sectional correlation later. Restricting at-
tention to αi ∈ [0,1] is without loss of generality, and for eco-
nomic problems, this is the parameter space of interest.

Define mj,∞ = Ei(α
j
i) to be the jth raw moment of αi with

m0,∞ = 1, where Ei is taken to mean plim 1
N

∑N
i=1. In this no-

tation, Ei(αi) = m1,∞ and vari,∞(αi) = m2,∞ − m2
1,∞ are the

cross-sectional mean and variance of αi. Because αi ∈ [0,1],
all moments of αi are finite. Note also that mj,∞ ≥ mr,∞ when
r > j except when αi = 1 for every i, in which case mj,∞ = 1 ∀j.
Let

Yt,N = 1
N

N∑

i=1

yit and Ut,N = 1
N

N∑

i=1

uit
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be the sample cross-sectional means of yit and uit for a given t.
The corresponding cross-sectional variances are defined as

Vt,N = 1
N

N∑

i=1

(yit − Yt,N)2 and

st,N = 1
N

N∑

i=1

(uit − Ut,N)2.

Then the population mean and variance of yit at time t are

Yt,∞ = Ei(yit) and Vt,∞ = vari(yit).

Likewise, define εt,N = 1
N

∑N
i=1 eit and εt,∞ = Ei(eit). Here-

inafter, an aggregate variable with superscript of “1” is used to
denote quantities belonging to the I(1) units, whereas a super-
script “0” denotes quantities corresponding to the I(0) units. In
this notation, Y1

t,N1
and V1

t,N1
are the cross-sectional mean and

variance of a sample of I(1) observations of size N1, whereas
m0

t,∞ is the tth raw moment of αi of the stationary subpopula-
tion.

Aggregating over i and for large N, (2) gives

Yt,∞ = $∞ + mt,∞U0,∞ +
t−1∑

k=0

mk,∞εt−k,∞ (3)

and

Vt,∞ = vari,∞(λi) + m2t,∞ vari,∞(ui0) +
t−1∑

j=0

m2j,∞. (4)

To be precise about Yt,∞ and Vt,∞ in the mixed-panel case,
we first consider the two homogeneous cases separately. The
first case arises when all units are stationary; the second occurs
when all units are nonstationary.

In the stationary homogeneous panel case, αi ∈ [0, γ ], γ < 1
for every i. For t > t∗ such that mt∗,∞ is negligible, it is easy
to see that Y0

t,∞ is an asymptotically stationary process with a
finite mean $∞ and a finite variance. Furthermore, its autoco-
variance at lag k tends toward 0 as k → ∞, because m0

k,∞ → 0
as k → ∞.

In the nonstationary homogeneous case, αi = 1 for all i,
and thus mj,∞ = 1 for all j. The average of individually I(1)
processes is itself a unit root process. Then (3) and (4) become

Y1
t,∞ = $∞ + U1

0,∞ +
t−1∑

j=1

εt−j,∞ (5)

and

V1
t,∞ = vari,∞(λi) + var1

i,∞(ui0) + t. (6)

Notably, the cross-sectional mean is not time-invariant, and the
cross-sectional variance V1

t,∞ has a linear trend component. The
fact that Yt,∞ has a time-invariant variance only when all of the
underlying units are stationary suggests that in a mixed panel
when αi is unity for some units, the cross-sectional variance
will still have some form of a trend. We now make this pre-
cise.

2.1 Mixed Panel

Suppose that a random variable is drawn from a distribution
with mean Y1 and variance V1 with probability θ , or a distribu-
tion with mean Y0 and variance V0 with probability 1 − θ . It is
well known that the mixture distribution has mean and variance

Y = θY1 + (1 − θ)Y0

and

V = θV1 + (1 − θ)V0 + θ(1 − θ)(Y1 − Y0)2.

When applied to our mixed panel, the first result implies that the
aggregate variable will be nonstationarity, because a weighted
sum of an I(1) process and an I(0) process remains nonsta-
tionary. Our point of departure is the second result that the
cross-sectional variance of any mixed panel is a mixture of the
within-group variance, θV1 +(1−θ)V0, and the between-group
variance, (Y1 − Y0)2. The following lemma characterizes the
properties of the two components when the panel is mixed with
nonstationary and stationary units.

Lemma 1. Let yit = λi + uit, and uit = αiuit−1 + eit, and eit ∼
iid(0,1). Suppose that αi = 1 with probability θ , and αi < 1
with probability 1 − θ . For a given t > t∗ such that m0

t∗,∞ ≈ 0,
the cross-sectional variance of the mixed population is

Vt,∞ ≈ $∞ + θ · t + c,

where c > 0 is constant.

In a population mixed with stationary and nonstationary
units, the cross-sectional variance has a linear trend component
that grows over time at rate θ , the fraction of the panel that is
nonstationary. Importantly, this trending property is unique to
mixing stationary and nonstationary units. It does not exist if αi
is drawn from two distributions both with upper bounds strictly
less than unity.

To understand Lemma 1, note first that Vj
t,∞ = vari,∞(λi) +

sj
t,∞ for j = 0,1, and thus

Vt,∞ = θV1
t,∞ + (1 − θ)V0

t,∞ + θ(1 − θ)(Y1
t,∞ − Y0

t,∞)2

= vari,∞(λi) + θ [var1
i,∞(ui0) + t]

+ (1 − θ)s0
t,∞ + θ(1 − θ)(Y1

t,∞ − Y0
t,∞)2.

Because vari,∞(λi) and var1
i,∞(ui0) do not depend on t, Lem-

ma 1 thus implies that s0
t,∞ and (Y1

t,∞ − Y0
t,∞)2 are con-

stant when t > t∗. That s0
t,∞ is asymptotically constant fol-

lows from stationarity because mt,∞ is decreasing in t. Now
(Y1

t,∞ − Y0
t,∞) = (U1

t,∞ − U0
t,∞). Because U0

t,∞ ≈ 0 for t > t∗,
it remains to consider U1

t,∞.
It is well known that if U1

t,N1
= U1

t−1,N1
+ ε1

t,N1
is a random

walk and ε1
t,N1

∼ N(0, σ 2
ε1,N1

), then (U1
t,N1

)2 is a heteroscedastic
random walk with drift, where the drift equals σ 2

ε1,N1
and the in-

novation variance of the random walk is 4σ 4
ε1,N1

· t. But by defi-
nition, ε1

t,N1
is the average of e1

it in the nonstationary subsample
and obeys a central limit theory. Thus U1

t,N1
is approximately

a Gaussian random walk with innovation variance σ 2
ε1,N1

that
decreases as N1 increases. Furthermore, (U1

t,N1
)2 is a random
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Figure 1. Cross-section variance for different θ , n = 100 ( , .05; , .25; , .75; , 1).

walk with a drift of order 1/N1 and a variance of order t/N2
1 .

Notably, both terms degenerate as N1 → ∞ for a given t. It fol-
lows that U1

t,∞ − U0
t,∞ is degenerate and Lemma 1 holds for

t > t∗. Importantly, Lemma 1 implies that

(Vt,∞ = Vt,∞ − Vt−1,∞ = θ.

That is, when there is a mixture of I(1) and I(0) units, the
population cross-sectional variance grows at rate θ , where θ

is the fraction of I(1) units in the panel. This is a popula-
tion result. To see that the result continues to hold true in fi-
nite samples, Figure 1 presents the cross-sectional variance for
θ = (.05, .25., .75.,1) with (N,T) = (100,100). The station-
ary units are assumed to be AR(1) processes with the AR(1)
coefficient drawn from a uniform distribution over the support
[.5, .99]. As we can see, when θ = 1, Vt,N is roughly linear in t.
The slope of Vt,N flattens as θ moves toward 0. This suggests
that θ remains the slope of Vt,N in finite samples. The next sec-
tion suggests procedures for estimating θ .

3. ESTIMATION AND INFERENCE

We observe yit, i = 1, . . . ,N, t = 1, . . . ,T , of which N0 ob-
servations have αi < 1 and N1 observations have αi = 1. Then
θ = N1/N and N = N0 +N1. Without loss of generality, the data
are ordered such that the N1 nonstationary units come first. We
do not know this ordering, nor do we know N0 or N1, but we
can compute, at each t,

Yt,N = 1
N

N∑

i=1

yit

and

Vt,N = 1
N

N∑

i=1

(yit − Yt,N)2.

Theorem 1. Suppose that for i = 1, . . . ,N, t = 1, . . . ,T , yit is
generated as yit = λi + uit, uit = αiui−1 + eit, and that assump-
tions A1–A3 hold. Let θ be the fraction of the mixed population
with αi = 1. Define θ̂ = 1

T

∑T
t=1 (Vt,N . As N → ∞ and then

T → ∞,
√

N(θ̂ − θ)
d−→ N(0,2θ).

Note that the limiting distribution of θ̂ is discontinuous at
θ = 0. When all units are stationary, the cross-sectional vari-
ance does not grow and the theory is no longer valid.

The sample cross-sectional variance, Vt,N , is
√

N consistent
for the population cross-sectional variance Vt,∞. Lemma 1 sug-
gests that the time average of (Vt,N will estimate (Vt,∞, which
is θ . However, as shown in the Appendix, the variance of (Vt,N

increases with t. Thus θ̂ is only
√

N-consistent even though
N,T → ∞.

One might wonder why we estimate the mean of (V1
t,N and

not the trend of V1
t,N directly. We do this because for fixed N,

(Y1
t,N1

− Y0
t,N0

) is a unit root process and will render a regres-
sion of Vt,N on t spurious when left as an error in the regression
model. But this stochastic trend can be removed by first differ-
encing Vt,N as suggested in Theorem 1.

3.1 Higher-Order Serial Correlation

Theorem 1 provides the motivation for θ̂ , but the underly-
ing assumptions are restrictive. We now consider more general
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dynamics and heteroscedastic errors. Suppose that

yit = λi + uit, αi(L)uit = eit, and eit ∼ iid(0, σ 2
i ),

where αi(L) = 1 − αi1L − · · · − αipLp, p finite. Let φi1 > φi2 >

· · · > φip be the reciprocal of the roots of αi(L) = 0. We can
rewrite the model as

yit = λi +
eit

(1 − φi1L)(1 − φi2L) · · · (1 − φipL)
.

By the method of partial fractions,

yit = λi + ui0

p∑

j=1

φt
ij

+ 1
Di

t−1∑

j=1

[Ai1φ
j
i1 + Ai2φ

j
i2 + · · · + Aipφ

j
ip]eit−j, (7)

where Di < ∞ is the common denominator of the partial
fractions and is discussed later. Direct calculations show that
Ai1 = φ

p−1
i1 . Whether or not a unit is stationary or nonstation-

ary units is distinguished by the size of the largest autoregres-
sive root, φi1. If φi1 = 1 and all remaining roots are strictly <1,
then Ai1 = 1 and Aik < 1 for every k = 2, . . . ,p. For such a se-

ries, its variance will be σ 2
i

D2
i
t plus terms that grow slower than t.

It follows that if all units in the panel are nonstationary, then
the cross-sectional variance of the rescaled process Diyit

σi
series

will be dominated by t. Thus higher-order dynamics does not
change our main result that if a fraction θ of the panel has an
unit autoregressive root, then the cross-sectional variance grows
at rate θ , provided that the cross-sectional variance is defined on
the rescaled process. This suggests that θ can be estimated as
follows.

Estimator A.

1. For each i, let êit be the residuals from a least squares
regression of the model

yit = α0 + α1yit−1 + · · · + αpyit−p + eit. (8)

Denote the coefficient estimates by (α̂0, α̂i1, . . . , α̂ip).
2. Let σ̂ 2

i = 1
T

∑T
t=1 ê2

it.
3. Let φ̂i1, . . . , φ̂ip be the reciprocal of the roots of (1 −

α̂i1L − · · · − α̂ipLp) = 0.
4. Construct D̂i and V̂t,N , the cross-sectional variance of

ŷit = D̂iyit
σ̂i

.

5. Let θ̂ = 1
T

∑T
t=1 (V̂t,N and η̂t,N = (V̂t,N − θ̂ . Let γ̂η(k) =

1
T

∑T−1
t=1 η̂t,N η̂t−k,N and ω2

θ̂
= γ̂η(0) +

2
∑M

s=1 K(s,M)γ̂η(s), where K(s,M) is a kernel with a
truncation point of M.

Then θ̂ = 1
T

∑T
t=1 (V̂t,N is an estimate of θ , just as in Theo-

rem 1. The studentized statistic

t = (θ̂ − θ)

ωθ̂

≈ N(0,1)

can be used to test the null hypothesis that θ = θ0 for any θ0 ∈
(0,1].

Step 1 requires estimation of an autoregressive model of or-
der p. If yit is stationary, then α̂i1, . . . , α̂ip are all

√
T consis-

tent. If yit is nonstationary, then α̂i(1) is super-consistent. By
continuous mapping, φ̂i

p−→ φi and σ̂ 2
i

p−→ E(e2
it). Because the

raw data have different innovation variances and dynamics, the
cross-sectional variance must be constructed on the rescaled
data. Step 4 performs this task. In finite samples, terms that
should be degenerate when t and N are large may still have
time variation. Consequently, η̂t,N may be serially correlated.
For this reason, we use robust standard errors to conduct infer-
ence, as indicated in step 5.

It should be noted that Theorem 1 assumes that φ1 is known
and there are no nuisance parameters to estimate. Therefore,
once consistent estimates of the cross-sectional variance are
obtained, time-averaging of (Vt,N yields a

√
N-consistent esti-

mate of θ . Estimator A, however, requires
√

T consistent esti-
mates of Di and σ 2

i before proceeding to estimate the cross-
sectional variances, and heteroscedasticity autocorrelation-
consistent standard errors are also needed. For this reason, we
do not state Estimator A as a theorem. Instead, we only say
that the standardized test is approximately normal, and turn to
simulations to evaluate the properties of Estimator A.

It remains to make precise how to construct D̂i. Suppose
that φi1, . . . , φip are observed. For a pth-order autoregression,
Di = A−1B, where B is p × 1 vector with 1 in the first entry
and 0 otherwise. The matrix A is p × p and can be constructed
as follows. Row 1 is a unit vector. The ith column of row 2 is∑

j -=i φi. The ith column of row 3 is
∏

j,k -=i φjφk. The ith col-
umn of row 4 is

∏
j,k,m -=i φjφkφm. The remaining rows can be

obtained by deduction. For p = 4, we have

Di =





1 1
φ2 + φ3 + φ4 φ1 + φ3 + φ4

φ2φ3 + φ2φ4 + φ3φ4 φ1φ3 + φ1φ4 + φ3φ4
φ2φ3φ4 φ1φ3φ4

1 1
φ1 + φ2 + φ4 φ1 + φ2 + φ3

φ1φ2 + φ1φ4 + φ2φ4 φ1φ2 + φ1φ3 + φ2φ3
φ1φ2φ4 φ1φ2φ3





−1

×





1
0
0
0



 .

For convenience, we present Di for p = 1–4:

p Di Ai1

1 1 1

2 φi1 − φi2 φi1

3 φ2
i1 − φi1φi2 − φi2φi3 − φi1φi3 φ2

i1

4 φ3
i1 − φ2

i1(φi2 + φi3 + φi4) φ3
i1

+φi1(φi2φi4 + φi2φi3 + φi3φi4) − φi2 − φi3 − φi4

Replacing φi1, . . . , φip by their consistent estimates yields D̂i.
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3.2 Cross-Sectional Correlation

Panel unit root and stationarity tests developed under the
assumption of cross-sectional independence are not robust to
cross-sectional correlation in the errors. A large literature has
been developed to remedy this problem. Tests of Moon and
Perron (2004) and Bai and Ng (2002) assume a factor struc-
ture, but power loss can be expected when the errors are in fact
not strongly cross-sectionally correlated. Chang (2002) devel-
oped a panel unit root test, and Harris, Leybourne, and McCabe
(2004) developed a panel stationarity test to allow for general
cross-sectional dependence. But the former maintained as a null
hypothesis that all units are nonstationary, whereas the latter as-
sumed that all units are stationary under the null. Researchers
might find it useful to know just how overwhelming the evi-
dence against the null hypothesis is. An estimate of θ provides
this information.

Suppose that the data-generating process is now

yit = λiFt + uit (9)

and

αi(L)uit = eit, (10)

where αi(L) is a finite pth-order polynomial in L. The variable
Ft in (9) may or may not be observed; if it is not observed, then
a good proxy is assumed to be available. Two approaches that
have been used in the literature are the principal component of
yit and the average of yit. This variable, Ft, generates correla-
tion between two series i and j whenever λi, λj -= 0. In the test
of Bai and Ng (2002), the largest eigenvalue of the N × N pop-
ulation covariance matrix of yit increases with N, so that Ft is
a pervasive factor. Here we do not impose such a restriction
to permit cross-sectional correlation to be strong or weak. We
only assume, as in A2, that vari,∞(λi) > 0. In addition to A1,
A2, and A3, we further assume the following:

A4. β(L)Ft = vt, where the roots of β(L) = 0 are outside the
unit circle.

A5. E(uitvs) = 0 for all i, t, and s; E(αivs) = 0 for all i and s;
and E(λiαj) = 0 for all i and j.

The source of covariation, Ft, may or may not be observed.
However, it must be stationary by A4. To understand how Ft
affects the estimation of θ , consider, without loss of generality,
p = 1 and eit ∼ iid(0,1). The population cross-sectional vari-
ance of yit under (9) is

Vt,∞ = vari,∞(λi)F2
t + vari(ui0)m2t +

t−1∑

j=0

m2j.

The time series properties of the cross-sectional variance ev-
idently depend on the within-group variance of λi and on
the properties of αi and Ft. If vari,∞(λi) = 0, then, trivially,
Vt,∞ is approximately constant if the entire panel is station-
ary and t > t∗, whereas Vt,∞ = t if every unit in the panel has
αi = 1, whatever the properties of Ft. An identical response to
a common source of variation does not induce additional cross-
section variance over the case considered in Theorem 1. Not
surprisingly, Theorem 1 continues to hold.

More generally, there will be variation in λi. But if Ft is sta-
tionary, then F2

t will remain stationary. Consequently, the cross-
sectional variance of the nonstationary panel will still be dom-
inated by the linear trend component. To make this point clear,
suppose that Ft = βFt−1 + vt and αi(L)uit = eit. Then (7) now
becomes

yit = ui0

p∑

j=1

φt
ij +

1
Di

t−1∑

j=1

[Ai1φ
j
i1 + Ai2φ

j
i2 + · · ·

+ Aipφ
j
ip]eit−j + λi

[
t∑

j=0

β jvt−j

]

. (11)

If φi1 = 1 and β < 1, then the variance of the series is still σ 2
i t

Di
plus terms that grow at a slower rate. The cross-sectional vari-
ance of the rescaled panel Diyit

σi
will still increase over time at

rate θ . Therefore, Estimator A remains valid if (F2
t is treated

as a residual in (Vt,N − θ̂ . But because Ft can be serially corre-
lated, the use of robust standard errors to conduct inference will
be essential in this situation. This way of controlling for cross-
sectional correlation can be appealing if Ft is not observed and
no suitable estimate of it is available. However, controlling for
Ft when constructing Di may yield more precise estimates of
the largest autoregressive root. Toward this end, consider an
alternative estimator that generalizes Estimator A to allow for
cross-sectional correlation.

Estimator B.

1. For each i, let êit be the residuals from a least squares
regression of the model

yit = α0 + α1yit−1 + · · · + αpyit−p

+ λi0F̂t + · · · + λiqF̂t−q + eit, (12)

where F̂t can be an aggregate variable or the first prin-
cipal component of a large panel. Denote the coefficient
estimates by (α̂0, α̂i1, . . . , α̂ip, λ̂i0, . . . , λ̂iq).

Then follow steps 2–6 in Estimator A. For large N and large T ,
θ̂ = 1

T

∑T
t=1 (V̂t,N

p−→ θ and (θ̂ − θ)/ωθ̂ ∼ N(0,1).

4. FINITE–SAMPLE PROPERTIES

We use two models to evaluate the finite-sample properties of
our estimator for θ . In each case, the error process is specified
as

uit = (αi1 + αi2)uit−1 − αi2uit−2 + eit + ψeit−1

and

eit ∼ N(0, σ 2
i ).

The nonstationary units are generated by letting αi1 = 1, so that
by construction, the largest autoregressive root is unity. The sta-
tionary units are generated with αi1 ∼ U[.5, γ ]. Many configu-
rations were considered. To conserve space, we report results
only for the following parameterizations:

• Model 1: yit = λi + uit
• Model 1a: λi ∼ U[−1,1], αi2 ∼ U[0, .2], ψ = 0 σi ∼

U[.5,2]
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• Model 1b: λi ∼ U[−1,1]; αi2 = 0, ψi ∼ U(−.8,0),
σ 2

i = 1 ∀i
• Model 2: yit = λiFt + uit

• αi2 ∼ U[0, .2],ψi = 0 ∀i, σi ∼ U[.5,2], β = .5
• Model 2a: Pr(λi = 0) = .5, Pr(λi ∼ N(0,1)) = .5
• Model 2b: λi ∼ U(0,1).

Model 1 has no cross-sectional correlation. Whereas the sta-
tionary units in Model 1a are AR(2) processes, those in
Model 1b are MA(1) processes. Cross-sectional dependence is
allowed in Model 2. Models 2a and 2b have the same dynamic
error structure as Model 1a. Note that because αi varies across
units, there is unconditional cross-sectional heteroscedasticity
in every case.

Simulations were conducted with γ = .8 and .99, where γ

is the upper bound on the persistence parameter of the station-
ary units. The results are similar, and we report only those for
γ = .99. Various combinations of N and T were considered.
Although in theory N and T both need to be large, simula-
tions reveal that the estimator works well with N ≥ 30. The
results are much more sensitive to T . Here, we report results for
N = 30,60 and T = 100,200. We note, however, that increas-
ing N from 60 to 100 yields little gain, but increasing T from
50 to 100 drastically reduces the variance of θ̂ . With T ≥ 200
(not reported), the estimator is approximately mean and median
unbiased. As a matter of practice, the estimator is more suited
for panel data with T ≥ 100.

Because N1 must be an integer, θ is defined in the simulations
as

θ = ceil(θ∗N)

N
,

with θ∗ = [.01, .05, .5, .95,1]. This means that N1 = ceil(θ∗N).
For example, if N = 30, then θ∗ = .05, N1 = 2, and θ = .067.
Because N1 must be at least 1 (as θ must be >0 for the analysis
to be valid), the smallest θ considered in the simulations is .017,
which occurs when N = 60 and N1 = 1.

In the simulations, we fix p to 2 to assess the adequacy of the
asymptotic approximation provided by Theorem 1. However, in
applications, a data-dependent method, such as the Bayes infor-
mation criterion (BIC), can be used. The Newey–West kernel,
K(s,M) = 1 − s

M+1 , with a lag length of M = 2, is used to con-
struct robust t statistics. Results for M = 1 and 4 are similar.
Three hypothesis are being tested:

A. HA
0 : θ = θ0; HA

1 : θ < θ0; HA
2 : θ -= θ0,

B. HB
0 : θ = .01; HB

1 : θ > .01, and
C. HC

0 : θ = 1; HC
1 : θ < 1.

Hypothesis C tests that all units are I(1) against the alternative
that at least some unit is stationary. Although we cannot test the
hypothesis that all units are stationary, we can test whether θ is
slightly larger than 0, as we do in Hypothesis B. If we reject (B),
then we also must reject the hypothesis that θ = 0. Hypothe-
sis A allows the researcher to test hypotheses other than the
two extremes. In the simulations, we test whether θ = θ0, the
true θ . The tests are based on the 5% asymptotic critical value.
Thus, for hypotheses (A and C), the critical value is −1.64, and
for B, it is 1.64. The critical value for the two-sided test under
A is 1.96.

Table 1 reports results for Model 1 using Estimator A. The
finite-sample rejection rates, the mean and median estimates
of θ , and the variance of θ̂ in the simulations (scaled by N/θ )
are provided. At (N,T) = (30,100), the finite-sample variance
of the estimator is larger than suggested by theory, resulting in
some size distortion in the studentized tests. However, the vari-
ance of the estimator tends to the theoretical value of 2 as N and
T increase. Univariate unit root tests tend to exhibit enormous
size distortions when the moving average parameter is negative,
and panel tests also tend to have this problem, albeit less severe.
Our estimates of θ are not sensitive to the presence of a negative
moving average parameter, as shown in the lower part of Ta-
ble 1. We also estimated Models 1a and 1b using Estimator B
instead of Estimator A, that is, when cross-sectional correla-
tion was not present but was controlled for. The results are very
similar to those in Table 1 and thus are not reported. For exam-
ple, when (T,N) = (200,60) and θ = .5, θ̂ is .535 on average,
compared with .518 in Table 1. This is not surprising, because
the inclusion of irrelevant regressors does not affect consistent
estimation of the dynamic parameters and thus of Di.

The two-sided test for the null hypothesis that θ = θ0 is more
precise than the one-sided test. Note that when Hypothesis B
(that θ = .01) is tested, the rejection rate is only around .1 even
though the true θ is .068. In addition, when Hypothesis C (that
θ = 1) is tested and the true θ is .95, the test has a rejection rate
of around .1, even though the hypothesis is false. This shows
that the power of testing θ = θ0 against close alternatives can
be low, a result shared by univariate unit root and stationarity
tests. When the true θ is .5 and the hypothesis that θ = .01
or θ = 1 is tested, rejection rates are well below 1, even with
larger (N,T). More importantly, it is not clear how a researcher
should proceed when Hypotheses B and C are both rejected.
In contrast, θ̂ is informative about the extent of heterogeneity
among the panel units.

Table 2 presents results for the DGP 2 using Estimator B;
Table 3, those using Estimator A. The difference is that Estima-
tor B explicitly controls for cross-sectional correlation. Pesaran
(2005) suggested that ȳt = 1

N

∑N
i=1 yit and its lags can approxi-

mate the latent stationary common factor well when N is large.
We use ((ȳt,(ȳt−1) to approximate Ft because stationarity of
Ft is a crucial aspect of the analysis. The estimator remains
fairly precise whether the cross-sectional correlation is strong
(bottom part) or partial (top part). An alternative is to proxy Ft
by the first principal component of (yit. The results are similar
and thus are not reported.

Table 3 reveals that θ̂ tends to be downward-biased when
cross-sectional correlation is omitted. The bias can be nontriv-
ial when the cross-sectional correlation is strong. For example,
when (T,N) = (100,60), θ = .5, and there is a common factor
(bottom part), the mean and median of θ̂ are .464 and .449, in-
stead of .498 and .482 as reported in the bottom part of Table 2.
Although the bias is smaller when we omit weak correlation
(top part), in practice we often do not know whether cross-
sectional correlation is strong or weak or present at all. Control-
ling for cross-sectional correlation when none is present pro-
vides more robust inference than ignoring the correlation when
it is in fact strong.

The proposed estimator is
√

N consistent for the fraction
of units that are nonstationary. Then N̂1 = [θ̂ · N] is the es-
timated number of nonstationary units, where [·] denotes the
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Table 1. DGP: yit = λi + uit , uit = (αi1 + αi2)uit−1 − αi2uit−2 + eit + ψeit−1, eit ∼ N(0, σ 2
i )

H0 : θ = θ0 H0 : θ = θ0 H0 : θ = .01 H0 : θ = 1
T N θ0 θ̂ med(θ̂) N var(θ̂)/θ H1 : θ < θ0 H1 : θ -= θ0 H1 : θ > θ0 H1 : θ < θ0

Estimator A: σi ∼ U[.5, 2], αi2 ∼ U[0, αb
2], αb

2, = .2, ψ = 0
100 30 .033 .073 .056 3.119 0 .023 .102 1.000
100 30 .067 .087 .062 2.946 .004 .026 .128 .999
100 30 .500 .517 .474 2.996 .116 .114 .931 .783
100 30 .967 .996 .957 2.776 .094 .114 1.000 .119
100 30 1.000 1.035 1.002 2.923 .099 .103 1.000 .099
200 30 .033 .037 .017 2.348 .001 .016 .057 1.000
200 30 .067 .073 .053 1.903 .018 .012 .135 1.000
200 30 .500 .516 .492 2.362 .082 .079 .934 .805
200 30 .967 .961 .924 2.403 .094 .087 .999 .123
200 30 1.000 .999 .970 2.247 .089 .070 1.000 .089
100 60 .017 .037 .028 3.752 0 .027 .058 1.000
100 60 .050 .072 .058 3.086 0 .031 .229 1.000
100 60 .500 .531 .513 2.916 .082 .114 1.000 .922
100 60 .950 .962 .953 2.657 .097 .111 1.000 .156
100 60 1.000 1.017 1.010 2.751 .106 .120 1.000 .106
200 60 .017 .027 .019 2.219 0 .013 .029 1.000
200 60 .050 .056 .045 2.322 .026 .031 .174 1.000
200 60 .500 .509 .497 2.318 .074 .085 1.000 .946
200 60 .950 .964 .953 2.414 .074 .087 1.000 .125
200 60 1.000 1.011 .999 2.148 .059 .066 1.000 .059

Estimator A: ψ ∼ U(−.80, 0), αb
2 = 0, σi = 1

100 30 .033 .043 .024 2.909 0 .015 .049 1.000
100 30 .067 .074 .053 2.530 .025 .024 .115 1.000
100 30 .500 .514 .494 2.579 .103 .092 .924 .798
100 30 .967 .989 .956 2.706 .084 .092 .996 .115
100 30 1.000 1.008 .972 2.666 .089 .088 .998 .089
200 30 .033 .040 .023 1.855 0 .009 .041 1.000
200 30 .067 .070 .047 2.421 .080 .054 .118 1.000
200 30 .500 .507 .474 2.209 .068 .063 .933 .814
200 30 .967 .961 .949 2.229 .089 .069 .999 .109
200 30 1.000 .995 .977 2.258 .089 .071 1.000 .089
100 60 .017 .026 .017 2.702 0 .008 .034 1.000
100 60 .050 .064 .052 2.625 0 .019 .175 1.000
100 60 .500 .506 .492 2.396 .092 .089 1.000 .950
100 60 .950 .961 .949 2.650 .091 .095 1.000 .139
100 60 1.000 1.015 1.001 2.505 .085 .083 1.000 .085
200 60 .017 .025 .018 1.822 0 .004 .023 1.000
200 60 .050 .055 .043 2.385 .016 .014 .142 1.000
200 60 .500 .505 .493 2.361 .080 .077 1.000 .942
200 60 .950 .961 .946 2.230 .071 .067 1.000 .115
200 60 1.000 1.011 1.003 2.263 .067 .070 1.000 .067

integer part. A natural question to ask is whether we can re-
cover the identity of those units that are nonstationary. Two
possibilities come to mind. The first is to consider all subsets
of size N̂1 = [θ̂ · N] for which panel unit root tests cannot re-
ject. This is the approach followed by Kapetanios (2003), who
proposed carrying out a sequence of panel unit root tests on a
reduced dataset, where the reduction is achieved by dropping
series deemed to be stationary. For large N̂1, this can be com-
putationally challenging, and, more importantly, the solution set
may not be unique.

A second approach is to take as starting point that units with
an autoregressive unit root have variance that increases with
time. Because these autoregressive roots (i.e., φi1, . . . , φip) are

calculated when constructing D̂i, it seems natural to take advan-
tage of this information. More precisely, we order the units by
size |φ̂i1|, the estimated largest autoregressive root, and take the
first N̂1 units as the nonstationary ones. Note that whether a unit
is classified to be in the stationary or the nonstationary panel
is determined by the ranking of |φ̂i1| and θ̂ . Individual unit
root tests are not conducted. In simple experiments, this scheme
works very well. The correct classification rate is around .6 even
when N and T are quite small. A formal proof that the non-
stationary units can be recovered is beyond the scope of this
analysis. But the point to be emphasized is that in mixed pan-
els, θ bears information about the cross-sectional properties of
αi that standard panel unit root tests cannot deliver.
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Table 2. DGP: yit = λiFt + uit , uit = αi1uit−1 + eit , eit ∼ N(0, σ 2
i ), Ft = βFt−1 + wt , wt ∼ N(0,1)

H0 : θ = θ0 H0 : θ = θ0 H0 : θ = .01 H0 : θ = 1
T N θ0 θ̂ med(θ̂) N var(θ̂)/θ H1 : θ < θ0 H1 : θ -= θ0 H1 : θ > θ0 H1 : θ < θ0

Estimator B: β = .5, λi ∼ .5 N(0, 1) + .5(0)
100 30 .033 .049 .032 2.535 0 .010 .045 1.000
100 30 .067 .088 .069 2.206 .001 .011 .094 1.000
100 30 .500 .499 .458 2.511 .085 .080 .901 .810
100 30 .967 .926 .888 2.607 .124 .112 .994 .151
100 30 1.000 1.042 1.004 2.924 .079 .092 1.000 .079
200 30 .033 .048 .031 2.516 0 .009 .042 1.000
200 30 .067 .095 .074 2.688 0 .020 .099 1.000
200 30 .500 .478 .453 2.011 .094 .066 .909 .848
200 30 .967 .961 .933 2.345 .070 .069 .998 .092
200 30 1.000 1.001 .981 2.328 .081 .068 .998 .081
100 60 .017 .041 .033 3.537 0 .012 .050 1.000
100 60 .050 .079 .070 2.576 0 .022 .184 1.000
100 60 .500 .496 .483 2.516 .091 .088 .999 .947
100 60 .950 .992 .974 2.819 .065 .100 1.000 .098
100 60 1.000 1.030 1.017 2.868 .074 .094 1.000 .074
200 60 .017 .029 .020 2.503 0 .010 .040 1.000
200 60 .050 .048 .039 1.402 .002 .005 .086 1.000
200 60 .500 .474 .460 2.112 .110 .068 .996 .971
200 60 .950 .956 .937 2.319 .064 .061 1.000 .102
200 60 1.000 .995 .979 2.242 .080 .064 1.000 .080

Estimator B: β = .5, λi ∼ N(0, 1)
100 30 .033 .040 .024 2.225 0 .007 .033 1.000
100 30 .067 .071 .053 1.924 0 .011 .071 1.000
100 30 .500 .476 .451 2.201 .117 .093 .901 .842
100 30 .967 1.014 .986 2.882 .065 .080 .998 .091
100 30 1.000 1.045 1.011 3.019 .074 .096 .997 .074
200 30 .033 .037 .018 2.519 0 .015 .043 1.000
200 30 .067 .048 .030 1.173 .087 .036 .053 1.000
200 30 .500 .440 .420 1.841 .145 .093 .859 .886
200 30 .967 .902 .875 2.276 .119 .090 .996 .154
200 30 1.000 .960 .931 2.404 .096 .089 .998 .096
100 60 .017 .031 .022 2.731 0 .015 .036 1.000
100 60 .050 .054 .043 2.195 .003 .019 .121 1.000
100 60 .500 .481 .462 2.409 .120 .089 .995 .953
100 60 .950 .936 .930 2.467 .115 .092 1.000 .161
100 60 1.000 1.001 .987 3.023 .098 .114 1.000 .098
200 60 .017 .020 .014 1.159 0 0 .009 1.000
200 60 .050 .053 .042 2.056 .011 .014 .122 1.000
200 60 .500 .469 .459 1.959 .110 .080 .999 .977
200 60 .950 .926 .912 2.082 .085 .064 1.000 .146
200 60 1.000 .957 .951 2.130 .117 .072 1.000 .117

5. NONSTATIONARY F t

We use assumption A4 to rule out the case that Ft is nonsta-
tionary for two reasons. First, if Ft is pervasive and nonstation-
ary, then every series in the panel is nonstationary. In such a
case, θ is a misleading indicator of how many units in the panel
are nonstationary, because it has nothing to do with the fraction
of units in the mixed panel having αi = 1. Instead, we should
estimate the number of common trends in the panel using the
PANIC procedure developed by Bai and Ng (2004). Assump-
tion A4 also rules out time-specific effects of the form Ft = f (t),
of which Ft = t is the case of special interest. To understand
why, consider

yit = λit + uit,

where uit = αiuit−1 + eit, eit ∼ iid(0, σ 2). The cross-sectional
variances are

V1
t,∞ = vari(λi)t2 + s1

t,∞

and

V0
t,∞ = var(λi)t2 + s0

t,∞.

Although a linear trend that increases at the rate of θ still
remains in the mixed panel, we will need to control for the
quadratic trend to estimate θ .

Theorem 2. Suppose that yit = λit + uit, λi is independent of
eit for all i and t, uit = αiui−1 + eit, and eit ∼ iid(0,1). Let θ
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Table 3. DGP: yit = λiFt + uit , uit = αi1uit−1 + eit , eit ∼ N(0, σ 2
i ), Ft = βFt−1 + wt , wt ∼ N(0,1)

H0 : θ = θ0 H0 : θ = θ0 H0 : θ = .01 H0 : θ = 1
T N θ0 θ̂ med(θ̂) N var(θ̂)/θ H1 : θ < θ0 H1 : θ -= θ0 H1 : θ > θ0 H1 : θ < θ0

Estimator A: β = .5, λi ∼ .5 N(0, 1) + .5(0)
100 30 .033 .046 .030 2.307 0 .009 .043 1.000
100 30 .067 .083 .065 1.985 .002 .010 .091 1.000
100 30 .500 .475 .436 2.307 .114 .089 .905 .852
100 30 .967 .862 .827 2.279 .181 .140 .994 .223
100 30 1.000 .966 .929 2.501 .131 .105 1.000 .131
200 30 .033 .045 .029 2.296 0 .009 .041 1.000
200 30 .067 .092 .071 2.593 0 .021 .103 1.000
200 30 .500 .457 .433 1.847 .113 .084 .909 .885
200 30 .967 .913 .883 2.120 .106 .082 .997 .146
200 30 1.000 .950 .925 2.098 .116 .087 .999 .116
100 60 .017 .039 .032 3.245 0 .011 .050 1.000
100 60 .050 .076 .067 2.386 0 .021 .186 1.000
100 60 .500 .475 .461 2.329 .124 .105 .999 .965
100 60 .950 .941 .925 2.520 .103 .096 1.000 .166
100 60 1.000 .978 .962 2.588 .132 .107 1.000 .132
200 60 .017 .028 .020 2.395 0 .010 .040 1.000
200 60 .050 .047 .037 1.353 .008 .005 .086 1.000
200 60 .500 .463 .449 2.019 .129 .077 .997 .978
200 60 .950 .924 .903 2.163 .094 .075 1.000 .145
200 60 1.000 .962 .945 2.096 .109 .074 1.000 .109

Estimator A: β = .5, λi ∼ N(0, 1)
100 30 .033 .038 .023 2.048 .001 .008 .033 1.000
100 30 .067 .068 .050 1.784 .001 .011 .071 1.000
100 30 .500 .452 .427 1.971 .150 .118 .903 .885
100 30 .967 .945 .915 2.476 .114 .095 .998 .141
100 30 1.000 .971 .944 2.599 .126 .117 .996 .126
200 30 .033 .036 .017 2.397 .001 .015 .042 1.000
200 30 .067 .047 .029 1.113 .107 .050 .050 1.000
200 30 .500 .410 .390 1.650 .206 .145 .854 .925
200 30 .967 .859 .829 2.068 .174 .118 .996 .217
200 30 1.000 .908 .881 2.154 .152 .108 .998 .152
100 60 .017 .029 .021 2.574 0 .017 .037 1.000
100 60 .050 .052 .040 2.022 .006 .017 .116 1.000
100 60 .500 .459 .442 2.200 .156 .115 .995 .973
100 60 .950 .890 .885 2.197 .159 .129 1.000 .232
100 60 1.000 .937 .926 2.642 .178 .140 1.000 .178
200 60 .017 .019 .014 1.077 0 0 .009 1.000
200 60 .050 .052 .041 1.965 .016 .016 .126 1.000
200 60 .500 .456 .446 1.851 .131 .099 .999 .983
200 60 .950 .896 .882 1.950 .123 .075 1.000 .187
200 60 1.000 .926 .919 1.986 .148 .106 1.000 .148

be the fraction of the panel with αi = 1. Let θ̂ be obtained from
least squares estimation of

(V̂t,N = θ + β(t2 + ηt,N .

If N,T → ∞, then
√

N√
T

(θ̂ − θ)
d−→ N

(
0,

32θ vari,∞(λi)

15

)
.

Because the regression error variance increases more quickly
when there are individual specific time effects, the variance of
the estimator vanishes only if T

N → 0. Consistency of the esti-
mator is not assured as in the earlier case when incidental trends
were absent. Moon, Perron, and Phillips (2005) also found that

panel unit root tests have lower power in the presence of “in-
cidental trends.” In our setting, the more heterogeneous the re-
sponse to the common time effect, the more imprecise the es-
timated fraction of the panel that is nonstationary. However, β̂

is
√

NT consistent, where β = var(λi). Although not the focus,
the present framework also provides an estimate of the variance
of the incidental trends.

Implicit in Theorem 2 is the assumption that the nonstation-
ary units are the only source of variation that is of order t. If
there exists Ft (stochastic or deterministic) with variances pro-
portional to t (e.g., Ft = √

t), then we will not be able to identify
θ . In that case, θ̂ estimates only an upper bound for θ . But, if
this is the case, then all existing unit root tests (panel or univari-
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ate) also will be misspecified, because they too do not allow for
such variations in the data.

As it stands, Theorem 2 assumes that eit is iid across i and t.
We want to allow for higher-order dynamics, heteroscedastic
errors, and cross-sectional correlation. A slight variation to Es-
timator B leads to the following estimator.

Estimator C.

1. Let êit be the residuals from a least squares regression of
yit on a constant, p lags of yit, t, and possibly Ft or its
proxies. Denote the autoregressive coefficient estimates
by (α̂i1, . . . , α̂ip).

2. Define σ̂ 2
i = 1

T

∑T
t=1 ê2

it.
3. Let φ̂i1, . . . , φ̂ip be the roots of α̂i(L) = 0 and construct

D̂i.
4. Let ŷit = yit/σ̂i, and let V̂t,N be the cross-sectional vari-

ance of ŷit.
5. Consider least squares regression of

(V̂t,N = θ + β(t2 + ηt,N . (13)

6. Let ωθ̂ be the heteroscedastic autocorrelation-consistent

standard errors. Then t = (θ̂−θ)
ω

θ̂
≈ N(0,1) for large N

and T .

Because we are interested only in the component in the cross-
sectional variance that is linear in time, Estimator C is no longer
the sample mean of (V̂t,N . Instead, one must control for that
component in V̂t,N that grows quadratically with time. Nonethe-
less, the studentized statistic can be used for inference.

To verify the properties of Estimator C, we simulate data as
follows:

• Model 3: yit = λit + uit
• Model 3a: λi = 0 with probability δ and λi ∼ U(−.1, .1)

with probability 1 − δ

• Model 3b: λi ∼ U(−.1, .1),

where uit is the same as in Model 1a. The results are reported
in Table 4. The estimator exhibits small mean and median bias,
but the variance is large even with T = 200. We report results
for T = 300 and 600 with N = 200 and 400, much larger than
in the previous tables. Even with this many observations, the
asymptotic approximation is not very good, especially when θ

is small. Although the two-sided test is quite precise, the sample
size required to further reduce the variability of the estimator
severely restricts the estimator’s usefulness.

6. APPLICATIONS

In the first application, we consider a panel of real exchange
rates and estimate what fraction of the panel is nonstationary.
Data for nominal exchange rates and the consumer price in-
dices are obtained from the International Finance Statistics. We
use data from 1974:1–1997:4 for 21 countries: Canada, Austria,
New Zealand, Australia, Belgium, Denmark, Finland, France,
Germany, Ireland, Italy, Netherlands, Norway, Spain, Sweden,
Switzerland, U.K., Japan, Korea, Singapore, and Thailand. We
use the United States as the numeraire country. Figure 2 plots
the cross-sectional variance of the log real exchange rates. The

cross-sectional variance does not exhibit a positive trend. If any-
thing, the trend line is negatively sloped. With p is chosen by
the BIC, Estimator A yields a θ̂ of −.123, and the t statistic for
testing θ = .01 is .114. Estimator B, using the averaged changes
in real exchange rate to control for cross-sectional correlation,
yields a θ̂ of −.888. The t statistic for testing θ = .01 is −.189.
Using the growth in U.S. industrial production as (Ft yields the
same conclusion, that θ̂ is not statistically different from .01.

In a second application, we consider earnings of male house-
hold head in the PSID for whom 25 years of data are available
from 1976 onward. This gives N = 104 and T = 25. Following
the earnings dynamics literature, life cycle and observed hetero-
geneity effects are removed by regressing log earnings on age,
age-squared, and education dummies, and the residuals (which
we call income) are used for analysis. Covariance structure es-
timation using the moments of the residuals gives ARMA esti-
mates of .856 and −.219, which are similar to results reported in
the literature. However, such estimation ignores the possibility
of heterogeneity in the dynamic parameters. The cross-sectional
variance of income, plotted in Figure 3, seems to be drifting up-
ward. We again select p using the BIC. Estimator A yields a θ̂
of .149, and the t statistic for testing θ = .01 is 1.36. Estimator
B yields a θ̂ of .188, with a t statistic of 1.486. The one-tailed
10% critical value is 1.281, and we reject the null hypothesis
that θ = .01 at the 10% level. However, we cannot reject the
hypothesis that θ = .2 or θ = .35 whether we use Estimator A
or B. Estimator C yields a θ̂ of −.072 and the hypothesis that
θ = .01 cannot be rejected. However, var(λi) is estimated to be
.01 and not statistically different from 0, casting doubt on the
validity of Estimator C. With the caveat of small T in mind,
the data suggest that earnings for one-fifth to as many as one-
third of the household heads in the sample may have stochastic
trends.

7. CONCLUSION

This article exploits the fact that the cross-sectional variance
of nonstationary units has a linear time trend to obtain an esti-
mate of the fraction of units in a sample that are differenced sta-
tionary processes. The procedure is valid under cross-sectional
correlation, provided that the correlation is stationary. An ad-
vantage of this approach is that the point estimate of θ is infor-
mative about the properties of the panel. In contrast, rejecting
the null hypothesis that all units in the panel are nonstationary
often leaves the researcher with little guidance on how to alter-
natively characterize the data.
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APPENDIX: PROOFS

Proof of Lemma 1

The DGP is yit = λi + uit, uit = αiuit−1 + eit with eit ∼
N(0, σ 2

e ) ∀i. Without loss of generality, σ 2
e = 1. For each t =
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Table 4. DGP: yit = λit + uit , uit = αi1uit−1 + eit , eit ∼ N(0, 1)

H0 : θ = θ0 H0 : θ = θ0 H0 : θ = .01 H0 : θ = 1
T N θ0 θ̂ med(θ̂) N var(θ̂)/θ H1 : θ < θ0 H1 : θ -= θ0 H1 : θ > θ0 H1 : θ < θ0

Estimator C: β = .5, λi ∼ .5 N(0, 1) + .5(0)
300 200 .010 .036 .034 18.592 .001 .016 .046 1.000
300 200 .050 .077 .074 5.725 0 .023 .261 1.000
300 200 .500 .493 .492 5.213 .079 .076 .988 .985
300 200 .950 .930 .926 4.699 .097 .087 1.000 .148
300 200 1.000 .962 .962 4.184 .106 .079 1.000 .106
600 200 .010 .027 .025 9.415 0 .003 .008 1.000
600 200 .050 .070 .072 9.570 .034 .051 .181 1.000
600 200 .500 .505 .505 2.604 .061 .072 .991 .983
600 200 .950 .937 .938 2.698 .094 .081 1.000 .154
600 200 1.000 .991 .988 2.464 .070 .067 1.000 .070
300 400 .010 .039 .038 16.035 0 .044 .096 1.000
300 400 .050 .075 .073 6.171 .003 .051 .488 1.000
300 400 .500 .500 .498 5.157 .070 .071 1.000 1.000
300 400 .950 .919 .913 3.998 .103 .068 1.000 .226
300 400 1.000 .967 .966 4.375 .124 .091 1.000 .124
600 400 .010 .026 .025 5.453 0 .001 .005 1.000
600 400 .050 .065 .063 6.391 .010 .038 .262 1.000
600 400 .500 .493 .489 2.586 .071 .070 1.000 .999
600 400 .950 .940 .940 2.614 .085 .065 1.000 .166
600 400 1.000 .984 .982 2.552 .088 .070 1.000 .088

Estimator C: β = .5, λi ∼ U[−.1, .1]
300 200 .010 .043 .042 15.445 0 .012 .039 1.000
300 200 .050 .075 .071 12.111 .006 .031 .193 1.000
300 200 .500 .499 .493 7.288 .081 .080 .990 .977
300 200 .950 .916 .910 6.925 .104 .095 1.000 .176
300 200 1.000 .977 .977 6.254 .096 .083 1.000 .096
600 200 .010 .029 .029 6.923 0 0 .001 1.000
600 200 .050 .067 .064 8.117 .005 .015 .100 1.000
600 200 .500 .503 .496 5.299 .083 .091 .952 .939
600 200 .950 .942 .939 3.613 .079 .065 1.000 .120
600 200 1.000 .998 1.010 4.407 .094 .094 1.000 .094
300 400 .010 .035 .032 17.039 0 .013 .055 1.000
300 400 .050 .069 .069 12.498 .005 .047 .362 1.000
300 400 .500 .502 .502 7.504 .071 .081 1.000 1.000
300 400 .950 .927 .929 6.566 .106 .081 1.000 .201
300 400 1.000 .974 .973 6.023 .118 .095 1.000 .118
600 400 .010 .028 .027 8.160 0 .001 .001 1.000
600 400 .050 .067 .067 7.300 .004 .008 .151 1.000
600 400 .500 .504 .501 5.233 .077 .079 .998 .998
600 400 .950 .940 .935 3.952 .079 .078 1.000 .145
600 400 1.000 .996 .999 4.500 .082 .091 1.000 .082

1, . . . ,T ,

Vt,N = 1
N

N∑

i=1

(yit − Yt,N)2

= θV1
t,N1

+ (1 − θ)V0
t,N0

+ θ(1 − θ)g2
t,N (A.1)

where gt,N = (Y1
t,N − Y0

t,N), N0 is the number of units with αi <

1, N1 is the number of units with αi = 1, and N = N1 +N0. Here
θ = N1/N is treated as a fixed parameter so that N1 = θN → ∞
as N → ∞, and likewise for N0 = (1 − θ)N. The observations
are ordered such that the first N1 units have αi = 1. The proof
consists of showing that for fixed t and as N → ∞, (Vt,N

p−→
(Vt,∞ = θ(V1

t,∞.

We begin with (V1
t,N1

. Because (V1
t,N1

= (var1
i,N1

(λi) +
(s1

t,N1
and var1

i,N1
(λi)

p−→ vari,∞(λi) for all t regardless of αi,

by A2, (var1
i,N1

(λi)
p−→ 0. It remains to consider (s1

t,N1
. By

direct calculations,

s1
t,N1

= 1
N1

N1∑

i=1

u2
it −

(
1

N1

N1∑

i=1

uit

)2

= 1
N1

N1∑

i=1

(u2
it−1 + e2

it + 2uit−1eit)

−
(

1
N1

N1∑

i=1

uit−1 + eit

)2
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Figure 2. Cross-sectional variance of real exchange rates.

=
[

1
N1

N1∑

i=1

u2
it−1 −

(
1

N1

N1∑

i=t

uit−1

)2]

+
[

1
N1

N1∑

i=1

e2
it −

(
1

N1

N1∑

i=1

eit

)2]

+ 2

[
1

N1

N1∑

i=1

uiteit −
(

1
N1

N1∑

i=1

uit−1

)(
1

N1

N1∑

i=1

eit

)]

≡ s1
t−1,N1

+ (σ 1
N1

)2 + 2 cov1
i,N1

(uit−1, eit).

Let η1
t,N1

= cov1
i,N1

(uit, eit), which is a sample covariance.

For fixed t, η1
t,N1

p−→ η1
t,∞ = Ei(uit−1eit) = 0. Thus, as N1 →

∞,

(s1
t,N1

=
(
σ 1

N1

)2 + 2ηt,N1

p−→ (s1
t,∞ = 1 = (V1

t,∞.

It remains to consider the last two terms of (A.1). Now
s0

t,N0

p−→ s0
t,∞ and s0

t,∞ ≈ 0 for any t > t∗ such that mt∗ → 0.
Finally, gt,N = Y1

t,N1
− Y0

t,N0
. Because λi is independent αi, the

mean and variance of λi are the same in the two samples. This
implies that gt,N = Y1

t,N1
−Y0

t,N0
≈ U1

t,N1
−U0

t,N0
. But U0

t,N0

p−→

Figure 3. Cross-sectional variance of PSID earnings.
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0 for t > t∗ and U1
t,N1

→ U1
0,∞, which does not depend on t.

Thus gt,N → gt,∞ = U1
0,∞ and Vt,N

p−→ Vt,∞ = θV1
t,∞ + c. Be-

cause c = θ(1 − θ)U1
0,∞ does not depend on t, (Vt,∞ = θ .

The following result is used in the proof of Theorem 1.

Lemma A.1. Suppose that gt = gt−1 + vt, vt ∼ N(0, σ 2
v ).

Then g2
t is a heteroscedastic random walk with a drift of σ 2

v
and conditional variance of 4σ 4

v · t − 2σ 4
v .

By definition, g2
t = g2

t−1 + v2
t + 2gt−1vt. To establish that g2

t
is a unit root with drift and heteroscedastic error, we need to
show that zt = v2

t + 2gt−1vt has a nonzero conditional mean
and a trend component in the conditional variance. Let It−1 be
the past history of gt. Because vt ∼ N(0, σ 2

v ), E(zt|It−1) = σ 2
v ,

which constitutes the drift of g2
t . Furthermore, E(z2

t |It−1) =
3σ 4

v + 4(t − 1)σ 4
v , so that var(zt|It−1) = 4σ 4

v · t − 2σ 4
v , which

is the innovation variance of g2
t .

Let gt,N = Y1
t,N1

−Y0
t,N0

= U1
t,N1

−U0
t,N0

+op(1). Thus g2
t,N =

(U1
t,N1

)2 + (U0
t,N0

)2 − 2U1
t,N1

U0
t,N0

+ op(1), which is domi-
nated by (U1

t,N1
)2. Because (U1

t,N1
= ε1

t,N1
and ε1

t,N1
is a sam-

ple average of eit, ε1
t,N1

is approximately normally distrib-
uted. Thus U1

t,N1
is approximately a Gaussian random walk. By

Lemma A.1, ((U1
t,N1

)2 has a mean of (σ 1
ε,N1

)2 and variance of

order 4t(σ 1
ε,N1

)4. But (σ 1
ε,N1

)2 = Op(N−1
1 ). Thus for a given t,

(U1
t,N1

) has a drift and variance of order 1/N1 and t/N2
1 . Sum-

ming over t, 1
T

∑T
t=1(g

2
t,N) has mean and variance of order 1/N1

and 1/N2
1 , which tend to 0 as N1 → ∞. We use this result in

what follows.

Proof of Theorem 1

Let η1
t,N1

= cov1
i,N1

(uit−1eit). The estimator is

θ̂ = 1
T

T∑

t=1

(Vt,N

= θ
1
T

T∑

t=1

(V1
t,N1

+ (1 − θ)
1
T

T∑

t=1

V0
t,N0

+ θ(1 − θ)
1
T

T∑

t=1

g2
t,N .

Because (V0
t,N0

is negligible,

θ̂ = θ
1
T

T∑

t=1

(V1
t,N1

+ θ(1 − θ)
1
T

T∑

t=1

g2
t,N + op(1)

= θ
1
T

T∑

t=1

[
(var1

i,N(λi) + (σ 1
N1

)2 + 2 cov1
i,N1

(uit−1eit)
]

+ θ(1 − θ)
1
T

T∑

t=1

g2
t,N + op(1)

= θ
1
T

T∑

t=1

[
1 + 2η1

t,N1

]
+ op(1),

because (σ 1
N1

)2 p−→ 1 and (var1
i,N(λi)

p−→ 0, and using the im-
plication of Lemma A.1. Multiplying by

√
N,

√
N(θ̂ − θ) =

√
N

T

T∑

t=1

2θη1
t,N1

+ op(1).

Now η1
t,N1

is a cross-sectional sample covariance. It converges

to Ei(yit−1eit) = 0 for all t with N1 var(η1
t,N1

)
p−→ (t − 1)σ 4

e =
(t − 1) because σ 2

e = 1. Thus, as T → ∞,

N1 var

(
1
T

T∑

t=1

2θη1
t,N1

)

= 4θ2 1
T2

T∑

t=1

t + o(1) → 2θ2,

and because θ = N1/N, by definition,

N var

(
1
T

T∑

t=1

2θη1
t,N

)

= N1

θ
var

(
1
T

T∑

t=1

2θη1
t,N1

)
p−→ 2θ.

Because the variance of η1
t,N1

is linear in t, time averaging does
not accelerate the rate of convergence. Thus we have

√
N(θ̂ −

θ)
d−→ N(0,2θ) as N → ∞, and then T → ∞.

Proof of Theorem 2

The DGP is yit = λi · t + uit with uit = αiuit−1 + eit, eit ∼
iid(0, σ 2

e ), σ 2
e = 1, and λi independent of αi and eit for all i

and t. We again need to evaluate

Vt,N = θV1
t,N1

+ (1 − θ)V0
t,N0

+ θ(1 − θ)g2
t,N .

For this model,

V1
t,N1

= s1
t,N1

+ var1
i,N1

(λi)t2 + 2 cov1
i,N1

(λit,uit).

First differencing and substituting in (s1
t,N1

, from Theorem 1,
we have

(V1
t,N1

= (s1
t,N1

+ var1
i,N1

(λi)(t2 + 2( cov1
i,N1

(λit,uit)

= (σ 1
N1

)2 + var1
i,N1

(λi)(t2 + 2 cov1
i,N1

(uit−1, eit)

+ 2( cov1
i,N1

(λit,uit)

= 1 + var1
i,N1

(λi)(t2 + η1
t,N1

+ op(1), (A.2)

where η1
t,N1

= 2 cov1
i,N1

(uit−1, eit) + 2( cov1
t,N1

(λit,uit) and we

have used the fact that (σ 1
i,N1

)2 p−→ 1. Similarly, V0
t,N0

= s0
t,N0

+
var0

i,N0
(λi)t2 + 2 cov0

i,N0
(λit,uit). First differencing gives

(V0
t,N0

= var0
i,N0

(λi)(t2 + η0
t,N0

+ op(1), (A.3)

where η0
t,N0

= 2( cov0
i,N0

(λi,uit), and we have used the fact that
(s0

t,N0
is approximately 0.

By assumption, the distribution of λi does not depend on αi.
This implies that gt,N ≈ U1

t,N1
− U0

t,N0
, and the variance of λi in

the two samples can be replaced by the common vari,∞(λi) for
large N. Then (A.2) and (A.3), can be used to rewrite (A.1) as

(Vt,N = θ + vari,N(λi)(t2 + ηt,N + op(1)

= θ + β(t2 + ηt,N + op(1), (A.4)

where β = vari,∞(λi) and ηt,N = θη1
t,N1

+ (1 − θ)η0
t,N0

is dom-
inated by 2θ( cov1

i,N1
(λit,uit). To derive its properties, first
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note that cov1
i,N1

(λit,uit) is a sample moment, and a central

limit theorem applies. In particular,
√

N1 cov1
i,N1

(λit,uit)
d−→

N(0,vari,∞(λi)t3σ 2
e ). Because eit is serially uncorrelated by as-

sumption and σ 2
e = 1, var((

√
N1 cov1

i,N1
(λit,uit)) =

vari,∞(λi)t2 + o(t). Thus, for fixed t,
√

N2θ( cov1
i,N1

(λit,

uit)
d−→ N(0,4θ vari,∞(λi)t2 + o(t)) and

√
Nηt,N

d−→ N
(
0,4θ vari,∞(λi)t2 + o(t)

)
. (A.5)

Consider a least squares regression of (Vt,N on zt = (1,(t2),
and let (θ̂ , β̂)′ be the coefficient estimates. Define DT =
diag(T1/2T3/2). Then
√

N
T

DT

((
θ̂

β̂

)
−

(
θ

β

))

=
[

D−1
T

T∑

t=1

ztz′
tD

−1
T

]−1 (
T−3/2

T−5/2

) T∑

t=1

√
NztηtN,

noting that

D−1
T

T∑

t=1

ztz′
tD

−1
T

p−→
(

1 1
1 4/3

)
= Q.

Using (A.5),

var

( √
N

T3/2

T∑

t=1

ηt,N

)

= 4θT−3
T∑

t=1

t2 = 4θ vari,∞(λi)/3

and

var

( √
N

T5/2

T∑

t=1

(t2 · ηtN

)

= 16θT−5
T∑

t=1

t4 = 16θ vari,∞(λi)/5.

Thus
(

T−3/2

T−5/2

) T∑

t=1

zt
√

Nηt,N
d−→ N(0,Z),

where

Z = θ vari,∞(λi)

(
4/3 2
2 16/5

)
.

Putting the results together,
√

N
T

DT

((
θ̂

β̂

)
−

(
θ

β

))
d−→ N(0,Q−1ZQ−1),

where

Q−1ZQ−1 = θ vari,∞(λi)

(
32/15 −14/15

−14/15 24/5

)
.

Thus
√

N√
T
(θ̂ − θ) ∼ N(0,32θ vari,∞(λi)/15) and

√
NT(β̂ −

β)
d−→ N(0,24/5).

[Received December 2005. Revised October 2006.]

REFERENCES

Alvarez, J., Browning, M., and Ejrnaes, M. (2001), “Modelling Income
Processes With Lots of Heterogeneity,” University of Copenhagen, ???.

Bai, J., and Ng, S. (2002), “Determining the Number of Factors in Approximate
Factor Models,” Econometrica, 70, 191–221.

(2004), “A PANIC Attack on Unit Roots and Cointegration,” Econo-
metrica, 72, 1127–1177.

Baker, M. (1997), “Growth-Rate Heterogeneity and the Covariance Structure
of Life-Cycle Earnings,” Journal of Labor Economics, 15, 338–375.

Baltagi, B., and Kao, C. (2001), “Nonstationary Panels, Cointegration in Panels,
and Dynamic Panels,” Center for Policy Research, Syracuse University.

Campbell, J., and Deaton, A. (1989), “Why Is Consumption so Smooth,” Re-
view of Economic Studies, 56, 357–374.

Carroll, C. D., and Samwick, A. (1997), “How Important Is Precautionary
Wealth,” Journal of Monetary Economics, 40, 41–72.

Chang, Y. (2002), “Nonlinear IV Unit Root Tests in Panels With Cross-Section
Dependency,” Journal of Econometrics, 110, 261–292.

Chang, Y., and Song, W. (2002), “Panel Unit Root Tests in the Presence
of Cross-Section Heterogeneity,” unpublished manuscript, Rice University,
???.

Choi, C. Y. (2004), “Searching for Evidence of Long-Run PPP From a Post–
Bretton Woods Panel: Separating the Wheat From the Chaff,” Journal of In-
ternational Money and Finance, 23, 1159–1186.

Deaton, A. S., and Paxson, C. (1994), “Intertemporal Choice and Inequality,”
Journal of Political Economy, CII, 437–467.

Granger, C. (1980), “Long-Memory Relationships and the Aggregation of Dy-
namic Models,” Journal of Econometrics, 14, 227–238.

Granger, C. W., and Morris, M. J. (1976), “Time Series Modelling and Interpre-
tation,” Journal of the Royal Statistical Association, Ser. A, 139, 246–257.

Guvenen, F. (2005), “An Empirical Investigation of Labor Income Process,”
University of Rochester, ???.

Hadri, K. (2000), “Testing for Stationarity in Heterogeneous Panel Data,”
Econometrics Journal, 3, 148–161.

Hall, R. (1978), “Stochastic Implications of the Life Cyle-Permanent In-
come Hypothesis: Theory and Evidence,” Journal of Political Economy, 86,
971–987.

Harris, D., Leybourne, S., and McCabe, B. (2004), “Panel Stationarity Tests for
Purchasing Power Parity With Cross-Section Dependence,” mimeo, Univer-
sity of Nottingham, ???.

Im, K., Pesaran, M., and Shin, Y. (2003), “Testing for Unit Roots in Heteroge-
neous Panels,” Journal of Econometrics, 115, 53–74.

Kapetanios, G. (2003), “Determining the Stationary Properties of Individual
Series in Panel Datasets,” mimeo, Queen Mary, University of London, ???.

Levin, A., Lin, C. F., and Chu, J. (2002), “Unit Root Tests in Panel Data: As-
ymptotic and Finite-Sample Properties,” Journal of Econometrics, 98, 1–24.

Lewbel, A. (1994), “Aggregation and Simple Dynamics,” American Economic
Review, 59, 635–642.

Lucas, R. E. (2003), “Macroeconomic Priorities,” American Economic Review,
93, 1–14.

Ludvigson, S., and Michaelides, A. (2001), “Can Buffer Stock Saving Explain
Consumption Excesses,” American Economic Review, 91, 631–647.

MaCurdy, T. E. (1981), “The Use of Time Series Processes to Model the Error
Structure of Earnings in Longitudinal Data Analysis,” Journal of Economet-
rics, 18, 83–114.

Maddala, G. S., and Wu, S. (1999), “A Comparative Study of Unit Root Tests
With Panel Data and a New Simple Test,” Oxford Bulletin of Economics and
Statistics, ??, 631–652.

Moon, R., and Perron, B. (2004), “Testing for a Unit Root in Panels With Dy-
namic Factors,” Journal of Econometrics, 122, 81–126.

Moon, R., Perron, B., and Phillips, P. (2005), “Incidental Trends and the Power
of Panel Unit Root Tests,” mimeo, ???.

O’Connell, P. (1998), “The Overvaluation of Purchasing Power Parity,” Journal
of International Economics, 44, 1–19.

Pesaran, H. (2005), “A Simple Panel Unit Root Test in the Presence of Cross-
Section Dependence,” mimeo, Cambridge University, ???.

Quah, D. (1994), “Exploiting Cross-Section Variations for Unit Root Inference
in Dynamic Panels,” Economics Letters, 44, 1–9.

Reis, R. (2005), “The Time Series Properties of Aggregate Consumption: Im-
plications for the Costs of Fluctuations,” Working Paper 11297, National Bu-
reau of Economic Research.

Storesletten, K., Telmer, C., and Yaron, A. (2004), “Consumption and Risk
Sharing Over the Life Cycle,” Journal of Monetary Economics, 51, 609–633.

Zaffaroni, P. (2004), “Contemporaneous Aggregation of Linear Dynamic Mod-
els in Large Economies,” Journal of Econometrics, 120, 75–102.


