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This article provides tools for characterizing the extent of cross-section correlation in panel data when we
do not know a priori how many and which series are correlated. Our tests are based on the probability
integral transformation of the ordered correlations. We first split the transformed correlations by their size
into two groups, then evaluate the variance ratio of the two subsamples. The problem of testing cross-
section correlation thus becomes one of identifying mean shifts and testing nonstationarity. The tests can
be applied to raw data and regression errors. We analyze data on industrial production among 12 OECD
countries, as well as 21 real exchange rates. The evidence favors a common factor structure in European
real exchange rates but not in industrial production.
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1. INTRODUCTION

Existing tests of cross-section correlation are concerned pri-
marily with the null hypothesis that all units are uncorrelated
against the alternative that the correlation is nonzero for some
unit. Other statistics test group correlation in an error compo-
nent framework and thus maintain identical correlation within
group as the null hypothesis, assuming that group membership
is known. But perfect and zero correlation are extreme hypothe-
ses, and rejections by conventional tests do not always reveal
much information about the extent of the correlation. It is often
useful for estimation, inference, and economic interpretation to
know whether a rejection is due to, say, 10% or 80% of the
correlations being nonzero.

The present analysis is concerned with the situation when
possibly some, but not necessarily all, of the units are corre-
lated. The correlation is not sufficiently prevalent to be judged
common, but is sufficiently extensive so that testing the no cor-
relation hypothesis will almost always lead to a rejection. Our
objective is to characterize the correlation without imposing
a structure. This means determining the number of correlated
pairs, determining whether the correlations are homogeneous,
and evaluating the magnitude of the correlations.

We develop tools to assess the extent of cross-section correla-
tion in a panel of data with N cross-section units and T times se-
ries observations. Our analysis is based on the n = N · (N −1)/2
unique elements above the diagonal of the sample correlation
coefficient matrix, ordered from the smallest to the largest. We
do not directly test whether the sample correlations ( jointly or
individually) are zero. Instead, we test whether the probabil-
ity integral transformation of the ordered correlations, denoted
by φ̄j, are uniformly distributed. If the underlying correlations
are 0, then the “uniform spacings,” defined as φ̄j − φ̄j−1, is a
stochastic process with well-defined properties, and it is these
properties that we test.

Exploiting the duality between uniformity and no correlation
in hypothesis testing is not new. Durbin (1961) considered us-
ing uniformity as a test for serial correlation in independent
normally distributed data. The idea is that if the periodogram
is evenly distributed across frequencies, then a suitably scaled
periodogram is uniform on [0,1]. Here we use uniformity to
test cross-section correlation.

We partition the spacings into two groups, labeled S (small)
and L (large), with θ̂ ∈ [0,1] being the estimated fraction of the
sample in S, and which we estimate using a breakpoint analy-
sis. For each group, we test whether the variance of φ̄j − φ̄j−q
is linear in q. Essentially, the problem of testing cross-section
correlation is turned into a problem of testing uniformity and
nonstationarity. If we reject the no correlation hypothesis in the
L sample but not in the S sample, then we can say that a frac-
tion θ̂ of the correlation coefficients are not statistically differ-
ent from 0. This is unlike existing tests when a rejection often
reveals little about the extent of the correlation. Our procedures
are valid when applied to the full or a subset of the correlations,
a property that conventional tests usually do not have. Because
the identity of the series generating small and large correlations
can always be recovered, knowing which correlation pairs be-
long to S can sometimes reveal useful information for economic
analysis.

The treatment of cross-correlation in the errors has impor-
tant implications for estimation and inference. In recent work,
Andrews (2003) showed that ordinary least squares, when ap-
plied to cross-section data, can be inconsistent unless the errors
conditional on the common shock are uncorrelated with the re-
gressors. The usual t test will no longer be asymptotically nor-
mal when there is extreme correlation, such as that induced by
a common shock. Knowledge of the pervasiveness and size of
the residual correlations is thus important.

Omitting cross-section correlation is known to create prob-
lems for inference. Richardson and Smith (1993) noted that evi-
dence for cross-sectional kurtosis could be the result of omitted
cross-section correlation in stock returns. The panel unit root
tests developed by Levin, Lin, and Chu (2002) and others are
based on the assumption that the units in the panel are uncor-
related. In a large T , small N setup, O’Connell (1998) found
that the much-emphasized power gain of panel over univariate
unit root tests could be a consequence of omitted cross-section
correlation, causing the panel tests to be oversized. The tests
proposed by Moon and Perron (2004) and Bai and Ng (2004)
are valid when the correlation is driven by a pervasive source.
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Which test is appropriate depends on how many units are cor-
related.

Recent years have seen much interest in using approximate
factor models in econometric modeling. These differ from clas-
sical factor models by allowing weak cross-section correla-
tion in the idiosyncratic errors, where “weak” is defined by
a bound on the column sum of the N × N covariance matrix
of the idiosyncratic errors (see Stock and Watson 2002; Bai
and Ng 2002). However, this definition of weak cross-section
correlation, although useful for the development of asymptotic
theory, is not useful in guiding practitioners as to how much
residual correlation is in the data. Toward this end, this arti-
cle provides agnostic tools for identifying and characterizing
correlation groups. The procedures can be applied to test cor-
relations for which

√
T-consistent estimates are available. The

article proceeds with a review of tests for cross-section corre-
lation in Section 2. The procedures are developed in Sections
3 and 4, and simulations are reported in Section 5.

2. RELATED LITERATURE

Suppose that we have N cross-section units each with T times
series observations. Denote the T × N data matrix by z. This
could be raw data or, in regression analysis, z would be the
regression errors. We are interested in characterizing the cross-
correlation structure of zit. Write

zit = δiGt + eit, (1)

where E(eit) = 0 and E(eitejt) = ωij. The N × N population
variance–covariance matrix of z with var(Gt) normalized to
unity is

�z = δδ′ + �,

where � (whose i, j element is ωij) will generally be nonspher-
ical because of cross-section correlation and/or heteroscedas-
ticity in eit. If δi = 0 for all i and ωij = 0 if i �= j, then �z is a
diagonal matrix, and the data are cross-sectionally uncorrelated.
Strong-form cross-section correlation occurs when |δi| �= 0 for
almost every i and the largest eigenvalue of � is bounded so that
all series are related through the common factor, Gt. The error-
component structure occurs as a special case when δi = δ̄ �= 0
for every i and � = ω2In. The presence of a common factor
does not imply that all bivariate correlations will be identical,
because this will depend on the factor loading δi, as well as on
the importance of the idiosyncratic error, eti. We are especially
interested in better understanding the intermediate cases when
the two extremes of zero and strong correlation are inappropri-
ate characterizations of the data.

Let cij = cov(zi, zj)/
√

var(zi)var(zj) be the population cor-
relation coefficient between two random variables, zi and zj.
Given observations {zit} and {zjt}, t = 1, . . . ,T , the Pearson cor-
relation coefficient is

ĉij = sij√
siisjj

,

with sij = T−1 ∑T
t=1(zit − z̄i)(zjt − z̄j). If the data are normally

distributed, then ĉit
√

(T − 1)/
√

1 − ĉ2
ij has a t distribution with

T − 2 degrees of freedom under the null hypothesis of no cor-
relation, and when T is large,√

T(ĉij − cij) ≈ N
(
0, (1 − c2

ij)
2).

Exact tests for equality of a set of correlation coefficients are
available for normally distributed data because under normal-
ity, expressions for the covariance of correlation coefficients are
known. Otherwise, the asymptotic covariance of correlation co-
efficients can be approximated by the delta method and shown
to be a function of the true underlying correlations (see Olkin
and Finn 1990; Steiger 1980; Meng, Rosenthal, and Rubin
1992). Under normality and assuming that N is fixed, Breusch
and Pagan (1980) showed that a test for the hypothesis that all
correlation coefficients are jointly 0 is

LM =
(

N
2

)−1 N∑

i=2

i−1∑

j=1

Tĉ2
ij → χ2

n , (2)

with n = N(N − 1)/2. When N is large, the normalized test
LM−n√

2n
is asymptotically N(0,1) as T → ∞ and then N → ∞.

A statistic that pools the p values is also asymptotically valid.
The LM test is asymptotically nuisance parameter-free when

T is large, but it depends on the properties of the parent distribu-
tion even under the null hypothesis when T is fixed. Using rank
correlations, Frees (1995) considered a nonparametric test of no
cross-section correlation in panel data when N is large relative
to T . A simulation based test was considered by Dufour and
Khalaf (2002) for the null hypothesis that the error matrix from
estimating a system of seemingly unrelated regressions with
normally distributed errors is diagonal. Like the test of Frees
and the LM test, the null hypothesis is cij = 0 for all (i, j) pairs,
and the test rejects when cij �= 0 for some (i, j) pair. At the other
end of the spectrum, Moulton (1990) developed a test to detect
group effects in panel data assuming that group membership is
known (see also Moulton 1987). The maintained assumption is
identical correlation within the group.

All of the aforementioned tests amount to testing zero or
strong correlation. Only in rare cases can we test a correlation
pattern other than the two extremes. The need to impose a rigid
correlation pattern (i.e., �z is diagonal or has a factor structure)
in estimation and inference arises from that fact that unlike time
series and spatial data, cross-section data have no natural or-
dering. Absent extraneous information, the correlation with the
neighboring observation has no meaningful interpretation. One
cannot impose some type of mixing condition to justify testing
the correlation among just a few neighboring observations.

From a practical perspective, the shortcoming of these tests
is that rejecting the null hypothesis does not reveal much infor-
mation about the strength and prevalence of the cross-section
correlation. Whether the rejection is due to 10% or 80% of
the correlations being nonzero makes a difference not just in
the way we handle the correlation econometrically, but also
in the way we view the economic reason for the correlation.

3. THE ECONOMETRIC FRAMEWORK

We start with the premise that the panel of data are neither
all uncorrelated nor all correlated with each other. As a mat-
ter of notation, we let [x] denote the integer part of x. For a
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series xj, j = 1, . . . ,n, let x[1:n], x[2:n], . . . , x[n:n] denote the or-
dered series, that is, x[1:n] = minj(xj) and x[n:n] = maxj(xj).
We assume for now that the data are normally distributed and
discuss the case of nonnormal data in Section 5. Because the
analysis applies to other definitions of cross-section correlation
coefficients, we generically denote the vector of unique sample
correlation coefficients by p̂ and the corresponding population
correlation coefficients by p. We also let p̄ = |p̂|, the vector of
absolute sample correlation coefficients. Thus if Pearson corre-
lation is used for the analysis, then we have

p̂ = ( p̂1, p̂2, . . . , p̂n) = vech(ĉ)

and

p̄ = (|p̂1|, |p̂2|, . . . , |p̂n|), n = N(N − 1)/2.

We are interested in the severity of the correlation among the
units. Our general strategy is to split the sample into a group of
“small” and a group of “large” correlations, then test whether
the small correlations are 0. The two steps allow us to under-
stand how pervasive and how strong the cross-section correla-
tion is.

The following lemma forms the basis of our methodology.

Lemma 1. Let (u1,u2, . . . ,un)
′ be an n × 1 vector of iid

U[0,1] variates and let u[1:n], . . . ,u[n:n] denote the ordered data.
Let D1 = u[1:n], Dj = u[ j:n] − u[ j−1:n], j = 2, . . . ,n, and Dn+1 =
1 − u[n:n] be the spacings. Then E(Dj) = 1

n+1 , var(Dj) = n ×
(n + 1)−2(n + 2)−1 ∀ j, and cov(Di,Dj) = −1

(n+1)2(n+2)
∀ i �= j.

If uj is uniformly distributed on the unit interval, then a plot
of j against u[ j:n] should be a straight line with slope 1/(n + 1).
The variable Dj = u[ j:n] −u[ j−1:n], known as the uniform “spac-
ings,” has the property that

∑n+1
j=1 Dj = 1. This summing-up

constraint also implies that D1, . . . ,Dn contains all of the in-
formation about the n + 1 spacings. Because E(Dj) is the same
for all j, E(Dj) = 1/(n + 1). Furthermore, the variance for all
units and the covariance between any two units are the same.
(See Pyke 1965 for an excellent review on spacings.) We make
use of the fact that if uj ∼ U[.5,1], then 2uj − 1 is also uni-
formly distributed on the interval [0,1], and spacings for 2uj −1
have the properties stated in Lemma 1. Because the spacings for
uj ∼ U[.5,1] are half the spacings for 2uj −1, Lemma 1 implies
that if uj ∼ U[.5,1], then the corresponding spacings have mean
1
2

1
n+1 and variance 1

4 n(n + 1)−2(n + 2)−1.

3.1 Partitioning the Correlations Into Two Sets

Under H0 : pj = 0,
√

Tp̂j ∼ N(0,1), we have
√

T · p̄j = |√T · p̂j| ∼ χ1;
that is, p̄j is asymptotically distributed as chi (not chi-squared)
with 1 degree of freedom, or, equivalently,

√
Tp̄j is a half-

normally distributed random variable with mean .7979 and vari-
ance .3634. Sort p̄ from the smallest to the largest, and denote
the ordered series by ( p̄[1:n], . . . , p̄[n:n])′. Taking absolute val-
ues ensures that large negative correlations are treated symmet-
rically as large positive correlations. Define φ̄j as �(

√
Tp̄[ j:n]),

where � is the cumulative distribution function of the standard

normal distribution. We have

φ̄ = (φ̄1, φ̄2, . . . , φ̄n)
′

= (
�

(√
Tp̄[1:n]

)
,�

(√
Tp̄[2:n]

)
, . . . ,�

(√
Tp̄[n:n]

))′
.

Because p̄[ j:n] is ordered, φ̄j is also ordered with φ̄j−1 < φ̄j.
Because p̄[ j:n] ∈ [0,1], it follows that φ̄j ∈ [.5,1]. The null hy-
pothesis of pj = 0 is now restated as φ̄j ∼ U[.5,1]. If all of the
correlations are 0, then 1

n

∑n
j=1 φ̄j should be close to .75, and

in principle a t test can be constructed. But like the LM test,
a rejection reveals little about the extent of the correlation.

Let �φ̄j = φ̄j − φ̄j−1 be the spacings and, by Lemma 1,
let E(�φ̄j) = 1

2(n+1)
. Given φ̄j, j = 1, . . . ,n, consider estimat-

ing E(�φ̄j) on partitioning the sample at arbitrary θ̃ ∈ (0,1),

�̄S(θ̃) = 1

[θ̃n]
[θ̃n]∑

j=1

�φ̄j

and

�̄L(θ̃) = 1

[n(1 − θ̃ )]
n∑

j=[θ̃n]+1

�φ̄j,

where [nθ̃ ] is the integer part of nθ̃ . If pj = 0 ∀ j, then we should
have �̄S(θ̃ ) ≈ �̄L(θ̃ ) ≈ 1

2(n+1)
∀ θ̃ .

Now suppose that only m ≤ n of the correlation coeffi-
cients are 0 or small. We would expect φ̄j, j = 1, . . . ,m, to
be strictly less than 1. In contrast, we would expect the φ̄j,
j = m+1, . . . ,n, to be close to 1 because if p[ j+1:n] is not small,
then

√
Tp̄[ j+1:n] will diverge. In a q–q plot, we would expect φ̄j

to be approximately linear in j until j = m, then rise steeply, and
eventually flatten out at the boundary of 1. Let θ = m/n. Then
in terms of �φ̄j, we should have

�̄S(θ) ≈ 1

2m
�= �̄L(θ).

The difference between �̄S and �̄L is thus informative about m,
which we can estimate by locating a mean shift in �φ̄j or by a
slope change in φ̄j. Because we will be analyzing the properties
of �φ̄j in the two subsamples, we look for a mean shift in �φ̄j.

Define the total sum of squared residuals evaluated at
m̃ = [θ̃n] as

Qn(θ̃) =
[θ̃n]∑

j=1

(
�φ̄j − �̄S(θ̃ )

)2 +
n∑

j=[θ̃n]+1

(
�φ̄j − �̄L(θ̃)

)2
. (3)

In our analysis, the series of ordered absolute values of the pop-
ulation correlation coefficients, |p[ j:n]|, exhibits a slope shift
at m. But p̄[ j:n] is

√
T-consistent for |p[ j:n]|, and φ̄j is monotone-

increasing in p̄[ j:n]. The criterion function Qn(θ̃) converges
uniformly to a function with a minimum where the true change-
point in |p[ j:n]| occurs. Thus the global minimizer of (3), that is,

θ̂ = arg min
θ̃∈[θ,θ̄]

Qn(θ̃ ),

consistently estimates the break fraction θ , and the convergence
rate is n (see Bai 1997). Partitioning the sample at m̂ = [θ̂n] is
optimal in the sense of minimizing (3).

The foregoing analysis is designed for cases where a subset
of the correlations are nonzero. But when all of the correlations
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are large and close to unity, there will be no variation in φ̄j, and
hence we would not expect to detect a mean shift in �φ̄j. The
foregoing breakpoint analysis, although informative, is incom-
plete. To learn more about the nature of the correlation, such
as whether the correlations are homogeneous or heterogeneous,
we need to go one step further. Before proceeding with such
an analysis, we first illustrate the properties of the breakpoint
estimator using some examples.

3.2 Illustration

We simulate data as follows. For each i = 1, . . . ,N,
t = 1, . . . ,T ,

zit = δiGt + eit and

et = (e1t, . . . , eNT)′ ∼ �1/2N(0N, IN),

where Gt ∼ N(0,1) and �1/2 is a n × n matrix. By varying the
number of δi that are nonzero or the structure of �1/2, we have
10 configurations representing different degrees of correlation
in the data.

DGP 1 simulates a panel of uncorrelated data. DGPs 2 and 3
assume the presence of a common factor but with different as-
sumptions about the importance of the common to idiosyncratic
component. DGP 4 and 5 assume that �1/2 is a Toeplitz matrix
but the δi’s are all 0. (A Toeplitz matrix is a band-symmetric
matrix.) Under DGP 5, the diagonal elements of �1/2 are 1, the
elements above and below the diagonals are .8, and all other
elements are 0. Under DGP 6, the diagonal elements of �1/2

are 1, those above and below the diagonal elements are −.5,
the elements that are two positions from the diagonal are .3,
and all other elements are 0. DGPs 6 and 7 assume equal corre-
lation within a group but with varying group size. DGPs 8–10
make different assumptions about the number of δi’s that are
nonzero. Because δi varies across i, there is heterogeneity in
the magnitude of the correlation.

Define θ0 as the fraction of zero entries above the diagonal of
the N × N matrix �z. In general, θ0 will be different than θ , the
fraction of correlated pairs that are small. As a benchmark for
how correlated the data are, Table 1 reports θ0 for N = 10,20,
and 30. Notice that under DGP 5 and 6, θ0 varies with N. This
is because the number of nonzero entries in � increases with
the number of nonzero entries in �1/2 in a nonlinear way. The
“max”column reports maxi

1
N

∑N
j=1 |ĉij| in 1,000 replications.

This statistic is an upper bound on the average correlation in the
data because from matrix theory, the largest eigenvalue of �z is

bounded by maxj
∑n

i=1 |cij|. The bound is often used as a con-
dition on permissible cross-section correlation in approximate
factor models (see, e.g., Bai and Ng 2002; Stock and Watson
2002). However, this statistic has shortcomings as a measure of
severity of the correlations in the panel of data. For one thing,
“max” is not monotonic in the number of nonzero correlations;
for example, DGP 3 has more nonzero correlations than DGP
10, yet “max” is larger in DGP 10 than in DGP 3. For another,
two similar values of “max” can be consistent with very differ-
ent degrees of correlatedness; for example, DGPs 5 and 6 both
have similar “max” values when N = 20, but θ0 is much higher
under DGP 6. The point to highlight is that when there is hetero-
geneity in the correlations, it will be difficult to characterize the
severity of the correlation with a single statistic. This is unlike
the situation for time series data, where the largest root of the
autocorrelation matrix is informative about the extent of serial
correlation.

Many of the features about φ̄j can be illustrated by looking
at the q–q plot for a particular draw of the data. Figure 1(a)
considers DGP1 (uncorrelated data) for T = 200 and N = 20
(or n = 190); Figure 1(b) considers T = 400 and N = 30 (or
n = 435). Figure 1 depicts the line .5 + .5j/(n + 1) on which
all φ̄j should lie if they are exactly uniformly distributed. In
finite samples, φ̄j should be approximately linear in j if they
are transformed from normally distributed variables. Because
the data are uncorrelated, the quantile function does not exhibit
any abrupt change in slope, and the average of �φ̄j is approxi-
mately 1

2(n+1)
.

Now consider the case of correlated data generated by DGPs
9 and 10. In both cases, about one-third of the correlations
are 0, but the correlations are much smaller (and hence φ̄j)

under DGP 9 because of the larger idiosyncratic variance. Be-
cause many correlations are nonzero, Figure 2 shows that φ̄j no
longer evolves around the straight line with slope 1

2(n+1)
. In-

stead, a subset of them vary around a straight line drawn with
an x-axis that is appropriately truncated to the number of corre-
lation coefficients that are 0 or small.

For the sample of data simulated using DGP 9, 82 of the φ̄j’s
are <.95. This means that if we used the asymptotic standard
error under no correlation of 1√

T
to test the 190 correlations

one by one, then we would end up with a group S consisting of
82 correlations deemed insignificant at the 5% level. A differ-
ent significance level will produce a different group size. Our
breakpoint analysis does not depend on the choice of the sig-
nificance level; rather, it lets the data determine the sharpest
difference between the two groups.

Table 1. DGP

θ0(N) max(N)

DGP #δi �= 0 δi Ω1/2 10 20 30 10 20 30

1 0 0 In 1.0000 1.0000 1.0000 .1707 .1217 .1048
2 N N(0, 1) .2In 0 0 0 .7084 .7110 .4104
3 N N(0, 1) In 0 0 0 .4884 .4880 .4886
4 0 0 T ([1, .8, 0n−2]) .6222 .8053 .8690 .3509 .2183 .1723
5 0 0 T ([1, −.5, .3, 0n−3]) .3333 .6316 .7471 .4312 .2585 .1995
6 .4N 1 In .8667 .8526 .8483 .2977 .2775 .2709
7 .8N 1 In .3778 .3684 .3655 .4935 .4767 .4733
8 .4N N(0, 1) In .8667 .8526 .8483 .2444 .2293 .2278
9 .8N N(0, 1) In .3778 .3684 .3655 .4019 .4024 .3990

10 .8N N(0, 1) .2In .3778 .3684 .3655 .5778 .5795 .5821
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(a)

(b)

Figure 1. φ̄(j): DGP 1. (a) T = 200, N = 20; (b) T = 400, N = 30.

Figure 3 presents φ̄j for DGP 2 (small idiosyncratic error)
and 3 (large idiosyncratic error). Because DGP 2 has a stronger
factor structure than DGP3, there are more φ̄j’s at unity. In both
cases, the minimum φ̄j is >.5, indicating even the small cor-
relations are nonzero. The feature to highlight in Figure 3 is
that pj can be nonzero and yet φ̄j < 1. We cannot always use
the boundary of 1 to split the sample. Instead, we use the least
squares criterion to separate the small and large correlations.

Figures 1, 2, and 3 show that the q–q plot indeed reveals
much information about the extent of cross-correlation in the
data. If all correlations are nonzero, then the q–q plot will be
shifted upward with an intercept exceeding .5. If there is homo-

Figure 2. φ̄(j): DGPs 1 ( ), 9 ( ), and 10 ( ). Here zit = δi Gt + eit ,
δi ∼ N(0, 1), i = 1, . . . ,.8N = 152, and δi = 0, i > .8N. For DGP 9,
eit ∼ N(0, 1). For DGP 10, eit ∼ N(0, .2).

geneity in a subset of the correlations, then the q–q plot should
be flat over a certain range, because there is no dispersion in
the corresponding φ̄j’s. The more prevalent and the stronger the
correlation, the further away are φ̄j from the straight line with
slope 1

2(n+1)
.

4. TESTING THE CORRELATION IN
THE SUBSAMPLES

So far, we have used the breakpoint estimator to split the
sample of n observations into two groups, one of size m̂ and
the other of size n − m̂. It is possible that the n − m̂ correlations

Figure 3. φ̄(j): DGPs 1 ( ), 2 ( ), and 3 ( ). φ̄j can be <1 even though
DGPs 2 (small idiosyncratic errors) and 3 (large idiosyncratic errors)
both have a factor structure.
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in L are, in fact, not statistically different from the m̂ correla-
tions in S. Verifying this by testing the null hypothesis of no
break is uninformative, because an error component structure
would be consistent with the no break hypothesis as all correla-
tions are identical, and yet incompatible with the no correlation
assumption. In theory, it is also possible to formulate an order-
statistic–oriented test based on the idea that all nonzero corre-
lations, when multiplied by

√
T , are “large” with probability 1.

But, as we have seen, some nonzero correlations may not be
large enough to render φ̄j exactly 1. Applying an LM test to the
subsamples is also problematic, because p̄[ j:n], j = 1, . . . , m̂, is
a censored sample whenever m̂ < n. The subsample test will no
longer be asymptotically chi-squared.

Here we consider a different approach that aims to test
whether the subset of m̂ correlations are 0. If the small cor-
relations are found to be different than 0, then the correlations
in L must also be different than 0.

Lemma 2. Let uj ∼ U[0,1] with Dj = u[ j:n] − u[ j−1:n] be-
ing uniform spacings. Then (a) nDj ∼ �(1,1) and (b) corr(nDj,

nDk) = −1
n ∀ j �= k. Let Dq

j = u[ j:n] − u[ j−q:n] be q-order spac-

ings. Then (c) Dq
j ∼ beta(q,n − q + 1) and (d) nDq

j ∼ �(q,1).

The simple spacings, multiplied by n, are distributed as
�(1,1). Although the spacings are not independent, they are
asymptotically uncorrelated. Furthermore, the structure of de-
pendence is the same between Dj and Dk for any j and k. Spac-
ings are thus “exchangeable.” The quantity u[ j:n] − u[ j−q:n] is
referred to in the statistics literature as a q-order spacing. Prop-
erties of q-order spacings have been given by Holst (1979) and
Arnold, Balakrishman, and Nagaraja (1992).

The features that motivate the test that follows are (a) and (d).
Property (a) implies that if we define

φ̄n
j = n · φ̄j,

and again using the fact that the spacings of variables that are
uniformly distributed on [.5,1] are half of the uniform spacings,
then we can represent the scaled spacings process φ̄n

j as

φ̄n
j − φ̄n

j−1 = .5
n

n + 1
+ εj, εj ∼ (0, σ 2

ε ),

where σ 2
ε = 1

4
n3

(n+1)2(n+2)
, cov(εj,εk)

var(εj)
= −1

n . Viewed in this light,

φ̄n
j is a unit root process with a nonzero drift that tends to .5

when N → ∞.
The observation that φ̄n

j is a differenced stationary process
is reinforced by (d), which states that the mean and variance
of q-order spacings are q

n+1 and q(n+1−q)

(n+1)2(n+2)
. But this implies

that the mean and variance of q order spacings are q times the
mean and variance of the scaled first-order spacings. A first-
order integrated process also has this variance ratio property.

The feature that φ̄n
j is differenced stationary originates from

the property that φ̄j is uniformly distributed under the no cor-
relation assumption. Evidence against nonstationarity of φ̄n

j is
thus evidence against no cross-section correlation. Thus we can
use methods for analyzing integrated data to test cross-section
correlation. Consider testing the no correlation hypothesis us-
ing a vector of φ̄n

k of dimension η; for example, η = m̂ if we

were to test the hypothesis of no correlation in the subsample S.
Let

µ̂1 = 1

η − 1

η∑

k=1

(φ̄n
k − φ̄n

k−1),

µ̂q = 1

η − q

η∑

k=q+1

(φ̄n
k − φ̄n

k−q),

σ̂ 2
1 = 1

η

η∑

k=1

(φ̄n
k − φ̄n

k−1 − µ̂1)
2,

and

σ̂ 2
q = 1

q · mq

η∑

k=q+1

(φ̄n
k − φ̄n

k−q − µ̂q)
2,

where mq = (η − q). Alternatively, we can let mq = (η − q) ×
(1−q/η), which will yield an unbiased estimate of the variance.
Define

SVR(η) = σ̂ 2
q

σ̂ 2
1

− 1.

To gain more intuition, let q = 2 and consider

σ̂ 2
2

σ̂ 2
1

− 1 ≈ cov(�φ̄n
j ,�φ̄n

j−1) + (2µ̂1 − µ̂2)
2

var(�φ̄n
j )

.

The first ratio on the right side is the first-order autocorrelation
coefficient for �φ̄n

j , whereas the second term in the numerator
is the squared difference between the mean of q-order and sim-
ple spacings. But by (b) of Lemma 2, �φ̄n

j is asymptotically
uncorrelated, and by (a) of Lemma 2, the mean of q order spac-
ings is linear in q. Both terms on the right side should be close
to 0. A comparison of σ̂ 2

q to σ̂ 2
1 thus allows us to test both prop-

erties of spacings that should hold if the underlying correlations
are indeed 0.

Theorem 1. Consider the null hypothesis that a subset
of p[ j:n] of size η are jointly 0. Then, as η → ∞,

√
η ×

SVR(η)
d−→N(0,ω2

q), where ω2
q = 2(2q−1)(q−1)

3q .

Various authors have used functions of simple and q > 1 or-
der spacings to test uniformity. Rao and Kuo (1984), among
others, showed that using squares of the spacings in testing
is optimal in terms of maximizing local power. Our spacings
variance ratio (SVR) test is also based on the second moment
of spacings. In the statistics literature, σ̂ 2

1 and q · σ̂ 2
q are re-

ferred to as simple and generalized Greenwood spacing tests
for uniformity. The original Greenwood statistic was developed
to test whether the spread of disease is random in time. Wells,
Jammalamadaka, and Tiwari (1992) showed that spacing tests
have the same asymptotic distribution when parameters of the
distribution to be tested must be estimated as when the parame-
ters are known. We combine the simple Greenwood test with
a q-order test and apply our test to functions of estimated cor-
relations, not the raw data. As shown in the Appendix, we can
treat the φ̄j’s as though they are uniformly distributed on [.5,1],
provided that T → ∞.

The limiting distribution of the SVR test is obtained by
noting that σ̂ 2

1 and σ̂ 2
q are both consistent estimators for σ 2

ε ,
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but σ̂ 2
1 is efficient. Thus the Hausman principle applies, and

var(σ̂ 2
q − σ̂ 2

1 ) = var(σ̂ 2
q )−var(σ̂ 2

1 ), from which var(σ̂ 2
q /σ̂ 2

1 −1)

is obtained. In actual testing, we use the standardized SVR test,
that is,

svr(η) =
√

ηSVR(η)
√

ω2
q

, (4)

which in large samples is asymptotically standard normal.
Some might observe that the SVR test has the same limiting

distribution as the variance ratio (VR) test of Lo and MacKinlay
(1988) for testing the null hypothesis of a random walk, that is,
with εj ∼ N(0, σ 2). The εj’s considered here are nonnormal,
however. Although the kurtosis of φ̄j appears in the variance of
σ̂ 2

1 and σ̂ 2
q , the two kurtosis terms offset one another because

we consider the variance of the difference. At an intuitive level,
the reason that the SVR has the same distribution as the VR is
that we are testing whether the variance of �qφ̄n

j is linear in q.
This is a property of an integrated process, not just that of a
random walk with Gaussian innovations.

The SVR test can be constructed in slightly differently ways.
For example, one can follow the Greenwood statistic and set µ̂1
to the population mean, which amounts to .5 in our setup, or
one can set µ̂q to qµ̂1 as in the VR test. Because µ̂1 consistently
estimates the mean of .5, and µ̂q and qµ̂1 are both consistent for
the mean of q-spacings under the null, the limiting distribution
of the SVR test is the same for all implementations.

The SVR test can be applied to the full sample, to S, or
to L, with η = n, η = m̂, or η = n − m̂. An important appeal
of the SVR test is that it is based on spacings, and spacings
are exchangeable. That is, we can test any subset of the spac-
ings between adjacent order statistics. As seen in Figure 1 for
uncorrelated data, the φ̄j’s all lie along the straight line. This
allows us to use any partition of the full sample to test the
slope. Obviously, if we reject the uniformity hypothesis in S,
then testing whether the hypothesis holds in L is not too inter-
esting because, by construction, S is the sample with the smaller
correlations. But in principle we can reapply the breakpoint es-
timator to the partition S to yield two subsamples within S, say
SS and SL. We then can perform the SVR test to see whether the
subsample SS consists of uncorrelated coefficients. In contrast,
the LM test loses its asymptotic chi-squared property once the
sample is censored. But there are two caveats to repeatedly ap-
plying the proposed procedures. First, if there are already too
few observations in S, then the subsample SS may be too small
to make the tests precise. Second, if the SVR is applied to the
SS subsample after the S sample rejects uniformity, then the se-
quential nature of the test would need to be taken into account.

Because the identity of the two series underlying any given p̄j
can always be recovered, the procedure can be used to see
whether those highly correlated pairs share common charac-
teristics. It should be noted, however, that correlations are not
transitive; that is, cov(zi, zj) �= 0 and cov(zj, zk) �= 0 do not nec-
essarily imply cov(zi, zk) �= 0. Our analysis provides a classi-
fication of correlation pairs into groups. Additional economic
analysis is needed to determine whether the series underlying
the correlation pairs can be grouped.

5. FINITE–SAMPLE PROPERTIES

For each of the 10 models given in Table 1, we consider
(N,T) = (10,100), (20,100), (20,200), and (30,200). In re-

sults not reported here, an LM test for the null hypothesis that
pj = 0 for all j as well as a t test for E(�φj) = .75 have a rejec-
tion rate of 1 when tested on DGPs 2–10. These rejections are
uninformative about the extent of the cross-section correlation,
however.

Besides the Pearson correlation, we also use other measures
for p̂j. Let Ri be a T ×1 vector of rankings of zit. The Spearman
rank correlation coefficient is defined as

r̂ij = Rij√
RiiRjj

,

where Rij = cov(Ri,Rj) = 1
T

∑T
t=1(Rit −(T +1)/2)(Rjt −(T +

1)/2) is the sample covariance in the rankings of two series,
zit and zjt. It is well known that

√
(T − 2) · r̂ij/

√
1 − r̂2

ij ∼ tT−2.
The statistic has mean 0 and variance T−3

T−5 , which becomes
approximately unity as T → ∞. We also consider Fisher’s
z-transformation of the Pearson correlation coefficient,

ĉij(z) = 1

2
ln

(
1 + ĉij

1 − ĉij

)
.

If cij = 0, then ĉij(z) ≈ N(0, 1
T−3 ). The transformation is espe-

cially useful in stabilizing the variance when T is small. Anal-
ogously, a transformation can also be applied to the Spearman
rank correlations and Kendall’s τ .

To summarize, given N cross-section units over T time pe-
riods with n = N(N − 1)/2, the following variables are con-
structed:

ĉij(z): sample cross-section correlations
p̂j: vech(x), where x is one of ĉ, ĉ(z), r̂, or r̂(z)
p̄j: |p̂j|

p̄[ j:n]: p̄j ordered from smallest to largest
φ̄j: �(

√
Tp̄[ j:n])

φ̄n
j : n · φ̄j

�qφ̄n
j : φ̄n

j − φ̄n
j−q.

Tables 2 and 3 report results for the Pearson correlation co-
efficients assuming that εit is normally distributed. Results for
Fisher’s z correlations are given in Tables 4 and 5. Results for
the Spearman rank correlations are similar and hence are not
reported here. The sample correlations are estimated more pre-
cisely the larger the T , although the sample-splitting procedure
is more accurate the larger the N. Because it is difficult to iden-
tify mean shifts occurring at the two ends of the sample, we use
10% trimming; that is, the smallest and largest 10% of φ̄j are
not used in the breakpoint analysis. Recall that θ̂ estimates the
fraction of “small” correlations. The average and the standard
deviation of θ̂ over 1,000 replications are reported in columns
three and four. Given that we use 10% trimming, having an av-
erage θ̂ of around .1 for DGP 2 is clear evidence of extensive
correlation. The average θ̂ is around .3 for DGP 3. The rea-
son that DGPs 2 and 3 have rather different θ̂ ’s even though
the θ0’s are the same is that DGP 3 has higher idiosyncratic er-
ror variance. Consequently, more correlations are nonzero, al-
beit small. This again highlights the point that θ0 (the fraction
of zero correlations) need not be the same as θ (the fraction
of small correlations). Although θ0 is a useful benchmark, θ is
more informative from a practical perspective, and an estimate
of θ is provided by our breakpoint analysis.



Ng: Testing Cross-Section Correlation in Panel Data Using Spacings 19

Table 2. Pearson Correlation Coefficients: Normal Errors

First split Second split

DGP θ0 θ̂ std(θ̂ ) svrS svrL θ̂ std(θ̂ ) svrSS

N = 10, T = 100
1 1.000 .475 .252 .091 .095 .549 .264 .048
2 0 .171 .092 .272 .938 .392 .233 .021
3 0 .279 .166 .095 .764 .452 .247 .043
4 .622 .524 .161 .059 .837 .539 .271 .038
5 .333 .416 .158 .088 .883 .480 .260 .045
6 .867 .728 .212 .066 .767 .538 .278 .057
7 .378 .327 .080 .074 .953 .553 .267 .052
8 .867 .539 .261 .092 .263 .557 .264 .049
9 .378 .489 .182 .064 .725 .497 .266 .054

10 .378 .385 .147 .079 .877 .524 .284 .052

N = 20, T = 100
1 1.000 .483 .271 .062 .068 .562 .272 .049
2 0 .150 .076 .200 .998 .355 .251 .049
3 0 .302 .138 .060 .990 .418 .236 .053
4 .805 .762 .115 .051 .947 .493 .261 .043
5 .632 .692 .131 .063 .975 .465 .248 .063
6 .853 .831 .062 .046 .984 .505 .273 .055
7 .368 .345 .046 .071 1.000 .522 .278 .061
8 .853 .760 .192 .058 .603 .485 .272 .056
9 .368 .540 .129 .047 .963 .445 .243 .057

10 .368 .419 .112 .093 .998 .483 .264 .060

N = 20, T = 200
1 1.000 .482 .275 .065 .059 .571 .271 .062
2 0 .128 .051 .285 .999 .314 .243 .030
3 0 .237 .117 .096 .997 .385 .229 .054
4 .805 .774 .086 .059 .983 .534 .269 .051
5 .632 .666 .121 .058 .977 .483 .256 .053
6 .853 .827 .073 .048 .980 .509 .273 .057
7 .368 .349 .042 .079 1.000 .554 .277 .062
8 .853 .796 .169 .042 .774 .490 .269 .052
9 .368 .507 .119 .058 .990 .454 .246 .060

10 .368 .400 .100 .087 .998 .492 .259 .051

N = 30, T = 200
1 1.000 .501 .270 .055 .055 .571 .279 .055
2 0 .127 .046 .332 1.000 .342 .246 .061
3 0 .240 .103 .094 1.000 .435 .216 .056
4 .869 .857 .037 .063 .997 .543 .260 .057
5 .747 .790 .071 .051 .999 .513 .253 .044
6 .848 .841 .024 .067 .999 .537 .267 .056
7 .366 .355 .026 .081 1.000 .564 .270 .057
8 .848 .858 .075 .060 .938 .488 .264 .055
9 .366 .525 .090 .072 1.000 .510 .239 .060

10 .366 .417 .081 .081 1.000 .495 .257 .058

NOTE: θ̂ is the estimated fraction of the sample in S (small correlations). std(θ̂ ) denotes
the standard deviation of θ̂ in 1,000 replications. svrS and svr are the rejection rates of the
standardized spacings variance-ratio test applied to the subsamples S and L.

Next, we apply the svr test to the two subsamples with q = 2.
The critical value for a two-tailed 5% test is 1.96. The results
are based on 1,000 replications. The rejection rates are labeled
svrS and svrL. The rejection rate should be .05 in both subsam-
ples of DGP 1, because the data are uncorrelated. The test is
oversized when (N,T) = (10,100) but is close to the nominal
size of 5% for larger (N,T). The size distortion when N = 10 is
due to the small size of the subsamples (which have <25 obser-
vations given that θ̂ is, on average, around .5). For DGPs 2–10,
the svrL tends to reject uniformity with probability close to 1
when N = 20, demonstrating that the test has power. Because
the correlations in the L subsample are large by selection, the
ability to reject uniformity in L is not surprising. It is more dif-
ficult correctly reject uniformity in S when the underlying cor-
relations are small but not necessarily 0. The size of the test is
generally accurate, especially considering the average size of
the subsamples. We also split S into two samples, SS and SL,

Table 3. Fisher-Transformed Pearson Correlation Coefficients:
Normal Errors

First split Second split

DGP θ0 θ̂ std(θ̂ ) svrS svrL θ̂ std(θ̂ ) svrSS

N = 10, T = 100
1 1.000 .478 .253 .091 .097 .546 .264 .048
2 0 .170 .092 .271 .941 .391 .233 .022
3 0 .280 .166 .095 .776 .452 .247 .044
4 .622 .525 .160 .060 .841 .540 .272 .038
5 .333 .416 .157 .087 .882 .481 .259 .046
6 .867 .729 .210 .064 .770 .538 .277 .059
7 .378 .327 .079 .074 .954 .552 .267 .054
8 .867 .545 .261 .092 .276 .556 .263 .048
9 .378 .489 .180 .065 .736 .497 .267 .054

10 .378 .385 .146 .080 .884 .525 .283 .053

N = 20, T = 100
1 1.000 .485 .272 .064 .071 .560 .272 .049
2 0 .150 .076 .199 .999 .355 .251 .049
3 0 .302 .138 .060 .990 .420 .238 .053
4 .805 .762 .112 .051 .951 .490 .258 .041
5 .632 .691 .128 .064 .976 .463 .248 .061
6 .853 .829 .062 .046 .986 .506 .272 .054
7 .368 .344 .046 .069 1.000 .517 .277 .060
8 .853 .767 .186 .059 .633 .481 .271 .056
9 .368 .539 .129 .048 .966 .446 .244 .057

10 .368 .418 .111 .093 .998 .484 .264 .062

N = 20, T = 200
1 1.000 .485 .275 .064 .059 .568 .272 .063
2 0 .128 .051 .285 .999 .314 .243 .030
3 0 .237 .117 .094 .997 .385 .228 .054
4 .805 .773 .086 .060 .984 .535 .269 .052
5 .632 .665 .121 .058 .978 .486 .256 .054
6 .853 .826 .073 .050 .982 .510 .274 .058
7 .368 .349 .042 .077 1.000 .551 .276 .062
8 .853 .798 .166 .042 .786 .489 .269 .052
9 .368 .507 .118 .059 .990 .454 .247 .058

10 .368 .400 .099 .089 .998 .493 .259 .049

N = 30, T = 200
1 1.000 .505 .268 .053 .056 .574 .279 .055
2 0 .127 .046 .332 1.000 .343 .247 .061
3 0 .240 .103 .093 1.000 .435 .216 .055
4 .869 .857 .037 .065 .997 .543 .260 .058
5 .747 .788 .071 .050 .999 .510 .253 .046
6 .848 .840 .025 .067 .999 .537 .266 .054
7 .366 .355 .025 .080 1.000 .560 .269 .057
8 .848 .859 .072 .062 .947 .488 .264 .054
9 .366 .526 .089 .072 1.000 .510 .240 .061

10 .366 .417 .081 .079 1.000 .497 .257 .058

NOTE: θ̂ is the estimated fraction of the sample in S (small correlations). std(θ̂ ) denotes
the standard deviation of θ̂ in 1,000 replications. svrS and svr are the rejection rates of the
standardized spacings variance-ratio test applied to the subsamples S and L.

and then apply the svr to SS. Table 3 shows that the rejec-
tion rates are generally similar to those using the larger sam-
ple, S, demonstrating that censoring poses no problem for the
spacings-based svr.

Strictly speaking, Lemmas 1 and 2 apply to iid uniform vari-
ables. Except when the data are normally distributed, the sam-
ple correlations are not independent. Nonetheless, even when
the data are nonnormal, ĉij is at least asymptotically normally
distributed and hence asymptotically independent. The spac-
ings thus should be independently uniformly distributed in large
samples. We can use simulations to check robustness of the
results against departures from normality in finite samples.
Table 4 reports results for Pearson correlations assuming that
εit is a chi-squared variable with 1 degree of freedom. Table 5
assumes that εit is a ARCH(1) process (with parameter .5). As
we can see, the breakpoint analysis and the svr test have proper-
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Table 4. Pearson Correlation Coefficients: ARCH(1) Errors

First split Second split

DGP θ0 θ̂ std(θ̂ ) svrS svrL θ̂ std(θ̂ ) svrSS

N = 10, T = 100
1 1.000 .487 .255 .106 .084 .533 .260 .045
2 0 .170 .091 .272 .939 .399 .239 .017
3 0 .278 .164 .091 .793 .441 .248 .031
4 .622 .511 .174 .075 .822 .515 .268 .058
5 .333 .420 .159 .071 .887 .496 .260 .059
6 .867 .726 .211 .057 .764 .572 .269 .059
7 .378 .330 .078 .078 .956 .540 .269 .061
8 .867 .556 .255 .075 .305 .559 .264 .036
9 .378 .484 .184 .074 .733 .494 .263 .044

10 .378 .377 .149 .089 .880 .519 .270 .043

N = 20, T = 100
1 1.000 .512 .273 .072 .083 .580 .272 .062
2 0 .150 .076 .212 .995 .355 .252 .043
3 0 .299 .137 .066 .984 .409 .237 .056
4 .805 .736 .133 .071 .939 .497 .258 .056
5 .632 .689 .132 .052 .976 .485 .256 .057
6 .853 .830 .052 .056 .987 .519 .272 .055
7 .368 .344 .049 .081 .999 .528 .276 .073
8 .853 .765 .189 .053 .650 .511 .271 .040
9 .368 .537 .132 .057 .956 .443 .246 .068

10 .368 .418 .111 .082 .995 .476 .258 .049

N = 20, T = 200
1 1.000 .513 .267 .069 .067 .559 .276 .058
2 0 .128 .052 .255 .999 .316 .247 .032
3 0 .239 .123 .094 .996 .396 .229 .058
4 .805 .756 .103 .048 .974 .521 .269 .059
5 .632 .671 .120 .055 .991 .489 .253 .045
6 .853 .829 .063 .056 .990 .521 .270 .056
7 .368 .348 .045 .079 .999 .548 .276 .066
8 .853 .796 .168 .060 .758 .495 .269 .054
9 .368 .510 .117 .060 .985 .462 .245 .076

10 .368 .401 .103 .078 1.000 .511 .269 .047

N = 30, T = 200
1 1.000 .496 .274 .059 .066 .576 .276 .058
2 0 .127 .048 .335 1.000 .347 .243 .066
3 0 .239 .100 .097 1.000 .418 .222 .060
4 .869 .842 .068 .050 .992 .537 .258 .042
5 .747 .788 .073 .058 .999 .516 .248 .045
6 .848 .840 .019 .046 1.000 .538 .271 .047
7 .366 .355 .028 .079 1.000 .577 .271 .058
8 .848 .859 .064 .061 .941 .500 .267 .056
9 .366 .524 .088 .068 1.000 .517 .241 .049

10 .366 .416 .084 .098 1.000 .505 .255 .054

NOTE: θ̂ is the estimated fraction of the sample in S (small correlations). std(θ̂ ) denotes
the standard deviation of θ̂ in 1,000 replications. svrS and svr are the rejection rates of the
standardized spacings variance-ratio test applied to the subsamples S and L.

ties similar to those reported in Tables 2 and 3. This robustness
to departures from normality is likely due to the fact that the
breakpoint analysis is valid under very general assumptions,
and the SVR tests a generic feature of integrated data. Thus
both the breakpoint analysis and the SVR test continue to have
satisfactory finite-sample properties.

5.1 Applications

We consider two applications. The first analyzes the corre-
lation in real economic activity in the Euro area, and the sec-
ond considers a panel of real exchange rate data. To isolate
cross-section from serial correlation, we compute the correla-
tion coefficients for residuals from a regression of each variable
of interest on a constant and its own lags.

Industrial Production. Let zit, i = 1,12, t = 1982:1–1997:8,
be monthly data on industrial production for Germany, Italy,

Table 5. Pearson Correlation Coefficients: χ2
1 Errors

First split Second split

DGP θ0 θ̂ std(θ̂ ) svrS svrL θ̂ std(θ̂ ) svrSS

N = 10, T = 100
1 1.000 .500 .263 .094 .092 .539 .260 .033
2 0 .200 .114 .187 .883 .412 .241 .015
3 0 .358 .188 .071 .681 .460 .255 .046
4 .622 .523 .178 .087 .845 .523 .272 .036
5 .333 .424 .157 .070 .887 .500 .260 .060
6 .867 .680 .236 .074 .633 .561 .274 .052
7 .378 .321 .090 .080 .853 .505 .257 .047
8 .867 .515 .264 .084 .211 .556 .258 .052
9 .378 .511 .212 .072 .565 .494 .266 .046

10 .378 .418 .164 .074 .841 .518 .267 .041

N = 20, T = 100
1 1.000 .529 .289 .055 .066 .561 .272 .052
2 0 .186 .102 .138 .995 .383 .237 .061
3 0 .416 .162 .064 .928 .413 .229 .046
4 .805 .761 .130 .049 .937 .504 .263 .052
5 .632 .697 .121 .061 .978 .486 .256 .058
6 .853 .824 .074 .068 .945 .509 .278 .060
7 .368 .346 .053 .047 .996 .467 .254 .059
8 .853 .675 .261 .050 .441 .547 .280 .061
9 .368 .613 .140 .057 .853 .450 .242 .065

10 .368 .473 .111 .095 .994 .463 .255 .066

N = 20, T = 200
1 1.000 .516 .282 .057 .065 .551 .267 .059
2 0 .155 .076 .169 .998 .372 .239 .047
3 0 .341 .145 .065 .978 .407 .235 .072
4 .805 .770 .090 .061 .983 .527 .269 .041
5 .632 .672 .117 .051 .985 .494 .257 .044
6 .853 .837 .037 .056 .996 .530 .277 .059
7 .368 .353 .034 .061 1.000 .533 .275 .071
8 .853 .749 .220 .052 .626 .535 .281 .050
9 .368 .581 .121 .058 .943 .440 .241 .051

10 .368 .445 .100 .076 .998 .475 .255 .073

N = 30, T = 200
1 1.000 .508 .280 .055 .065 .565 .280 .053
2 0 .156 .073 .187 1.000 .390 .233 .069
3 0 .354 .121 .075 .998 .459 .217 .063
4 .869 .857 .046 .061 .996 .545 .263 .052
5 .747 .796 .061 .068 .996 .539 .252 .053
6 .848 .841 .011 .054 1.000 .538 .276 .059
7 .366 .357 .019 .072 1.000 .543 .270 .048
8 .848 .843 .127 .054 .807 .487 .278 .050
9 .366 .601 .095 .061 .995 .508 .228 .042

10 .366 .458 .081 .068 1.000 .505 .244 .046

NOTE: θ̂ is the estimated fraction of the sample in S (small correlations). std(θ̂ ) denotes
the standard deviation of θ̂ in 1,000 replications. svrS and svr are the rejection rates of the
standardized spacings variance-ratio test applied to the subsamples S and L.

Spain, France, Austria, Luxembourg, the Netherlands, Finland,
Portugal, Belgium, Ireland, and the United States. These data
are the same as given by Stock, Watson, and Marcellino (2003).
With 12 countries, we have n = 66 for T = 186 observations.
The variable of interest is the growth rate of industrial produc-
tion. Figure 4 plots φ̄j. Although most of the φ̄j’s are far from
unity, the observations do not lie along a straight line, indicat-
ing substantial heterogeneity in the correlations. The breakpoint
analysis yields θ̂ = .468, 31 correlations in S, and 35 correla-
tions in L. The svr test statistics are −.234 and 2.673. Industrial
production in 31 of the 66 country pairs appear to be contem-
poraneously uncorrelated. Because there are many zero corre-
lation pairs, a common factor structure does not appear to be a
suitable characterization of the output of these 12 countries.

A listing of the correlations in the two groups is given in
Table 6. The largest correlation is the France–Germany pair
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Figure 4. φ̄(j): Growth Rate of Industrial Production for 12 OECD
Countries.

( p̄j = .33), and the weakest is between Austria and Luxem-
bourg ( p̄j = .006). As pointed out by a referee, France is highly
correlated with Belgium, which is highly correlated with Spain,
but the correlation between Spain and Belgium is in the low
group. This result, which is of some economic interest, clearly

Table 6. Correlations in Industrial Production for 12 OECD Countries

Group S Group L

Country p̂j Country p̂j

FRA BEL .003 FRA FIN .116
GER PORT −.003 AUS FIN .117
NETH BEL .004 GER LUX .118
BEL US −.008 LUX PORT .123
AUS IRE .012 IRE US .124
FIN IRE −.013 ITA AUS .125
PORT BEL −.013 ITA BEL .130
ITA FIN −.018 FRA PORT .135
FRA IRE .021 BEL IRE .144
AUS PORT −.027 FRA LUX .145
AUS LUX .032 GER NETH .147
SPA FIN .036 GER BEL .148
FRA AUS .036 LUX US .149
SPA BEL .037 LUX BEL .160
LUX NETH .038 GER SPA .166
NETH FIN −.038 FRA NETH .169
NETH US .039 SPA US .170
GER US .043 FIN US .173
GER AUS −.044 FIN BEL .175
LUX IRE .051 ITA PORT .177
GER FIN .051 GER IRE .178
PORT IRE .067 SPA IRE .180
PORT US .068 SPA LUX .182
NETH IRE .071 AUS NETH .185
GER ITA .078 SPA PORT .186
LUX FIN .089 ITA NETH .191
NETH PORT .091 SPA NETH .205
SPA AUS .094 ITA IRE .205
FIN PORT .094 ITA SPA .226
AUS US .097 ITA US .233
ITA FRA .103 FRA US .250

AUS BEL .293
ITA LUX .299
SPA FRA .364
GER FRA .372

NOTE: The industrial production data are for Germany, Italy, Spain, France, Austria, Lux-
embourg, the Netherlands, Finland, Portugal, Belgium, Ireland, and the United States for
1982:1–1997:8.

Figure 5. φ̄(j): Real Exchange Rates for 21 Countries.

shows that our analysis provides a way to classify correlation
coefficients into groups. Economic analysis will be necessary
to see whether the series underlying the correlations can be
grouped meaningfully.

Real Exchange Rates. Quarterly data for nominal exchange
rates and the consumer price indices were obtained from the In-
ternational Finance Statistics. We use data from 1974:1–1997:4
for 21 countries: Canada, Austria, New Zealand, Australia,
Belgium, Denmark, Finland, France, Germany, Ireland, Italy,
Netherlands, Norway, Spain, Sweden, Switzerland, U.K.,
Japan, Korea, Singapore, and Thailand. The United States is
used as the numeraire country. The variable of interest is the
log real exchange rate.

A plot of φ̄j is presented in Figure 5. The algorithm finds that
θ̂ = .142, so .85 of the sample belongs to L. Because there are
a total of n = 210 correlations in this example, Table 7 gives
only the 30 correlations in S and the 30 largest correlations
in L. Evidently, correlations involving the real exchange rates
for Canada and Korea do not display much correlation with
those of the European countries. However, the European real
exchange rates are strongly correlated with one another. The
results suggest that one cannot simply attribute the source of
the correlations to the use of a common numeraire (the U.S.
dollar). If this were the sole source of the correlation, then all
real exchange rates should be equally correlated.

The svr test statistic with q = 2 is 1.884 for the S sample of
size 30 and 8.574 for the L sample. With q = 4, these statis-
tics test are 1.4585 for S and 10.8271 for S. Further partitioning
the L sample yields a svr for LS of 8.5724. Evidence against
no correlation in the L sample is compelling. Because L consti-
tutes .85 of the correlation pairs, the cross-section correlation
in the panel is extensive. Not accounting for these correlations
when constructing panel unit root tests can indeed lead to mis-
leading inference about persistence.

Putting the two sets of results together suggests stronger and
more extensive correlation for the European real exchange rates
than for industrial production. Indeed, the first principal compo-
nent explains more than 60% of the variation in real exchange
rates. Because a common factor exists in European real ex-
change rates but not in real output, the evidence points to the
presence of a nominal or a monetary factor.
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Table 7. Real Exchange Rates for 21 Countries

Largest 30 correlations
in group LGroup S

Country p̂j Country p̂j

CAN FR .008 NETH NOR .847
CAN NETH .009 AUS IRE .851
CAN SPA .016 FR SWTZD .857
CAN GER .019 GER IRE .860
CAN ITA .020 BEL SWTZD .862
CAN BEL .021 BEL IRE .867
CAN NOR .025 DEN SWTZD .867
UK KOR −.026 DEN IRE .869
CAN AUS .030 IRE NETH .869
SWTZD KOR .045 FR IRE .870
CAN SWED .050 GER NOR .871
FIN KOR .050 AUS NOR .872
DEN KOR .052 AUS SWTZD .876
CAN SWTZD .052 NETH SWTZD .877
CAN SG .052 GER SWTZD .879
NETH KOR .053 DEN FR .913
SWED KOR .056 AUS FR .921
CAN IRE .056 BEL FR .922
CAN THAI .058 FR GER .922
ITA KOR .058 FR NETH .927
FR KOR .059 AUS DEN .950
BEL KOR .064 DEN GER .956
CAN JP .064 DEN NETH .959
GER KOR .065 BEL DEN .963
AUS KOR .068 AUS BEL .963
CAN DEN .070 BEL GER .964
IRE KOR .076 BEL NETH .970
NOR KOR .078 AUS NETH .978
CAN UK .081 GER NETH .982
SPA KOR .085 AUS GER .985

NOTE: The real exchange rates are for Canada, Australia, New Zealand, Australia, Bel-
gium, Denmark, Finland, France, Germany, Ireland, Italy, Netherlands, Norway, Spain, Sweden,
Switzerland, U.K., Japan, Korea, Singapore, and Thailand. The United States is used as the
numeraire country. The sample is for 1974:1–1997:4.

6. CONCLUSION

This article has presented an agnostic way of testing cross-
section correlation when possibly a subset of the sample is cor-
related. This is a situation in which traditional testing of the
no correlation hypothesis in the full sample is rejected, but for
which the rejection provides little understanding about the ex-
tent of the correlation. Our analysis makes use of the fact that
if the population correlations are 0, then the spacings of the
transformed sample correlations should have certain properties.
We use a breakpoint analysis and a variance ratio test to assess

whether the properties of the spacings are consistent with the
underlying assumption of zero correlation. We take a Gaussian
transformation of |√Tp̄[ j:n]|. An alternative is to define p̃[ j:n]
as the sorted series of p̂2

j . Then a chi-squared transformation
of Tp̃[ j:n] should be approximately uniformly distributed on the
unit interval. The results for uniform spacings can be applied
immediately, and our main results will continue to hold.

APPENDIX: PROOFS

We need to show that the tests, which are based on trans-
formations of the sample correlations, are unaffected by the
sampling variability of estimated correlation coefficients. Let
�(·) denote the standard normal distribution and zα be the
α-level standard normal quantile, that is, �(zα) = α. It is
known that if a statistic τ̂ is

√
T consistent and asymptoti-

cally normal, then Pr(τ̂ ≤ zα) = �(zα) + T−1/2�′(zα)v1(zα) +
T−1v2(zα)�′′(x) + · · · , where vj is a polynomial. Furthermore,
if Pr(τ̂ ≤ qα) = α, then the quantile qα admits the expansion
qα = zα + T−1/2�′(zα)w1(zα) + · · · , where wj is a polyno-
mial. Thus, by the mean value theorem, �(qα) = �(zα) +
�′(q̄α)(qα − zα) for q̄α ∈ [qα, zα].

Under the hypothesis of no correlation, our test statis-
tic is τ̄j = √

Tp̂[ j:n]. Let φ̄j = �(
√

T|p̂[ j:n]|), φj = �(|z[ j:n]|),
with z[ j:n] defined such that �(z[ j:n]) = j

n+1 . We may write

φ̄j = φj + ūj,

where φj ∼ U[.5,1] and ūj = Op(T−1/2) for a given j and n.
However, because φj = .5 + j

2(n+1)
, ūj = Op(n−1T−1/2) as n,

T increases. Thus n�φ̄j = n�φj + n�ūj, where n�ūj is
Op(T−1/2). Similarly, n�qφ̄j = n�qφj + Op(T−1/2).

We have for q = 1, µ̂1 = 1
n

∑n
j=1 n�φ̄j = 1

n

∑n
j=1 n�φj +

Op(T−1/2). Thus 1
n

∑n
j=1 n�φ̄j = 1

n

∑n
j=1 n�φj + op(1). Fur-

thermore, σ̂ 2
1 = 1

n

∑n
j=1(n�φ̄j)

2 − µ̂2
1. It is straightforward

to verify that 1
n

∑n
j=1(n�φ̄j)

2 = 1
n

∑n
j=1(n�φj)

2 + Op(T−1/2).
Analogous arguments show that for fixed q, the mean and vari-
ance of n�qφ̄j are the same as those of n�qφj if T → ∞. This
is verified in Table 8. Testing 1

n

∑n
j=1 �φ̄j is also same as test-

ing the mean of a uniformly distributed series as n → ∞, which
is the basis of the breakpoint analysis.

Table 8. Properties of n∆qφj versus n∆q φ̄j , φj ∼ U[.5, 1], φ̄j = Φ(
√

T |p̂[ j:n]|)

q = 1 q = 2

N T n∆q φ̄j n∆qφj var(n∆q φ̄j ) var(n∆qφj ) n∆q φ̄j n∆qφj var(n∆q φ̄j ) var(n∆qφj )

5 50 .452 .454 .187 .191 .910 .910 .321 .323
5 100 .451 .453 .186 .185 .907 .908 .331 .328
5 200 .454 .452 .186 .184 .914 .908 .342 .330

10 50 .489 .490 .234 .233 .980 .978 .457 .459
10 100 .489 .488 .234 .236 .978 .980 .447 .450
10 200 .489 .489 .234 .235 .979 .980 .457 .454
20 50 .497 .497 .245 .248 .995 .994 .489 .490
20 100 .497 .497 .247 .246 .995 .994 .490 .493
20 200 .497 .497 .246 .246 .995 .995 .489 .487
30 50 .499 .499 .248 .248 .998 .997 .495 .498
30 100 .499 .499 .248 .247 .998 .998 .493 .495
30 200 .499 .499 .248 .249 .998 .998 .494 .496
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Proof of Theorem 1

Let Dj be a first-order uniform spacing, and let Dq
j be

a q-order spacing. The statistic G1n = 1
n

∑n
j=1(nDj)

2 is re-
ferred to as the first-order Greenwood statistic, and G3n =∑n

j=1(n�qDj)
2 is a generalized Greenwood statistic based on

overlapping spacings. As summarized by Rao and Kuo (1984),

√
n(G1n − 2)

d−→N(0,4)

and

√
n
(
G3n − q(q + 1)

) d−→N

(
0,

2q(q + 1)(2q + 1)

3

)
.

Now E(Dj) = 1/(n + 1). Thus var(nDj) = 1
n

∑n
j=1(nDj − 1)2 =

1
n

∑n
j=1(nDj)

2 − 1 has the same limiting variance as G1n. Like-

wise, var(Dq
i ) = 1

n

∑n
i=1(nDq

i − q)2 has the same limiting vari-
ance as G3n.

As defined, σ̂ 2
1 = var(nDj) and σ 2

q = var(nDq
j /q). Thus

var(σ̂ 2
1 ) = 4

and

var(σ̂ 2
q ) = 1

q2
var(nDq

j ) = 2(q + 1)(2q + 1)

3q
.

Although σ̂ 2
1 and σ̂ 2

q are both consistent estimates of σ 2
ε , σ̂ 2

1 is
asymptotically efficient. Thus, following the argument of Lo
and MacKinlay (1988), we have

var(σ̂ 2
q − σ̂ 2

1 ) = var(σ̂ 2
q ) − var(σ̂ 2

1 )

= 2(q + 1)(2q + 1)

3q
− 4 = 2(2q − 1)(q − 1)

3
.

This is precisely the asymptotic variance of the SVR statistic of
Lo and MacKinlay (1988).
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