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A widely held but untested assumption underlying macroeconomic analysis is that the number of shocks
driving economic fluctuations, q, is small. In this article we associate q with the number of dynamic factors
in a large panel of data. We propose a methodology to determine q without having to estimate the dynamic
factors. We first estimate a VAR in r static factors, where the factors are obtained by applying the method
of principal components to a large panel of data, then compute the eigenvalues of the residual covariance
or correlation matrix. We then test whether their eigenvalues satisfy an asymptotically shrinking bound
that reflects sampling error. We apply the procedure to determine the number of primitive shocks in a large
number of macroeconomic time series. An important aspect of the present analysis is to make precise the
relationship between the dynamic factors and the static factors, which is a result of independent interest.
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1. INTRODUCTION

A common working assumption in macroeconomics is that
economic fluctuations are driven by a small number of shocks.
It would not be too controversial to suggest that the number of
shocks is no larger than four. In fact, it is not easy to find a busi-
ness cycle model built from microfoundations with more than
four shocks. Macroeconomists have been preoccupied with un-
derstanding the transmission and quantifying the importance of
three shocks: technology, monetary, and fiscal policy. But what
is the exact number of primitive shocks in the data? In this ar-
ticle we propose a simple testing procedure to determine this
number, which we denote by q. More precisely, the q that we
determine is the rank of the spectral density matrix of the com-
mon components in a large panel of data or, equivalently, the
number of common factors in a dynamic factor model. We do
this without having to estimate a dynamic factor model, how-
ever.

Surprisingly, few test exists to formally evaluate what is the
exact value of q. Using a dynamic index model to analyze quar-
terly data for 14 series over the sample 1950:1–1970:1, Sargent
and Sims (1977) rejected the one- and two-index models in fa-
vor of a model with more factors, though they noted that the
two index model fits the real variables quite well. In two re-
cent articles Forni, Giannone, Lippi, and Reichlin (2003) and
Giannone, Reichlin, and Sala (2005) argued that the number of
macroeconomic shocks, which they referred to as the stochas-
tic dimension of the economy, is two. They estimated common
factors from quarterly data on 190 series over the sample period
1970–1996 and arrived at the conclusion of two shocks using a
reasonable (albeit informal) judgment that two dynamic factors
explain about 60% of the variation in 12 macroeconomic aggre-
gates. However, this does not mean that two factors is optimal
for the panel of data from which the factors are extracted. Fur-
thermore, changing the cutoff point from 60% to 80% would
lead to a stochastic dimension twice as large. Because there
does not exist a formal test for the number of dynamic factors,
their conclusion that q = 2 remains very much an assertion.

The analytical framework used by Forni et al. (2003) and
Giannone et al. (2005) is the so-called “dynamic factor”
model. Like the static factor model favored by Stock and
Watson (2002a), the dynamic factor model also summarizes
information in a large panel of data using a small number of
factors. The important distinction is that rank of the spectrum
of q dynamic factors is always q. Because the r < ∞ static fac-
tors can be dynamically related, the spectrum of r ≥ q static
factors has reduced rank. We can see that this rank is actually q,
the number of dynamic factors. Accordingly, we refer to q as
the number of primitive shocks.

In Section 2 we motivate the procedures in the context of a
canonical VAR, in which the number of underlying shocks is
less than the number of variables. We formally develop tests for
the number of dynamic factors in Sections 3 and 4, and con-
sider simulations and an empirical application in Section 5. We
present conclusions in Section 6.

2. THE MINIMAL NUMBER OF PRIMITIVE SHOCKS
IN VECTOR AUTOREGRESSION

Consider a vector of observed stationary time series, Ft (r ×
1), t = 1, . . . ,T . Assume that Ft is a VAR process of order p
such that

A(L)Ft = ut, (1)

where A(L) = I − A1L − · · · − ApLp. Throughout, we assume
that the roots of A(L) = 0 all lie outside of the unit circle, and
the ut’s are iid with E‖ut‖4+δ < M < ∞ for some δ > 0. We
consider the case in which ut is driven by a vector of lower-
dimensional shocks. Consideration of such a VAR structure is
useful in developing our main analysis, which concerns distin-
guishing the dynamic factors from the static factors.
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Definition 1. We say that the VAR process Ft is driven by
a minimal number of q innovations if there exists a r × q ma-
trix, R, with rank q such that

ut = Rεt, (2)

where εt is a q × 1 vector of innovations that are mutually
uncorrelated; that is, "ε = E(εtε

′
t) is diagonal. If we define

"u = E(utu′
t), then, under (2), "u = R"εR′ has rank q ≤ r.

Bernanke (1986) used ut as the residuals of an estimated
VAR and assumed R to be full rank. The number of primitive
shocks thus equals the number of variables in the system. We
allow the rank of R to be less than r. It is in this sense that we
are looking for the minimal number of primitive shocks. The
number of primitive shocks in ut is simply the q linearly inde-
pendent shocks that span ut.

Suppose that B is an arbitrary r × r matrix with rank q and
that vt is vector of r × 1 shocks. Let ut = Bvt. Then ut can
be expressed as ut = Rεt, where R is r × q and εt is q × 1.
To determine q, we use as starting point that a r × r semiposi-
tive definite matrix A of rank q has q nonzero eigenvalues. Let
c1 > c2 ≥ · · · ≥ cr ≥ 0 be the ordered eigenvalues (at least one
nonzero eigenvalue) and define

D1,k =
(

c2
k+1∑r
j=1 c2

j

)1/2

and

D2,k =
(∑r

j=k+1 c2
j∑r

j=1 c2
j

)1/2

.

Under the assumption of rank(A) = q, ck = 0 for k > q. Thus
D1,k = D2,k = 0 exactly, for k ≥ q.

A different interpretation of our test can be obtained using
the spectral decomposition of A,

A =
r∑

j=1

cjβ jβ
′
j,

where β j is the eigenvector corresponding to cj. Define the
kth pseudomatrix of A as

A(k) =
k∑

j=1

cjβ jβ
′
j.

If A has r − q eigenvalues that are 0, then A = A(k) for k =
q + 1, . . . , r. If dk = vec(A(k)), with d0 = vec(A), then

D1,k ≡ ‖dk+1 − dk‖/‖d0‖ and D2,k ≡ ‖dk − d0‖/‖d0‖.
It follows that our eigenvalue tests are the square root of the
deviations from the null hypothesis, as measured by the matrix
norm. This follows from trace(β jβ

′
j) = ‖β j‖2 = 1 by construc-

tion, and d2
0 = vec(A)′ vec(A) = tr(A′A) = ‖A2‖.

In the next two sections, the matrix A, the rank of which is
to be determined, is "u, the covariance matrix of a set of in-
novations. Although "u and F are not observed, they can be
estimated from the data, denoted by "̂u. Let D̂1,k and D̂2,k

be constructed from the eigenvalues of "̂u. We show that D̂1,k
and D̂2,k converge to 0 (k ≥ q) asymptotically at a rate depend-
ing on the convergence rate of "̂u to "u.

Before turning to our main analysis, a remark on exist-
ing rank tests is in order. Available tests seek to determine
the rank of a m × n matrix, say R, when R is consistently
estimated from the regression ut = Rεt + vt. Our focus is
on problems in which vt plays no role, but with unobserv-
able ut. Furthermore, rank tests tend to not be asymptotically
normal (see Anderson 1951; Gill and Lewbel 1992; Cragg
and Donald 1996, 1997; Robin and Smith 2000). Recently,
Kleibergen and Paap (2006) and Ratsimalahelo (2003) sug-
gested orthogonal rotation of the sample eigenvalues around
the origin to restore normality. Doing so, these tests necessi-
tate a consistent estimate of var(R̂). We want to test the rank
of the matrix "u. This creates two problems. First, estimating
var("̂u) entails evaluating a matrix of fourth moments, which
tend to be quite imprecisely estimated unless the sample size
is extremely large. Second, "u is a variance–covariance matrix
that has only r(r + 1)/2 unique elements; thus var("u) and its
estimate do not have full rank, an assumption maintained by
Kleibergen and Paap (2006). The test of Ratsimalahelo (2003)
allows for reduced rank in the variance of apparently matrices
that are not symmetric. Our attempts to adopt existing tests have
not been successful. This motivates the development of a test
using bounds guided by the convergence rate of D̂1,k and D̂2,k.
We begin with the intermediate case when Ft is observed but "u
is not.

Proposition 1. Let "̂u = 1
T

∑T
t=1 ûtû′

t, where ût are the
residuals from estimation of a VAR in Ft, where Ft is observed.
Let D̂1,k and D̂2,k be the estimated D1,k and D2,k using the
eigenvalues of "̂u. For some 0 < m < ∞ and 0 < δ < 1/2, de-
fine

K1 =
{
k : D̂1,k < m/T1/2−δ

}
(3)

and

K2 =
{
k : D̂2,k < m/T1/2−δ

}
. (4)

Let q̂1 = min{k ∈ K1} and q̂2 = min{k ∈ K2}. Then, under H0

that rank("u) = q, q̂1
p−→ q and q̂2

p−→ q as T → ∞.

This proposition follows from
√

T("̂u − "u) = Op(1). By
continuity of eigenvalues, D̂1,k = D1,k + Op(T−1/2), and like-
wise for D̂2,k. From D̂1,k − D1,k = Op(T−1/2), we have D̂1,k =
Op(T−1/2) for k ≥ q because D1,k = 0. Thus D̂1,k < m/T1/2−δ

with probability tending to 1 as T → ∞. This means that
q ∈ K for large T . But q − 1 does not belong to K because
D̂1,k > c > 0 and thus is >m/T1/2−δ for k < q. This gives the
consistency result. Essentially, the cutoff point m/T1/2−δ is the
tolerated error induced by sampling variability from estimation
of "u. An analogous argument holds for D2,k. In large samples,
the two tests should arrive at the same conclusion.

Thus far, the VAR process Ft is assumed to be observed. In
the next two sections, Ft is a vector of unobserved common
factors shared by a large number of series xit.

3. DYNAMIC VERSUS STATIC FACTOR MODELS

There are two types of factor models in the econometrics lit-
erature. The static model is written as xit = $′

iFt + eit, where
i = 1, . . . ,N, t = 1, . . . ,T . In the language of factor analysis,
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eit is referred to as the idiosyncratic error, and $i is a vector of
factor loadings for unit i on the r (static) common factors Ft.
The term static factor model refers to the static relationship be-
tween xit and Ft, but Ft itself can be a dynamic process. The dy-
namic factor model is written as xit = λ′

i(L)ft + eit, where λi(L)

is a vector of dynamic factor loadings of order s. As a mat-
ter of notation, the model is a “dynamic factor model” if s is
finite, and a “generalized dynamic factor model” if s can be in-
finity. In either case, ft = C(L)εt, where εt are iid vectors and
xit = λi(L)C(L)εt + eit. In this article we consider dynamic fac-
tor models (finite s). The dimension of ft, which is the same as
the dimension of εt, is called the number of dynamic factors;
and is denoted by q. Dynamic factor models with s finite can
be written as static factor models with r finite, but the dimen-
sion of Ft is in general different from the dimension of ft, be-
cause Ft includes the leads and lags of ft with r ≥ q. In practice,
Ft is estimated using an eigenvalue–eigenvector decomposition
of the sample covariance matrix of the data, whereas the dy-
namic estimates are based on a eigenvalue decomposition of the
spectrum smoothed over various frequencies. Recent research
has shown that the space spanned by the static and dynamic
factors can be consistently estimated when N and T are both
large (see, e.g., Forni, Hallin, Lippi, and Reichlin 2000, 2005;
Ding and Hwang 2001; Stock and Watson 2002a; Forni and
Lippi 2001; Bai and Ng 2002; Bai 2003).

The ability to consistently estimate the factor space has
opened up new horizons for empirical research. Using the fac-
tor estimates to summarize information in a data-rich environ-
ment has been found to be useful in forecasting exercises and in
understanding the conduct of monetary policy (see, e.g., Stock
and Watson 2002b; Bernanke and Boivin 2003). Although for
forecasting purposes, little is to be gained from a clear distinc-
tion between the static factors and the dynamic factors, many
economic analyses hinge on the ability to isolate the primitive
shocks or, in other words, the number of dynamic factors.

In earlier work (Bai and Ng 2002), we showed that under cer-
tain conditions, information criteria with appropriately chosen
penalties will consistently estimate r, where r is assumed finite.
We will ultimately propose a way to determine q from r esti-
mated static factors, where r is assumed finite or, in terms of
the parameters of the dynamic model, s is finite. But before we
can proceed with such an analysis, we need to precisely state
the relationship between the dynamic and static factors, treat-
ing Ft and ft as though they are observed. In the remainder of
this section, we show that a dynamic factor model always has a
static factor representation in which the dynamics of Ft is char-
acterized by a VAR with order depending on the dynamics of ft.
We will see from the VAR representation that the spectrum of
the static factors has rank q.

3.1 Putting the Dynamic Model Into Static Form

Consider the dynamic factor model

xit = λ′
i0ft + λ′

i1ft−1 + · · · + λ′
isft−s + eit

= λ′
i(L)ft + eit, (5)

where ft is q-dimensional and

λi(L) = λi1 + λi2L + · · · + λisLs. (6)

Clearly we can rewrite (5) in the static form,

xit = $′
iFt + eit, (7)

where

$i =





λi0
λi1
...

λis



 and Ft =





ft
ft−1
...

ft−s



 . (8)

The foregoing is a simple mathematical identity and is true
whether ft itself is an AR process or an MA process. The di-
mension of Ft is always equal to

r = q(s + 1),

where q is the dimension of ft. As mentioned earlier, whereas
the relation between xit and Ft is static, Ft itself can be a dy-
namic process with precise characterization depending on the
dynamics of ft. We consider two cases, one case in which ft is
a finite-order AR process, and the other in which ft has an MA
structure.

Case I. ft is AR(h), h is finite. In this case,

(Iq − B1L − · · · − BhLh)ft = εt. (9)

Note that ft is q-dimensional, and the number of static factors, r,
does not depend on h, the order of the dynamic process govern-
ing ft in (9). Unless s = 0, the number of static factors is larger
than the number of dynamic factors.

We now want to establish that Ft is a VAR with order de-
pending on h and s. To see the VAR representation of Ft, we
put ft into a state-space form. Let κ = max(h, s) and define
Bh+1 = · · · = Bκ = 0; then




ft
ft−1
.

.

ft−κ




=





B1 B2 . . . Bκ+1
Iq 0 0 . . 0
0 Iq . . 0
. . . . . .

0 . . Iq . 0









ft−1
ft−2
.

.

ft−κ−1





+





Iq
0
.

.

0




εt.

Define F∗
t = [f′t f′t−1 · · · f′t−κ ]′. We have

F∗
t = AF∗

t−1 + ut, (10)

ut = Rεt,

where A is square matrix of dimension q · (κ + 1) and R is a
q(κ + 1) × q matrix. In traditional state-space representation,
κ = h. In our present case, κ = max(h, s). If s ≥ h, then

Ft ≡ F∗
t ,

so Ft also has a VAR(1) representation. When s < h, Ft is a
subvector of F∗

t . In general, any subvector of a VAR is a vector
ARMA process, not necessarily VAR. However, due to the spe-
cial structure of F∗

t , the subvector Ft itself is a VAR. This point
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can be easily made clear through an illustration. Suppose that
h = 3 and s = 1, and consider

ft = B1ft−1 + B2ft−2 + B3ft−3 + εt,

so that ft is VAR(3). Let Ft = (f′t, f′t−1)
′. Clearly,

[
ft

ft−1

]
=

[
B1 B2
I 0

][
ft−1
ft−2

]
+

[
0 B3
0 0

][
ft−2
ft−3

]
+

[
I
0

]
εt.

This implies that Ft is VAR(2). In fact, we can show that for the
general situation, Ft is VAR(p) with p = max(1,h − s). There-
fore, the dynamic factor model defined by (5)–(6) when ft is a
VAR(h) can be written as a static factor model as

Ft = A1Ft−1 + A2Ft−2 + · · · + ApFt−p + ut (11)

and

ut = (Iq,0, . . . ,0)′εt (12)

Case II. ft is MA(h). Consider

ft = εt + C1εt−1 + · · · + Chεt−h. (13)

In this case Ft = (f′t, f′t−1, . . . , f′t−s)
′, and Ft is q(s+1)×1. That

is, the number of static factors is r = q(s + 1) irrespective of h,
the order of ft.

Under the invertibility assumption, the MA process ft can be
expressed as an VAR(∞) process, which can be approximated
by a finite-order VAR. This implies that Ft can also be approxi-
mated by a finite-order VAR as in (11) and (12) (see Berk 1974;
Kuersteiner 2004 for theoretical results), particularly when the
coefficients of the AR process decay quickly to 0. In general,
the lag length should be chosen by a data-dependent method
and is an increasing function of T . Although this procedure
works well in practice, some theoretical issues are left unex-
plored when the VAR order increases with T . Proposition 2 is
stated only for VARs of fixed orders, and in effect it does not
cover case II. Nevertheless, we note that it is possible to extend
the theory to include VAR(∞) processes with rapidly decaying
coefficients. In particular, the theory can be extended to Ft as
vector ARMA processes. For simplicity, this extension is not
considered here. Monte Carlo simulations show that the proce-
dure works well for ft as MA processes.

The point that we highlight is that data generated by the dy-
namic model can always be mapped into a static model of the
form xit = $′

iFt + eit by suitably defining a Ft that evolves ac-
cording to a VAR with order depending on the dynamics of ft.
The dimension of Ft is always r = q(s + 1) irrespective of the
order of the VAR. Given that A(L)Ft = Rεt, the spectrum of F
at frequency ω,

SF(ω) = A(e−iω)−1RSε(ω)R′A(eiω)−1,

has rank q if Sε(ω) has rank q for all |ω| ≤ π . Accordingly, the
spectrum of the static factors SF(ω) will also have q nonzero
eigenvalues. Therefore, we refer to the dynamic factors, q, as
the number of primitive shocks.

Although the dynamics of the static factors are in the same
form as the observable VAR system in (1) in the sense that both
are driven by shocks with dimension less than the dimension
of the variables, Proposition 1 cannot be used immediately to
determine q. This is because Ft is not observable, and the con-
vergence rate of "̂u is not

√
T . We deal with these issues in the

next section.

4. DETERMINING q

Let Sx(ω) be the population spectrum of the N cross-
sectional units. The static model implies that

Sx(ω) = $SF(ω)$′ + Se(ω), −π ≤ ω ≤ π.

Because Se(ω) has rank N, Sx(ω) is also rank N. This would
seem to suggest that q cannot be determined without working
on SF(ω). Such a procedure would necessitate choosing many
auxiliary parameters (such as bandwidth and kernel), and even
then, we do not have a formal theory for determining q. We now
show how q can be estimated in the time domain, with limiting
distributions of the eigenvalues unnecessary.

If Ft is observed, and because it has a VAR representation,
Proposition 1 then implies that q can be determined from a
spectral decomposition of "̂u provided that T is large. What
prevents such an analysis is that neither Ft nor its dimension (r)
is observed. However, the following holds. Let F̂r

t be the r fac-
tors obtained by the method of principal components; that is,
let $̂ be a N × r matrix consisting of the r eigenvectors (mul-
tiplied by

√
N ) associated with the r largest eigenvalues of

the matrix X′X in decreasing order. Then F̂ = X$̂/N. These
principal component estimates adopt the normalization that
$̂′$̂/N = Ir . Then, under the assumption that (a) "F = E(FtF′

t)
and $′$/N are both rank r, (b) moment restrictions are sat-
isfied, and (c) the time and cross-sectional correlation in the
idiosyncratic errors is weak, Bai and Ng (2002) and Bai (2003)
showed that if the data are generated by the static factor model,
then as N,T → ∞, there exists a matrix H of rank r, such that
as N,T → ∞ (ointly),

min[N,T]
(

1
T

T∑

t=1

‖F̂r
t − HFt‖2

)

= Op(1)

and

Pr(k̂ = r)
p−→ 1,

where

k̂ = arg min
k

IC(k) = arg min
k

log(σ 2
k ) + kCNT

with CNT → 0 but min[N,T]CNT → ∞ as N,T → ∞.
Importantly, the foregoing large-sample results assume that

the second moment matrix of $i and Ft is rank r. But "F may
have rank less than r. For example, if Ft = AFt−1 + Rεt is
such that A = ρIr , |ρ| < 1, then var(Ft) = R"εR′/(1 − ρ2),
var(Ft) has only rank r∗ = q. In general, when the dynamics
of Ft is sufficiently rich, var(Ft) is of rank r even though the
rank of "u is only q. But existing results do not cover cases
when var(Ft) < r, which can arise as in the foregoing example
when Ft has very simple dynamics. We now extend our results
on determining the number of factors to also cover these special
cases.

Lemma 1. Let Ft be a r × 1 vector of factors generated
by q primitive common shocks εt. Let q ≤ r∗ ≤ r. Let "F =
E(FtF′

t) and "$ = plim$′$/N. Suppose that the r × r ma-
trix "F · "$ has rank r∗ and the remaining assumptions of
Bai and Ng (2002) hold. Let F̂r∗

t be the r∗ × 1 vector of
factor estimates obtained by the method of principle com-
ponents. There exists a matrix H∗ with rank r∗ such that
(a) min[N,T]( 1

T

∑T
t=1 ‖F̂r∗

t − H∗Ft‖2) = Op(1) and (b) Pr(k̂ =
r∗) = 1 if k̂ = arg mink IC(k).
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Lemma 1 clarifies that when Ft is reduced rank, the method
of principal components will estimate the space spanned by
the r∗ independent factors. The IC will select r∗ ≤ r factors,
because r∗ is the rank of "F (assuming that "$ is of full rank).

Consider now the determination of q given F̂t, where the
F̂t are the r̂∗ factors obtained by the static method of princi-
pal components. For notational simplicity, the dimension of F̂t
is suppressed but is understood to be of dimension r̂∗, where
r̂∗ is determined by the IC. Let ût be the residuals from esti-
mating a VAR( p) in F̂t, and let "̂u = 1

T
∑T

t=1 ûtût. Note that
because we can only estimate the space spanned by the factors,
we need the residuals from estimation of a VAR in F̂t. Perform-
ing r̂∗ univariate autoregressions for each component of F̂t is
not appropriate.

Lemma 2. Consider the model xit = λ′
iFt +eit with A(L)Ft =

ut, where A(L) is a matrix polynomial in the lag operator of
order p. Let F̂t be the r∗ × 1 factors estimated by the method of
principal components under the normalization that $′$/N =
Ir∗ , where q ≤ r∗ ≤ r. Let ût be the residuals obtained by least
squares estimation of a VAR( p) in F̂t. Let "̂u = 1

T

∑T
t=1 û′

tût,
and let "̃u = 1

T

∑T
t=1 utu′

t. Then

min[
√

N,
√

T ]("̂u − H∗"̃uH∗′) = Op(1).

The ultimate interest is in the rank of "u = E(utu′
t). But√

T("̃u − "u) = Op(1). Lemma 2 thus implies that

‖"̂u − H∗"uH∗′‖ = Op(1/min[
√

N,
√

T ]).
Note that "u and H∗"uH∗′ have the same rank because
H∗ is of full rank. We have D̂1,k − D1,k = Op(1/

min[
√

N,
√

T ]). Because D1,k = 0 when k ≥ q, we also have
D̂1,k = Op(1/min[

√
N,

√
T ]). A similar result holds for D̂2,k.

Thus we have the following result.

Proposition 2. Let "̂u = 1
T

∑T
t=1 ûtû′

t, where ût are the
residuals from estimation of a VAR in F̂t, F̂t being the prin-
cipal components estimator for Ft. For some 0 < m < ∞ and
0 < δ < 1/2, let

K3 =
{
k : D̂1,k < m/min

[
N1/2−δ,T1/2−δ

]}
(14)

and

K4 =
{
k : D̂2,k < m/min

[
N1/2−δ,T1/2−δ

]}
. (15)

Let q̂3 = min{k ∈ K3} and q̂4 = min{k ∈ K4}. Then, under H0

with rank("u) = q, we have q̂3
p−→ q and q̂4

p−→ q as N,

T → ∞.

Our main insight is to exploit the relationship between the
dynamic and the static factors so that estimating the dynamic
factors is not necessary to determine q. In our setup, if r∗ fac-
tors explain τ percent of the variation in the data, then the
q primitive factors will explain the same fraction (up to an error
that vanishes asymptotically) of variation in the data. Impor-
tantly, r∗ and τ are determined using well-defined criteria. This
is in contrast to the approach of Giannone et al. (2005), in which
q is chosen for a subjectively chosen τ .

Our procedure provides a more formal way of determining
the rank of SF(ω) and is a useful cross-check of the infor-
mal method used by Giannone et al. (2005). In independent

work completed the same time the first draft of this article
was written, Stock and Watson (2005) also developed a test
for q that uses a rather different approach. Instead of the rank
of SF(ω), they estimated the rank of the restricted residuals
of a (N + r)-dimensional VAR. In our notation, Stock and
Watson started with xit = $′

iFt + ρi(L)xit−1 + eit to allow se-
rial correlation in the idiosyncratic errors. The factor dynam-
ics A(L)Ft = Rut, where A(L) = I − A+(L)L implies that
xit = $′

iA
+(L)Ft−1 + $′

iRεt + ρi(L)xit−1 + eit. The compos-
ite residuals of a VAR in Xt and Ft is of the form $′

iRεt + eit,
which has q common factors εt. Stock and Watson exploited
this factor representation to determine q using the criteria de-
veloped by Bai and Ng (2002).

As written, q̂3 and q̂4 are the estimated rank of "̂u, the sam-
ple covariance matrix of ût. But the number of nonzero eigen-
values of "̂u is the same as the number of nonzero eigenvalues
of Ŝu, the sample correlation matrix of ût. In our experience,
using one or the other matters only for the choice of m. We
found that m = 1 works for both q̂3 and q̂4 when "̂u is used.
As we show in our simulations, the preferred values of m are
different for q̂3 and q̂4 when correlation matrix Ŝu is used. Sta-
tistics based on correlation matrix are scale-invariant. We report
results for both cases in our simulations.

5. SIMULATIONS

We consider the following data-generating processes
(DGPs):

1. xit = (λi0 + λi1L + λi2L2)′ft + eit, where ft = C(L)εt and
ft is q-dimensional

2. xit = (λi0 + λi1L)′ft + eit, where A(L)ft = εt and ft is
q-dimensional

3. xit = λ′
iFt + eit, where Ft = A1Ft−1 + ut and A1 = ρIr;

ut = Rεt, rank(R) = q
4. xit = λ′

iFt + eit, where Ft = A1Ft−1 + ut, where A1 =
diag(.2, .375, .55, .725, .9) and ut is the same as in
DGP 3.

DGPs 1 and 2 are dynamic factor models considered by Forni
et al. (2000) with q = 2 dynamic factors. DGP 1 assumes that
ft is a bivariate MA process with MA(1) parameters of .2 for f1t
and .9 for f2t. DGP 2 assumes that ft is a bivariate first-order AR
process with AR(1) parameters of .2 for f1t and .9 for f2t. DGP 1
has r = q(s + 1) = 6 static factors, and DGP 2 has r = 4 static
factors. DGPs 3 and 4 are static factor models. The static factors
are driven by q = 3-dimensional shocks. This DGP was used
by Stock and Watson (2002a) and Bai and Ng (2002), among
others. In DGP 3, r = 5, but the factors have common dynamics
with ρ = .5. This implies that r∗ = q = 3. There are many ways
to generate ut of the form ut = Rεt. Our particular method is
as follows. Let S be a r × r diagonal matrix of rank q with
nonzero elements drawn from uniform U(.8, 1.2) distribution.
Let & be an arbitrary orthonormal matrix &&′ = Ir , obtained
in Matlab through “orth(rand(r, r)).” Then ut is generated as
ut = &S&′vt, where vt is an r×1 vector of iid normal variables.
Note that & and S do not vary over t and i. The variance of ut
is &S2&′, with rank q. For DGP 4, A1 is a diagonal matrix with
values .2, .375, .55, .725, and .9; the dynamics of Ft are thus
richer than those of DGP 3. In this case, q = 3 and r = 5. In
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Table 1. Estimated Number of Dynamic Factors Based on the
Covariance Matrix of VAR Residuals

q̂3 q̂4 q̂3 q̂4 q̂3 q̂4
N T r̂ \ m 2 2 1.0 1.0 .5 .5

DGP 1: xit = (λi0 + λi1L + λi2L2)′ft + eit , ft = εt + C1εt−1,
q = 2, s = 2, r = 6

20 100 10.332 1.137 1.307 1.975 2.090 2.355 3.925
20 200 10.443 1.164 1.339 1.981 2.088 2.283 4.169
50 100 6.078 1.963 1.969 2.000 2.000 2.030 2.068
50 200 6.146 1.978 1.982 2.000 2.000 2.026 2.091

100 100 6.000 2.000 2.000 2.000 2.000 2.000 2.000
100 200 6.011 2.000 2.000 2.000 2.000 2.000 2.001

DGP 2: xit = (λi0 + λi1L)′ft + eit , ft = A1ft−1 + ut ,
q = 2, s = 1, r = 4

20 100 6.820 1.122 1.327 1.995 2.223 2.769 3.859
20 200 7.231 1.131 1.321 1.978 2.213 2.703 3.996
50 100 4.356 1.937 1.947 2.000 2.014 2.193 2.300
50 200 4.795 1.955 1.966 2.000 2.026 2.228 2.537

100 100 4.003 2.000 2.000 2.000 2.000 2.002 2.002
100 200 4.075 2.000 2.000 2.000 2.000 2.007 2.032

DGP 3: xit = λ′
i Ft + eit , Ft = A1Ft−1 + ut , A1 = ρIr ,

q = 3, r = 5 (r∗ = 3)
20 100 4.499 1.122 1.686 2.693 2.787 3.043 3.375
20 200 4.903 1.121 1.782 2.762 2.842 3.020 3.490
50 100 3.000 2.338 2.356 2.999 2.999 3.000 3.000
50 200 3.012 2.405 2.415 3.000 3.000 3.000 3.000

100 100 3.000 2.963 2.963 3.000 3.000 3.000 3.000
100 200 3.000 2.987 2.987 3.000 3.000 3.000 3.000

DGP 4: xit = λ′
i Ft + eit , Ft = A1Ft−1 + Rut ,

q = 3, r = 5
20 100 4.596 1.098 1.620 2.573 2.753 3.254 3.570
20 200 4.943 1.096 1.636 2.566 2.777 3.272 3.686
50 100 3.097 2.087 2.148 2.990 2.991 3.013 3.023
50 200 3.289 2.126 2.168 2.992 2.994 3.007 3.061

100 100 3.001 2.768 2.768 3.000 3.000 3.000 3.000
100 200 3.007 2.776 2.776 3.000 3.000 3.000 3.000

NOTE: The entries are the average values over 1,000 iterations.

addition, r∗ = r for large T , but r∗ can be less than r for finite T .
In all four DGPs, we assume that λij, eit, and εt are iid standard
normal.

For all four DGPs, the testing proceeds as follows. Given
the data xit, i = 1, . . . ,N, t = 1, . . . ,T , the static factors are
estimated using the method of principal components with the
normalization that $′$/N = Ir∗ . The number of factors is esti-
mated by the IC as done by Bai and Ng (2002). Specifically,

r̂∗ = arg min
k∈[0,2r]

log(σ̂ 2
k ) + k

log(min[N,T])
NT/(N + T)

,

where σ̂ 2
k = 1

NT

∑
i
∑

t(xit − λ̂k
i F̂k

t )
2, F̂k

t is k × 1. Given F̂t,
a r̂∗-dimensional VAR in F̂t is estimated to obtain ût. Select-
ing too few lags will be problematic, because ût will not be
innovations. We report results for VAR(2); results for higher
lags are similar. Given ût, its r̂∗ × r̂∗ covariance matrix is
constructed. Then q̂3 and q̂4 are obtained with δ = .1, so that
m∗ = m/min[N2/5,T2/5]. The number of simulations is 1,000.

Table 1 reports the average values for r̂ and q̂ estimated based
on the covariance matrix of ût. Table 2 reports the correspond-
ing results based on the correlation matrix of ût. The four panels
correspond to four different DGPs. For all cases, the number of
static factors r̂ is determined by minimizing the IC(k) for k be-
tween 0 and 2r. For small values of min[N,T], the IC tends to
select a large number of static factors. However, even when r̂∗ is
overestimated, q̂ can be very close to q for suitable choice of m.

Table 2. Estimated Number of Dynamic Factors Based on the
Correlation Matrix of VAR Residuals

q̂3 q̂4 q̂3 q̂4 q̂3 q̂4
N T r̂ \ m 1.25 2.25 1.0 2.0 1.5 2.5

DGP 1: xit = (λi0 + λi1L + λi2L2)′ft + eit , ft = εt + C1εt−1,
q = 2, s = 2, r = 6

20 100 10.332 1.955 1.866 2.448 2.510 1.642 1.529
20 200 10.443 1.944 1.938 2.259 2.649 1.625 1.578
50 100 6.078 2.062 1.919 2.179 1.977 2.002 1.794
50 200 6.146 2.086 1.944 2.253 1.988 1.999 1.827

100 100 6.000 2.037 1.990 2.076 1.996 2.015 1.978
100 200 6.011 2.047 1.994 2.088 1.998 2.022 1.978

DGP 2: xit = (λi0 + λi1L)′ft + eit , ft = A1ft−1 + ut ,
q = 2, s = 1, r = 4

20 100 6.820 1.999 1.842 3.960 2.480 1.529 1.464
20 200 7.231 1.880 1.934 4.624 2.693 1.440 1.539
50 100 4.356 2.391 1.936 2.416 2.064 2.316 1.784
50 200 4.795 2.828 2.131 2.857 2.318 2.599 1.948

100 100 4.003 2.032 1.994 2.047 2.012 2.021 1.954
100 200 4.075 2.110 2.018 2.123 2.077 2.093 1.992

DGP 3: xit = λ′
i Ft + eit , Ft = A1Ft−1 + ut , A1 = ρIr ,

q = 3, r = 5 (r∗ = 3)
20 100 4.499 3.124 2.468 3.908 2.791 2.500 2.087
20 200 4.903 2.991 2.762 4.279 3.167 2.474 2.436
50 100 3.000 3.000 2.852 3.000 2.987 3.000 2.303
50 200 3.012 3.012 2.984 3.012 3.011 3.012 2.609

100 100 3.000 3.000 3.000 3.000 3.000 3.000 2.996
100 200 3.000 3.000 3.000 3.000 3.000 3.000 3.000

DGP 4: xit = λ′
i Ft + eit , Ft = A1Ft−1 + Rut ,

q = 3, r = 5
20 100 4.596 3.364 2.244 4.067 2.621 1.920 1.662
20 200 4.943 3.739 2.423 4.405 2.902 1.671 1.841
50 100 3.097 3.067 2.291 3.091 2.524 2.970 2.116
50 200 3.289 3.257 2.471 3.285 2.708 3.133 2.259

100 100 3.001 3.001 2.842 3.001 2.938 2.999 2.688
100 200 3.007 3.007 2.855 3.007 2.940 3.005 2.727

NOTE: The entries are the average values over 1,000 iterations.

As noted earlier, when the covariance matrix is used, m = 1 is
suitable for both q3 and q4. But when the correlation matrix is
used, m needs to be different for q3 and q4. In general, when m
is too small, q̂ is larger than q. For all four DGPs, we find that
m = 1.25 works well for q̂3 and m = 2.25 works well for q̂4
(when using correlation matrices). Between q̂3 and q̂4, the for-
mer tends to have better properties when N or T is small.

5.1 Empirical Analysis: Shocks in the United States

To illustrate, we take data used by Stock and Watson (2005),
which can be downloaded at http://www.princeton.edu/~
mwatson. A total of 132 monthly time series are available from
1960:1 to 2003:12. The data are transformed (by taking logs,
first or second difference) as was done by Stock and Watson.
The objective is to determine the number of primitive, or dy-
namic, factors in this panel of data.

To get a sense of the importance of the factors in the data, we
begin by determining q̂ for r = 2,3, . . . ,10. The value of q is
estimated using the correlation matrix. Almost identical results
are obtained if a covariance matrix is used. But when discrep-
ancy exists, the estimated q from the latter method tends to be
higher than that from the former method. Thus to assert that q is
larger than 2, we use a method that is less favorable to the as-
sertion. In this exercise, we do not take a stand on what is the
optimal number of static factors in the data. We find that for the
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full sample of 528 observations, q̂ = r when r = 2,3; q̂ = 3,
when r = 4,5,6; and q̂ = 4 when r = 7,8. Some of the sta-
tic factors are linearly dependent in a dynamic sense. It is well
known that the first two static factors in the data being analyzed
are real factors. The finding that q̂ = 2 given r = 2 indicates that
the first two static factors are dynamically distinct.

Next, we allow the number of static factors, rt, to be deter-
mined optimally for each t. We use two concepts of optimal-
ity. We first estimate r̂t(τ ) static factors, where r̂t(τ ) explains
the closest τ percent of the variation in the data up to time t,
and then determine q̂t(τ ) given r̂t(τ ) factors. Note that r̂t(τ ) is
not optimal from a statistical standpoint. However, the result of
Giannone et al. (2005) that q = 2 is based on the reasoning that
two dynamic factors explain 60% of the variation in 12 vari-
ables. It is thus useful to consider results for cutoffs other than
τ = .6. We also determine the number of static factors using
the IC. We denoted this by r̂∗

t , and the corresponding number
of primitive factors by q∗

t . We compute all of these statistics
for t ranging from 133 to 528, corresponding to estimation end-
ing in 1970:12 and 2003:12. We thus have 396 statistics, one
statistic for every t.

Table 3 reports the mean, minimum, and maximum of these
statistics over the samples with ending dates from 1970:12 to
2003:12 (sample sizes from T = 133 to T = 528). R2

r̂ is the av-
erage explanatory power of r̂ factors, when r̂ is chosen with
cutoff of .3, .4, .5, or .6, and also optimally. The column R2

q̂ is
the average explanatory power of the q̂ shocks given r̂ innova-
tions.

The results indicate that four static factors explain .348 of the
variation in the full-sample data, while six factors explain .438
of the variation. To explain .619 of the variation in the data
would require, on average, 15 factors. When determined op-
timally by IC, the data suggest that seven static factors explain

Table 3. Empirical Analysis

τ T R2
r̂ R2

q̂ r̂ q̂3 q̂4

Mean .3 330.500 .323 .916 3.121 2.255 2.066
Min .3 133.000 .300 .882 3.000 2.000 1.000
Max .3 528.000 .348 1.000 4.000 4.000 3.000
Mean .4 330.500 .418 .906 5.386 3.533 3.101
Min .4 133.000 .400 .869 5.000 3.000 3.000
Max .4 528.000 .438 .967 6.000 4.000 4.000
Mean .5 330.500 .511 .902 8.833 6.068 5.210
Min .5 133.000 .500 .805 8.000 5.000 4.000
Max .5 528.000 .524 .952 10.000 7.000 6.000
Mean .6 330.500 .608 .848 13.811 8.523 7.773
Min .6 133.000 .600 .714 12.000 6.000 6.000
Max .6 528.000 .619 .908 15.000 10.000 9.000
Mean r∗ 330.500 .430 .910 5.763 3.864 3.119
Min r∗ 133.000 .239 .819 2.000 2.000 2.000
Max r∗ 528.000 .460 1.000 7.000 4.000 4.000

NOTE: This table is computed based on correlation matrix method with m = 1.25 and 2.25 for
q̂3 and q̂4. R2

r̂ is average variation in xit explained by r̂ factors, when r̂ explains at least τ percent

of the variation in the data up to time t. R2
q̂ is the percent variation in F̂t explained by q̂ primitive

shocks. The last three columns report the mean, minimum, and maximum of r̂ , q̂3 , and q̂4 over
the expanding samples with sample sizes from T = 132–528.

on average .460 of the variation in the data over the full sample,
and that four dynamic factors span the seven static factors. Us-
ing an alternative method but the same data, Stock and Watson
(2005) found seven dynamic and static factors. In an earlier ver-
sion of this article, we applied the tests to a different dataset for
the sample 1960:1–1998:12. We found an average of 7 dynamic
factors in 10 static factors. Thus the evidence is very compelling
that the number of dynamic factors is larger than two.

We stress once again that there is substantial variation over
the sample. Figure 1 depicts time series plot of r̂∗

t , q̂3t, and q̂4t.
As we can see, r̂ jumped from 4 to 6 around 1973 and has re-
mained roughly at 6 up to 2000. On the other hand, q̂ jumped
from 3 to 4 and stayed at 4 most of the time. If we had ended

Figure 1. Estimated r , q3 , and q4 ( r; q3 ; q4).
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Figure 2. Importance of the Common Component ( R2).

the estimation in 2000, then we would have r̂ = 6 and q̂ = 4.
However, in the past few years, r̂ seems to have taken another
jump from 6 to 7, although q̂ seems to have stayed at 4.

Figure 2 plots R2
t , the fraction of variance in the data ex-

plained by the factors up to time t. The importance of common
shocks exhibit an upward trend, increasing from .25 in the early
1970s to peak at about .5 in the early 1990s. The results seem
to suggest that in the early 1970s, economic fluctuations are
dominated by a small number of large common shocks. More
recently, the economy is hit with a larger number of smaller
common shocks. Notably, for most of the sample, the stochas-
tic dimension of the economy is at least four. Although the full-
sample analysis obscures the fact that the optimal number of
static and dynamic factors have changed over time, it remains
the case that the average number of dynamic factors over the
sample is more than two.

It remains to reconcile our finding that q exceeds 2 with the
result of Giannone et al. (2005). Our analysis gives the optimal
number of factors for the panel of data from which the factors
are extracted. Given that N = 132 series, our findings suggest
that a total of 6 dynamic factors is optimal in explaining the
average variation in the data. In contrast, Giannone et al. (2005)
first estimated the factors from close to 200 series. They then
restricted their attention to only 12 series when arriving at the
conclusion that q is 2. Their conclusion should not be taken to
mean that two dynamic factors best explain the variation in the
panel of data from which the factors are extracted.

To highlight the difference, we calculate the explanatory
power of the common factors in the full sample for a selected
number of series: IPS10 (industrial production), A0M059 (re-
tail trade), A0M057 (manufacturing trade), FYFF (federal
funds rate), PUNEW (CPI), and A0M224r (consumption ex-
penditure). Reported are the R2 from a regression of xit on con-
stant and r̂ static factors, where xit is log first difference of

IPS10, A0M059, A0M057, and A0M224r; the first difference
FYFF; and second difference of the logarithm of PUNEW. It is
evident from Table 4 that the explanatory power of the factors
tends to be higher for the selected series than for the panel as a
whole. If we had focused on these series, then fewer static fac-
tors would have been necessary. It is conceivable that four or
five static factors adequately explain the selected series, which
implies two or three dynamic factors.

6. CONCLUSION

This article has proposed a procedure for determining the
number of primitive common shocks in a large number of se-
ries. By making the link between the dynamic and the static
factors precise, we arrived at a pair of tests that can determine
the number of dynamic factors without having to estimate these
factors themselves. This enables us to bypass the selection of
many auxiliary parameters needed for estimating the spectrum.
The tests are easy to compute. Our tests suggest that the num-
ber of dynamic factors in the panel of 132 macroeconomic time
series considered is 4.

Table 4. Explanatory Power of r̂ Factors

r

Series 1 2 3 4 5 6 7 8
ALL .172 .242 .296 .350 .393 .429 .460 .486

IPS10 .690 .723 .774 .779 .869 .869 .875 .911
A0M059 .060 .140 .149 .152 .183 .321 .321 .341
A0M057 .266 .362 .390 .397 .455 .557 .559 .562
FYFF .180 .332 .443 .445 .478 .482 .505 .515
PUNEW .008 .028 .081 .706 .711 .723 .726 .726
A0M224R .066 .142 .153 .158 .174 .227 .231 .279

NOTE: IP is industrial production, RTQ (a0m059) is retail trade, MSMTQ (a0m057) is manu-
facturing trade, FYFF is Federal funds rate, PUNEW is CPI, and GMCQ (a0m224R) is consump-
tion expenditure.
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