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Abstract: This paper proposes two methods for estimating 
panel data models with group specific parameters when 
group membership is not known. The first method uses 
the individual level time series estimates of the parameters 
to form threshold variables. The problem of parameter 
heterogeneity is turned into estimation of a panel thresh-
old model with an unknown threshold value. The second 
method modifies the K-means algorithm to perform condi-
tional clustering. Units are clustered based on the devia-
tions between the individual and the group conditional 
means. The two approaches are used to analyze growth 
across countries and housing market dynamics across the 
states in the U.S.
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1  Introduction
This paper considers estimation of panel data models 
when the slope parameters are heterogeneous across 
groups, but that group membership is not known to the  
econometrician. We consider two methods that let the 
data determine the grouping. The first method uses  
the time series estimates of the individual slope coeffi-
cients to form threshold variables. The problem of identi-

fying group membership is turned into one of estimating 
a threshold panel regression with an unknown thresh-
old value. The second method is a modification of the 
K-means algorithm. The units are clustered according to 
the deviations between the individual and the group con-
ditional means. Both approaches are agnostic about the 
sources of parameter heterogeneity.

Panel data models often take parameter homogeneity 
as a maintained assumption even though evidence against 
it is not difficult to find. Using data on US manufacturing 
firms, Burnside (1996) rejects homogeneity of the para
meters in the production function. Lee, Pesaran, and Smith 
(1997) find that the convergence rates of per capita output 
to the steady state level are heterogeneous across coun
tries. Hsiao and Tahmiscioglu (1997) find heterogeneity 
in the parameters that describe investment dynamics and 
observe that such differences cannot be explained by com-
monly considered firm characteristics. As Browning and 
Carro (2007) point out, there is usually much more hetero-
geneity than empirical researchers allow. Robertson and 
Symons (1992) find using simulations that the Anderson 
and Hsiao (1982) estimator can be severely biased when 
parameter heterogeneity is omitted.1

While fixed effects estimation allows for time invari-
ant type heterogeneity through the intercept, few methods 
are available to allow for heterogeneity in the slope param-
eters. A random coefficient model2 can estimate the mean 
of the coefficients but is uninformative about the response 
at a more disaggregated level, which is sometimes an 
object of interest. Maddala, Trost, Li, and Joutz (1997) 
suggest a Bayesian method that shrinks the individual esti-
mates toward the estimator of the overall mean. Alvarez, 
Browning, and Ejrnæs (2010) parameterize the individual 

1 Song (2004) studied the convergence rate of estimating group  
parameters under cross-section dependence from the individual  
coefficient estimates and develops a measure of parameter 
heterogeneity. However, the ideas have not been illustrated using 
simulations or applications.
2 See, for example, Swamy (1970) and Hsiao and Pesaran (2004).

Brought to you by | Columbia University Library The Burke Library New York
Authenticated | 128.59.160.235

Download Date | 8/31/12 5:40 PM

mailto:lincc@econ.sinica.edu.tw
mailto:serena.ng@columbia.edu


� Lin and Ng: Estimation of Panel Data Models   43

coefficients as a function of observed characteristics, but 
the results necessarily depend on the specifications used. 
While one can assume complete parameter heterogeneity, 
this would reduce the problem to time series estimation 
on a unit by unit basis which does not take advantage of 
the panel structure of the data.

We are interested in precise modeling of the condi-
tional mean function and not group membership per se. 
We consider two ways of clustering units with the objec-
tive of pooling observations to estimate the group specific 
parameters. In this way, units within a group have the same 
parameters, but the parameters are heterogeneous across 
groups. This provides a compromise between complete 
parameter heterogeneity and parameter homogeneity.

The remainder of this paper is organized as follows. 
After a review of related work, Section 3 presents the 
pseudo threshold method. Extensions to multiple groups 
and multiple covariates are considered in Section 4. The 
conditional K-means approach is presented in Section 5. 
Simulations are then presented in Section 6. We apply the 
methods to study economic growth across countries and 
regional housing dynamics in the U.S.

2  �Related Literature and the  
Econometric Framework

The simplest way to form clusters from a set of heteroge-
neous observations on a scalar variable yit is to plot the 

unconditional mean of the ordered data ( ) 1

1
b̂

=
= = ∑T

i iti t
y y

T
 

for i = 1,...,N, and then ‘eyeball’ to see when ( )b̂ i  abruptly 
shifts from one mean to another.3 Such a graphical 
approach is often a useful diagnostic, but does not permit 
formal statistical statements to be made. One can also use 
a priori information to organize units into groups, but the 
approach is not objective. A more systematic approach is 
model based clustering which assumes that the data are 
generated by a mixture of distributions. That is, an obser-
vation drawn from group g is assumed to have density 
fg(yit , xit ; bg), where bg are the group-specific parameters of 
the conditional mean function, and xit are the covariates. 
The likelihood is then ( ) ( )1 1

; , ;θ b
= =

=∏ ∏N T
g it it gi t

L x f y x .  

The parameters are typically estimated using Bayesian 
methods, though Sun (2005) considers the problem from 
a frequentist perspective. These likelihood based analy-

3 See, for example, Henderson and Russell (2005).

ses yield an estimate of the probability of which group a 
unit belongs, but can be computationally cumbersome if 
N is large because we need to consider up to 2N possible 
combinations of the data. 

While the focus of cluster analysis is usually group 
membership, our interest is precise estimation of the 
group-specific parameters bg. We consider a balanced 
panel of data with observations ( ),� �it ity x , i = 1,...,N, t = 1,...,T, 
and that N and T are large. Let K be the number of regres-
sors and G be the number of clusters. Let ( )0 0 0

1 ,...,= GI I I  be 
indicator variables for true group membership. Then for  
g = 1,...,G, N 0

g is the number of individuals in cluster I0
g . 

The panel data model is

( )a b= + +� ��it i it itiy x e

a b= + + ∈�� 0  i ,i it g it gx e I

where ( )=� � �1 ,...,it it Kitx x x  is a 1 × K vector of regressors, ai 
is unobserved heterogeneity, b(i) = (b(i)1,...,b(i)K)′ is a K × 1  
vector of slope coefficients for unit i. Group effects are 
modeled by letting bg = ( bg1,...,bgK)′ be a K × 1 vector of 
group-specific slope coefficients such that b(i) equals or is 

well approximated by bg for all i’s in I0
g . Let 

1

1
=

= - ∑� T
it it itt

y y y
T

 

and 
1

1
=

= - ∑� �T
kit kit kitt

x x x
T

 for k = 1...,K. The model in terms 

of demeaned data becomes

b= + ∈ 0  i .it it g it gy x e I

The econometric exercise is to estimate bg without knowing 
I0

g .4 This requires a way to pool ‘similar’ observations for 
estimation. Two methods are considered. The first defines 
similarity in terms of the slope coefficients, and the second 
defines similarity in terms of the conditional mean.

Let Ngj be the number of units assigned to group j 
when they belong to group g. Then Ns = Sg≠j Ngj is the 
number of misclassified units. Let I =(I1,...,IG) denote arbi-
trary group membership. The size of group j based on an 
arbitrary classification is Nj = Njj + Sg≠j Ngj. The following 
assumptions will be used.

Assumption 1: For all i and t, (a) ẽit ∼ (0, s2
i ) has finite fourth 

moments and is cross-sectionally and serially independ-
ent. (b) 0 < s2

i  < ∞ and (c) ( )a-
=

=∑1
1

1N
ii

N O . Furthermore, 
ẽit is independent of ỹi0 and uncorrelated with bg for all  
g = 1,...,G.

4 A group specific intercept can be recovered once group member-
ship is determined by regressing a b= - ˆˆ i i g iy x  on a set of group 
dummies.
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Assumption 2: (a) 0 / 0>gN N  and 0 / p→gN N  with 0<p<1. 
(b) 0≤ lim N/T < ∞ as N and T diverge jointly.

In the case of a dynamic panel model with -= ��1 , 1 ,it i tx y  
we also need the following.
Assumption 3: For g = 1,...,G and b∈ <0

1, | | 1 g gi I , ỹi0=ai/ 
(1–bg1)+ui0, where ( )s∼ 2

0 ,0,i u iu  has finite fourth moments 
and 0 < s 2

,u i <∞. Furthermore, ui0 is cross-sectionally inde-
pendent, independent of ẽit, and uncorrelated with bg1.

We assume cross-section independence of ẽit to sim-
plify the presentation. Cross-section dependence can be 
entertained by explicitly controlling for the presence of 
common factors. Assumptions 2 and 3 are similar to the 
ones used in Hahn and Kuersteiner (2002), Alvarez and 
Arellano (2003), and Pesaran and Yamagata (2008) for 
dynamic panel model with fixed effects. The assumptions 
can be relaxed if the regressors are strictly exogenous.

3  �A Two-Step Pseudo Threshold 
Approach

Goldfeld and Quandt (1973) were the first to use threshold 
variables, also referred to as transition variables, to form 
clusters. They considered a model in which the clusters 
are determined by a linear function of several transi-
tion variables and proposed a D-method to estimate the 
parameters in the transition function by maximum likeli-
hood. The D-method assumes deterministic switching of 
regimes, and stands in contrast to the l-method in which 
units are assigned to regimes in a random manner. A more 
popular idea, also due to Goldfeld and Quandt (1973), is to 
partition a data set based on a known threshold variable 
taking on an unknown threshold value. Threshold autore-
gressive and structure break models are variations of this 
approach.

To fix ideas, consider the case of G = 2 groups. The 
model expressed in demeaned data is

0
  1 1

0
  2 2

.it it
it

it it

x e i Iy x e i I
b
b

+

+

 ∈= ∈ �
(1)

Suppose there exists a variable q0
i  and a set of cut-off 

parameter values G0 such that 0
1∈i I  if 0 0g≤iq  for any g0∈G0, 

and 0
2∈i I  otherwise. Then the pair of variables ( )0 0,giq  

provide perfect information about group membership, 
and (1) can be written as a panel threshold model:

{ 0 0
1

0 0
2

  
  .

it it i
it

it it i

x e qy x e q
b g
b g

+ ≤= + > �
(2)

Hansen (1999) considers threshold panel regres-
sions where the sample is split according to whether an 
observed and possibly time varying threshold variable 
q0

i t is less than some cut-off value g. Unit i can be in one 
group in period t if q0

i t ≥γ0 , but might be in another group 
in period t + 1 if q0

i t+1 <γ0 . See also Seo and Shin (2011) for 
dynamic panel threshold models. Our threshold variable 
q0

i   in (1) is not observed, and group structure does not 
change over time. Because of these differences, we call qi 
the ‘pseudo threshold variable’ and g the ‘pseudo thresh-
old parameter’ to distinguish them from the definitions 
used in the literature.

If q0
i  and G0 were known, estimates of b1 could be 

obtained by pooling observations with q0
i  ≤ γ0 for any γ0∈Γ0, 

while observations with q0
i  ≤ γ0 would be pooled to esti-

mate b2. The problem, however, is that neither q0
i  nor G0 is 

observed. We propose to replace q0
i  by some ˆiq  that has the 

same information as q0
i  in the sense that ˆ g≤iq  when g≤0

iq  
as T → ∞ for a given g. Unit i is then classified into group 1 
if ˆ

i
q  is less than g; otherwise unit i is in group 2. More pre-

cisely, we propose to use ˆ
i

q  to order the data, which has 
the computational advantage that any unit i′ with ˆ ˆ′ <i iq q
will also be classified in the same group as unit i. Thus, even 
though there are 2N possible groupings of the data, we only 
need to consider at most N – 1 possible values of g.

Given ˆ
i

q  the problem of how to group units with 
similar coefficients is formulated as finding the value of 
the threshold parameter g that minimizes SNT(g,q̂):

( )
g

g g
∈

=
ˆ ˆ| , |

ˆˆ arg min , ,NT
q q

S q � (3)

where SNT(g,q̂) is the total squared residuals, obtained by 
summing over groups 1 and 2:

( ) ( )( ) ( )( )
g g

g b g b g
≤ = > =

= - + -∑ ∑ ∑ ∑
2 2

1 2
ˆ ˆ| 1 | 1

ˆ ˆˆ, .
i i

T T

NT it it it it
i q t i q t

S q y x y x
�

(4)

As in the breakpoint literature, the threshold parameter 
cannot be too large or too small, as defined by  q̂  and q̂.  
If the trial value of g is too low, ( )2b̂ g  will be estimated with 
some observations from group 1 and will not be consistent for 
b2. Similarly, at too high a value of g, ( )1b̂ g  will be estimated 
with observations from group 2, and hence will not precisely 
estimate b1. The optimization problem yields }{ g= ≤1̂ ˆ ˆ| iI i q  
and }{2̂ ˆ ˆ| g= >iI i q . Since the data are ordered according to 

1̂ˆ ,iq I  and 2̂I  are the same if g= �*ˆiq  for any ( )g +∈� * * 1,i iq q . We 
will refer to this procedure as PSEUDO(G,K).

It remains to be precise about the choice of ˆiq . Now 
b(i) = b1 if 0

1∈i I  and b2≠b1 by assumption. Thus, qi = b(i) 
along with any g0 ∈[b1, b2] completely summarizes group 
membership. For example, b

w 
= wb1+(1–w)b2 for w∈(0,1) is 

a valid value of g0. This suggests letting ( )b=ˆˆi iq  where for 
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each i, ( )b̂ i  is the least squares estimate from a time series 

regression of yit on xit.5 Since T is large by assumption, ( )b̂ i  
is a consistent estimate of b(i).

To see that ( )b=ˆˆi iq
 will separate the sample, suppose 

ˆˆ wg b= , where ˆ wb  is a consistent estimate of bw= wb1+(1–w)b2.  
Under Assumptions 1–3:

( ) ( )( )

( )( ) ( ) ( )( )
( )( ) ( )( )(

( )

1

1 1 1

1 2 1

1

ˆ ˆ | =

ˆ ˆ- -

ˆ - 1- -

1 1 .

i i

i i

i

p p i

P

P T T

P T T

O O
T NT

w

w

b b b b

b b b b b b

b b w b b

  
  b b      

>

= > =

= >

+ + =

Since b2–b1 >0 by assumption, the expected misclas-
sification rate is ( )( ) ( ) ( )( )wg = b >b b =b +1

ˆ ˆˆ / |s i iE N N P
 

( ) ( )( ) ( )−
wb <b b =b = 1

2
ˆ ˆ |i iP O T . Instead of imposing ĝ  to 

ˆ
wb , we let ĝ  be determined by (3), but the argument is 

similar.
Procedure PSEUDO(G,K) for G = 2, K = 1 can be sum-

marized as follows.

Algorithm 1: PSEUDO(2,1)
1.	 For each i, regress yit on xit to obtain ( )b̂ i  and let ( )b= ˆˆi iq .
2.	 Use (3) to obtain ĝ.
3.	 Assign unit i into 1̂I  if g≤ˆ ˆ;iq  and into 2̂I  if g>ˆ ˆ.iq
4.	 For g = 1, 2, estimate bg using all units in ˆ .gI

It is shown in the Appendix that PSUEDO(2,1) yields  
a negligible misclassification rate in the sense that 

( )ˆ / 0g →sN N  as (N,T) → ∞ jointly. In practice, we 
restrict the number of units in each group to be at least 
N = max(10,0.1N) and = -N N N . This avoids having 
groups with too few units. As ( )-- = 1 / 2ˆi i pq q O T , the two-step  
procedure may be imprecise when T is small.

3.1  Extension to multiple regressors

We now turn to the case when there are K > 1 regres-
sors. There are two cases to consider. The first occurs if 
a subset but not all K parameters are suspicious of being 
different across groups. In such a case of partial para
meter homogeneity, procedure PSEUDO(2,1) is still valid 

5 We also consider using ( )( )
1/2

ˆ ˆ
ˆ ˆˆ

i
i

i i

q
Q

wb b

s -

-
=  where 1

1
ˆ T

i it itt
Q T x x-

=
= ′∑ . By 

standardizing ( )b̂ ,i  we control for heterogeneity due to si.

even when K > 1. For example, if the second slope coef-
ficient varies between groups, we define ( )b= 2

ˆˆi iq  and 
apply Algorithm 1.

More difficult to handle is the second case of complete 
parameter heterogeneity which arises when all K coeffi-
cients are group specific. To see why this is more involved, 
suppose there are two regressors, x1it and x2it and there are 
G = 2 clusters. Let bg = (bg1, bg2)′, g = 1,2 be the group specific 
slope parameters. Suppose first that b11 > b21 and b12 > b22.  
Since both parameters are strictly larger in one group, 
an obvious pseudo threshold variable is ( ) ( ) ( )1 2

ˆ ˆ ˆ .i i ib b b+ = +  
But this does not always work! In particular, if b11 > b21 but  
b12 < b22, the sum of the coefficients may not be a sufficient 
statistic for group membership. For example, suppose that 
(b11, b12) = (0.8,1) and (b21, b22) = (1, 0.8). Since b11 +b12 = b21 +b22, 
the appropriate pseudo threshold variable is no longer  
b̂+

i , but ( ) ( ) ( )1 2
ˆ ˆ ˆ .i i ib b b- = -  Although ( )b̂+

i  or ( )b̂-
i  can be used as 

threshold variable, we would first need to determine the 
sign of the coefficients before we can classify the units. In an 
earlier version of this paper, we used the Goodman-Kruskal’s 
gamma statistic to measure the association between pairs of 
concordant (same sign) and discordant data (opposite sign) 
data. Although the method works reasonably well in simula-
tions, it is somewhat cumbersome.

A simpler and more effective approach is to recognize 
that even in the case of complete parameter heteroge-
neity, we can still split the sample using one of the ( )b̂ i k  
parameters since each component of ( ) ( ) ( )( )b b b= ′1

ˆ ˆ ˆ,...,i i i K
is informative about group membership. The only issue 
that remains is which ( )b̂ i k  to use. We let the data speak 
by considering each component as a possible candidate 
and choose the one that minimizes the sum of squared 
residuals. More precisely, for given k with ( )b=ˆˆ ,ik i kq  let ĝk  
be estimated from (3). Define

( ) ( )( ) ( )( )2 2

, 1 2
ˆ ˆˆ ˆ| 1 | 1

ˆ ˆˆ ˆ ˆ ,
ik k ik k

T T

NT k k it it k it it k
i q t i q t

S y x y x
g g

g b g b g
≤ = > =

= - + -∑ ∑ ∑ ∑

where 1
ˆ,b′itx , and 2b̂  are K×1 vectors. The best threshold 

variable is ( ) *b̂ i k  where

( )*
, ˆmin .NT k k

k
k S g= � (5)

The procedure for complete parameter heterogeneity 
when k > 1 is summarized as follows:

Algorithm 2: PSEUDO(2,K)
1	 For each i, regress yit on xit to obtain ( )

ˆ .ib
2	 For k = 1,..., K, let ( )

ˆˆ .ik i kq b=
	 i   Use (3) to obtain ˆ .kg

	 ii  �Assign unit i into 1̂I  if ˆ ˆ ;ik kq g≤  and into 2̂I  if 
ˆ ˆ .ik kq g>
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46   Lin and Ng: Estimation of Panel Data Models

	 iii  �For g = 1, 2, estimate bg using all units in ĝI  and 
record SNT,k( ĝk ).

3 	 Let k*= arg mink SNT,k( ĝk ), ( )b= *
ˆˆi i kq  and apply  

Algorithm 1.

The appeal of this approach is generality, since the 
procedure is the same for any K. Partial parameter hetero-
geneity is just a special case when Steps 1 and 2 can be 
skipped, and ˆ

iq  is simply the parameter estimate associ-
ated with the variable whose effect on yit is group specific.

Procedure PSEUDO(2,K) extends naturally to G > 1, 
which would then have G – 1 threshold values. In the 
multiple structural breaks literature, Bai (1997) showed 
that a sequential approach can consistently estimate the 
break fractions without the need to search for all break 
dates simultaneously. This idea is adapted to our thresh-
old problem. We estimate two subgroups from each of 
the groups identified in the preceding step, subject to the 
constraint that the size of each subgroup is not too small. 
For example, given 1̂I  and 2̂I , we first partition 1̂I  into 

11Î  and 12Î . If 11Î  and 12Î  both have a minimum number 
of observations, then these together with 2̂I  form one 
possible split of the sample into three groups. Similarly, 

2̂I  is partitioned into 21Î  and 22Î , which together with 1̂I  
form another possible sample split of three groups. We 
then decide which of the two possibilities for G = 3 to keep 
by comparing the sum of squared residuals.

4  Conditional K-means Clustering
The K-means algorithm is a popular way of forming clusters 
from a single series with N observations. The algorithm 
moves unit i to an appropriate group to minimize the sum 
of squared deviations between the units and the centroids.6 
Except for the gene-array analysis in Qin and Self (2006), 
the K-means method tends to be used to form clusters from 
observations on a scalar variable with no reference to covar-
iates. We modify the K-means algorithm for use in regression 
analysis, which can be thought of as a form conditional clus-
tering. We refer to the procedure as CK-means(G,K).

Algorithm 3: CK-means(G,K)
1	 Initialize }{�� ��

1 ,..., GI I  randomly and let ( )b b�� ��
1 ,..., G  be the 

pooled estimates of b1,..., bG.

6 There are many variations to the basic algorithm. Harmonic and 
fuzzy means have also been used instead of simple means. See, for 
example, Hartigan (1975), Abraham, Cornillion, Matzner-Lober, and 
Molinari (2003).

2	 Repeat for i = 1,...,N until no individual changes 
group:

	 (a)	 Calculate ( )b
=

= - =∑ �� 2

1
, 1,..., .Tg

i it it gt
SSR y x g G

	 (b)	� For g = 2,...,G, g′ = 1,..., g–1, if ′≤g g
j iSSR SSR  indi-

vidual i is reassigned to group g′; otherwise, i 
stays with group g.

	 (c)	 Update }{�� ��,...,g GI I and estimate ( )b b�� ��
1 ,..., G .

The unconditional K-means method is known to be 
sensitive to the initial choice of the centroids and is not 
guaranteed to find the global minimizer. Thus Steps 1 to 2 
are repeated several times with initial group assignment.7

Assuming i.i.d. data, Pollard (1981) uses empirical 
process arguments to obtain a strong consistency result, 
while Pollard (1982) shows that the centroids estimated by 
the algorithm are asymptotically normal. However, Pollard 
(1981) notes that his consistency result does not neces-
sarily apply to algorithms used in practice which involve 
multiple starting values. The asymptotic properties of 
K-means algorithm used in practice is not known even in 
the absence of covariates.

While our pseudo threshold procedure minimizes the 
same objective function as CK-means, some differences 
are noteworthy. First, we only estimate the ordered regres-
sion once. The CK-means algorithm makes random initial 
guesses of the centroids and then evaluates if a move to 
a different group is desirable unit by unit. This makes 
the CK-means method computationally costly when N is 
large. Furthermore, when there are multiple alternatives 
and N is large, convergence of the CK-means can be slow. 
Second, because we follow the structural break literature 
and search for the optimal threshold value in the sub-
sample ,  N N , our approach is less sensitive to outliers. 
Simulations bear this out. Third, we locate the threshold 
values one at a time, starting with the largest. In con-
trast, the CK-means is a global procedure. Units found to 
be in Group 1 by the CK-means when G = 2 may well be in  
Group 2 when G = 3.

The CK-means method also has some advantages. First, 
the algorithm relies only on the pooled estimator b̂g  which 
is gN T  consistent, and does not require the individual 
estimates ( )

,ˆ ,i sb  which are T  consistent. Thus the CK-
means method should be more precise than the PSEUDO 
when N or T is small. Second, the CK-means method con-
siders moving every unit to a different group. Our pseudo 
threshold method moves all those units with ˆiq  above and 
below the threshold value simultaneously. The simultane-
ous move method is fast, but can be inaccurate when the 

7 Garcia-Escudero and Gordaliza (1999) pointed out the algorithm 
can be sensitive to outliers.
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ordering of ˆiq  does not agree with qi, as may be the case 
when the sample size is small, or when qi does not provide 
complete information about the group structure. We can 
therefore expect a trade-off between precision and speed in 
the two methods. Third, the CK-means algorithm is easier to 
implement when G > 3 because it is a global procedure and 
considers moving every unit to a different group. In con-
trast, PSEUDO is a sequential procedure; the membership 
of the subgroups identified by PSEUDO always depends on 
the outcome of the preceding step.

5  Determining G
Both the pseudo threshold and the conditional K-means 
algorithm require knowledge of the number of groups, G. 
An informal approach is to graph the value of the objec-
tive function SNT for a given G against G and then locate 
the ‘knee point’ at which the objective function starts to 
flatten. More formal procedures have been proposed for 
unconditional clustering of yit. Milligan and Cooper (1985) 
consider 30 procedures and find that the global proce-
dure of Calinski and Harabasz (1974) works best, while 
the local procedure of Duda and Hart (1973) is second. 
But as Sugar and James (2003) point out, most methods 
are aimed at clustering data with specific properties and 
no method works uniformly well. We experimented with 
many of these methods and found them to be accurate 
only when the parameters in different groups are very far 
apart. 

The problem of determining the number of clusters 
is similar to determining the number of break points or 
thresholds in many ways. In breakpoint problems, we 
can use a sup-Wald type test for the null hypothesis of no 
break.8 However, there are three features that make the 
SupW test for parameter homogeneity infeasible here. 
First, 1b̂  and 2b̂  are estimated from two split samples 
ordered by ( )b̂ i . By construction, one sample will have 
smaller values of ( )b̂ i  and the other will have the larger 
values. Thus, the pooled estimate will be biased if b1 = b2. 
Second, 1b̂  and 2b̂  are correlated when b1 = b2, making 
inference non-standard. Third, as ˆiq  is ordered, bootstrap 
procedures valid for cross-sectionally independent data 
are now invalid.

We found two ways that determine G quite accurately 
in our setup. The first uses a sequential test of parameter 
homogeneity to provide information about the number of 

8 See, for example, Davies (1977), Andrews and Ploberger (1994), 
Hansen (1996), Bai (1997), and Caner and Hansen (2004).

groups. Specifically, if we reject parameter homogeneity in 
the pooled data, we partition the sample into two groups 
and then test if parameter homogeneity holds in each of 
the subgroups. If subsample homogeneity is rejected, the 
sample is split again until the null hypothesis of param-
eter homogeneity cannot be rejected for the subsamples. 
We use the dispersion tg test proposed by Pesaran and 
Yamagata (2008) to test parameter homogeneity:

( )/
,

2
ξ -

= N
g

N N K
t

KG �
(6)

where K denotes the number of the regressors, 
( ) ( )( )ξ s b b b-

= =
= - ′ - ′′∑ ∑� � �� 2

1 1
ˆ ˆ ,N T

N i i w it it i w wi t
x x B B  is the weighted 

pooled fixed effects estimator of Swamy (1970), and 2s� i  is 
obtained under the null hypothesis of homogeneity. The 
tg test allows for heteroskedasticity and non-normally dis-
tributed errors and is consistent as N and T go to infinity 
jointly such that 2/ 0.N T →

The second approach is a modified BIC criterion:

( ) ( )( )
( ) ( ) ( )2

2

ˆˆBIC log , ,

loglog 1 ,

NT

NT

G G q

Nc NTGK G
NT N

= ∑ g

+ ⋅ + −

� �

� � � (7)

where

( ) ( )( )g b g
= =∈

∑ = -∑∑∑
�

� 2

ˆ1 1

1 ˆˆˆ ˆ, , .
g

G T

NT it it g
g ti I

G q y x
NT

The goodness of fit component of the BIC is computed 
as the total sum of squared residuals divided by NT. 
The penalty term log(NT)/NT is guided by the fact that 
b̂g  is NT  consistent under the null and thus the BIC 

should consistently select G if (i) ( )= →
* log 0NT NTc c NT

NT NT
,  

and (ii) →∞*
NTc  as N,T→∞. When all regressors and g 

are observed, BIC obtains with ( )=* logNTc NT  and cNT = 1.  
We consider a heavier penalty because ˆiq  and ĝ  are 
themselves estimated. Based on extensive simula-
tions, we let [ ]min ,=NTc N T . The required conditions 
for consistent model selection are satisfied because 

( )= →∞ →* log  and 0
*
NT

NT NT
cc c NT
NT

. Furthermore, the break- 

point literature suggests ĝ  is super-consistent with a 
convergence rate of N2. A penalty of log(N2) is put on 
each threshold variable, giving an overall penalty on ĝ

of ( ) ( )2 21 log /-�G N N . The idea of using the BIC or tg test to 
determine G is simple, but the exposition of the complete 
algorithm is notationally involved. Details are given in an 
appendix available on request.
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6  Simulations and Applications
We now use Monte Carlo simulations to examine the finite 
sample properties of the methods considered. For G = 2, 3, 
K = 1, 2, data are generated as

0=1
,

g

G

it i it g it
g i I

y x ea b
∈

= + +′∑∑� ��

where bg is K×1, ai ∼ i.i.d. N(1,1), �kitx ∼ i.i.d. N(1, 3), and 
independent of ( )� � ∼, 0,1it ite e N , is i.i.d. over i and t. When 
G = 2, we randomly assign individuals into two groups 

}{ 0 0
1 2,I I  with size =0

1N  2N/3 0 0
2 1= -N N N , where A   

denotes the maximum integer that does not exceed real 
number A. When G = 3, individuals are randomly assigned 
into three groups }{ 0 0 0

1 2 3, ,I I I  of equal size N/3.
We consider the following configurations:

i 	 (G, K) = (2, 1): ( b1, b2) = (0.3, 0.9).
ii 	 (G, K) = (3, 1): ( b1, b2, b3) = (0.3, 0.5, 0.8).

iii 	 (G, K) = (2, 2): b1 = ( b11, b12)′ =(0.1, 0.3)′ and b2 =( b21, 
b22)′ =(2/3, 0.6)′.

iv 	 (G, K) = (3, 2): b1 = (b11, b12)′ = (0.3,–0.3)′, b2 = ( b21, 
b22)′ = (0.5, 0)′ and b3 = ( b31, b32)′ = (0.7, 0.3)′.

These parameterizations give an R2 of around 0.5. For 
given N and T with N = (50, 100, 200, 500) and T = (20, 
50, 100, 200, 500), group membership is held fixed in the 
M = 1000 replications.

We determine G by the BIC defined in (7) and impose 
the restriction that each subgroup must contain at least 

}{=max 10,0.1 pN N  units, where Np denotes the number 
of units in the parent group. The estimates are evaluated 
using the root mean squared error (RMSE) defined as

( )
( ) ( ) ( ) ( )b b

= =

= -∑∑
2

1 1

1 1 ˆ ˆ ,
M N

m
i i

m i
RMSE G G

M NK

where ( )
( ) ( )ˆ ˆb m
i G  is the pooled slope parameter in the 

m-th replication estimated for the ith unit based on Ĝ,  
and b(i)(G) is the true slope coefficient for the unit. To 
assess the error in the estimates due to estimation of G, 
we also consider the RMSE (a) when G and group mem-
bership are known, and (b) when G is known but group 
membership is not. Group membership is determined by 
PSEUDO or the CK-means.

As can be seen from Table 1, the RMSEs of both 
PSEUDO and CK-means decrease as N or T increases.  
An increase in T has a larger impact on RMSE than an 
increase in N. When G = 2, PSEUDO and CK-means yield 
similar RMSEs when T is large, but the CK-means has 
smaller errors when T is small. This is to be expected 
since the pseudo threshold method requires T  

consistent estimation of the individual slope param-
eters. When G = 3 and assumed known, the CK-means 
tends to outperform PSEUDO, perhaps because the 
former can cluster units more flexibly. When G is esti-
mated, The RMSEs are similar to those when both G and 
group membership are known, provided T is large. This 
suggests that estimation of group membership has little 
impact on the estimated slope parameters when T is 
large.

To check robustness, we consider smaller differences 
in the parameters between groups.

i	 (G, K) = (2, 1): ( b1, b2) = (0.55, 0.65).
ii	 (G, K) = (3, 1): ( b1, b2, b3) = (0.4, 0.5, 0.6).

iii	 (G, K)=(2, 2): b1 =( b11, b12)′ =(0.3, 0.4)′ and b2 =( b21, 
b22)′ =(0.4, 0.5)′.

iv	 (G, K) = (3, 2): β1 = ( β11, β12)′ = (0.4, 0.2)′, β2 = ( β21, 
β22)′ = (0.5, 0.3)′ and β3 = ( β31, β32)′ = (0.6, 0.4)′.

The RMSE results are reported in Table 2. Not surprisingly, 
PSEUDO and CK-means need a larger T to be precise. 
However, other features of the results are similar to those 
in Table 1.

Data are also generated from a dynamic panel model 
with group specific parameters:

a r f-= + + + ∈� � � 0
, 1 ,  if  .it i g i t g it gy y t e i I � (8)

We set ai = 0 for all i’s, ( r1, r2) = (0.3, 0.8), (f1, f2) = (0, 
0.03), e~it~N(0, 1) is i.i.d. over i and t. The results are pre-
sented in Table 3. As in the static DGP, the RMSE tends 
to decrease as T increases. Furthermore, the RMSEs for 
PSEUDO and CK-means are similar to those with known 
membership when T is large.

Overall, the results find that PSEUDO and CK-
means have good properties especially when T is large.  
For small sample sizes, the CK-means is preferred. When 
the sample size is large, PSEUDO tends to be as effec-
tive as CK-means. The PSEUDO has the distinct compu-
tational advantage that the number of regressions is of 
order N, much smaller than the GN regressions under 
CK-means.

6.1  Example 1: growth regressions

The existence of ‘convergence clubs’ has generated much 
research interests in the growth literature. A group of 
countries with a similar steady state that can be char-
acterized by the same linear model are said to form a  
convergence club. Lee, Pesaran, and Smith (1997) took 
data for 69 countries over the sample 1965 to 2003 from 
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PWT v6.2 provided by Heston, Summers, and Aten (2006).9 
The regression model is

a r f-= + + + ∈� � �1 ,  ,  =1,2,..., ,it i g it g it gy y t e i I g G � (9)

where �ity  is the log per-capita output, ai denotes country-
specific fixed effects, rg and fg, g = 1,...,G, G = {1,2,..,5}, are 
group specific. While previous studies allow for differ-
ences in ai, we allow for the possibility that f and r are 
potentially heterogeneous. The BIC suggests G = 1, but tg 
rejects parameter homogeneity, and the CK-means sug-
gests G = 4. Results for G = 4 are reported in the left panel 
(Model A) of Table 4.

Evidently, f̂g  is negative in groups 1 and 2, but posi-
tive in groups 3 and 4. Furthermore, r̂g  is much smaller in 
groups 1 and 3 than in groups 2 and 4. Thus, both rg and 
fg appear to be heterogeneous. Interestingly, the 21 OECD 
countries do not all belong to the same group while the fast 
growing countries including Indonesia, Korea, Malaysia, 
and Thailand are in the same (non-OECD) group. A priori 
information would unlikely arrive at such a grouping.

Equation (9) assumes cross-section independence in 
�ite . Pesaran (2006) suggests to control for cross-correlated 

errors by adding the cross-section average of appropriate var-
iables to the pooled regression. To avoid simultaneity bias, 
we add 1-∆ ty  and 2-∆ ty  to both the pooled and the individ-
ual regressions, where 1

1, , 1,..., .N
s is s s si

y N y y y y s T-
-= ∆ = - =∑ �  

The result to highlight in the right panel of Table 4 (labeled 
Model B) is that countries differ in both the growth rate and 
in the speed of adjustment to equilibrium.

6.2  Example 2: housing dynamics

Housing wealth is a large component of household wealth 
and housing market activities are always closely watched 

9 We started with 75 countries, as in Mankiw, Romer, and Weil 
(1992). From this, Germany is removed from data set due to reunifi-
cation. Due to limitation of data, we also remove Bangladesh,  
Bolivia, Botswana, Haiti, and Myanmar.

by policy makers and business cycle analysts. Stock 
and Watson (2009) provide a new data set on state-level 
monthly seasonally adjusted building permits (Hit) from 
1969:1 to 2007:4. They use the K-means algorithm to cluster 
the four quarter change in the idiosyncratic component 
of log(Hit), where the common component is estimated 
by a dynamic factor model. The K-means algorithm finds 
G = 5 groups that roughly define contiguous geographical 
regions, even though no spatial structure was imposed 
in the estimation. Their results suggest that variations in 
housing permits consist of a national, a regional, and an 
idiosyncratic component.

We analyze the data to study if long run effects of the 
federal funds rate Rt on Hit are possibly group specific. For 
each i = 1,...,50, an autoregressive distributed lag model in 
Hit and Rt can be reparameterized as:

( ) ( ) ( ) ( )

( ) ( ) ( )

− −

− −
= =

∆ =a +b +b

+ g ∆ + g ∆ +∑ ∑

4
1 11 2

3 3

1, 2 ,
1 1

log log

log .

it i it ti i

it j t j iti j i j
j j

H H R

H R e

The parameter b(i)2 is the sum of the coefficients on Rt–1 and 
its lags, while b(i)1 is the sum of the coefficients on the autore-

gressive terms. The long run effect ( )

( )

2

11
b

b-
i

i

 can differ across 

states if b(i)1 and/or b(i)2 vary across states. We allow the short-
run dynamics (g(i)1,j, g(i)2,j) to be state specific. As there is no 
evidence to support the need to consider more than two 
groups, we report only results of G = 1 and G = 2. We consider 
four models and the results are reported in Table 5.
(A) 	b(i)1 = b1, b(i)2 = b2 for all i;
(B) 	b(i)1 = bg1 and b(i)2 = bg2 for i ∈ Ig;
(C) 	b(i)1 = b1 for all i, b(i)2 = bg2 for i ∈ Ig;
(D) 	b(i)1 = bg1 for i ∈ Ig, b(i)2 = b2 for all i.

Model (A) is a pooled regression that imposes param-
eter homogeneity. Model (B) allows both b(i)1 and b(i)2 to be 
group specific. Model (C) allows b(i)2 to be group specific 
but b(i)1 is the same across i. Model (D) allows b(i)1 to be 
group specific but b(i)2 is the same across i. Not surprisingly, 

T

PSEUDO CK-means PSEUDO when G is known I0 is known

N=50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500

20 15.41 15.98 16.69 16.64 13.06 13.35 15.46 15.90 15.38 15.45 15.47 15.48 6.55 6.12 5.86 5.70
50 5.84 6.72 6.67 7.08 3.03 2.67 2.53 5.28 5.84 7.03 7.93 8.49 2.77 2.51 2.33 2.24

100 1.60 1.38 1.27 2.27 1.60 1.38 1.24 2.84 1.60 1.38 1.27 1.23 1.60 1.38 1.24 1.14
200 0.99 0.80 0.67 0.60 0.99 0.80 0.67 0.60 0.99 0.80 0.67 0.60 0.99 0.80 0.67 0.60
500 0.56 0.42 0.34 0.27 0.56 0.42 0.34 0.27 0.56 0.42 0.34 0.27 0.56 0.42 0.34 0.27

Table 3: RMSE: Dynamic Panel Model.
Data are generated from the following dynamic panel model: a r f-= + + +� � �, 1it i g i t g ity y t e , if i ∈  0

gI . See footnote below Table 1.
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the pooled estimates of b1 and b2 are roughly the average 
of the group estimates, and the sum of squared residuals 
of model (A) is largest. The group specific long run effects 
are always larger in absolute value than the one implied 
by the pooled regression.

Given the group-specific estimates ˆ
1b  and/or b2

ˆ , 
the tg statistic is used to test for parameter heteroge-
neity in the full panel, as well as within the identified 
groups. While parameter homogeneity in the full panel 
is always rejected, the parameters in the subgroups 
appear to be homogeneous. The tg statistic does not 
take into account that allowing for parameter heteroge-
neity increases the complexity of the model. When this 
is taken into account by the BIC, group effect is found 
for b1 and only when group membership is determined 
by the CK-means. Overall, the data find some evidence 
for parameter heterogeneity but do not strongly reject a 
pooled regression for the 50 states. This shows that the 

proposed method favors group effects only if the evi-
dence is strong.

7  Conclusion
We use time series estimates of the coefficients for each 
unit to form ‘pseudo threshold variables’. These are then 
used to partition the panel into groups. A conditional 
K-means algorithm is also considered. Both methods can 
be used to estimate groupspecific parameters in panel 
data models when group membership is not known.

Appendix
In this appendix, we show that PSUEDO(2, 1) yields a negli-
gible misclassification rate in the sense that ( )ˆ / 0g →sN N  

Model A Model B
ˆ pr 0.9683 (218.0212) 0.9669 (208.6939)

ˆ
pf 0.0001 (0.9487) 0.0005 (4.4844)

Group

PSEUDO PSEUDO

1 2 3 4 1 2 3 4

Ng 9 13 23 24 20 9 19 21

ˆ gr 0.8663 0.9693 0.9178 0.9592 0.9606 0.8736 0.8866 0.9681
(35.8575) (125.5729) (79.3623) (123.8460) (114.8522) (41.1522) (59.5900) (131.6144)

ˆ
gf -0.0009 -0.0005 0.0011 0.0009 -0.0002 0.0011 0.0026 0.0011

(-3.4227) (-2.3176) (4.4124) (3.8578) (-1.0806) (3.1301) (7.3747) (4.6951)

tg test 2.9625* -0.2241 0.9209 6.3712* 2.8038* -0.3125 5.1246* 3.2935*

Group

CK-means CK-means

1 2 3 4 1 2 3 4

Ng 9 20 27 13 11 8 16 34

ˆ gr 0.8394 0.9727 0.8764 0.9519 0.9279 0.8771 0.916 0.9817
(31.0516) (166.9385) (73.1236) (93.9476) (57.2315) (42.6843) (73.9328) (206.5877)

ˆ
gf -0.0009 -0.0004 0.0018 0.0018 -0.0004 0.0009 0.0023 0.0004

(-3.0740) (-2.5774) (7.3693) (4.8926) (-1.4769) (2.1326) (7.0390) (2.6644)

tg test 0.5454 1.1865 0.0757 1.2584 1.5780 0.3537 1.3110 5.2131*

Table 4: Application: Growth Regression.
Note: Regression models for g = 1,2,...,4:

Model A : a r f-= + + + ∈� � �1 , ,it i g it g it gy y t e i I
Model B : a r f b g- - -= + + + ∆ + ∆ + ∈� � �1 1 2 , ,it i g it g g t g t it gy y t y y e i I

where ai denotes country-specific fixed effects, rg, fg, bg and gg, are group specific, 1
1, ,N

s is s s si
y N y y y y-

-= ∆ = -∑ � s=1,...,T. t values are in 
parentheses. tg tests the null hypothesis of parameter homogeneity and * denotes the significance at the 5% nominal level.
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as (N, T)→∞ jointly. Let I0= ( )0 0
1 2, I I  be the true group mem-

bership, let N0
g  denote the number of individuals in cluster 

I0
g  for g = 1, 2, and let I = (I1, I2) denote group membership 

other than ( )0 0
1 2, I I . Suppose that the DGP is

0
1 1, for ,it i it ity x e i Ia b= + + ∈� ��

0
2 2, for .it i it ity x e i Ia b= + + ∈� ��

We will consider the general case where b2–b1 = nT–a,  
0 ≤a < 1/2, n does not depend on T, and ||n|| > 0. Then a =0 
corresponds to the case when b2 - b1 = n ≠ 0. For g, j = 1, 2, 
let Ngj be the number of individuals assigned to be in group 
j by I = (I1, I2) when individuals truly belong to group g. We 
also let Ns = Ns(I, I0) = N21+N12 be the number of misclassified 
units.

If Ns/N → 0, then we have ( )ˆ ˆb b→g gq , g = 1, 2. In the 
following, we will show Ns /N →0 under PSEUDO. Let 
G0 be a set of threshold values that will achieve correct  

clustering. Let }{0 0
min min :gg g g= ∈Γ  and }{0 0

max max : .gg g g= ∈Γ
 

Then for any 0 0 0
min max, ,g g g∈  

( ) ( ) ( )g
g g =

<
= < = =∑ 0 0

max0 0 11
1

.
N

ii
i

q NF P q
N N

Consider the following cases:

I. G0 known, qi estimated: Suppose we know G0 but not 
qi. Let ˆ ˆ= -i

i i
c q q
T

( ) ( )g g
∈ ∈

= > + <∑ ∑
0 0
1 2

0 0
max min

1 1ˆ ˆ1 1
N N

s
i i

i I i I

N q q
N N N

	 0 0
1 2

0 0
max min

ˆ ˆ1 11 1g g
∈ ∈

   = < + + > +      ∑ ∑i i
i i

i I i I

c cq q
N T N T

	 0 0
1 2

0 0
max min

ˆ ˆ1 11 1 .g g
∈ ∈

   = > - + < -      ∑ ∑i i
i i

i I i I

c cq q
N T N T

Regression (A) (B) (C) (D)

Homogenous b.1, b.2 — b.1 b.2

Group-specific — b.1, b.2 b.2 b.1

PSEUDO CK-means PSEUDO CK-means PSEUDO CK-means

ˆ
1b -0.117 -0.120 -0.120

(-15.887) (-18.498) (-18.498)
2b̂ -0.017 -0.019 -0.019

(-14.761) (-18.403) (-18.218)

11b̂ -0.261 -0.277 -0.231 -0.271
(-12.404) (-12.024) (-14.059) (-15.487)

12b̂ -0.024 -0.028 -0.024 -0.024
(-10.378) (-10.271) (-17.719) (-17.719)

21b̂ -0.095 -0.095 -0.102 -0.105
(-12.461) (-12.728) (-14.502) (-13.056)

22b̂ -0.017 -0.016 -0.010 -0.010
(-12.294) (-12.520) (-5.921) (-5.921)

2

1

ˆ
ˆ1

b

b-
-0.0193 -0.0325

-0.0177
-0.0387
-0.0242

-0.0273
-0.0242

-0.0273
-0.0242

-0.0247
-0.0212

-0.0261
-0.0212

Ng 50 (16, 34) (14, 36) (31, 19) (31, 19) (14, 36) (13, 37)

Ĝ (by BIC) — 1 1 1 1 1 2
tg : accept H0 no no no no no no no
tg : accept H'0 — no yes yes yes yes yes

SSR 60.656 59.679 59.627 60.009 60.009 59.874 59.785

Table 5: Housing Dynamics in 50 States in the U.S.

( ) ( ) ( ) ( ) ( ) ( ) ( )

3 3
4

1 11 2 1, 2,
1 1

log log log .it i it t it j t j iti i i j i j
j j

H H R H R ea b b g g- - - -
= =

∆ = + + + ∆ + ∆ +∑ ∑

Note: ai, g(i)1, j and g(i)2, j are state-specific. Ng denotes the size of the groups. t values are in parentheses. tg is used to test for parameter 
homogeneity for the full sample (H0), and for the subsamples ( )0H ′  with group membership estimated by PSEUDO or CK-means.
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Note that ˆ 0>ic  if ˆ >i iq q  and ∈ 0
1 ,i I  and ˆ 0ic <  if ˆ <i iq q  and 

0
2∈i I . Now 0

max 2g b=  and 0
min 1g b=  with qi = b1 for those 

∈ 0
2 .i I , and qi = b2 for those ∈ 0

2 .i I

0 0
1 2

2 1
ˆ ˆ1 11 1b b

∈ ∈

   = > - + < -      ∑ ∑s i i
i i

i I i I

N c cq q
N N T N T

0 0
1 2

2 1 1 2
ˆ ˆ1 11 1b b b b

∈ ∈

   = > - + < -      ∑ ∑i i

i I i I

c c
N T N T

( ) ( )a an n- -

∈ ∈

= > + <-∑ ∑
0 0
1 2

1 / 2 1 / 21 1ˆ ˆ1 1 .i i
i I i I

c T c T
N N

Since 0 ≤ a < 1/2, Ns /N tends to zero as T → ∞.

II. G0 and qi both unknown: Now turn to the case when 
G0 and qi are both unknown. Under the assumption that  

0
min minĝ g-  and 0

max maxˆ ˆg g-  are of order Op(N–1T–1/2), we can 

let 0max
max max

ˆ
ˆd

N T
g g= -  and 0min

min max

ˆ
ˆd

N T
g g= - . Note that maxd̂  

and mind̂  do not depend on i. Because 
ˆˆ = + i

i i
cq q
T

, we have

( ) ( )
0 0
1 2

max min
1 1ˆ ˆˆ ˆ1 1

N N
s

i i
i I i I

N q q
N N N∈ ∈

≤ >g + <g∑ ∑

0
1

0
2

0max
max

0min
min

ˆˆ1 1

ˆˆ1 1

i
i

i I

i
i

i I

c d q
N T N T

c d q
N T N T

∈

∈

 
 = + >g − 
 

 
 + + <g − 
 

∑

∑

0 0
1 2

max min
2 1 1 2

ˆ ˆˆ ˆ1 11 1b b b b
∈ ∈

   
= + > - + + < -   

   
∑ ∑i i

i I i I

c d c d
N T N T N T N T

0 0
1 2

max min
ˆ ˆˆ ˆ1 11 1a an n- -

∈ ∈

   
= + > + + <-   

   
∑ ∑i i

i I i I

c d c dT T
N T N T N T N T

0 0
1 2

1 / 2 1 / 2max min
ˆ ˆ1 1ˆ ˆ1 1 .a an n- + - +

∈ ∈

   
= > - + <- -   

   
∑ ∑i i
i I i I

d dc T c T
N N N N

Notice that

( )

( )( ) ( )

−a+

−a+ − a−

 
 >g ∈ = >n − ∈ 
 

≤ >n + ∈ =

0 1 / 2 0max
max 1 1

1 / 2 1 0 2 1
1

ˆ
ˆ ˆˆ |

ˆ| | ,

i i

i p

dP q i I P c T i I
N

P c T O N i I O T

where the last equality comes from the Chebyshev’s ine-
quality. Similarly,

( ) ( )0 2 1
min 2ˆ ˆ | .ag -< ∈ =iP q i I O T

Thus, E(Ns/N) = O(T 2a–1). Since 0 ≤ a < 1/2, Ns/N tends to 
zero as T → ∞.
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