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a b s t r a c t

Dynamic stochastic general equilibrium (DSGE) models are often solved and estimated
under specific assumptions as to whether the exogenous variables are difference or
trend stationary. However, even mild departures of the data generating process from
these assumptions can severely bias the estimates of the model parameters. This paper
proposes new estimators that do not require researchers to take a stand on whether
shocks have permanent or transitory effects. These procedures have two key features.
First, the same filter is applied to both the data and the model variables. Second, the
filtered variables are stationary when evaluated at the true parameter vector. The
estimators are approximately normally distributed not only when the shocks are mildly
persistent, but also when they have near or exact unit roots. Simulations show that
these robust estimators perform well especially when the shocks are highly persistent
yet stationary. In such cases, linear detrending and first differencing are shown to yield
biased or imprecise estimates.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Dynamic stochastic general equilibrium (DSGE) models are now accepted as the primary framework for macroeconomic
analysis. Until recently, counterfactual experiments were conducted by assigning the parameters of the models with values
that are loosely calibrated to the data. More recently, serious efforts have been made to estimate the model parameters
using classical and Bayesian methods. This permits researchers to assess how well the models fit the data both in and out
of samples. Formal estimation also permits errors arising from sampling or model uncertainty to be explicitly accounted
for in counterfactual policy simulations. Arguably, DSGE models are now taken more seriously as a tool for policy analysis
because of such serious econometric investigations.

Any attempt to estimate DSGE models must confront the fact that macroeconomic data are highly persistent. This fact
often requires researchers to take a stand on the specification of the trends in DSGE models. Specifically, to take the model
to the data, a researcher needs to use sample analogs of the deviations from steady states and, in doing so, must decide
how to detrend the variables in the model and in the data. Table 1 is a non-exhaustive listing of how trends are treated in
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some notable papers.1 Some studies assume stochastic trends for the model and use first differenced data in estimation. A
number of studies specify deterministic trends for the model and use linearly detrended data in estimation. Studies that
apply the Hodrick–Prescott (HP) filter to the data differ in what trends are specified for the model. Some assume simple
linear trends, while others assume unit root processes. Table 1 demonstrates that a variety of trends have been specified
for the model and a variety of detrending methods have been used in estimation.

The problem for researchers is that it is not easy to ascertain whether highly persistent data are trend stationary
or difference stationary in finite samples. While many have studied the implications for estimation and inference
of inappropriate detrending in linear models,2 much less is known about the effects of detrending in estimation of non-linear
models. From simulation evidence of Doorn (2006) for an inventory model, it seems that HP filtering can significantly
bias the estimated dynamic parameters. While the local-to-unit framework is available to help researchers understand the
properties of the estimated autoregressive root when the data are strongly persistent, it is unclear to what extent the
framework can be used in non-linear estimation even in the single equation case. What makes estimation of DSGE models
distinct is that they consist of a system of equations and misspecification in one equation can affect estimates in other
equations.

This paper develops robust estimation procedures that do not require researchers to take a stand on whether shocks in
the model have an exact or a near unit root, and yet obtain consistent estimates of the model parameters. All robust
procedures have two characteristics. First, the same transformation (filter) is applied to both the data and the model
variables. Second, the filtered variables are stationary when evaluated at the true parameter vector. The estimators have
the classical properties of being

ffiffiffi
T

p
consistent and asymptotically normal for all values of the largest autoregressive root.

Our point of departure is that the rather common practice of applying different filters to the model variables and the data
can have undesirable consequences. As will be shown later, estimates of parameters governing the propagation and
amplification mechanisms in the model can be severely distorted when the trend specified for the model is not consistent
with the one applied to the data. We insist on estimators that apply the same transformation to both the model and the data.
This, however, may still lead to biased estimates if the filter does not remove the trends actually present in the data.
Accordingly, one needs to work with filters that can remove both deterministic and stochastic trends without the researcher
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Table 1
Summary of selected work.

Paper Equations Forcing variable Model filter Data filter Estimator

Kydland and Prescott (1982) System ARMA(1,1) LT HP Calibration
Altug (1989) System I(1) FD1 FD1 MLE
Christiano and Eichenbaum (1992) System I(1) zt HP GMM
Burnside et al. (1993) System AR(1) LT HP GMM
Burnside and Eichenbaum (1996) System I(1) zt HP GMM
McGrattan et al. (1997) System VAR(2) LT LT,HP MLE
Fuhrer (1997) Equation Not specified Not specified HP,LT,QT GMM
Clarida et al. (2000) Equation AR(1) Not specified LT,HP,CBO GMM
Kim (2000) System AR(1) LT LT MLE
Ireland (2001) System AR(1) LT LT MLE
Smets and Wouters (2003) System AR(1) LT HP Bayesian
Dib (2003) System AR(1) LT LT MLE
Fuhrer and Rudebusch (2004) Equation Not specified Not specified HP,CBO,QT MLE,GMM
Lubik and Schorfheide (2004) System AR(1) LT HP,LT Bayesian
Altig et al. (2004) System ARI(1,1) FD1 FD1 GMM
Ireland (2004) System I(1) FD1 FD1 MLE
Bouakez et al. (2005) System AR(1) LT LT MLE
Christiano et al. (2005) System Not specified Not specified VAR GMM
Del Negro et al. (2007) System ARI(1,1) FD1 FD1 Bayesian
Faia (2007) System AR(1) LT HP Calibration
Smets and Wouters (2007) System AR(1) FD FD Bayesian

Note: CBO denotes actual series minus the Congress Budget Office’s measure of potential output. I(1) and ARI(1,1) denote forcing variables with stochastic
trends. AR and ARMA denote trend stationary forcing variables. VAR denotes filtering with a vector autoregression which can accommodate trend and
difference stationary processes. FD is first differencing, FD1 is first differencing with the restriction that the forcing variable has a unit root (e.g., rz ¼ 1), LT
is projection on linear time trend, QT is projection on quadratic time trend, HP is Hodrick–Prescott filter, zt is detrending by the level of technology. The
second column shows whether a paper estimates a system of equations (‘‘system’’) or a single structural equation (‘‘equation’’).

1 As of June 2009, these papers were cited almost 2500 times at the Web of Science (former Social Science Citation Index) and almost 8000 times at
Google Scholar.

2 For example, Nelson and Kang (1981) showed that linear detrending a unit root process can generate spurious cycles. Cogley and Nason (1995a)
found that improper filtering can alter the persistence and the volatility of the series while spurious correlations in the filtered data was documented in
Harvey and Jaeger (1993). Singleton (1988) and Christiano and den Haan (1996) discussed how inappropriate filtering can affect estimation and inference
in linear models.
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taking a stand before solving and estimating the model. The idea of applying robust filters to both the model and the data is
not new. Christiano and den Haan (1996) as well as Burnside (1998) applied the HP filter to both the model and the data,
but they had to resort to estimation by simulations to get around the large state vector that the HP filter induces. The filters
to be considered have the same desirable feature as the HP in that they adapt to the trends in the data. However, they can
be implemented with simple modifications to the state space system while keeping the dimension of the state vector
small. Specifically, four transformations are considered: (i) quasi-differencing, (ii) unconstrained first differencing, (iii) hybrid
differencing, and (iv) the HP filter. All filters can be used in GMM estimation but not every method can be implemented
in the likelihood framework. Importantly, one can use standard asymptotic inference as the finite sample distribution
of the estimators are well approximated by the normal distribution not only when the large autoregressive root is far from
one, but also when it is near or on the unit circle. The procedures can be applied to DSGE models whose solution can be
shown to exist and is unique, and can be solved using variations of the method discussed in Blanchard and Kahn (1980) and
Sims (2002).

As discussed in Iskrev (2010) and Komunjer and Ng (2009), DSGE models are susceptible to identification failure, in
which case, consistent estimation of parameters is not possible irrespective of the treatment of trends. In view of this
consideration and to fix ideas, this paper uses a simple stochastic growth model whose properties are well understood. The
model, which will be presented in Section 2, will also be used to perform baseline simulation experiments. The new
estimators are presented in Sections 3 and 4. Discussion of the related literature is in Section 4. Sections 5 and 6 use
simulations to show that the robust approaches perform well especially when the shocks are highly persistent yet
stationary. These results also hold up in larger models though some filters are more sensitive to the number of shocks than
others. In contrast, linear detrending and first differencing often lead to severely biased estimates. Implementation issues
are discussed in Section 7. Section 8 concludes.

2. Preliminaries

Consider the one sector stochastic growth model. The problem facing the central planner is

maxEt
X1

t ¼ 0

btðlogCt#yLtÞ

subject to feasibility and technological constraints

Yt ¼ Ctþ It ¼ Ka
t#1ðZtLtÞ

ð1#aÞ

Kt ¼ ð1#dÞKt#1þ It

Zt ¼ expðgtÞexpðuz
t Þ; uz

t ¼ rzu
z
t#1þezt ; jrzjr1

Let bmt ¼ ðbct ; bkt ;bltÞ ¼ ðct#gt; kt#gt; ltÞ ¼mt#m&
z where Yt is output, Ct is consumption, Kt is capital, Lt is labor input, Zt is the

level of technology, ezt is an innovation in technology. Note that rz is allowed to be on the unit circle. Let lower case letters
denote the natural logarithm of the variables, e.g. ct = log Ct. Let c

*
t be such that ct#c*t is stationary; k

*
t and z*t are similarly

defined. By assumption, labor Lt is stationary for all rzr1 and thus l*t=0. Collect the observed model variables into the
vector mt=(ct, kt, lt) and denote the trend component of the model variables by m*

t=(c
*
t, k

*
t, l

*
t). In general, how m*

t is defined,
how the model is linearized and estimated will depend on whether rzo1 or rz ¼ 1. Solving the system of expectational
equations yields the reduced form

bmt ¼P bmt#1þBuz
t

uz
t ¼ rzu

z
t#1þezt ð1Þ

As all roots of P are assumed to be strictly less than one, non-stationarity can only arise because rz is on the unit circle.
Note that when rz ¼ 1, the model needs to be linearized and solved with m&

t ¼ ðutþgt;utþgt;0Þ ¼ ðzt ; zt ;0Þ. Despite the fact
that the permanent shock uzt is now a part of mt

*, (1) is still the reduced form representation for the levels of the linearly
detrended variables. In other words, the reduced form representation for bmt is continuous in rz even though how one
arrives at this representation will depend on rz. Hence, without loss of generality, the representation (1) will be always
used in subsequent discussions for all values of rz.

Note that by definition, bmt is the linearly detrended component of the model variablesmt. In other words, bmt is a model
concept. Hereafter, let dt denote the data analog ofmt. For the stochastic growth model, dt = (ct, kt, lt) are the data series. Let
bdt be obtained by removing deterministic trends from dt. Then bdt is the data analog of bmt .

3. Robust estimators

This section presents robust methods that do not require the researcher to take a stand on the properties of trends in
the data. The stochastic growth model is used to illustrate the intuition behind the proposed methods.
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Many methods have been used to estimate DSGE models.3 Our focus will be a method of moments (MM) estimator that
minimizes the distance between the second moments of data and the second moments implied by the model, as in
Christiano and den Haan (1996) and Christiano and Eichenbaum (1992). Adaptation to likelihood based estimation will be
discussed in Section 7.

Let Y denote the unknown structural parameters of the model and partition Y¼ ðY#;rzÞ. The generical MM estimator

can be summarized as follows. Step 1 applies a filter (if necessary) to dt and computes bO
d
ðjÞ, the estimated covariance

matrix of the filtered series at lag j. Collect the data moments in the vector

bod ¼ ðvechðbO
d
ð0ÞÞ0 vecðbO

d
ð1ÞÞ0 . . .vecðbO

d
ðMÞÞ0Þ0

Step 2 solves the rational expectations model for a guess of Y. Compute OmðjÞ, the model implied autocovariances of the

filtered bmt analytically or by simulation. Collect the model moments in the vector

om ¼ ðvechðOmð0ÞÞ0 vecðOmð1ÞÞ0 . . .vecðOmðMÞÞ0Þ0

Step 3 estimates the structural parameters as

bY ¼ argmin
Y

J bod#omðYÞJ

The choice of moments in MM can be important for identification (see e.g. Canova and Sala, 2009). The unconditional
autocovariances are used in this paper but matching impulse responses can also be considered. Although MM is somewhat
less widely used than maximum likelihood estimators in the DSGE literature, it does not require parametric specification of
the error processes and it is easy to implement. As will be discussed later, the more important reason for using MM is
practical as it can be used with many popular filters.

The robust approaches considered here always apply the same filter to the model and the data so that the filtered
variables are stationary when evaluated at the true parameter of rz, which can be one or close to one. The statistical
properties of bY will depend on rz and the filters used. The next four subsections consider four filters. Section 4 then
explores which of these have better finite samples properties. Properties of estimators that do not have these features will
also be compared later.

3.1. The QD estimator

Let Drz ¼ 1#rzL be the quasi-differencing (QD) operator and let Drz bmt ¼ ð1#rzLÞ bmt . Multiplying both sides of (1) by Drz

and using uz
t ¼ rzu

z
t#1þezt gives

Drz bmt ¼PDrz bmt#1þBezt ð2Þ

Note that the error term in the quasi-differenced model is an i.i.d. innovation. As Drz bmt is stationary for all rzr1, its
moments are well defined. In contrast, the moments of bmt are not well defined when rz ¼ 1. This motivates estimation of
Y as follows.

First, initialize rz. Second, quasi-difference
bdt with rz to obtain Drzbdt . Compute bO

d

Drz ðjÞ ¼ covðDrzbdt ;Drzbdt#jÞ; the sample

autocovariance matrix of the quasi-differenced data at lag j¼ 0; . . . ;M. Define bU
d

Drz ðjÞ ¼ bO
d

Drz ðjÞ#bO
d

Drz ð0Þ and let

bod
Drz ¼ ðvecðbU

d

Drz ð1ÞÞ0; . . . ;vecðbU
d

Drz ðMÞÞ0Þ0. Third, for a given rz and Y#, solve for the reduced form (1). Apply Drz to bmt

and compute Om
Drz ðjÞ; j¼ 1; . . . ;M, the model implied autocovariance matrices of the quasi-differenced variables. Let

Um
Drz ðjÞ ¼Om

Drz ðjÞ#Om
Drz ð0Þ. Define om

Drz ðrzÞ ¼ ðvecðUm
Drz ð1ÞÞ0; . . . ;vecðUm

Drz ðMÞÞ0Þ0. Fourth, find the structural parameters

bYQD ¼ argminYJ bo
d
Drz ðrzÞ#om

Drz ðYÞJ.
The QD estimator is based on the difference between the model and the sample autocovariances of the filtered

variables, normalized by the respective variance matrixODrz ð0Þ. The QD differs from a standard covariance estimator in one
important respect. The parameter rz now affects both the moments of the model and the data since the latter are
computed for the data quasi-differenced at rz. As rz and Y# are estimated simultaneously, the filter is data dependent
rather than fixed. The crucial feature is that the quasi-transformed data are stationary when evaluated at the true rz, which
subsequently permits application of a central limit theorem. The normalization of the lagged autocovariances by the
variance amounts to using the moments

covðDrzbdt ;Drzbdt#Drzbdt#jÞ#covðDrz bmt ;Drz bmt#Drz bmt#jÞ

for estimation. The j-th difference of Drzbdt is always stationary and ensures that the asymptotic distribution is well
behaved. Finally, observe that since the model is solved in levels and the transformed variables are used only to compute
moments, all equilibrium relationships between variables are preserved.
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3.2. The FD estimator

If Drz bmt is stationary when rzr1, the data vector is also stationary when quasi-differenced at rz ¼ 1. Denote the first-
differencing (FD) operator by D¼ 1#L and consider the following estimation procedure. First, compute

bO
d

DðjÞ ¼ covðDbdt ;Dbdt#jÞ, the sample autocovariance matrix of the first differenced data at lag j¼ 1; . . . ;M. Define

bod
D ¼ ðvechðbO

d

Dð1ÞÞ
0; . . . ;vecðbO

d

DðMÞÞ0Þ0. Second, for a given Y, solve for the reduced form (1). Compute Om
D ðjÞ, the model

implied autocovariance matrices of the first-differenced variables D bmt . Define om
D ¼ ðvechðOm

D ð0ÞÞ
0; . . . ;vecðOm

D ðMÞÞ0Þ0. Third,

find the structural parameters bYFD ¼ argminYJ bo
d
D#om

D ðYÞJ.
To be clear, the autocovariances are computed for the first differenced data and the model variables, but rz is a free

parameter which is estimated. Note that the QD and FD estimators are equivalent when rz ¼ 1. The key difference between
FD and QD is that FD is a fixed filter while the QD is a data dependent filter.

3.3. The hybrid estimator

One drawback of the FD estimator is that when rz is far from unity, over-differencing induces a non-invertible moving-
average component. The estimates obtained by matching a small number of lagged autocovariances may be inefficient. The

QD estimator does not have this problem, but bO
d

Drz ðjÞ is quadratic in rz. As will be explained below, this is why bO
d

Drz ðjÞ was

normalized by bO
d

Drz ð0Þ. These considerations suggest a hybrid (HD) estimator.

First, transform the observed data to obtain Drzbdt (as in QD) and Dbdt (as in FD). Second, compute

bO
d

QD;DðjÞ ¼ covðDrzbdt ;Dbdt#jÞ. Define bod
QD;D ¼ ðvecðbO

d

QD;Dð0ÞÞ
0; . . . ;vecðbO

d

QD;DðMÞÞ0Þ0. Third, for a given Y, solve for the reduced

form (1), and compute the model implied autocovariances between the quasi-differenced and the first differenced

variables. Define om
QD;D ¼ ðvecðOm

QD;Dð0ÞÞ
0; . . . ;vecðOm

QD;DðMÞÞ0Þ0. Fourth, find the structural parameters bYHD ¼

argminYJ bo
d
QD;DðrzÞ#om

QD;DðYÞJ. Notice that bO
d

QD;DðjÞ is now linear in rz, unlike
bO
d

Drz ðjÞ.

3.4. The HP estimator

Linear filters such as the HP and the bandpass can also remove deterministic and stochastic trends, see Baxter and King
(1999) and King and Rebelo (1993). The HP detrended series is defined as

HPðLÞdt ¼
lð1#LÞ2ð1#L#1Þ2

1þlð1#LÞ2ð1#L#1Þ2
dt

The estimator can be constructed as follows. First, compute the autocovariance matrices of the HP-filtered data

bO
d

HPð0Þ; . . . ; bO
d

HPðMÞ. Define bod
HP ¼ ðvechðbO

d

HPð0ÞÞ
0; . . . ;vecðbO

d

HPðMÞÞ0Þ0. Second, for a given guess of Y, solve for the reduced

form (1), and compute OmðjÞ, the autocovariances of bmt . Apply the Fourier transform to obtain the spectrum for bmt at
frequencies 2ps=T, s¼ 0; . . . ; T#1. Multiply the spectrum by the gain of the HP filter. Inverse Fourier transform to obtain

OHPðjÞ, the autocovariances of the HP(L) bmt . Define om
HP ¼ ðvechðOm

HPð0ÞÞ
0; . . . ;vecðOm

HPðMÞÞ0Þ0. Third, find the structural

parameters bYHP ¼ argminY: bo
d
HP#om

HPðYÞ:.
This approach is similar to Burnside (1998) who also first applies the HP filter to both the model and the data series, and

then uses simulations to compute model-implied moments. Like the FD, rz does not enter the filter but both the filtered
data and the filtered model variables are stationary for all rzr1. Note that HP filtering involves estimation of many more
autocovariances than the other estimators considered above.

4. Properties of the estimators

Let bod
j generically denote the j-th samplemoments of the filtered variables whileom

j ðYÞ denote the model moment based

on the same filter. Define gjðYÞ ¼ bod
j #om

j ðYÞ and let gðYÞ ¼ ðg0ðYÞ; g1ðYÞ; . . . ; gMðYÞÞ. Then the MM estimator

bY ¼minYJgðYÞJ is a non-linear GMM estimator using an identity weighting matrix. This sub-optimal weighting matrix is
used because when there are fewer shocks than variables in the system, stochastic singularity will induce collinearity in the
variables resulting in a matrix of covariances that would be singular. Even if there are as many shocks as endogenous
variables, Abowd and Card (1989), Altonji and Segal (1996) and others find that an identity matrix performs better than the
optimal weighting matrix in the context of estimating covariance structures. The optimal weighting matrix, which contains
high order moments, tends to correlate with the moments and this correlation undermines the performance of the estimator.

Let GðYÞ be the matrix of derivatives of gðYÞ with respect to Y. In standard covariance structure estimation, the
parameters enter the model moments omðYÞ but not the sample bod

, so that if bod
are moments of stationary variables,

ARTICLE IN PRESS
Y. Gorodnichenko, S. Ng / Journal of Monetary Economics 57 (2010) 325–340 329



then under regularity conditions such as stated in Newey and McFadden (1994), the conventional result that bY is
consistent obtains. Furthermore,

ffiffiffi
T

p
ð bY#Y0Þ#!

d
A ' Nð0; SÞ

where A¼ ðG0
0G0Þ#1G0

0,
ffiffiffi
T

p
gðY0Þ#!

d
Nð0; SÞ, and G0 is the probability limit of GðYÞ evaluated at Y¼Y0. This distribution

theory applies to the FD and the HP because these two filters do not depend on unknown parameters and the filtered

variables are always stationary. For the HD estimator, bod
depends on rz but its first derivative does not, so that a quadratic

expansion of the objective function can still be used to derive the asymptotic distribution of the estimator. Although GðYÞ

for the HD has a random limit when rz ¼ 1, bod
is a vector of covariances of stationary variables when evaluated at the true

value of rz. Thus, the ‘standardized’ HD estimator (or the t statistic) remains asymptotically normal.
To understand the properties of the QD estimator, an explanation for why the lagged autocovariances are normalized by

the variance is necessary. Suppose ~gjðYÞ ¼ bO
d

Drz ðjÞ#Om
Drz ðjÞ was used instead of gjðYÞ ¼ bod

Drz ðjÞ#om
Drz ðjÞ where

od
Drz ðjÞ ¼ bO

d

Drz ðjÞ#bO
d

Drz ð0Þ, and om
Drz is likewise defined. Minimizing J ~g ðYÞJ over Y yields an estimator, say, QD0. The

problem here is that bO
d

Drz ðjÞ is a cross-product of data quasi-differenced at rz, and is thus quadratic in rz. The quadratic
expansion of J ~gðYÞJ around Y0 contains terms that are not negligible when rz is one. As such, the sample objective
function cannot be shown to converge uniformly to the population objective function. Gorodnichenko et al. (2009) show in
a simpler setting that the QD0 estimator for rz is consistent but it has a convergence rate of T3/4 and is not asymptotically

normal. The QD estimator is motivated by the fact that the offending term in the quadratic expansion of bO
d

Drz ðjÞ is collinear

with bO
d

Drz ð0Þ when rz ¼ 1.

Proposition 1. Consider a DSGE model whose reduced form is given by (1) and all roots of P less than one. Let Y be the

unknown parameters of the model and let bY
QD

be the QD estimator of Y. Then
ffiffiffi
T

p
ð bY

QD
#Y0Þ#!

d
Nð0;Avarð bY

QD
ÞÞ.

A sketch of the argument is given in the supplementary material for the baseline model whose closed-form solution is
known. By subtracting the variance from each lagged autocovariance, the quadratic terms in the expansion of the objective
function are asymptotically negligible. This leads to the rather unexpected property that bY is asymptotically normal even
when rz ¼ 1. From a practical perspective, the primary advantage of the robust estimators is that when properly
studentized, the estimators are normally distributed whether rzo1 or rz ¼ 1, which greatly facilitates inference. Since all
estimators are consistent and asymptotically normal, it remains to consider which estimator is more efficient in finite
samples.

4.1. Related literature

There is a small literature on estimation of non-linear dynamic models when the data are highly persistent. Cogley
(2001) considers several estimators and finds that using cointegration relationships in the unconditional Euler equations
works quite well. Our method is similar to Cogleys (2001) in that neither requires the researcher to take a stand
on the properties of the trend function and yet the moments used in GMM estimation are always stationary. However,
there are important differences. First, quasi-differencing can easily handle multiple I(1) or highly persistent shocks.
In contrast, cointegration relationships can be used only for certain types of shocks. For example, if the shock to disutility
of labor supply is an I(1) process, there is no cointegration vector to nullify a trend in hours. Second, cointegration
often involves estimating identities and therefore the researcher has to add an error term (typically measurement error)
to avoid singularity. We do not estimate specific equations and hence do not need to augment the model with
additional, atheoretical shocks. Finally, some structural parameters such as adjustment costs cannot be identified
by cointegration relations because they are zero by construction in the steady state. In contrast, the estimators
proposed here utilize short-run dynamics in the data to estimate the parameters governing the short-run dynamics of the
model.

Fukac and Pagan (2006) consider how the treatment of trends might affect estimation of DSGE models, but their
analysis is confined to a single equation. They propose to use the Beveridge–Nelson decomposition to estimate and remove
the permanent components in the data. This assumes that the restrictions implied by Beveridge–Nelson trend are
consistent with the data. Canova (2008) explicitly treats the latent trends as unobserved components and estimates the
trends and cycles directly. While this allows the data to select the trend endogenously, the procedure can be imprecise
when the random walk component is small. Canova and Ferroni (2008) consider many filters and treat each as the true
cyclical component measured with error. They are primarily concerned with the consequences of data filtering taking the
model specification as given. This paper takes the view that the trends specified for the model should be consistent with
the facts that we sought to explain. As such, it should not be taken as given.
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5. Simulations: baseline model

This section uses the stochastic growth model to conduct Monte Carlo experiments. Data are generated with either
deterministic trends ðrzo1Þ or stochastic trends ðrz ¼ 1Þ using the model equations for bmt . The model variables are then
rescaled back to level form and treated as observed data dt=(ct, kt,yt, lt), which are taken as given in estimation. The
variance and the first order (M=1) auto- and cross variance of the four variables are used as moments. Alternative choices
of observed variables, such as excluding the capital stock series, yield very similar results.

The model is calibrated as follows: capital intensity a¼ 0:33; disutility of labor y¼ 1; discount factor b¼ 0:99;
depreciation rate d¼ 0:1; gross growth rate in technology g ¼ 0:005. There is only one shock in this baseline model. Thus,
the standard deviation of ezt is set to sz ¼ 1 without loss of generality. The admissible range of the estimates of a is
[0.01,0.99]. The persistence parameter rz takes values (0.95, 0.99, 1). To decouple the treatment of trends from the
identification issues, the parameter vector Y¼ ða;r;sÞ is estimated while ðb; d; yÞ is assumed known.4 In each of the 2000
replications for each parameter set, series with T=200 observations are created. Other sample sizes are also considered.

In all simulations and for all estimators, the starting values in optimization routines are equal to the true parameter
values. The model is solved using the Anderson and Moore (1985) algorithm. Mildly explosive estimates are allowed
because otherwise solutions for brz will be truncated to the right at one making the distribution of brz highly skewed. Only
parameter values consistent with a unique rational expectations equilibrium are allowed.5

Table 2 reports simulation results for the baseline growth model. The persistence of technology shocks is given in
the left column. The first and second rows indicate which filter is applied to both the data and the model variables.
Columns (1)–(4) report results for the four estimators. By and large, all four filters yield estimates which are very close to
the true values. Notice that while rz is always precisely estimated, the variance of the estimates varies substantially across
filters. The QD estimates have the lowest standard deviation while the HP estimates are two to five times more variable
than the QD. The HD is more precise than the FD but is less precise than the QD. This pattern is recurrent in all simulations.

Fig. 1 shows the root mean squared error (RMSE) for different estimators and sample sizes. The QD estimator performs
the best while the FD tends to have the largest RMSE in almost all cases. In small samples, the HP tends to lead to large
RMSE. However, in larger samples, the HP approaches the HD which is only slightly inferior to the QD.
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Table 2
Neoclassical growth model.

rz Data filter QD HD FD HP LT FD1 HP HP
Model filer QD HD FD HP LT FD1 LT zt

(1) (2) (3) (4) (5) (6) (7) (8)

Estimate of a
0.95 Mean 0.318 0.333 0.367 0.350 0.480 0.400 0.675 0.990

St.dev. 0.052 0.061 0.110 0.103 0.120 0.083 0.022
0.99 mean 0.308 0.324 0.372 0.360 0.810 0.377 0.789 0.990

St.dev. 0.053 0.066 0.115 0.120 0.201 0.109 0.024
1.00 Mean 0.304 0.312 0.349 0.351 0.905 0.357 0.817 0.990

St.dev. 0.054 0.061 0.105 0.115 0.183 0.113 0.022

Estimate of rz

0.95 Mean 0.949 0.949 0.950 0.950 0.914 1.000 0.541 1.000
St.dev. 0.006 0.014 0.017 0.015 0.042 0.049

0.99 mean 0.989 0.990 0.991 0.991 0.864 1.000 0.485 1.000
St.dev. 0.002 0.005 0.007 0.016 0.094 0.041

1.00 Mean 0.999 1.000 0.998 1.000 0.694 1.000 0.461 1.000
St.dev. 0.001 0.003 0.005 0.011 0.123 0.039

Estimate of sz

0.95 Mean 0.981 1.021 1.157 1.076 1.135 1.334 1.949 0.046
St.dev. 0.123 0.187 0.441 0.291 0.283 0.285 0.167 0.006

0.99 Mean 0.962 1.001 1.154 1.107 4.348 1.185 2.912 0.042
St.dev. 0.111 0.170 0.367 0.303 2.169 0.347 0.397 0.006

1.00 Mean 0.955 0.974 1.073 1.087 19.803 1.107 3.289 0.041
St.dev. 0.108 0.145 0.295 0.513 10.681 0.341 0.478 0.005

Note: The number of simulations is 2000. Sample size is T=200. LT is linear detrending, HP is Hodrick–Prescott filter, FD is first differencing, FD1 is first
differencing with the restriction that rz ¼ 1, QD is quasi-differencing, HD is hybrid differencing, zt is detrending by the level of technology.

4 The average growth rate g is estimated in the preliminary when the series is projected on a linear time trend.
5 A rational expectations solution is said to be stable if the number of unstable eigenvalues of the system equals the number of forward looking

variables. Stability in this context refers to the internal dynamics of the system. This is distinct from covariance stationarity of the time series data, which
obtains when rzo1. It is possible for rz to be mildly explosive and yet the system has a stable, unique rational expectations equilibrium. Only a tiny
fraction of simulations was discarded due to non-uniqueness of the rational expectations equilibrium.
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Fig. 1. Root mean squared errors. Note: This figure shows the root mean squared errors (RMSE) for four estimators which apply the same transformation
(QD, HP, FD, HD) to data and model series. RMSE are shown for three parameter estimates: a, elasticity of output with respect to capital; rz , persistence of
technology shocks; sz , standard deviation of technology shocks.

Fig. 2. Kernel density of simulated
ffiffiffi
T

p
ðba#aÞ. Note: This figure shows the kernel density of

ffiffiffi
T

p
ðba#aÞ for four estimators which apply the same

transformation (QD, HP, FD, HD) to data and model series. Kernel densities are shown for three sample sizes T=150, 300, and 2000. Parameter a is the
elasticity of output with respect to capital.
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Fig. 3. Kernel density of simulated
ffiffiffi
T

p
ðbrz#rzÞ. Note: This figure shows the kernel density of

ffiffiffi
T

p
ðbrz#rzÞ for four estimators which apply the same

transformation (QD, HP, FD, HD) to data and model series. Kernel densities are shown for three sample sizes T=150, 300, and 2000. Parameter rz is the
persistence of technology shocks.

Fig. 4. Kernel density of simulated
ffiffiffi
T

p
ðbsz#szÞ. Note: This figure shows the kernel density of

ffiffiffi
T

p
ðbsz#szÞ for four estimators which apply the same

transformation (QD, HP, FD, HD) to data and model series. Kernel densities are shown for three sample sizes T=150, 300, and 2000. Parameter sz is the
standard deviation of technology shocks.
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Figs. 2–4 present the kernel density of the normalized estimator (i.e.
ffiffiffi
T

p
ð bY#YÞ) for sample sizes of T=150 and 300.

Results are also reported for T=2000 to study the asymptotic properties of the estimators. Approximate normality of brz

when rz is close to one, is totally unexpected, given that the literature on integrated regressors prepared us to expect super
consistent estimators with Dickey–Fuller type distributions that are skewed. Instead, all densities are bell-shaped and
symmetric for all rzr1 with no apparent discontinuity as we increase rz to one. The normal approximation is not perfect
in small samples, suggesting that some size distortion will occur if one uses the t statistic for inference. In unreported
results, t-statistics constructed using Newey–West standard errors have rejection rates greater than the nominal size for all
estimators except the HP, which can be undersized. For example, the rejection rate of the QD estimator for the two-sided t-
test of rz at the true value of 1 is 0.055 when T=200 while for testing a at the true value of 0.33, the rejection rate is 0.21.
This is larger than the nominal size of 0.05. As the sample size increases, the actual size gets closer (and eventually
converges) to the nominal rates. For example, at T=1000 for QD, the two-sided t-test of rz ¼ 1 has a rejection rate of 0.05,
while the t test for a¼ 0:33 is 0.10. The QD and HD generally have better size than the FD and the HP. The finite sample size
distortion seems to be a general problem with covariance structure estimators and not specific to the considered
estimators. Burnside and Eichenbaum (1996) reported similar results in covariance structure estimation with many
overidentifying restrictions, also using the Newey–West estimator of the variance of moments.

5.1. Variations to the baseline model

In response to the finding in Cogley and Nason (1995b) that the basic real business cycle model has weak internal
propagation, researchers often augment the basic model to strengthen the propagation and to better fit the data at
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Table 3
Augmented versions of the neoclassical growth model.

rz Data filter QD HD FD HP LT FD1 HP HP
Model filer QD HD FD HP LT FD1 LT zt

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: serially correlated growth rate in technology
Estimate of k¼ 0

0.95 Mean #0.010 #0.001 0.001 #0.019 #0.180 #0.100 #0.224 #0.369
St.dev. 0.063 0.058 0.050 0.160 0.165 0.035 0.038 0.106

0.99 Mean #0.014 #0.003 0.002 #0.016 #0.498 #0.021 #0.255 #0.429
St.dev. 0.044 0.046 0.041 0.155 0.088 0.030 0.038 0.070

1.00 Mean #0.014 #0.003 0.003 #0.020 #0.600 #0.002 #0.256 #0.446
St.dev. 0.038 0.039 0.035 0.161 0.029 0.028 0.038 0.058

Panel B: habit formation in consumption
Estimate of f¼ 0

0.95 Mean 0.020 0.008 0.006 #0.014 #0.410 #0.086 0.193 0.679
St.dev. 0.075 0.073 0.071 0.255 0.339 0.066 0.382 0.074

0.99 Mean 0.019 0.009 0.008 0.023 #0.647 #0.018 0.495 0.637
St.dev. 0.070 0.074 0.069 0.168 0.241 0.083 0.400 0.070

1.00 Mean 0.018 0.023 0.011 0.025 #0.702 0.011 0.603 0.622
St.dev. 0.067 0.087 0.076 0.156 0.174 0.095 0.373 0.068

Panel C: preference shocks qt
Estimate of a¼ 0:33

sq ¼ 0:5
0.95 Mean 0.344 0.335 0.361 0.329 0.465 0.299 0.591 0.337

St.dev. 0.040 0.025 0.080 0.075 0.126 0.043 0.037 0.137
1.00 Mean 0.353 0.342 0.352 0.335 0.508 0.352 0.665 0.485

St.dev. 0.052 0.034 0.067 0.072 0.357 0.063 0.050 0.265
sq ¼ 1:0

0.95 Mean 0.339 0.341 0.349 0.331 0.431 0.316 0.504 0.344
St.dev. 0.023 0.030 0.049 0.060 0.103 0.022 0.031 0.022

1.00 Mean 0.347 0.347 0.357 0.340 0.611 0.341 0.529 0.364
St.dev. 0.028 0.034 0.050 0.055 0.257 0.025 0.036 0.023
sq ¼ 1:5

0.95 Mean 0.338 0.343 0.349 0.333 0.399 0.326 0.469 0.378
St.dev. 0.021 0.030 0.042 0.053 0.078 0.017 0.020 0.024

1.00 Mean 0.341 0.346 0.353 0.338 0.515 0.338 0.477 0.391
St.dev. 0.020 0.029 0.038 0.049 0.203 0.017 0.021 0.023

Note: Panels A and B: rz and k or f are estimated; a¼ 0:33 and sz ¼ 1 are fixed. Panel C: five parameters are estimated ða;rz;rq;sz ;sqÞ. The number of
simulations is 2000. Sample size is T=200. LT is linear detrending, HP is Hodrick–Prescott filter, FD is first differencing, FD1 is first differencing with the
restriction that rz ¼ 1, QD is quasi-differencing, HD is hybrid differencing, zt is detrending by the level of technology.
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business cycle frequencies. One consideration is to introduce serial correlation in the growth rate of shocks to technology
by assuming ut ¼ ðrzþkÞut#1#krzut#2þezt . This specification generates serial correlation of k in the growth rate of
technology when rz ( 1. The baseline model corresponds to k¼ 0. When data are simulated with k¼ 0 and k is estimated
freely, the QD, HD, FD, and HP correctly find that k¼ 0 (Table 3, Panel A).

Habit in consumption is another popular way to introduce greater persistence in business cycle models. Consider the
utility function: lnðCt#fCt#1Þ#yLt where f measures the degree of habit in consumption. Data are generated with f set to
zero. When f is freely estimated along with other parameters, the robust estimators again find bf to be numerically small
and not statistically different from zero for all values of rz (Table 3, Panel B).

A third variation to the baseline model is a preference shock Qt such that the utility is lnCt#yLt=Qt where
qt ¼ lnQt ¼ rqqt#1þeqt and eqt ) iidð0;s2

qÞ. In the simulations, rq ¼ 0:8 (so that the preference shock is stationary) and
sq ¼ ð0:5;1:0;1:5Þ. To conserve space, Panel C in Table 3 reports only estimates for a. Consistent with the results thus far, the
HP estimates have the largest variability although the difference with other estimators is not as large as it was in the baseline
model. Note that as sq increases, the difference across methods shrinks while the precision for all estimators improves.

A recurrent result is that the HP estimates have the largest variability and is computationally most intensive. Burnside
(1998) reports that the HP filter removes variation potentially informative about the structural parameters but that the HP
filtered model and data series still have sufficient variability to discriminate competing theories of business cycles. One
possibility for the results reported here is that the HP filters out more low frequency variation than other filters, and the
parameters f and k are identified from these frequencies. Another possibility is that the HP implicitly uses many more
estimated autocovariances (recall that the inverse Fourier transform is applied to many autocovariances). This extensive
use of sample autocovariances can also introduce variability to the estimator.

6. Non-robust estimators and a model with multiple rigidities

This section reports results for the non-robust estimators to illustrate how treatment of trends can bring about
misleading conclusions about the propagating mechanism of shocks. In addition to the basic stochastic growth model, the
estimators are also compared for a model with many more endogenous variables.

6.1. Alternative detrending procedures

Up to this point, the considered approaches apply the same transformation to the data and the model variables. Much
has been written about the effects of filtering on business cycle facts. King and Rebelo (1993) and Canova (1998) showed
that the HP filtered data are qualitatively different from the raw data. Canova (1998) showed that the stylized facts of
business cycles are sensitive to the filter used to remove the trending components. Gregory and Smith (1996) used a
calibrated business cycle model to investigate what type of trend can produce a cyclical component in the data that is
similar to the cyclical component in the model. Although these authors did not estimate a DSGE model on filtered data,
they hinted that the parameter estimates can be adversely affected by filtering.

To investigate the consequences of using different and/or inappropriate filters, four combinations are considered:
(A) the autocovariances are computed for linearly detrended model and data series; (B) the autocovariances are computed
for the first differenced model and data series with imposed rz ¼ 1; (C) the sample autocovariances are computed for HP
filtered data but the model autocovariances are computed for the linearly detrended variables; (D) the sample
autocovariances are computed for HP filtered data while the model autocovariances are computed for series normalized by
the level of technology, i.e., mt#zt where zt is the level of technology.

Each combination has been used in the literature (see e.g. Table 1). (A) and (B) are aimed to show the effects of imposing
incorrect assumptions about trends. (C) and (D) illustrate the consequences when different trends are applied to the model
and the data.6 The results for the basic stochastic growth model are reported in Table 2. For (A), which is reported in
column (5), the parameter estimates are slightly biased when rz ¼ 0:95. As rz increases, the estimates are strongly biased.
This shows that when rz is close to unity yet stationary, assuming trend stationarity still yields imprecise estimates. At
rz ¼ 1, the mean of brz is 0.694 (instead of 1), the mean of ba is approximately 0.905 (instead of 0.33), the mean of bsz is 19.8
(instead of 1). The case of rzr1 is empirically relevant because macroeconomic data are highly persistent and well
approximated by unit root processes. These results show that linear detrending of nearly integrated data in non-linear
estimation can lead to biased estimates of the structural parameters, reminiscent of the univariate finding of Nelson and
Kang (1981) that projecting a series with a unit root on time trend can lead to spurious cycles.

Turning to (B) in column (6) of Table 2, the estimates are fairly precise when rz is indeed equal to one, but as rz departs
from one, the estimates get increasingly biased. Hence imposing a stochastic trend when the data generating process is
trend stationary can lead to seriously distorted estimates. Results for combination (C) are reported in column (7) of Table 2.
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6 As a general observation, the starting values are very important for non-robust methods as the optimization routines can get stuck in local optima.
With the robust estimators, the converged estimates do not change as the optimization starts from values other than the true parameters, though the
search for global minimum was often long.
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The estimates of rz are downward biased while ba and bsz are upward biased. Taken at face value, these estimates suggest a
significant role for capital as a mechanism for propagating shocks in the model.

Results for (D) are reported in column (8) of Table 2. Here, the estimates of a often hit the boundary of the permissible
parameter space while estimates of sz are close to zero. The reason is that when zt has a unit root, shocks to mt#zt are
transitory and consumption adjusts quickly to the permanent technology shock. But the HP filtered data are serially
correlated. Thus, the estimator is forced to produce parameter values that can generate strong serial correlation in the
model variables. Results for (C) and (D) are consistent with the findings of Cogley and Nason (1995a), King and Rebelo
(1993) and Harvey and Jaeger (1993). These papers suggest that the HP filter changes not only the persistence of the series
but also the relative volatility and serial correlation of the series. This translates into biased estimates of all parameters
because the estimator is forced to match the serial correlation of the filtered data.

Clearly, large estimated values of a will alert the researcher that the model is likely misspecified. Suppose the
researcher allows for serially correlated shocks in technology growth by estimating k freely. Panel A in Table 3 shows that
the non-robust methods now yield estimates of a around 0.4–0.5, which seem more plausible than when k was assumed
zero. However, these estimates are achieved by having bk strongly negative and statistically significant when the true value
of k is zero. Suppose now the researcher modifies the model by allowing for habits in consumption. Evidently, the
estimated habit formation parameter f is sensitive to which non-robust estimator is used. In particular, (A) has a strong
downward bias, while (B) produces a negative bias in bf when rz departs from one. On the other hand, (C) and (D) have a
strong upward bias. With either modification, the fit of the misspecified models improves relative to the correctly specified
model. However, these modifications should not have been undertaken as they do not exist in the data generating process.
These examples indicate how the treatment of trends can mislead the researcher to augment correctly specified models
with spurious propagation mechanisms to match the moments of the data.

Results for the model with an additional labor supply shock are reported in Table 3, Panel C. The estimates continue to
be biased although the biases tend to be smaller than in the baseline model with a single persistent shock. In general, a
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Table 4
Smets and Wouters (2007) model.

rz Data filter QD HD FD HP LT FD1 HP HP
Model filer QD HD FD HP LT FD1 LT zt

(1) (2) (3) (4) (5) (6) (7) (8)

Estimate of persistence in technology shocks rz

0.95 Mean 0.965 0.967 0.962 0.945 0.864 1.000 #0.100 1.000
St.dev. 0.038 0.037 0.044 0.137 0.142 0.157

0.99 Mean 0.986 0.984 0.986 0.967 0.836 1.000 #0.114 1.000
St.dev. 0.027 0.027 0.028 0.123 0.227 0.090

1.00 Mean 0.990 0.989 0.993 0.971 0.744 1.000 #0.123 1.000
St.dev. 0.027 0.026 0.025 0.123 0.305 0.075

Estimate of investment adjustment cost f¼ 5:48
0.95 Mean 5.057 5.381 5.227 5.066 3.932 4.700 4.447 9.818

St.dev. 2.236 2.548 2.306 3.354 1.917 2.487 0.265 0.609
0.99 Mean 5.432 5.563 5.373 5.095 5.595 5.236 4.366 9.662

St.dev. 2.321 2.463 2.404 3.012 2.647 2.794 0.257 0.588
1.00 Mean 5.863 6.253 6.014 5.617 6.173 6.049 4.377 9.541

St.dev. 2.375 2.775 2.781 3.279 2.983 3.046 0.230 0.548

Estimate of habit formation l¼ 0:71
0.95 Mean 0.725 0.730 0.749 0.753 0.730 0.864 3.932 0.673

St.dev. 0.057 0.063 0.062 0.049 0.063 0.142 1.917 0.134
0.99 Mean 0.699 0.718 0.719 0.718 0.543 0.744 0.908 0.941

St.dev. 0.056 0.053 0.062 0.134 0.177 0.053 0.033 0.006
1.00 Mean 0.686 0.711 0.716 0.709 0.470 0.731 0.912 0.940

St.dev. 0.056 0.055 0.064 0.145 0.261 0.057 0.028 0.005

Estimate of wage adjustment probability xw ¼ 0:73
0.95 Mean 0.704 0.730 0.734 0.686 0.657 0.759 0.484 0.220

St.dev. 0.073 0.063 0.075 0.117 0.105 0.077 0.085 0.019
0.99 Mean 0.686 0.704 0.709 0.659 0.530 0.718 0.458 0.213

St.dev. 0.081 0.065 0.079 0.125 0.214 0.084 0.078 0.016
1.00 Mean 0.673 0.697 0.700 0.641 0.457 0.700 0.444 0.210

St.dev. 0.092 0.068 0.083 0.138 0.262 0.091 0.072 0.015

Note: The number of simulations is 2000. Sample size is T=150. LT is linear detrending, HP is Hodrick–Prescott filter, FD is first differencing, FD1 is first
differencing with the restriction that rz ¼ 1, QD is quasi-differencing, HD is hybrid differencing, zt is detrending by the level of technology.
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smaller rz and a larger sq lead to smaller biases. In some cases, one finds bsq4 bsz, so that the researcher may be tempted to
conclude that preference shocks have larger volatility than shocks to technology while the opposite is true.

6.2. The Smets and Wouters model

Although the baseline model is an illuminating laboratory to evaluate how the estimators perform, it is overly
simplistic. To assess the properties of the estimators in a more realistic setting, consider the model of Smets and
Wouters (2007) (henceforth SW). Treating SW’s estimates for the post-1982 sample as the true parameter values, series of
size T=150 are generated and the estimators are applied to the generated series. To separate identification issues from
issues related to the treatment of trends, only four parameters are estimated: persistence of technology shocks rz whose
true value varies across simulations; investment adjustment cost f whose true value is 5.48; external habit formation in
consumption l whose true value is 0.71; and Calvo’s probability of wage adjustment xw whose true value is 0.73.

The results are reported in Table 4. All robust methods yield precise estimates of the parameters. Although the HP
continues to be less precise, the difference with the other three robust estimators is smaller than in the baseline model. A
similar feature was observed when the two-shock and one-shock neoclassical growth models were compared. These
differences between the baseline and the more complicated models can occur for several reasons. First, in larger models
with many other structural shocks, technology shock explains only a fraction of variation in key macroeconomic variables.
The HP estimator may simply need more shocks to identify the parameters. Second, bigger models impose many
more cross equation restrictions that may improve the efficiency of some estimators more than others. The general
observation, however, is that the proposed robust estimators perform reasonably well for all values of rz in simple and
more complex models.

In contrast, the non-robust estimators (A) through (D) have dramatic biases in all four parameters being estimated
when (i) the filter used for the model and the data are different, when (ii) the assumed trends are different from trends in
the data generating process, or when (iii) the data are stationary but highly persistent. Obviously, the impulse responses
(and other analyses related to the role of rigidities in amplification and propagation of shocks in business cycle models)
based on these biased estimates of the structural parameters will be misleading. As an illustration, Fig. 5 highlights the
difference between the true response of key macroeconomic variables to a technology shock in the SW model and the
responses based on parameter estimates from approaches (A) through (D). For instance, consider the response of
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Fig. 5. Estimated impulse responses functions to a technology shock in Smets and Wouters (2007) model. Note: This figure plots impulse response
functions based on parameter estimates obtained from estimators applying different filters to model and data series when the data are generated by the
Smets and Wouters (2007) model. LT is projection on a linear time trend. FD1 is first differencing. HP is the Hodrick–Prescott filter. The shock is a 1
percent increase in the level of technology. Persistence of technology shock is rz ¼ 0:99. See supplemental material for other impulse responses.

Y. Gorodnichenko, S. Ng / Journal of Monetary Economics 57 (2010) 325–340 337



consumption. Estimates from approaches (A) and (C) imply grossly understated responses. Estimates from approach (D)
suggest a considerably more delayed consumption response than the true one. The consumption response implied by
approach (B) is qualitatively similar to the true response, but the responses are noticeably different quantitatively
especially when rz is further away from one.

7. Extensions and implementation issues

This section discusses several practical issues and extensions pertaining to the robust estimators.

7.1. Multiple shocks

The reduced form solution (1) can be easily generalized to other models and takes the form

bmt ¼P bmt#1þBut

ut ¼ rut#1þSet ð3Þ

where ut is now a vector of exogenous forcing variables, et is a vector of innovations in ut, and the matrices P, B, S, r are of
conformable sizes.

Suppose there are J univariate shock processes, each characterized by

ð1#rjLÞujt ¼ ejt ; j¼ 1; . . . ; J

where some J* of the rj may be on the unit circle. Define

DrðLÞ ¼
YJ&

j ¼ 1

ð1#rjLÞ

Now the quasi-differencing operator is the product of the J* polynomials in lag operator. Once the model is solved to arrive
at (3), one can compute moments for DrðLÞ bmt . Whether none, one, or more shocks are permanent, the autocovariances of
the transformed variables are well defined. For example, if one knows that shocks to tastes dissipate quickly while
technology shocks zt are highly persistent, one can still use ð1#rzLÞ as D

r.

7.2. Likelihood estimation

As likelihood and Bayesian estimation is commonly used in the DSGE literature, one may wonder how the ideas
considered in this paper can be implemented in likelihood based estimation. Suppose one can write the model in a state
space form which involves using the measurement equations to establish a strict correspondence between the detrended
series in the model and in the data. Then one can derive the likelihood which makes maximum likelihood (MLE) and
Bayesian estimation possible.

As an example, consider the model given in (3). The measurement equation corresponding to the FD estimator is

xt ¼Hst ¼ ½C #C 0+st ð4Þ

where xt is the vector of filtered variable, C is the selection matrix, and s0t ¼ ð bmt ; bmt#1;utÞ is the state vector. The
corresponding transition equation is

bmt

bmt#1

ut

2

64

3

75¼

P 0 Br
I 0 0

0 0 r

2

64

3

75

bmt#1

bmt#2

ut#1

2

64

3

75þ
BS

0

S

2

64

3

75et

or

st ¼P&st#1þB&et ð5Þ

with et ) i:i:d:ð0;SÞ. The measured variable xt is stationary irrespective of whether bmt has stochastic or deterministic
trends. For the QD0 estimator, H¼ ½C #rC 0+. As with all quasi-differencing estimators, the treatment of initial condition
is important especially when there is strong persistence. In simulations with the first observation held fixed, the MLE
version of the FD gives precise estimates, but the t statistics are less well approximated by the normal distribution
compared to MM-FD (see supplementary material).

For the other three estimators, the extension to MLE is either not possible or not practical. For MLE-HP, one would need
to write out the entire data density of the HP filtered data, and the Jacobian transformation from the unfiltered to filtered
data involves an infinite dimensional matrix. For the QD estimator, recall that the autocovariances are normalized by the
variance. By analogy, MLE-QD would require modifying the score vector. Although such modification is possible in theory,
it is not straightforward to implement. For the HD estimator, the MLE implementation is cumbersome because HD exploits

ARTICLE IN PRESS
Y. Gorodnichenko, S. Ng / Journal of Monetary Economics 57 (2010) 325–340338



covariances of variables computed with different filters. The difference between the MM and MLE really boils down to a
choice of moments, and the MM is more straightforward to implement.

7.3. Computation

Moments of the filtered model variables can be computed analytically or by using simulations. We use the analytical
moments whenever possible since it tends to be much faster than simulations and it does not have simulation errors.
Although there are a variety of methods for analytical calculations, a method that is especially attractive for large models is
to combine the measurement equation xt=Hst and the state equation st ¼P&st#1þB&et to obtain

xt
st

" #
¼

0 HP&

0 P&

" # xt#1

st#1

" #
þ

HB&

B&

" #
et

Let w0
t ¼ ðx0t ; s

0
tÞ so that

wt ¼D0wt#1þD1et

The variance matrix Owð0Þ ¼ Eðwtw0
tÞ can now be computed by iterating the equation

OðiÞ
w ð0Þ ¼D0Oði#1Þ

w ð0ÞD0
0þD1SD0

1 ð6Þ

until convergence. The autocovariance matrices can then be computed as OwðjÞ ¼Dk
0Owð0Þ. Since one is only interested in

computing the moments of variables in the measurement vector xt , one can iterate Eq. (6) until the block that corresponds
to xt converges, i.e. JOðiÞ

x ð0Þ#Oði#1Þ
x ð0ÞJoe.

To compute the moments of the HP filtered data, observe that the HP filtered series can alternatively be obtained
as follows:

HPðLÞdt ¼HPþ ðLÞDdt ¼
lð1#LÞð1#L#1Þ2

1þlð1#LÞ2ð1#L#1Þ2
Ddt

In practice, using HP+(L) and the autocovariances for Ddt and D bmt tends to give more stable results when rz is close to one.
It is possible to speed up estimation based on HP filtered series by using a smaller number of leads and lags at the cost of
larger approximation errors.7

Finally, a note on the treatment of stationary variables is in order. Recall that in the stochastic growth model,
m&

t ¼ ðgt; gt;0Þ when jrzjo1 and m&
t ¼ ðutþgt;utþgt;0Þ when jrzj¼ 1, where the third component of m*

t is the trend for
labor supply, lt. Since lt has no deterministic or stochastic trend component, the autocovariances are computed for lt and
notblt , though the results do not change materially if the filtered series were used. In general, if the j-th component of m*

t is
zero, it is understood that the autocovariances are computed for the level of the variable both in the model and in the data.
An alternative is to deal with these non-trending variables through the measurement equation. Then some variables can be
quasi-differenced or first-differenced, while others require no transformation.

8. Concluding remarks

A realistic situation encountered with estimation of DSGE model is that (a) the data are trending; (b) deviations from
the trend are persistent; (c) the researcher does not know whether the data generating process is difference or trend
stationary. This paper shows that the treatment of trends can significantly affect the parameter estimates of DSGE models
and propose several robust approaches that produce precise estimates without the researcher having to take a stand of
trend specification. The key is to apply the same filter to the data and the model variables to yield well-defined moments
for the estimation of the structural parameters. Several filters can be used in methods of moments estimation. These
estimators have approximately normal finite sample distributions. Undoubtedly, the estimators require further scrutiny
and can be improved in various dimensions.8 The present analysis is a first step in the sparse literature on non-linear
estimation when the data are highly persistent.

Appendix A. Supplementary data

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.jmoneco.2010.02.008.
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7 A simulation procedure can also be considered. For eachY, the model is used to generate j=1,y,R samples of size T and the moments are computed.
Averaging over j gives om

HP . This procedure is computationally more intensive and the results are similar to the one considered here.
8 For example, one can use the bootstrap developed for covariance structures in Horowitz (1998) to correct for small-sample biases. One might also

consider a model-based instead of a data-based weighting matrix computed. Finally, one may use simulation based estimators, see Coibion and
Gorodnichenko (2010) for an example.
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