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Abstract

The non-negativity constraint on inventories imposed on the rational expectations
theory of speculative storage implies that the conditional mean and variance of commod-
ity prices are non-linear in lagged prices and have a kink at a threshold point. In this
paper, the structural parameters of this model are estimated using three simulation-based
estimators. In a Monte Carlo experiment, the finite sample properties of the simulated
methods of moments estimator of Duffie and Singleton (1993, Econometrica 61 (4),
929-952) the indirect inference estimator of Gourieroux et al. (1993, Journal of Applied
Economterics 8, S§5-S118) and the efficient method of moments estimator of Gallant and
Tauchen (1996, Econometric Theory 12, 657-681) are assessed. Exploiting the invariant
distribution implied by the theory allows us to evaluate the error induced by simulations.
Our results show that the estimators differ in their sensitivity to the sample size, the
number of simulations, choice of auxiliary models, and computation demands. For some
estimators, the test for overidentifying restrictions exhibit significant size distortions in
small samples. Overall, while the simulation estimators have small bias, they are less
efficient than pseudo-maximum likelihood (PMLE). Hence for the small sample sizes
considered, the simulation estimators are still inferior to the PMLE estimates in a mean-
squared sense. © 2000 Elsevier Science S.A. All rights reserved.
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1. Introduction

In recent years, there has been a proliferation of economic models that
compute policy functions as solutions to dynamic programming problems. In
partial equilibrium models of consumption, for instance, researchers have de-
rived policy functions relating consumption to a state variable denoting liquid
wealth. These policy functions are then used to analyze consumption behavior
under liquidity constraints and the role of buffer stock savings.! On the invest-
ment side, a number of dynamic programs have been used to analyze investment
behavior under uncertainty, while others have examined the investment behav-
ior of liquidity constrained firms.” In general equilibrium models of business
cycles, dynamic programming has become the major toolkit for analyzing the
evolution of the endogenous variables. The complexity of these models, how-
ever, has led to only a few attempts at structural parameter estimation, and
when such estimation is attempted, limited information techniques such as
generalized methods of moments (GMM) are applied to Euler equations.?
Recent developments of computation-intensive estimators have opened up
a new horizon for the estimation of non-linear dynamic models with rational
expectations. Ohanian et al. (1997), for example, have applied simulation based
estimators to non-linear production functions with latent factors, while Gourin-
chas and Parker (1996) employed the simulated method of moments (SMM) to
estimate a life cycle model with buffer stock saving. In the industrial organiza-
tion literature, models utilizing dynamic programming techniques have been
estimated by Pakes (1994) and Rust (1994). Important contributions have also
been made by Rust (1987) and Hotz and Miller (1993), among many others.

While simulation-based estimators are solidly grounded in theory, little is
known about their properties in practice. The purpose of this paper is to
investigate the finite sample properties of three simulation-based estimators in
the context of the speculative storage model under rational expectations. The
commodity price model provides an interesting economic environment for
the exercise for four reasons. First, the model implies that commodity prices
have time-varying conditional mean and variance, and that the price function is

! See Deaton (1991), Carroll (1997), Carroll and Samwick (1997,1998), Ludvigson (1999), Gourin-
chas and Parker (1996), and Ludvigson and Michaelides (1999).

2 See, for instance, Dixit and Pindyck (1994), and Gross (1994).

3 Exceptions are Altug (1989), and McGrattan et al. (1992).
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kinked at a threshold point. These price dynamics are sufficiently complex to
put the three estimators to a challenge. Second, since the properties of the
pseudo-maximum likelihood (PMLE) estimator for estimating the speculative
storage model have been analyzed in Deaton and Laroque (1996), the properties
of the three estimators can be compared to the PMLE, a non-simulation
estimator, as the benchmark. Third, as will become clear, the objective function
of two of the estimators involves approximating an expectational term by
Monte Carlo integration. However, the commodity prices derived from the
speculative storage model follow a renewal process and have an invariant
distribution. Thus, we can also estimate the parameters by using the invariant
distribution to evaluate the moments of interest. This is useful because using the
invariant distribution amounts to executing an infinite number of simulations to
approximate the expectations. Comparison of the estimates based on Monte
Carlo integration with those based on the invariant distribution allows us to
isolate the error induced by Monte Carlo integration. The exercise also serves as
a guide to the choice of the number of simulated data points necessary when the
integration is computed by simulation (which is used in most practical applica-
tions). Fourth, the model resembles consumption and investment models in
which agents are subject to occasionally binding constraints. Our results there-
fore shed light on the usefulness of the estimators for a broader range of
economic problems.

The paper is structured as follows. The estimators are defined in Section 2,
and in Section 3 we estimate a simple MA(1) model to gain some understanding
of potential pitfalls before implementing the more complicated non-linear ra-
tional expectations model. The commodity price model is described in Section 4.
The setup of the Monte Carlo experiments is detailed in Section 5, and the
results reported in Section 6. In Section 7, the simulation bias of the estimators is
assessed. Section 8§ concludes.

2. The simulation estimators

Consider the dynamic model given by
Wi :f(eaytfl,xt’ut)a tzla"'aT; (1)
U = pui—1 + €, (2)

where 6 is a p-dimensional vector of structural parameters, x, is a vector of
exogenous variables, y, is the endogenous variable, {e, } is an unobserved white
noise process with distribution G whose parameters are unknown. The objective
is to estimate 6 when f(-) does not have a tractable form, but the data for y, can
be simulated from an assumed structural model for a given set of structural
parameters, 6.
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We consider (i) the indirect inference estimator (IND) of Gourieroux et al.
(1993), (ii) the simulated method of moments estimator (SMM) of Duffie and
Singleton (1993), and (iii) the efficient method of moments estimator (EMM)
developed in Gallant and Tauchen (1996). The estimators require simulating
data from an assumed structural model with errors that have the same distribu-
tion as, but are independent of, the errors e,. In all three cases, 0 is determined
(empirically) as

0 = Argmin, D'QD. (3)

The three estimators differ in the choice of D and the weighting matrix Q. Under
regularity conditions given in the respective papers, ﬁ (0 — 6) > N(0, W). Our
interest is in evaluating the finite sample properties of these estimators based
upon the optimal weighting matrix, denoted Q*.

We concentrate on the case where there are no exogenous variables and
p=0.Let Y, and Y, denote the observations at time t of the actual and
simulated endogenous variables, respectively. Let T be the sample size of the
observed series. In the case of EMM and IND, we simulate H paths, each of
length T. In the case of SMM, it is more convenient to simulate a total of T+ H
data points. For the latter, let Y7, and Yz, denote the vectors of actual and
simulated endogenous variables of length T and TH, respectively. We have

SMM
D = —1 ET m(Y ——1 TE m(Y
T ( t) THI:1 ( I) ’

t=1

1 T -1
Q% =]y = lim Var<z m(Y,)> ,

Tow ﬁz:1

- 1 om(Yrm) |~y [ Om(Tirm) ]\ ™
(i )

In the above, (1/ T)ZIT: 1m(Y,) is the vector of empirical moments based upon
data Y, of length T. When m(Y,) = Y,, for instance, we simply match the first
moment of actual prices to the first moment of the simulated data. In general,
the SMM matches several empirical moments based on the observed data with
those simulated from the structural model under investigation. The simulations
can be seen as approximating the population moments of the structural model
by performing Monte Carlo integration, as determined by (1/ TH)ZthHl m(Y,). It
is in this sense that the SMM is a simulation estimator. In a subsequent section,
we will consider a special implementation of the estimator which bypasses the
simulation step, and hence stops being ‘simulation based’. Nevertheless, because
most empirical applications of SMM use simulations, we will continue to refer
to the SMM as a ‘simulation estimator’.
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In implementation, (0m/00) is obtained numerically by averaging over TH
points of simulated data, and Q* is estimated as the long-run covariance matrix
of m(Y,) using the Parzen window with four lags. The weights of the Parzen
window are defined by

x| < 3%

L 4)

W) {1 — 6x% + 6|x|3 if 0 <

201 —Ix? if 3 < x| <

Note that Q* is estimated directly from the T sample points without any
simulation.

For IND and EMM, we require an auxiliary model with parameters  of
dimension ¢, where ¢ must be greater or equal to the number of structural
parameters (an identification condition). The auxiliary model is supposed to
‘adequately’ capture the properties of the observed data, though the model need
not be correctly specified. There is no set rule in selecting an auxiliary model,
and part of our analysis later in the paper is to provide a guide to finding the
auxiliary model that suits the application in question. Let Q(Yr;, ) be the
objective function associated with the auxiliary model using actual data of
length T, and let Q(Y |1z, B) be the objective function for the same auxiliary
model, but evaluated with the simulated data. Then f is estimated by maximiz-
ing the objective function Q(Y s, f) and f is the maximand of the objective
function Q(Y[TH], p).

The IND begins with the premise that the auxiliary model is misspecified, and
the simulations are meant to correct for the bias in the auxiliary model estimates
induced by model misspecification. This is achieved by adjusting 0 (the para-
meters of the structural model) such that j estimated with the observed data
matches the § estimated using the simulated data. The specifics are as follows:

IND
D= BT(Y[T]) - ETH(?[TH]a 9),
Q* = JOI(;lJo,

T -1
Io'= lim Var 00(Y+, ) ﬁ)> ,

P <ﬁz op

l Yt’ ﬂ)
; ©pop)

. 1 0 rmy, B |1, [0°QF iz, B\
WH—(1+H>(E[ ey 5o ?)

where ﬁ = argmaxg Q(Yr;, f), and ﬁ~ = argmaxg Q(Y[TH], B).
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The sample analogs of Q* and W3 are based on Appendix 2 of Gourieroux et
al. (1993). In particular, 0*Q/0B00’ is obtained by taking the average (over the
simulated paths) of the numerical derivatives of 0Q/0f" with respect to 6 evalu-
ated at 0. The quantity I, is approximated as the long-run variance of 0Q/df in
the observed data, once again using the Parzen window as the weighting
function. It is interesting to note that Gourieroux et al. (1993) used only an
identity matrix as the weighting matrix in their empirical examples, on the
ground that the efficiency gains from using the optimal weighting matrix are
small. However, we feel it is desirable to put all three estimators on equal
footing, and hence are prompted to use the optimal weighting matrix to evaluate
the IND.

The EMM estimator chooses 6 such that the expectation of the gradient of the
log density (the scores) for the auxiliary model evaluated with the density of the
structural model, is close to zero. The expectation of the score is denoted as
D below. For a simulated path of length N, we have

EMM
_ aQ(Y[oo]’ ﬁ)] Nl N aQ(va ﬁ)
P EY[ o s N 2
QF = I(;l — Var(i i aQ(Yta ﬁ)) _1,

NE=0;

. oD(Y(.1), 1. 0D(Yop)\ "
/k:
w <E S R :

where 0D/00 is obtained by taking numerical derivatives, and I, is the long-run
variance of the scores using a four-lag Parzen window as weights. As in the other
estimators, the optimal weighting matrix is directly computed from the sample
data. However, the expectation of the scores can be calculated using other
methods (such as quadrature or exploiting the probability distribution implied
by the theory, for example). Therefore, the EMM method is not, strictly speak-
ing, simulation based. It only becomes a simulation estimator when the expecta-
tion of the scores is approximated as the average over simulated data. This is the
approach adopted in most empirical applications, and hence for a slight abuse of
language, we also refer to EMM as a simulation-based estimator. The EMM
estimator is asymptotically as efficient as the MLE if the auxiliary model spans,
or ‘smoothly embeds’ in the terminology of Gallant and Tauchen, the structural
model.
A global specification test for the structural model can be obtained as

TH* x D'QD — 3> (5)
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with ¢ — p degrees of freedom. For IND and SMM, H* = H/(1 + H). As can be
seen from the definitions of W*, increasing the number of simulations improves
the efficiency of the SMM and IND estimates. For EMM, the length of the
simulated series, N, is assumed to be oo. Since TH = N by definition, N - o0
when H — co. Hence H* = H/(1 + H) —» 1 under EMM.

For identification purposes, IND and EMM require that the number
of parameters in the auxiliary model be at least as large as the number of
parameters in the structural model. For the SMM, we require that the number
of moment conditions exceeds the number of parameters to be estimated, which
is an order condition for identification. However, Duffie and Singleton (1993)
note that the selected moment conditions should capture differing aspects of the
data for identification of the structural parameters, though there is no formal
way to check for this prior to estimation.

From a computational point of view, there are some fundamental differences
between the three estimators. With the SMM, the practitioner only needs to
specify the empirical moments and is the easiest to implement. The moments to
be matched in the EMM are the scores, and hence the objective function Q is the
log likelihood. Implementation of the EMM estimator is reasonably straightfor-
ward when the scores have simple forms. Since an infinite number of points has
to be simulated from the structural model, at least in theory, the execution time
of the EMM is largely determined by how difficult it is to simulate data from the
structural model. In contrast, the number of replications in IND and SMM
can be a much smaller number because the asymptotic variance-covariance
matrix explicitly corrects for the simulation error by taking into account the
finiteness of H. On the other hand, while the EMM method estimates the
auxiliary model once, IND has to re-estimate it until convergence is achieved.
This can be computationally burdensome when the auxiliary model is difficult
to estimate.

Existing applications of the EMM estimator have primarily followed Gallant
and Tauchen’s suggestion of using the scores associated with the semi-non-
parametric density (SNP).* We have not taken this route for three reasons. First,
as we will see, the non-linearity in the conditional mean and variance of
commodity prices is not of the type that can be captured by the SNP density.
Second, examining the properties of the EMM estimator outside of the SNP
environment is an interesting exercise in its own right. Third, we would like to
compare the properties of EMM and IND using the same auxiliary model. But
because we are running a Monte Carlo, we need to take into account that use of
complex auxiliary models for the IND can be time consuming. Thus, the selected
auxiliary models all have a reasonably simple structure.

+See Bansal et al. (1995) for a finance application using the SNP auxiliary model.
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3. A simple example

We begin with an illustration of how the three estimators work in a very
simple example. Suppose the true data generating process for a series {y, }/=; is
given by the following M A(1) model:

v =e —Oe . (6)

The econometrician knows that the structural model is an MA(1) and is
interested in estimating the parameter 6 using the simulation estimators. Our
Monte Carlo is set up to assess the finite sample properties of §. For each
replication of the Monte Carlo experiment, a series {y,}/=; is first obtained by
evaluating (6) at the true value of 0 and under the assumption that e, ~ N(0, 1)
using a seed, say seed;. The three simulation estimators then use (6) to simulate
paths of {J,}/7, for some initial guess of 6, also assuming e, ~ N(0,1) but using
a seed, seed,, which differs from seed, . Series of {J,}/ are re-simulated with
updated values of 6 (but the same seed, ) until a convergence criterion is satisfied.

For SMM, we consider the first two central moments, plus the first to
third-order autocovariances for a total of five empirical moments to be matched.
That is,

m(y) = e, 0 = 9200 = Pe—; =91, =123, )

where y is the sample mean.
For IND and EMM, we consider as auxiliary model an AR(3) to be maxi-
mized by maximum likelihood (conditional on y;, y,, y3). Thus,

Q=_

(T -3) 2 L (e = Bo — B1yi—1 — Payi—> _ﬁ3yt*3)2
3 Ino —2:4 752 . (8)

We first conduct a Monte Carlo experiment with § = 0.5 and T = 100. For
SMM and IND, we set H = 10. For EMM, N = 1000, so that all three methods
simulate the same number of data points. In the simulations, the rndn() function
in Gauss is used to draw random numbers with seed; and seed, set at 255 and
2555, respectively, while the starting value of 6 is set equal to 0.3.

As the results in Table 1 indicate, the estimators tend to under-estimate
0 when T = 100. The IND is the most accurate both in terms of mean and
median biases, with EMM coming in second, and SMM third. In terms of
efficiency, SMM has the largest asymptotic standard errors, and IND the
smallest. The standard deviation of the estimates in the simulations is reason-
ably close to the asymptotic standard errors. As far as the y? statistic is
concerned, the SMM has a size of 8.8% and is closest to the nominal size of 5%.
However, the statistics associated with IND and EMM are both oversized
(10.6% for IND, and 16.8% for EMM).
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Table 1

MA(1)

Method Moments T N Mean ASE OID
median std.

GT AR(3) 100 1000 0.480 0.100 0.168
0.480 0.107

IND AR(3) 100 1000 0.498 0.086 0.106
0.498 0.108

SMM Eq(7) 100 1000 0.469 0.130 0.088
0.456 0.140

GT AR(3) 200 1000 0.497 0.075 0.118
0.496 0.071

IND AR(3) 200 1000 0.509 0.070 0.070
0.509 0.073

SMM Eq(7) 200 1000 0.495 0.110 0.056
0.493 0.120

Note: N is the length of the simulated series and T is the length of the data. ASE denotes asymptotic
standard error, while std. denotes the standard deviation of the estimate in 500 replications. The
OID is the test for overidentifying restrictions and has as a y? distribution with p — g degrees of
freedom, where p is the number of structural parameters, and ¢ is the number of moments in the case
of SMM and the number of parameters of the auxiliary model in the case of IND and GT. The
moments (models) are defined in the text.

Increasing the sample size to 200 (see Table 1) improves the efficiency of all
three estimators, and reduces the mean and median biases in EMM and SMM.
Interestingly, the bias in IND is larger than when T = 100. Size distortions in
the test for overidentification are also reduced when T = 200. The exact size of
the test implied by SMM, IND and EMM is 5.6%, 7% and 11.8%, respectively.
Because the size distortion associated with EMM is still non-negligible, we
increase the sample size and the number of simulations further to determine at
what T and N the asymptotic approximation becomes adequate for the finite
sample distribution of the test. Keeping T' = 100 and raising N to 5000 gives
a mean estimate of 0.492 with an asymptotic standard error of 0.102 and a size of
15.6%. For N = 10,000, the mean is 0.491, the standard error is 0.102, and the
size is 17.2%. Thus, raising N reduces the bias until N = 5000, but does not help
reduce the size distortions in the OID test. On the other hand, if we keep
N = 10,000 but increase the sample size from T = 100 to T = 500, the mean
estimate equals 0.498 with a standard error of 0.049 and a size equal to 8.6%.
When the sample size is increased further to T = 1000, the mean estimate is
0.499 with an asymptotic standard error of 0.035, and the y? test has a size of
6%. This suggests that the crucial improvement comes from increasing T rather
than N and that a sample of 100 will not produce a very accurate test of
over-identification restrictions when using the EMM.
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Fig. 1. Density from 500 Monte Carlos and 100 obs.

A general overview of the properties of the estimators is given by the density
plots of the estimates. The densities, along with a vertical line denoting the true
value of 0, are given in Fig. 1 for T = 100 and Fig. 2 for T = 200. Fig. 1 shows
that the mode of the SMM estimates is slightly displaced from the true value
of 0.5 and accounts for the larger mean and median biases reported in Table 1.
Fig. 2 shows that when T is increased to 200, all three estimators are centered
around the true value, but the dispersion in the estimates is larger with SMM
than with EMM and IND, hence accounting for the larger standard errors
reported for SMM.

It is noteworthy to point out that the moments in this example are chosen to
suit the structural model since we know that the MA(1) can be well approxi-
mated by a finite order AR model. An AR(3) auxiliary model was used for EMM
and IND, for instance, while three of the moments used in SMM are meant to
capture the autoregressive nature of the data generating process. In a more naive
set of experiments, we purposely chose to match the first four central moments
for SMM, and used a third-order polynomial in y,_,; as the auxiliary model for
EMM and IND. These moments would have been useful if the data had
exhibited non-linearity, but this is not a feature of the MA(1) process. The
estimates based on these moments were less efficient and exhibited higher mean
and median biases. The choice of moments/auxiliary models, therefore matters,
and the same qualitative results will bear out in the concrete economic example
to follow.
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4. The speculative storage model

The economic environment with which the simulation estimators are to be
tested is the speculative storage model under rational expectations with a non-
negativity constraint on inventories. The model was first discussed in Williams
(1937) and Samuelson (1971), and formalized in Gustafson (1958). Issues pertain-
ing to estimating and testing of the model are discussed in Deaton and Laroque
(1992, 1995, 1996). Here we only provide a brief description of the model.

Suppose the demand for commodities is given by the linear demand function

p: = P(z,) = a + bz, )

where a > 0 and b < 0 are fixed parameters, P(-) is the inverse demand function,
and z is an exogenous stochastic harvest process that is i.i.d. by assumption.
Given this specification about linear demand, market clearing implies that
the equilibrium price will follow the same process as the harvest, since it is the
sole source of supply. The problem becomes more interesting, yet complex, once
speculators are introduced in the model. Inventory holders (speculators) are
assumed to know the current harvest and demand the commodity in order to
transfer it into the next period. They will do so whenever they expect to make
a profit over storage and interest costs. Storing I units of the commodity leaves
speculators with (1 — d)I at the beginning of next period because of proportional
deterioration. Let the discount rate be the constant, exogenous, real interest r.
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Arbitrage implies that
I, >0 if(1 —0)/(1 + rEpi+1 = pis

. (10)
I,=0 otherwise.

The condition I, > 0, V¢t is the crucial source of non-linearity in the model. It
forbids the market from borrowing commodities that have not yet been grown.
Define x,, the ‘amount on hand’, as the sum of the harvest and inherited
inventories, so that

X =1 —=0—1 + z. (11)
In place of (9) we now have
1-96

D = max[P(xt),H Etpt+1:|' (12)

The first term would hold if the speculators believed ¢ was the best time to sell
and did not want to carry over inventories into the next period. The second term
in the brackets is an intertemporal Euler equation that would hold provided
I, > 0, which in turn happens if the speculators expect to cover their discounted
(after depreciation) costs from buying the commodity at time .

The autoregression function of prices is given by

E(p;+11p:) = min(p,, p*)(1 + r)/1 —0). (13)

An implication of (13) is that the overall price process is a non-linear first-order
Markov process with a kink at p* = (1 — 90)/(1 + r)E,p,+1. Under the assump-
tion that shocks to harvests are i.i.d., p* is a constant. It can also be shown that
OV(p,+1lp.)/Op, = 0.° Intuitively, an increase in the current price reduces the
incentive to hold inventories and therefore increases the chance of a stockout,
which in turn increases the volatility of prices next period. The conditional
variance increases in p, until p, = p* and is constant for p, > p*. Both the
conditional mean and conditional variance, therefore, have kinks at p*.

Provided certain regularity conditions are met, in particular,  + 6 > 0 and
z has a compact support, there exists a solution to (12) which defines the price
function:

pe =f(x). (14)

Existence of a rational expectations equilibrium was proved in Deaton and
Laroque (1992) under the assumption that the harvest is i.i.d. The authors also

5> The Euler equation is familiar from the consumption literature on liquidity constraints where
the linear demand is replaced by a marginal utility function, see Deaton (1991).
6 See Deaton and Laroque (1992).



A. Michaelides, S. Ng | Journal of Econometrics 96 (2000) 231-266 243

showed that p, is ergodic and hence has an invariant distribution. The functional
equation that determines (14) is:

1-9
Jx) = maX{l n rjf (' + (1 = d)x — PTH(f(x)) dA(2), P(X)}, (15)

where A is the distribution of the stochastic harvest process.

Various numerical techniques can be used to solve for f(x). In this paper, we
follow the solution method discussed in Deaton and Laroque (1992,1995,1996).
In brief, this requires discretizing z and approximating A by a M = 10 point
Gaussian distribution. The discretization procedure allows us now to write (15)
as

1 5
f(X)=maX[1Jr 1Zf(Z +(1 = d)x = P/, ()]. (16)

To calculate these price functions, we discretize the continuous state variable
x in an equally spaced grid of gg points. Let X denote the discretized support of
the continuous state variable x. In this notation, X = X, ..., X,,. A higher gg
reduces approximation error but increases computational time. We used
gg = 50 in this paper, and found no significant changes in the resulting price
function or estimation results when gg is increased further. We use cubic splines
to interpolate between grid points for values of x not on the grid. Since z is i.i.d.,
we have natural limits on the range which x can take. If the harvest is forever at
its maximum level, and nothing is consumed out of it, then x asymptotes to
Z max /0. At the other extreme, since inventories cannot be negative, the smallest
value of x is the minimum harvest Z_;,.

The basic procedure for solving (16) is as follows. Starting with fy(x) =
max(P(x), 0), we update the function using

M

-9
Jur1(x) = maXB n erl 2 Z; + (1= 0)x = PTHLAM)D), P(X)} (17)

until f,+; =f,. Once f(x) is found, and using the fact that f(x) is monotone
decreasing, we obtain x, = f~ (p). Since

Xer1 =1 =0)x; — PTHfGN] + zev1, (18)
we have an equation for the evolution of prices:
pevr =f(L =L/ () — P~ ()] + zi41)- (19)

The one caution with this solution algorithm is that there is no guarantee that
f~!(p) lies in the range [X;, X,,], where X; and X, are the lower and upper
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bounds of X, respectively. When too many points fall off the grid, the algorithm
is stopped.

The structural parameters of this model are a, b, d, r, the mean and the
variance of the harvest. Given the identification proposition from Deaton and
Laroque (1996), the mean and variance of the harvest cannot be separately
identified from the linear demand parameters. Accordingly, the mean and
variance are normalized to 0 and 1, respectively. This leaves four structural
parameters to be estimated. Since we have limited interest in estimating r, the
interest rate is fixed at 0.05, so that 6 = (a, b, )’ are the parameters to be
estimated. Furthermore, to ensure that b <0 and r + 6 >0, we estimate
b= —exp(b), and &' = — 0.05 + exp(d), and recover the standard errors of
b and ¢ using the delta method. The technical difficulty in estimating the model
is that we have a bivariate stochastic process, comprised of x, and z;, both of
which are unobserved, and are associated with an observable price through
a non-linear equilibrium price function.

4.1. Finite sample properties of the PMLE

Deaton and Laroque (1996) estimated the commodity price model using the
PMLE (pseudo-maximum likelihood). The PMLE maximizes

2InL = t:i_l Inl, = — (T — DIn(2n)
B :Z’ <1n o)) — (pms@ ;)t(pt)) > 20)

where  u(p,) = E(p,+11p) & M~ Y5 fI(1 = 0)(f () — P~ '(p)) + 2;]. The
quantity s(p;) = V(p,+1lp:) is evaluated analogously (see Deaton and Laroque,
1995 for detalils).

Results for the PMLE from a Monte Carlo experiment of 500 replications are
given in Table 2, 7 and Figs. 3 and 4 graph the densities of the three estimates.
Although the finite sample distributions of the estimates resemble the normal
distribution, the estimates are not centered around the true values. The bias is
non-negligible and remains so as the sample size increases. As Deaton and
Laroque (1995) noted, this could be because the PMLE makes no use of the
theoretical predictions of the model about conditional skewness and kurtosis.

Before turning to the results for the simulation estimators, a note on non-
convergent estimates is in order. Although in practice one can fine tune the

7The true values for 0 are set at (0.6, — 0.3, 0.1) and the starting values at (0.58, —0.27, 0.12) as
in the Monte Carlo experiments done later on for the simulation estimators.
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Table 2
Results for PMLE

Model T N=TH a b [
Mean ASE  Mean ASE Mean ASE OID
median  std. median std. median  std.

PMLE 100 — 0.605 0.032 —0.289 0.040  0.108 0.029 —
0.604 0.029 —0.289 0.037 0.107 0.026

PMLE 200 — 0.603 0.022 —0.292 0.028  0.106 0.020 —

0.603 0.021  —0.289 0.026  0.106 0.019

initial guesses when convergence is not achievable, this is difficult to implement
in a Monte Carlo experiment. Throughout our analysis, we discard the replica-
tion when we encounter non-convergence and draw a new sample. Our experi-
ence is that the PMLE produces far more non-convergent estimates than the
simulation estimators to be considered. This could be an important issue when
a more complex model is to be estimated. As Deaton and Laroque (1996) noted,
the estimator performs poorly when the i.i.d. assumption is relaxed to allow for
serially correlated harvests. It is with these properties of the PMLE in mind that
we will be assessing the results for the simulation estimators.

5. Design of the Monte Carlo experiment

In the terminology used when discussing the simulation estimators, Y, = p;.
For each of the three simulation estimators, the speculative storage model is
used as the structural model to simulate data. The dimension of 0 is three.

To assess the three simulation estimators, we first use the following for SMM:

ml: mp)=[p;, (0. — D) (0 = Ppi-; — P, =123 (21)

Summing these over T gives five sample moments. These moment conditions
are somewhat naive as they do not explicitly recognize the non-linear nature of
the price process. This is deliberate as we want to assess the sensitivity of 0 to the
choice of moments, and hence the economic content required in the simulation
stage for the simulation estimators to have good properties.

The second set of moment conditions incorporates more relevant information
about the structural model by taking into account the skewness and kurtosis of
the price process:

5 m(p,) = [p:, (p. — i’)i’ (P — D)pi—1 — PV, =234 (22)
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Fig. 3. Densities of PMLE estimates from 500 Monte Carlos and 100 obs.

0.24

The moments defined by m, therefore allow for the non-linearity and serial
dependence of commodity prices.

For IND and EMM, we consider four auxiliary models, and they
are of increasing complexity. The first is an AR(3) with the log-likelihood
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T —
M1: 0, = —(T—3)1n(27t)—T3lno'2
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T _ _ _ _ 2
. z (p: — Bo Bll’z—lzgzﬁzpz—z B3pi-3) - (23)
t=4
The second auxiliary model is a third-order polynomial in p,_:
T—1
M2l Q, = — (T — l)ln(2n)—( 3 )1n62
T _ _ _ 2 _ 3 2
. z (p: — Po ﬁ1pz—1262ﬁzpz—1 Bspi-1) , (24)
t=2

again for a total of five parameters. Thus, in comparison to M 1, non-linearity in
the conditional mean is recognized, though the auxiliary model still assumes
constant conditional variance.

The third auxiliary model allows for a time-varying conditional variance. Its
objective function is specified as

T 2
M3} Q3 = — (T — DIn2m) + Y. {— 0.5h, — 0.5—= }
‘=2 exp(h.)
e, =p — Po—PiPi-1 _B2pt271a (25)

Ine? = h, = a9 + oy p2_1. (26)

Model M3 allows for conditional heteroskedasticity, but does not capture the
two-regime nature of the price process.

The final auxiliary model we considered is the smooth transition autoregres-
sive model (STAR, see Granger and Terasvirtra, (1993)) analyzed in Ng (1996)
for the commodity price model under investigation. The model is defined as

* _
po= e - AP @7)

t

Bo — oo + Bipi-1
4, ’ (28)
Ay =1+ exp(y(p—1 — p¥));

where y is a large positive constant that controls how fast the model switches
from one regime to the next. It has the property that if p,_; < p*, then 4, — 1,
and thus p, is an autoregression with conditional heteroscedasticity. If on the
other hand, p,_; > p*, then 4, - oo and p, is history independent with a fixed
log variance. The parameters of the auxiliary model to be estimated are:
B = {01, %9, Bo, B1, p*}’, with y fixed at (10/standard deviation of prices). Using
the Kalman filter to build up the likelihood function, the objective function for
the auxiliary model is:

lne?=h, =0y +

=T eIZ
M4 Q. = — (T — DIn27) + T; { —05h, — 05 (hr)}' (29)



A. Michaelides, S. Ng | Journal of Econometrics 96 (2000) 231-266 249

Model 4 is rich in economic structure as it explicitly models the two regime
nature of the conditional mean and variance.

Given that the conditional ML estimates for M1 and M2 are the least-squares
estimates, estimation by maximum likelihood is not necessary. The estimates of
M3 and M4 are, however, obtained by maximum likelihood.

Our Monte Carlo experiment consists of 500 simulations using Gauss 3.2.1.
For the jth Monte Carlo,

1. let 6 = (0.60, — 0.30,0.10) and compute the equilibrium price function;

2. simulate {e,}/=; standard normal variates using seed 2555 + j;

3. simulate 10 T points of p, using (19). The last T points are treated as the
data;

4. compute ml or m2 in the case of SMM, and estimate auxiliary model M1,

M2, M3, or M4 in the case of EMM and IND;

5. simulate standard normal variates {¢,};/2y" using seed 255+, where

TH = N;

6. start at the initial guess 0° = (0.58, — 0.27, 0.12);
7. begin with iteration i = 1,

(a) for a given 0, solve for the equilibrium price function and use (19) to
simulate 1.1- N points of p, using {&,} as harvests; the last N points are
retained.

(b) evaluate the criterion function D'Q*D and stop if convergence is
achieved;

(c) update 0" and return to (7a) (for the same j) until D'Q*D is minimized.

8. update j and go to 2.

As a computational matter, {¢,} and {&,} can take on one of the 10 values
because the Gaussian distribution is approximated by a 10-point distribution
(see Tauchen, 1986). In practice, we first simulate a Uniform(0,1) variable and
use it as an indicator to select one of the 10 points that approximate the
Gaussian distribution. Parameter estimates are obtained using a form of the
Berndt et al. (1974) algorithm, with numerical derivatives evaluated by small
parameter perturbations. We use the gradient of the objective function as the
convergence criterion, and the calculations are stopped when the elasticity of the
criterion with respect to each parameter is less than 1.0E-4.

In addition to having four auxiliary models in the Monte Carlo, we let
T = 100, 200 and N = 500, 1000, 2500. Thus, there are 24 cases in total. Note
that although f(x) is solved for a discrete number of points, each simulated data
point satisfies the equilibrium price function. This is achieved by cubic spline
interpolation between grid points. A particular experiment might fail for one of
the following reasons: (i) there are too many points in f ~ (p) that fall off the grid;
(i) the maximum likelihood used to estimate the auxiliary model fails to
converge; or (iii) the gradient of the objective function is flat and the iteration
fails to converge. In such cases, the replication is discarded. The calculations are
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done on a Pentium Pro 200, a Pentium 166, a Pentium 120 with occasional help
from two unix workstations. It has proven computationally too demanding to
assess the IND using M3 and M4 as the auxiliary models. Results for IND using
M3 are restricted to 100 replications, and the attempt to obtain estimates using
M4 is abandoned. We will elaborate on this issue below.

6. Results

The results for SMM are reported in Table 3. The SMM estimator tends to
underestimate a and b and slightly over-estimates 6. For moments defined by
ml, the estimates exhibit non-negligible mean and median biases especially
when T = 100. Indeed, these are some of the largest biases that we observe in the
entire experiment. However, the estimates based on moments defined by m2 are
much improved. Recall that the moments defined by m1 ignore the non-linearity

Table 3
Results for SMM

Model T N=TH a b 0

Mean ASE Mean ASE Mean ASE OID

median  std. median std. median  std.

ml 100 500 0.557 0.047 —0.279  0.063 0.123 0.075 0.032
0.562 0.110 —0.271  0.055 0.105 0.073

ml 100 1000 0.560 0.046 —0.276  0.059 0.124 0.069 0.034
0.564 0.110 —0.270  0.053 0.124 0.069

ml 100 2500 0.560 0.044 —0.276  0.058 0.124 0.068 0.034
0.564 0.100 —0.270  0.050 0.110 0.070

ml 200 500 0.570 0.033 —0.290 0.048 0.110 0.050 0.032
0.570 0.090 —0.286  0.048 0.101 0.048

ml 200 1000 0.580 0.032 —0.290 0.043 0.110 0.050 0.044
0.580 0.082 —0.287  0.042 0.102 0.046

ml 200 2500 0.580 0.030 —0.290 0.041 0.110 0.046 0.058
0.580 0.080 —0.287  0.040 0.104 0.043

m2 100 500 0.593 0.082 —0.289  0.021 0.110 0.027 0.018
0.593 0.056 —0.293  0.036 0.105 0.048

m2 100 1000 0.597 0.078 —0.290 0.020 0.108 0.025 0.052
0.599 0.052 —0.294  0.032 0.101 0.042

m2 100 2500 0.597 0.076 —0.288  0.019 0.109 0.025 0.02
0.597 0.049 —0.293 0.033 0.102 0.044

m2 200 500 0.598 0.036 —0.298 0.018 0.101 0.031 0.024
0.596 0.065 —0.298 0.016 0.102 0.019

m2 200 1000 0.600 0.035 —0.297 0.017 0.102 0.030 0.022
0.598 0.060 —0.298 0.015 0.102 0.018

m2 200 2500 0.600 0.033 —0.297 0.016 0.101 0.028 0.024

0.599 0.050 —0297 0014 0.100 0.017
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in the data, and therefore do not capture as fully the data characteristics as m2.
As a consequence, we have larger mean and median biases, by as much as
around 15% for each of the three parameters when we use the m1 moments.
Moreover, the estimates based upon m1 are less efficient, with standard errors
for a, b and o that are sometimes twice as large as those obtained by matching
m2. While these results are not surprising, they stress the importance of which
moments we choose to match. The moments should have enough variations to
allow for identification of the structural parameters, as Duffie and Singleton
(1993) emphasized. Ignoring the higher-order moments (such as skewness and
kurtosis) when the actual process is non-linear, for instance, will lead to both
higher mean and median biases and less efficient estimates.

The asymptotic standard errors are derived under the assumption that
T —oo. It is interesting to compare these with the standard deviation of
the estimates in the Monte Carlo experiment, which can be thought of as the
variation in the estimates when the number of replications becomes large (in this
case, 500). While the asymptotic standard errors for a, b and ¢ are generally close
to the standard deviation of the estimates, the discrepancies for SMM are much
larger than what we record for IND and EMM (to be reported). For the
ml, T = 100 combination, the asymptotic standard errors are sometimes less
than half the standard deviations. Because such discrepancies are not observed
for the simple MA(1) model reported in Table 1, one possible explanation is that
the SMM estimates are more variable in practice than what is predicted by
theory, as the structural model becomes increasingly complex.

The results for SMM also show that increasing TH from 500 to 1000 and
2500 did little to improve the bias and efficiency of the estimates. The estimates
are improved on both counts, however, as T increases from 100 to 200. That is
to say, increasing the length of the observed data has a stronger influence on the
estimates than increasing the length of the simulated series. As for the test of
over-identifying restrictions, the y? test is slightly undersized for all variants of
the estimator considered.

The results for EMM for the four auxiliary models are reported in Table 4.
The estimates are generally satisfactory, with small mean and median biases,
even with the small number of simulated data we have used. While b is always
under-estimated (in absolute terms), § tends to be over-estimated. While the two
linear models (M1 and M2) slightly over-estimate a on average, the two non-
linear models slightly under-estimate it. Increasing T tends to reduce mean and
median biases in the EMM estimator. Moreover, doubling the sample size
reduces the standard errors of the estimates by the expected factor of \/5

The number of simulated data points, N, is much smaller than recommended
in Gallant and Tauchen and warrants some investigation. In empirical finance
applications, Gallant and Tauchen used an N of 100,000 when T is 16,127.
Because we only have 88 observations for commodity prices, the N used in
financial applications may not be appropriate for our application. Since
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Model T N=TH a b 0
Mean ASE Mean ASE Mean ASE OID
median  std. median std. median  std.

Ml 100 500 0.602 0.030 —0.290 0.060 0.120 0.084 0.000
0.603 0.021 —0287 0120 0.105 0.200

M1 100 1000 0.602 0.029 — 0286 0.058 0.124 0.082 0.000
0.602 0.021 —0281 0120 0.106 0.150

M1 100 2500 0.600 0.028 — 0287 0.055 0.123 0.081 0.000
0.600 0.021 —0.284 0.120 0.123 0.081

M1 200 500 0.601 0.020 —0296 0.050 0.120 0.070 0.000
0.601 0.016 —0290 0.087 0.100 0.100

M1 200 1000 0.600 0.020 —0295 0051 0.11 0.060 0.000
0.600 0.015 —0290 0.087 0.100 0.095

M1 200 2500 0.600 0.020 —0294 0.048 0.120 0.066 0.000
0.600 0.016 —0.291 0.087 0.100 0.099

M2 100 500 0.605 0.036 — 0278 0.045 0.116 0.049 0.000
0.605 0.055 — 0278 0.045 0.112 0.100

M2 100 1000 0.600 0.036 —0277 0.042 0.116 0.047 0.000
0.604 0.055 —0273 0120 0.112 0.100

M2 100 2500 0.603 0.034 —0276 0.043 0.117 0.046 0.000
0.604 0.056 —0.272  0.120 0.114 0.100

M2 200 500 0.603 0.028 —0285 0.038 0.110 0.038 0.000
0.603 0.039 —0281 0.093 0.109 0.070

M2 200 1000 0.603 0.028 —0285 0035 0.110 0.036 0.000
0.604 0.041 —0280 0.099 0.108 0.072

M2 200 2500 0.603 0.026 —0284 0.033 0.112 0.034 0.000
0.603 0.04 —0.281 0.093 0.110 0.072

M3 100 500 0.598 0.030 —0276 0.048 0.110 0.043 0.044
0.598 0.024 —0275 0.033 0.105 0.031

M3 100 1000 0.598 0.030 — 0276 0.044 0.109 0.040 0.036
0.598 0.024 —0273  0.032 0.105 0.031

M3 100 2500 0.598 0.029 — 0274 0.043 0.109 0.041 0.030
0.598 0.024 —0.273 0.032 0.105 0.031

M3 200 500 0.599 0.022 —0289 0.032 0.104 0.029 0.060
0.599 0.018 — 0288 0.024 0.100 0.021

M3 200 1000 0.600 0.020 —0.289 0.030 0.104 0.028 0.042
0.600 0.018 —0289 0.024 0.102 0.022

M3 200 2500 0.600 0.020 — 0288 0.028 0.105 0.026 0.054
0.600 0.018 —0.287  0.024 0.102 0.022

M4 100 500 0.598 0.038 —0.288 0.057 0.100 0.037 0.058
0.598 0.025 —0.289 0.040 0.099 0.025

M4 100 1000 0.598 0.038 — 0286 0.056 0.100 0.034 0.082
0.599 0.025 — 0287 0.040 0.099 0.026

M4 100 2500 0.598 0.036 — 0286 0.056 0.101 0.026 0.078
0.599 0.025 —0.289  0.039 0.099 0.026
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Table 4 (Continued)

Model T N=TH a b 1

Mean ASE Mean ASE Mean ASE OID

median  std. median std. median  std.

M4 200 500 0.598 0.025 —0296 0.038 0.099 0.025 0.112
0.597 0.018 —0294 0.029 0.097 0.018

M4 200 1000 0.599 0.023 —0297 0.035 0.099 0.024 0.068
0.599 0.019 —0295 0.028 0.099 0.018

M4 200 2500 0.598 0.023 —0296 0.033 0.099 0.023 0.076
0.597 0.019 —0292 0.028 0.098 0.019

N = TH, we essentially experimented with simulating 5 to 25 times the length of
the observed data. We have found only a slight bias reduction as N increases
from 1000 to 2500. Increasing N reduces the asymptotic standard errors of the
estimates as one would expect. While it is possible that we have put the EMM
on unfair ground because N is too small, in a subsequent section, we will present
results for EMM which amount to letting N — 0.

While the estimates using EMM are similar across auxiliary models, there are
two notable differences. The first concerns the OID test. The two linear models
have rejection rates of zero, while the two non-linear models have reasonable
rejection rates, yet with variations that seem unrelated to either N or T. This
finding suggests that the choice of auxiliary model matters. In our controlled
setting, we know that prices are non-linear in mean and variance, and auxiliary
models which capture these characteristics apparently have better size proper-
ties. The second difference arises in the standard deviation of the estimates
relative to the asymptotic standard errors. The discrepancies in the two statistics
are generally larger for the two linear models. In particular, the variations in
6 are sometimes twice as large as those suggested by the asymptotic standard
errors. Although discrepancies between the two statistics are reduced as N and
T increase, they remain non-negligible for the two linear auxiliary models.
A similar problem was observed for the SMM with the auxiliary models which
do not capture the nonlinearity in the data. This suggests that the asymptotic
standard errors of the SMM and EMM may understate the variability of
the estimates when the auxiliary model does not capture ‘well’ the features
of the actual prices.

Results for IND are reported in Table 5. We first focus on the two linear
models. The estimates have small mean and median biases. The estimator tends
to under-estimate a and b, and over-estimates 6. Unlike the EMM estimator,
there appears to be less variation in the estimates across auxiliary models. This
might be due to the fact that the IND begins with the premise that the auxiliary
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Table 5
Results for IND

Model T N=TH a b 0

Mean ASE Mean ASE Mean ASE OID

median  std. median std. median  std.

Ml 100 500 0.596 0.025 — 0285 0.054 0.130 0.079 0.082
0.595 0.032 — 0278 0.056 0.116 0.080

M1 100 1000 0.596 0.025 —0282 0055 0.129 0.065 0.078
0.596 0.03 —0276 0.055 0.120 0.070

M1 100 2500 0.595 0.025 —0280 0.054 0.127 0.064 0.084
0.596 0.03 —0272 0.052 0.120 0.066

Ml 200 500 0.598 0.020 —0294 0.042 0.120 0.043 0.066
0.599 0.022 —0290 0.046 0.108 0.053

M1 200 1000 0.597 0.020 —0290 0.041 0.119 0.043 0.052
0.597 0.020 — 0288 0.042 0.110 0.048

M1 200 2500 0.599 0.020 —0291 0.041 0.112 0.040 0.074
0.596 0.020 —0.289 0.036 0.109 0.043

M2 100 500 0.592 0.034 —0298 0.038 0.103 0.038 0.086
0.593 0.043 —0296 0.045 0.100 0.036

M2 100 1000 0.590 0.036 —0295 0.039 0.104 0.030 0.088
0.590 0.040 —0295 0.044 0.105 0.035

M2 100 2500 0.590 0.036 —0292 0.039 0.104 0.031 0.086
0.592 0.040 —0293 0.043 0.104 0.035

M2 200 500 0.594 0.027 —0.308 0.029 0.099 0.022 0.074
0.597 0.034 —0.303 0.037 0.098 0.029

M2 200 1000 0.594 0.028 —0.303 0.029 0.100 0.022 0.076
0.594 0.032 —0.300 0.032 0.100 0.027

M2 200 2500 0.593 0.028 —0301 0.025 0.100 0.022 0.088
0.594 0.03 —0.298 0.030 0.099 0.026

M3 100 200 0.603 0.019 —0322 0024 0.167 0.028 0.02
0.603 0.032 — 0314 0.058 0.146 0.108

model is not a correctly specified model, and therefore it matters less how well
the auxiliary model fits the data. Accordingly, the estimates from both auxiliary
models have similar properties. The asymptotic approximation of the standard
errors is also reasonably good. The y? test is consistently in the neighborhood of
5%. One interesting aspect of the IND is that the efficiency gain from increasing
T and/or N is less noticeable than in SMM and EMM.

Our experience with applying the indirect inference estimator to non-linear
auxiliary models has been discouraging. To be fair, we do not believe that the
IND was intended to be used with complex auxiliary models, and evaluating
the IND under M3 and M4 was more an issue of completeness. Nevertheless, we
encounter two problems with the IND when non-linear auxiliary models are
used. The first is the tremendous demand on time, because the auxiliary model
has to be re-estimated until convergence is achieved. It also appears that
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convergence is more easily obtained by averaging over H estimates from
simulated data of length T rather than simulating one path of length TH, even
though the two methods should produce estimates with the same asymptotic
properties. This route increases computational time even further, however, since
the non-linear model has to be estimated H times per iteration. We have little
choice but to restrict the number of Monte Carlos to 100 for M3. Second, in a lot
of cases, we fail to obtain estimates that satisfy our convergence criterion. In fact,
difficulties with using non-linear models surface even when working with the
MA(1) example. For M4, the problem was severe enough that we have no choice
but to abandon the experiment. In any event, we have not found using the
non-linear auxiliary model to be worth the computation cost. Results for M3 in
Table 5 suggest that the estimates are generally more biased and less efficient
than the indirect estimates based upon the two linear models.

For each of the three estimators, the densities of the ‘best’ set of estimates for
T = 100 are graphed in Fig. 5 and for T = 200 in Fig. 6. More precisely, these
densities are based on m2 for SMM, M4 for EMM and M2 for IND. For the
parameter a, EMM is centered closest to the true value and also has the smallest
dispersion. For b, SMM and IND dominate EMM both in terms of location and
dispersion. For 9, all three estimators produce outliers that account for the long
tail in the distribution of the estimates. The possibility for large outliers is one
undesirable finite sample property of all three estimators that our Monte Carlo
experiments reveal.

In terms of the computational aspects of the three estimators, we have
the following observations. First, in terms of the time necessary to ‘babysit’ the
Monte Carlo experiments, the SMM is by far the easiest. The simulations for
a given configuration (of T for various values of N) take at most one day to
compute. For EMM, it depends on N. For N no larger than 2500, as reported
here, the simulations for a configuration take a little under two days. However,
when N is increased to 10,000, as in results not reported in the paper, the time
required triples. This is because the Markov nature of the price process requires
generating p,,; from p, sequentially, and this is a rather time consuming
operation in Gauss when N is large. For IND, the time required strongly
depends on the auxiliary model. For the two linear models, the time required is
only slightly more than EMM. For the non-linear models, it takes several days
just to do 100 Monte Carlos with N = 500. Thus, from a pure computational
standpoint, SMM comes out the winner, followed by EMM, and then IND.

Compared with the PMLE estimator, the best estimates produced by the
simulation estimators have a lower bias. However, because the simulation
estimators produce outliers more frequently, they also tend to be less efficient.
Thus, in terms of efficiency, the PMLE still holds an advantage over the
simulation estimators, at least for the configurations of N and T being con-
sidered. In the next section, we will investigate the trade-off between bias and
efficiency.
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Fig. 5. Density from 500 Monte Carlos and 100 obs.

7. Using the invariant distribution

Deaton and Laroque (1992) noted that because of the non-linearity of the
price function and the occasional spikes predicted by the model, a large number
of simulated prices is required for an accurate evaluation of the moments.
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However, the speculative commodity storage model predicts that prices follow
a renewal process and thus have an invariant distribution (see Deaton and
Laroque, 1992). The existence of an invariant distribution is convenient because
for two of the estimators considered, the invariant distribution allows us to
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generate the (population) moments without having to approximate them by
Monte Carlo simulations. In other words, use of the invariant distribution
amounts to the limiting case where the number of simulated prices is infinite.
The invariant distribution thus allows for rapid and accurate evaluation of
the moments necessary to obtain the parameter estimates. Indeed, one
of the advantages of using the commodity price model for the Monte Carlo
experiment is that it allows us to examine the extent to which simulation biases
can be reduced by increasing the number of simulations.

To calculate the invariant distribution associated with prices, define w(x,)
implicitly from rewriting the transition equation (18):

Xe1 = (1= 0)(x; = PTH(f(x)) + Ziw1 = WX) + Zi1. (30)

Recall that the compact support of the continuous state variable x is discretized
by an equidistant set of grid points, X, where X = (X, ..., X,,) and gg = 50 in
our computations. The transition probability from X; to X; is

Rij = pr(X,- + A/2 > Xi+1 2 Xi — A/2|x, = XJ), (31)

where 4 is the distance between points on the grid X. Substituting from (30) and
using the assumption that z is a standard normal variate, we have

A A
Given the matrix R, the probabilities associated with the states are updated by
99
Tir+1 = Z Rijmj;. (33)
=1

J

The invariant distribution = is then the normalized eigenvector of R correspond-
ing to the unit eigenvalue. Thus, = can be obtained by solving the linear
equations

(e oJ6)-G) o8

where e is an M-vector of ones. Therefore, for every point on the grid X, there is
an associated probability 7;, and this is also the probability of observing f(X;).
We now discuss how the invariant distribution can be exploited in implementing
EMM and SMM.

7.1. EMM using the invariant distribution

The EMM matches the (unconditional) expectation of the scores of the
auxiliary model, evaluated with the density of the structural model. For the
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commodity price model, the tth element of a typical score is a function of
Pi> D—1 and B. Denote this by q(p,, p,—1, ). The EMM estimator implemented
in the previous sections evaluates the expectation of g by Monte Carlo integra-
tion. That is, simulating the price process from the assumed structural model,
and then averaging over the simulated data. However, the expectation of the
scores can also be calculated by using the law of iterated expectations, in
conjunction with the invariant distribution. Specifically, we can first integrate
out terms involving p, _{ only, and because p, = f(x) Vt, p,— can be replaced by
f(X;) in the discretized state space. For a given X;, E(p|p,—1) is given by

M
epi=M"'Y fI(1 — X — P '(f(Xy) + z], (35)
j=1

in view of (19). The expectation of the scores is then calculated as a weighted sum
of g(ep:, f(X;), B), where the weights are the unconditional probabilities asso-
ciated with the invariant distribution. An example makes this clear.

Consider the score with respect to the constant term f, in the M3 auxiliary

model:

&
eXp(Et)’

(36)

where & =p, — Bo — Pipi—1 — B2pi-1 and h, =In(c?) =&, + &, p7y. The
conditional expectation of (36), conditioned on information at time (t — 1), for
a given X; is

_ ep; — 30 - ﬁlf(Xi) - Bz [f(Xi)]z

qi ~ A~ 5 (37)
exp(éo + &1 [ f(X:)]?)
where ep; is given by (35). The expectation of the score is computed as
99
Z qiT;. (38)
i=1

Note, however, that the methodology is applicable to M2, M3 and M4, but
not to M1 because of M1’s AR(3) structure. The law of iterated expectations
cannot be used in this case, because the model does not predict any tractable
relationship about E(p,|p,-3), for instance.

7.2. SMM using the invariant distribution

Using the invariant distribution to obtain the moments required by the SMM
is more straightforward. To evaluate a particular moment, (say the first), we
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simply use
99 1 T
Z S(Xi)m; T Z D1 39)
i=1 t=1

where f(X;) is the equilibrium price function evaluated at x = X, and =; is the
unconditional probability associated with X; in the discretized state space.
The second, third and fourth moments are defined analogously. Note that
for the first four central moments we do not need to resort to the law of iterated
expectations (as was necessary in the case of EMM) because these moments are
already in unconditional form. However, we do need to evaluate the first-order
autocovariance, and in that case, we once again appeal to the law of iterated
expectations. More specifically, we need to evaluate

Ep [(pe — W(Pi—1 — W] (40)
Conditioning on p,_; and then integrating out p,_,, we have

99

Z (epi — wW(f(X;) — pm; (41)

i=1

where ep; is defined as in (35), f(X;) is the equilibrium price function and
p= 2 f(Xm.

The invariant distribution can be used to construct the SMM estimates when
used in conjunction with the moments defined by m2 but not m1. We cannot
implement m1 because the model does not predict any tractable relationship
about E[p,|p,—;] for j > 1.

7.3. Estimation based on the invariant distribution and simulation bias

SMM results based on the invariant distribution are given in Table 6.
Surprisingly, the estimates have somewhat larger bias than those based on
Monte Carlo integration reported in Table 3. Offsetting estimation and simula-
tion errors could account for the smaller bias in the simulation based estimates.
However, there is a noticeable gain in efficiency. In most cases, the standard
errors based on the invariant distribution are reduced by as much as 50%.

The results for EMM based on the invariant distribution are also given in
Table 6. The biases are smaller than those based on 1000 simulated prices using
M4 when T = 100, and are of similar magnitude when T = 200 (recall that M4
is the auxiliary model that yields estimates with the lowest bias and highest
efficiency (see Table 4)). However, with the less adequate auxiliary models such
as M2 and M3, use of the invariant distribution ecither leads to a substantial
reduction in bias (especially in the parameter b) or an improvement in efficiency,
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Table 6
Results for GT and SMM: the invariant distribution

Model T N=TH a b 0

Mean ASE Mean ASE Mean ASE OID

median  std. median std. median  std.

M2 100 INV 0.595 0.025 —0269 0.033 0.104 0.032 0.126
GT 0.594 0.027 — 0269 0.046 0.097 0.045

M2 200 INV 0.595 0.025 —0283 0.025 0.099 0.022 0.130
GT 0.594 0.019 —0282 0.029 0.096 0.024

M3 100 INV 0.595 0.027 — 0269 0.046 0.104 0.045 0.126
GT 0.594 0.025 —0269 0.033 0.097 0.032

M3 200 INV 0.595 0.02 —0284 0.029 0.099 0.024 0.130
GT 0.594 0.018 —0282 0.025 0.099 0.024

M4 100 INV 0.603 0.032 —0296 0.049 0.097 0.032 0.078
GT 0.604 0.026 —0296 0.040 0.096 0.027

M4 200 INV 0.600 0.023 —0297 0.033 0.099 0.022 0.062
GT 0.599 0.019 —0.298 0.030 0.098 0.019

m2 100 INV 0.596 0.068 —0279 0018 0.120 0.022 0.026
SMM 0.596 0.044 —0282 0.025 0.116 0.041

m2 200 INV 0.595 0.050 —0285 0013 0.112 0.015 0.01
SMM 0.593 0.029 —0285 0014 0.111 0.027

but rarely both. For example, the standard errors for b and J are generally
smaller when the invariant distribution is used, but the biases are larger. Overall,
a larger number of simulations seems to partially compensate for the inad-
equacy of the auxiliary model. There is also reduced variability in the estimates
when the invariant distribution is used; the standard deviations of the estimates
are smaller. Note that for all auxiliary models considered, the large efficiency
gains seem to occur as T, rather than N, increases. Indeed, at T = 200, the
results using the invariant distribution are only slightly better than those with
N = 2500. Thus, as emphasized earlier when evaluating the MA(1) example,
increasing T seems to have a stronger effect on the properties of EMM
than increasing N, especially once N has reached a certain critical point. For
the present application, this value of N is around 1000, or 10 times the sample
size.

The average mean-squared error (MSE) of the estimates based on the best
auxiliary model and moments is presented in Table 7. For all three estimators,
an increase in the sample size induces a larger reduction in MSE than an
increase in the number of simulated data points. The EMM always produces the
best estimates for the parameter a, but the worst estimates of b. On the other
hand, the SMM produces the best estimates of b, but the worst estimates of
a and 6. The IND comes second in all three parameters.
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Table 7
MSE for best performing models

Method Moments T N a b J p

GT M4 100 500 0.1444 0.3364 0.1369 0.3225
IND M2 100 500 0.5300 0.1936 0.1296 0.3226
SMM m2 100 500 0.3136 0.1369 0.2401 0.4272
GT M4 100 1000 0.1444 0.3364 0.1156 0.3136
IND M2 100 1000 0.1764 0.2025 0.1225 0.2993
SMM m2 100 1000 0.2704 0.1089 0.1849 0.3588
GT M4 100 2500 0.1296 0.3364 0.1089 0.2914
IND M2 100 2500 0.1681 0.1936 0.1225 0.2934
SMM m2 100 2500 0.2401 0.1225 0.1936 0.3454
GT M4 100 INV 0.1024 0.2401 0.1024 0.2335
SMM m2 100 INV 0.1936 0.1089 0.2116 0.2850
PMLE — 100 — 0.0994 0.1702 0.0865 0.1837
GT M4 200 500 0.0625 0.1444 0.0625 0.1415
IND M2 200 500 0.1156 0.1444 0.0841 0.2065
SMM m2 200 500 0.1296 0.0324 0.0961 0.1872
GT M4 200 1000 0.0529 0.1225 0.0576 0.1260
IND M2 200 1000 0.1089 0.1024 0.0729 0.1834
SMM m2 200 1000 0.1225 0.0289 0.0900 0.1726
GT M4 200 2500 0.0529 0.1089 0.0529 0.1176
IND M2 200 2500 0.0961 0.0900 0.0625 0.1618
SMM m2 200 2500 0.1089 0.0256 0.0784 0.1519
GT M4 200 INV 0.0529 0.1089 0.0484 0.1165
SMM m2 200 INV 0.0841 0.0400 0.0900 0.1286
PMLE — 200 — 0.0457 0.0741 0.0457 0.0952

Note: MSE for a,b, and ¢ is the mean-squared error computed as the average of the squared
difference between the estimate and its true value (times 100). The MSE for p is the average of the
squared difference (times 100) between prices based on the true parameters and the estimated
parameters, with errors drawn from the same seed.

The difference in MSE between the simulation-based and the invariant-
distribution-based estimates can be interpreted as simulation error. For EMM,
the simulation error induced on b is the largest, but it falls rapidly with the
sample size. At T = 200, the MSE for all three parameters estimated by EMM is
quite close to the MSE of the invariant distribution. The results once again
suggest that for EMM, T is very important to the properties of the estimates,
more so than the number of simulations. For the SMM, the simulation error in
a is the largest, but it falls as either N or T rise.

It is useful to have a single metric to assess how N affects the simulation bias.
For this purpose, we consider the mean-squared error of prices. This is defined
as the mean-squared difference between the prices derived from the structural
model evaluated at the true value of 0, with those evaluated at the estimated
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parameters. The results are reported in the last column of Table 7. The MSE for
prices is the smallest for the invariant distribution and increases as N is reduced
(for a given estimator). This was expected because the invariant distribution is
equivalent to simulating an infinite number of prices. It is nonetheless surprising
to find that for EMM using M4, setting N to = 2500 when T = 200 does
almost as well as using the invariant distribution (with MSE of 0.1176 and
0.1165, respectively). With T = 100, the decrease in simulation bias from
increasing N beyond 1000 is small (the MSE is 0.3222 for N = 1000 and falls
to 0.2914 when N = 2500). These results suggest that performing the Monte
Carlo integration over N ~ 10T observations is adequate. The SMM results
support these conclusions. The decrease in MSE when raising N from 1000 to
2500 is small (0.3588 to 0.3454 when T = 100), and it is not far off from the
invariant distribution bias (0.2850). Indeed, when Gallant and Tauchen
simulated 100,000 data points, they are simulating roughly seven times the size
of the observed data series. Our suggestion of N =~ 10T is slightly on the
conservative side.

Because no one estimator is superior in estimating all three parameters, the
MSE of prices also provides a convenient metric for an overall comparison.
The result that stands out is that all three simulation estimators are inferior
to the PMLE. As mentioned earlier, the PMLE is mean and median biased.
Although the simulation estimators provide improvements on this count, the
estimates are also more variable and on net, have larger errors than the PMLE
in a mean-squared sense. Of the three simulation estimators, the SMM is
noticeably the weakest. For T' = 100, the EMM with a large N edges out IND
very slightly. The SMM and EMM exhibit sharper reductions in MSE than the
IND as the sample size increases. For T = 200, EMM has the smallest MSE
even when a small N. It appears that sample size permitting, the EMM is the
best of the three estimators from a mean-squared error point of view. For
smaller sample sizes, the IND is a stable performer and it is the least sensitive to
variations in N or T.

8. Conclusion

In this paper, we use the speculative storage model under rational expecta-
tions as the test bed for three estimators which are suited when the objective
function for classical estimation becomes intractable. There are some tradeoffs
among the estimators worthy of consideration.

1. Statistical efficiency vs. computational efficiency:
The SMM tends to have larger biases and variances but is the easiest to
implement. The IND is more robust to variations in N and T but can be
computationally costly when the auxiliary model is difficult to estimate. The
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EMM is best when N and especially T are large, but its computational cost
increases with N and the complexity of the structural model.
2. Choice of moments and auxiliary models:

For the SMM and the EMM, choose moments and an auxiliary model to
encompass as many features (such as non-linearity) in the data as possible.
On this, economic theory can provide a guide. For IND, keep to a simple
auxiliary model.

3. Number of simulated data points:

Use of the theoretical invariant distribution to evaluate the relevant
expectations yields efficiency gains over Monte Carlo integration. When the
expectations are to be approximated by simulations, simulating 10 times the
number of observations as in the actual data seems appropriate in the sense
that the reductions in simulation bias from simulating more observations is
small.

4. The sample size:

The properties of the EMM are the most sensitive to the sample size. At
T =200, the EMM comes closest to the efficiency of the PMLE, and the
difference should narrow as T increases. Nonetheless, the EMM-based OID
test has size distortions until T is fairly large. When conducting inference, this
issue should be borne in mind.

Although none of the simulation estimators beat the PMLE in a mean-
squared sense, they do have better bias properties, and convergence is generally
less of an issue with the simulation estimators. Thus, in dynamic models of
complex structure, the simulation estimators can be a useful complement, if not
an alternative, to the PMLE.
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