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Abstract

The assumption of conditional symmetry is often invoked to validate adaptive esti-
mation and consistent estimation of ARCH=GARCH models by quasi-maximum like-
lihood. Imposing conditional symmetry can increase the e2ciency of bootstraps if
the symmetry assumption is valid. This paper proposes a procedure for testing con-
ditional symmetry. The proposed test does not require the data to be stationary or
i.i.d., and the dimension of the conditional variables can be in3nite. The proposed
test is consistent and is asymptotically distribution free. In addition, the test is shown
to have nontrivial power against root-T local alternatives. The size and power of the
test are satisfactory even for small samples. Applying the test to various time series,
we reject conditional symmetry in in6ation, exchange rate and stock returns. Among
the non3nancial time series considered, we 3nd that investment, the consumption of
durables, and manufacturing employment also reject conditional symmetry. ? 2001
Elsevier Science S.A. All rights reserved.
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1. Introduction

The objective of this paper is to construct a consistent test for condi-
tional symmetry using time series data. Given a sequence of stochastic vari-
ables {Yt; Xt}, conditional symmetry is said to hold if the distribution of Yt ,
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conditional on Xt , is symmetric with respect to its conditional mean. That is,
Ft(y + 	t |Xt) = 1− Ft(−y + 	t |Xt), where Ft is the (conditional) cumulative
distribution function (cdf) of Yt conditional on Xt , and 	t = E(Yt |Xt) is the
conditional mean. In this paper, we consider the following nonlinear time
series regression model:

Yt = h(Xt; �) + (Xt; �)et ; t = 1; : : : ; T (1)

where h(Xt; �) is the conditional mean, 2(Xt; �) is the conditional variance
of Yt , and et is a zero mean disturbance with unit variance and is independent
of current and past Xt’s. Under (1), conditional symmetry is equivalent to the
symmetry of et about zero. That is, f(e) =f(−e), or 1− F(e)− F(−e) = 0
for all e, where f and F are the density and the cdf of et , respectively.

The above framework encompasses linear and 3nite order autoregressive
models with and without exogenous variables, as well as nonlinear models
such as the self-exciting threshold autoregressive (SETAR) model. However,
for many time series models, the conditioning information set may consist
of an in3nite number of variables. To accommodate this situation, we denote
by �t = {Yt−1; Yt−2; : : : ; Xt; Xt−1; : : :} the information set at time t, and test
conditional symmetry using the following model:

Yt = h(�t; �) + (�t; �)et : (2)

This framework is very general. For example, an MA(1) process Yt=et+�et−1

can be written as

Yt =
∞∑
j=1

(−�) jYt−j + et : (3)

This corresponds to h(�t; �) =
∑∞

j=1(−�) jYt−j with �t = {Yt−1; Yt−2; : : :}. A
regression model with GARCH disturbances

Yt = X ′
t �+ tet ;

where 2t =�+�
2
t−1+�

2
t−1e

2
t−1 can be written as (2) with �t={Yt−1; Yt−2; : : : ;

Xt−1; Xt−2; : : :} and

(�t; �) =

(
�

/
(1− �) + �

∞∑
j=1
�j−1(Yt−j − X ′

t−j�)
2

)1=2
; (4)

where �=(�; �; �). By allowing � to include elements of �, Eq. (2) also allows
for ARCH-M processes. The test statistics to be developed in this article can
still be applied even though the dimension of the conditioning variables in
all these cases is in3nite.
The existence (or lack thereof) of conditional symmetry is important in

a number of situations. A widely popular approach to modeling time vary-
ing conditional variances is the family of ARCH and GARCH models de-
veloped in Engle (1982) and Bollerslev (1986). Lee and Hansen (1994) and
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Lumsdaine (1996) showed that when the conditional mean and the conditional
variance in the Gaussian likelihood are correctly speci3ed, the quasi-
maximum likelihood estimator (QMLE) is consistent for the parameters of the
GARCH(1,1) model even when the assumption of normality is false. How-
ever, motivated by the fact that the innovations in 3nancial time series usually
have fat tails and are sometimes asymmetric, many applications no longer
specify a Gaussian likelihood. 1 In a recent paper, Newey and Steigerwald
(1997) showed that when the likelihood is nonGaussian, consistent estima-
tion of the GARCH parameters can be obtained by QMLE if both the true
and the assumed innovation density are symmetric around zero and unimodal.
However, if conditional symmetry does not hold, an additional parameter will
be necessary to identify the location of the innovation distribution. Our pro-
posed test can be used to determine if estimation of this additional parameter
is necessary.
The assumption of conditional symmetry is commonly used in adaptive

estimation. In a linear regression setting, Bickel (1982) showed that if con-
ditional symmetry holds, adaptive estimation of the parameters can achieve
the same information bound as the maximum likelihood estimator whether or
not the error density is known. The results of Bickel have been extended to
homoskedastic ARMA models by Kriess (1987), ARCH processes by Lin-
ton (1993), and error-correction models by Hodgson (1998). Newey (1988)
showed that the parameters of a linear regression model can be estimated
adaptively by generalized methods of moments, also under the maintained
assumption of conditional symmetry. 2

Knowledge about the properties of et also has e2ciency implications for
bootstrapping. The general bootstrap procedure for nonparametric and semi-
parametric estimators is based on resampling from the (unrestricted) empiri-
cal distribution. As discussed in Brown and Newey (1998), a more e2cient
procedure is to bootstrap from the restricted (parametric) distribution. The
intuition is simply that imposing a restriction (when it is true) increases sta-
tistical e2ciency. One such restriction is the symmetry of ê t , the estimated
residuals.
Whether or not conditional symmetry holds is also an issue of macroeco-

nomic interest. Symmetry of et implies that positive shocks to the conditional
mean are as likely as negative shocks. If this is not the case, our forecasts
should adjust to the possibility that positive and negative forecast errors are
not equally likely. There are instances when economic behavior naturally
gives rise to conditional asymmetry. A speci3c example is given by the ‘No

1 Bollerslev (1987), for example, used a t distribution to model exchange rates and stock
returns, while Nelson (1991) used the exponential power distribution to model stock prices.

2 It is noted that conditional symmetry is only needed for estimating the intercepts in the
conditional mean and the conditional variance of regression models.
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news is good news’ model of Campbell and Hentschel (1992) in which the
residuals in a model of log returns conditional on volatility are asymmet-
rically distributed. This is precisely our notion of conditional asymmetry. It
should be noted, however, that except in special cases such as those to be dis-
cussed below, conditional symmetry does not, in general, imply unconditional
symmetry.
The rest of this paper is organized as follows. In Section 2, we propose test

statistics for conditional symmetry and analyze their asymptotic properties.
The power of the tests is analyzed in Section 3. Results from simulations
and empirical applications are provided in Section 4. Proofs are given in
Appendix A.

2. The test statistics

2.1. The skewness coe6cient

Skewness, or the third moment, is the statistic that naturally comes to mind
when the object of interest is symmetry of a distribution. For this reason, the
skewness coe2cient is often used to describe evidence on asymmetry in the
economics literature. Hsieh (1988), for example, performed diagnostics on
the standardized estimated residuals using the coe2cient of skewness. It is
therefore important to understand the strengths and limitations of the skewness
coe2cient as a test for symmetry.
Consider the simple regression model Yt = X ′

t � + et , with et being i.i.d.
(0; 2) and independent of Xt . Conditional symmetry of Yt is equivalent to
the symmetry of et . Let �̂ be the OLS estimator of � with residuals ê t =
et − Xt(�̂ − �). We assume an intercept is included in the regression so that∑

t ê t = 0. The skewness coe2cient is de3ned as �= 	3=3, where 	3 = Ee3t .
When applied to ê t , the sample skewness coe2cient is

�̂= 	̂3=̂
3;

where 	̂3 = (1=T )
∑T

t=1 ê
3
t , and ̂ =

√
T−1

∑T
t=1 ê

2
t . To derive the limiting

distribution of
√
T (�̂− �) under the null hypothesis �=0, notice that because

̂2
p→2, it is su2cient to obtain the limiting distribution of T−1=2∑T

t=1 ê
3
t .

From ê3t = e3t − 3e2t X
′
t (�̂ − �) + 3et[X ′

t (�̂ − �)]2 − [X ′
t (�̂ − �)]3, it is easy to

show that

T−1=2
T∑
t=1
ê3t = T−1=2

T∑
t=1
e3t − 3

(
1
T

T∑
t=1
e2t X

′
t

)√
T (�̂ − �) + op(1):

The 3rst term on the right-hand side above converges to a normal random
variable with zero mean (under the null) and variance 	6 = Ee6t . The second
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term depends on the distribution of
√
T (�̂− �). DiPerent estimation methods

(e.g., LAD or M-estimation) will yield diPerent limiting distributions. With
OLS, we have (�̂−�)=(X ′X )−1X ′e. Let �′=3plim(T−1∑T

t=1 e
2
t Xt)(X

′X=T )−1.
Then

T−1=2
T∑
t=1

ê3t = T−1=2
T∑
t=1

e3t − �′T−1=2
T∑
t=1

Xtet + op(1):

Now 

T−1=2

T∑
t=1

e3t

T−1=2
T∑
t=1

Xtet


 d→N (0; �); �=

(
u6 �′

� �

)

where �=plim(T−1 ∑T
t=1 Xte

4
t ) and �=plim 2(X ′X=T ). We thus have T−1=2∑T

t=1 ê
3
t
d→N (0; �′��), where �′=(1;−�′), and √

T �̂ d→N (0; �′��=6). Let �̂ and
�̂ be consistent estimators of � and �, respectively. De3ne the test statistic �̂
as the normalized sample skewness coe2cient:

�̂= ̂3(�̂
′
�̂�̂)−1=2

√
T �̂:

The properties of �̂ can be summarized as follows:

Theorem 1. Assume that (X ′X=T ) converges to a positive de"nite matrix
and that the errors et are i.i.d. with zero mean; variance 2; "nite sixth
moment; and are independent of the past and current regressors. With least
squares estimation and under the hypothesis that �= 0; we have

�̂ d→N (0; 1):

The test statistic based on the skewness coe2cient is asymptotically nor-
mal. The advantage of the skewness coe2cient is that it is intuitive and easy
to construct. This will still be the case for estimators other than ordinary least
squares, provided the limiting distribution of the estimator is known and has
a simple form. Furthermore, when the data are not i.i.d., �̂ can be replaced
by an estimate of the long-run variance, and the construction of the test is
still fairly simple. However, the skewness coe2cient also has a number of
limitations. First, the standard error of �̂ depends on how the model is esti-
mated, but not every estimator has a simple limiting distribution, particularly
for more complicated models. 3 Second, the statistic requires the existence of
the sixth moment, which is not satis3ed by many useful distributions (such

3 For example, deriving the skewness coe2cient test for model (2) is not as simple as the
linear model just considered. In addition to its dependence on the limiting distribution of �̂ and
�̂, the asymptotic distribution of �̂ also depends on the functional forms of h(�t; �) and (�t; �)
as well as their derivatives.
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as the t5). GARCH processes will also fail this requirement. Third, the test
is not consistent against alternatives which are asymmetric and yet have a
skewness coe2cient of zero. 4

In Section 2.2, we propose a new test that can overcome these limitations.
In particular, the new test only requires stochastic boundedness for

√
T (�̂−�)

and
√
T (�̂ − �), as opposed to the knowledge of their limiting distributions.

The test is also consistent.

2.2. A new test

Recently, some consistent tests have been developed to test the null hypoth-
esis of conditional symmetry. Most of these tests are based on the estimated
residuals of a linear model and only require consistent estimates of the pa-
rameters �. Fan and Gencay (1995) proposed a test based on the idea that
under symmetry, 2

∫
f(x)f(−x) dx= ∫ f2(x) dx+

∫
f2(−x) dx. Ahmad and

Li’s (1996) test is based on
∫∞
−∞ [f(x)−f(−x)]2 dF=0. The unknown den-

sity function f(x) in both cases is estimated by the kernel smoothing method.
Zheng (1998), on the other hand, constructed a test on the basis that under
symmetry, 1−F(−x)−F(x)=0. Building on the fact that if �(�) is the quan-
tile regression estimator for � ∈ (0; 1), then �(�) + �(1− �) = 2�(1=2) under
symmetry, Newey and Powell (1988) suggested a test based on estimation
of � by the method of ‘asymmetric least squares’.
The test proposed in this paper diPers from the aforementioned tests in

several respects. First, previous tests are developed for i.i.d. data. Our test is
more general and can be used even when Xt and=or Yt are weakly dependent,
and the data may even be nonstationary. Use of time series data raises is-
sues that are otherwise irrelevant. For example, the conditioning variables in
ARMA and GARCH models are in3nite dimensional in theory, an issue that
must be taken into account. Second, our test is based on the empirical dis-
tribution function (as is Zheng’s test for i.i.d. data) and has nontrivial power
against root-T local alternatives. In contrast, tests based on comparisons
of nonparametrically estimated density functions may not have local power
since local departures from symmetry will not be preserved by nonparametric
smoothing.
Our test is based on empirical distribution functions and has nontrivial

power against root-T local alternatives. Suppose et is i.i.d. with density f(e)
and cdf F(e), and e=1. Let I(A) be an indicator which equals 1 when event
A is true and 0 otherwise. Note that under symmetry, et and −et have the
same distribution. The idea of our test is to compare the empirical distribution

4 The distribution dF = 1
48 [1− sgn x sin(|x|1=4)] exp(−|x|1=4);−∞¡x¡∞ has all odd-order

moments zero, but it is not symmetric. See Kendall and Ord (1994).
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function of et (t=1; : : : ; T ) and that of −et (t=1; : : : ; T ). De3ne the empirical
process, U+

T (x), based on et , as

U+
T (x) =

1√
T

T∑
t=1

[I(et 6 x)− F(x)]:

It is well known that U+
T (x) converges to a Brownian bridge process, RB(x),

with E[ RB(x)]= 0 and E[ RB(x) RB(y)]=F(x)(1−F(y)) for x¡y. Likewise, an
empirical process based upon −et , de3ned by

U−
T (x) =

1√
T

T∑
t=1

[I(−et 6 x)− F(x)]

also converges to a Brownian bridge if et has a symmetric distribution.
Although U+

T and U−
T both depend on (the unobserved) F , their diPerence,

WT (x) =U+
T (x)−U−

T (x) =
1√
T

T∑
t=1

[I(et 6 x)− I(−et 6 x)]; (5)

does not depend on F . For each point x, WT (x) is the diPerence between the
number of et and the number of −et less than or equal to x, then divided
by the square root of T . Thus, WT (0) gives the scaled diPerence between the
number of negative and positive values of et . Under symmetry, WT (x) should
be small at all values of x. In view of the mathematical identity

WT (x) =WT (−x) (a:s:)

one can consider either the positive or the negative values of x in the con-
struction of WT .

Lemma 1. Suppose {et ; t=1; : : : ; T} is i.i.d. Let B(z) be a standard Brownian
motion on [0; 1]. Then under the null hypothesis that et has a symmetric
density function about zero; we have

• If x¡ 0; WT (x) ⇒ B(2F(x)); and maxx60 |WT (x)| ⇒ max06s61 |B(s)|.
• If x¿ 0; WT (x) ⇒ B(2[1−F(x)]); and maxx¿0 |WT (x)| ⇒ max06s61 |B(s)|.

Note that although U+
T and U−

T each converges to a Brownian bridge, their
diPerence converges to a Brownian motion. Furthermore, because 2[1−F(∞)]=
0 and 2[1 − F(0)] = 1 under symmetry, B(2[1 − F(x)]) (x ¿ 0) is a time-
reversed Brownian motion on [0; 1].
If et was observed for every t, then max|WT (x)| would have been the natural

test for conditional symmetry. But {et} is the sequence of innovations of a
(possibly) nonlinear time series model, which we do not observe. Therefore,
we consider feasible statistics based upon the estimated residuals, ê t , and then
use martingale transformation methods to obtain tests that are asymptotically
distribution free. The transformation method was 3rst studied by Khmaladze
(1981) and has recently been extended in several directions by Bai (2000).
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Let �̃t = {Yt−1; : : : ; Y1; Xt ; Xt−1; : : : ; X1; 0; 0; : : :} denote the feasible informa-
tion set at time t. Then

ê t =
Yt − h(�̃t ; �̂)

(�̃t ; �̂)

and de3ne ŴT (x) by replacing et in WT (x) with ê t . That is,

ŴT (x) = Û
+
T (x)− Û

−
T (x) =

1√
T

T∑
t=1

[I(ê t 6 x)− I(−ê t 6 x)]:

The consequence of replacing et by the estimated residuals is that the
process ŴT (x) no longer converges to a Brownian motion. In fact, as shown
in the appendix,

ŴT (x) =WT (x) + 2f(x)(1T + op(1);

where f(x) is the density of et and (1T , given in (A.4) in Appendix A,
is a stochastically bounded random variable (that does not depend on x).
The presence of f(x) in ŴT (x) is a direct consequence of estimation of the
conditional mean (see Appendix A). Estimation of the conditional variance
does not, however, aPect the test statistic. 5

Since the limiting distribution of ŴT (x) depends on f as well as the es-
timated parameters, the limiting distribution (and hence the critical values)
will not be asymptotically distribution free. To circumvent this problem, we
use martingale transformation methods to obtain an asymptotically distribu-
tion free test. Let g=ḟ=f, where f is the density of et and ḟ is the derivative
of f. Let fT and gT be estimates of f and g, respectively. For x 6 0, de3ne

ST (x) = ŴT (x)− ŴT (0) +
∫ 0

x
h−T (y) dy; (6)

where

h−T (y) = gT (y)fT (y)
[ ∫ y

−∞
gT (z)2fT (z) dz

]−1 ∫ y

−∞
gT (z) dŴT (z):

For x¿ 0, de3ne

ST (x) = ŴT (x)− ŴT (0)−
∫ x

0
h+T (y) dy; (7)

where

h+T (y) = gT (y)fT (y)
[ ∫ ∞

y
gT (z)2fT (z) dz

]−1 ∫ ∞

y
gT (z) dŴT (z):

5 Estimation of the variance introduces xf(x) in Taylor series expansions. It does not, how-
ever, show up in ŴT (x) because terms involving xf(x) drop out when the diPerence of two
empirical processes is considered. The underlying intuition is that if + is symmetric about zero,
then c+ is also symmetric about zero for an arbitrary c, and hence estimation of the variance
does not enter the empirical process in question.
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The process ST is the martingale transformation of ŴT (x). Note that two
separate transformations are performed: one for x 6 0 and the other for
x¿ 0. De3ne

CS+ =max
x¿0

|ST (x)|;

CS− =max
x60

|ST (x)|:

These are the test statistics for conditional symmetry. Appendix B discusses
the computation of the test statistics.
The dependence of CS+ and CS− on T is understood and the notation is

suppressed. We now state the assumptions under which Theorem 2 will be
proved.

Assumption A1. The errors et are i.i.d. random variables with E(et) = 0, a
cdf F(x), and a continuous density function f(x). The density function f(x)
has a 3nite Fisher information number, that is, If=

∫∞
−∞(ḟ=f)2f dx¡∞. In

addition, supx|xf(x)|¡M for some M ¿ 0.

Assumption A2. Let B0 be a neighborhood of �0. Then sup�∈B0
(1=T )

∑T
t=1

||@ht(�t; �)=@�||2 =Op(1), and max16t6T T−1=2 ||@ht(�t; �0)=@�||= op(1).

Assumption A3. Let L0 be a neighborhood of �0. Then sup�∈L0 (1=T )
∑T

t=1

||@t(�t; �)=@�||2=Op(1), and max16t6TT−1=2 ||@t(�t; �0)=@�||=op(1). In ad-
dition, (�t; �0)¿c¿ 0 for some c and for all t.

Assumption A4. The estimators satisfy
√
T (�̂ − �0) = Op(1), and

√
T (�̂ −

�0) =Op(1).

Assumption A5. The ePect of information truncation satis3es

(i) T−1=2
T∑
t=1

|h(�̃t ; �0)− h(�t; �0)|= op(1);

(ii) T−1=2
T∑
t=1

|(�̃t ; �0)− (�t; �0)|= op(1):

Assumption A6. The nonparametric estimators fT for f and gT for g satisfy

fT (x) = f(x) + op(1); and
∫ ∞

−∞
(gT − g)2 dF = op(1);

where the 3rst op(1) is uniform in x.
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Remark 1. Assumption A1 is a technical condition for studying residual em-
pirical processes. It is also used in nonparametric density estimations, e.g.,
Bickel (1982). Assumption A1 rules out certain distributions, e.g., uniform
distribution as well as exponential distribution. However, we include the ex-
ponential distribution in our simulations to compare the results with those
in the existing literature. Assumptions A2 and A3 are standard conditions
for nonlinear estimations. Assumption A4 assumes

√
T convergence of the

estimated parameters and is satis3ed by most estimators. Assumption A6 is
a high level assumption about nonparametric estimators. If the densities are
estimated nonparametrically (as we do), Assumption A6 is satis3ed if the
bandwidth is chosen appropriately. Parzen (1962) and Bickel (1982) oPer
speci3c conditions to ensure Assumption A6 for kernel estimations. A high
level condition is used because there are many nonparametric methods, and
any estimation method (e.g., kernel or series estimators) satisfying Assump-
tion A6 is su2cient to ensure the validity of Theorem 2. In our simulations,
we use the kernel method and choose the bandwidth according to Silverman
(1986). Silverman’s bandwidth choice satis3es the more general conditions
in Parzen (1962) and Bickel (1982), and thus Assumption A6. Finally note
that the 3rst part of Assumption A6 implies

∫∞
−∞ (fT (x)−f(x))2 dx= op(1)

because
∫∞
−∞ (fT (x)−f(x))2 dx 6 supx |fT (x)−f(x)| ∫ |fT (x)−f(x)| dx 6

2 supx |fT (x)− f(x)|= op(1).

Remark 2. Under Assumption A5, the ePect of information truncation is
small. It is satis3ed trivially when there is no information truncation (e.g.,
cross-section regression models), but ARMA and GARCH models also sat-
isfy Assumption A5. To see this, consider 3rst an MA(1) model, (3), with
|�|¡ 1 and h(�̃t ; �) =

∑t−1
j=1 (−�)jYt−j. For some constant M ,

E
T∑
t=1

|h(�̃t ; �)− h(�t; �)|6
T∑
t=1

∞∑
j=t

|�|jE|Yt−j|

6M
∞∑
t=1

∞∑
j=t

|�|j =O(1):

This implies that the right-hand side of Assumption A5(i) is Op(T−1=2). Next
consider a GARCH(1,1) process with 0¡�¡ 1, see (4). From |a − b| =
|a2 − b2|=(a+ b), we have |(�̃t ; �0)− (�t; �0)|6 |2(�̃t ; �0)− 2(�t; �0)|=c
because the conditional variance is no smaller than c by Assumption A3.
Using (4),

E
T∑
t=1

|2(�̃t ; �0)− 2(�t; �0)|6
T∑
t=1

∞∑
j=t
�jE(2t e

2
t ):

If E2t ¡M , then the right-hand side above is uniformly bounded in T . This
implies that the right-hand side of Assumption A5(ii) is Op(T−1=2).
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Remark 3. Assumptions A2–A5 are designed for nontrending regressors. Ac-
tually, our results also apply to trending regressors. Consider the simple coin-
tegrating model Yt=X ′

t �+et , where et is i.i.d. and Xt=Xt−1 + +t with X0 =0.
Then T (�̂−�)=Op(1), violating A4. However, ê t=et−(1=

√
T )=(Xt=

√
T )T (�̂−

�) = et + (1=
√
T )Op(1), where Op(1) is uniform in t 6 T . The fact that

ê t = et + Op(T−1=2), together with A1, is essentially all that is required for
the proposed approach to work. There is an alternative way to see why our
results extend to trending regressors. Consider a model with a linear trend as
a regressor, Yt = a+ bt + et . For this model, the OLS estimator b̂ converges
at the rate of T 3=2 (violating A4 again, but clearly, ê t = et + Op(T−1=2)).
However, we can also treat t=T as a regressor and rewrite the model as
Yt=�+�(t=T )+ et . By treating � as a 3xed parameter independent of T , the
estimated residuals are identical to the original model and yet all assumptions
designed for standard regressors are met. Similarly, for the cointegrating case,
one may think of Xt=

√
T as the regressor, albeit somewhat unconventional.

Theorem 2. Under Assumptions A1–A6 and the assumption of conditional
symmetry; we have

ST (x) ⇒ B(1− 2F(x)); x 6 0;

ST (x) ⇒ B(2F(x)− 1); x¿ 0;

CS− d→ max
06s61

|B(s)|;

CS+ d→ max
06s61

|B(s)|:

where B(r) is a standard Brownian motion on [0; 1]:

The proof of the theorem assumes very general speci3cations for the con-
ditional mean h(�t; �) and conditional variance (�t; �), and includes con-
ditional homoskedasticity as the special case. The asymptotic critical values
at the 1%, 5%, and 10% levels of signi3cance are 2.78, 2.21, and 1.91,
respectively.
The theorem suggests that one can use either CS− or CS+ to test for

conditional symmetry. This result arises because f is an even function and g
is an odd function under the null hypothesis. Thus, if we had used f and g in
the transformations, we would have ST (x)=ST (−x) for all x, and thus CS+=
CS− (exactly). Because fT and gT are consistent for f and g, transformations
based on fT and gT are asymptotically equivalent to those based on f and g
(see Lemma A.4 in Appendix A). This implies that ST (x) = ST (−x) + op(1),
where op is uniform over x. Therefore, CS− = CS+ + op(1). Since CS− and
CS+ have the same asymptotic distribution and are asymptotically equivalent,
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the test:

CS =max{CS−; CS+}=max
x

|ST (x)|
also has the same distribution as CS+ and CS−. We state this result as a
corollary.

Corollary 1. Under the null hypothesis of conditional symmetry and the
conditions of Theorem 2;

CS d→ sup
06s61

|B(s)|:

The CS statistic has three advantages and is our preferred statistic. First,
it has better power since under the alternative, the equivalence of CS− and
CS+ breaks down. Second, even if the null hypothesis was true, in 3nite
samples, fT may not be exactly even and gT may not be exactly odd, and
CS− and CS+ will not be the same. Third, use of CS makes it unnecessary
to choose one test over the other.
It is instructive to examine graphically how the untransformed process

ŴT (x) and the transformed process ST (x) diPer from WT (x). The former
two processes are based on estimated residuals, while the latter is based
on the true residuals. To this end, we use two samples of a normal variable,
that is, Yi ∼ N (0; 1) to evaluate the three processes. Each sample consists
of 100 observations of a standardized random variable. The residuals are
de3ned as ê i=(Yi− RY )=sY , where RY is the sample mean and sY is the sample
standard deviation. Fig. 1 plots the three processes evaluated at 200 points,
xk (k = 1; 2; : : : ; 200) of which half are positive and half are negative, and
thus these points are located symmetrically around zero. The dashed line
and the dotted line represent, respectively, ŴT and WT . The solid line is the
transformed process ST , upon which the test statistics are based. Under the
null hypothesis of symmetry, the theory says that ST (x) and WT (x) are both
Brownian motion processes whereas ŴT (x) is not. The departure of ŴT (x)
from WT (x) in all cases is apparent and indicates the ePects of parameter
estimation. However, ST (x) and WT (x) are quite close to each other, show-
ing the ePectiveness of the martingale transformations. In particular, the test
statistic CS = max|ST (x)| is close to max|WT (x)|. Furthermore, since WT (x)
and ŴT (x) are symmetric about zero, their graphs should be symmetric about
the middle point xk for k=100. If the null hypothesis is true, the process ST
should also be roughly symmetric about the middle point. These features are
all con3rmed.
To examine the properties of the three empirical processes under the al-

ternative of asymmetry, we consider two samples of 72(2) observations, that
is, Yi ∼ ((72(2) − 2)=2). The 95% con3dence interval is given by [− 2:2; 2:2]
and is also shown in the graphs. From Fig. 2, we see that both WT (x) and
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Fig. 1. Two sample paths of Gaussian observations.

ST show strong evidence of asymmetry in the 3rst sample. Recall that WT (x)
is not observed in general. If one had used max|ŴT (x)| as the test statistic,
one would have falsely accepted symmetry in the 3rst sample because ŴT (x)
evidently lies within the standard error bands for all values of x. However,
the CS lies outside the con3dence band and correctly rejects symmetry. In
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Fig. 2. Two sample paths of 72 observations.

the second sample, evidence of asymmetry is weaker, but the transformed
process ST (x) still indicates asymmetry (in fact, stronger evidence of asym-
metry than WT (x)). This shows that the proposed test has power. Section 3
provides a formal analysis on power.
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3. Power analysis

3.1. Local alternatives

As noted earlier, tests of symmetry based on estimated densities will not
have root-T local power because root-T local departures from a symmetric
density will be smoothed away by kernel smoothing, and the density estimator
will converge to the underlying symmetric density (with a slower rate than√
T ). Although we use kernel smoothing to estimate f and g in the martingale

transformations, our tests do not depend entirely on estimated densities and
hence still have local power. To formally show that this is the case, we
consider alternatives for which the disturbance et forms a triangular array.
The distribution function of this array is described, for t = 1; 2; : : : ; T , by

eTt ∼
(
1− �√

T

)
F(x) +

�√
T
H (x); (8)

where F is the distribution function of a symmetric random variable, and H
is that of an asymmetric random variable. We assume H satis3es Assumption
A1 imposed on F . De3ne v(x) = H (x) + H (−x) − 2H (0). It is easy to see
that v(x) ≡ 0 if and only if H (x) is the distribution function of a symmetric
random variable. But H (x) is asymmetric by assumption, hence v(x) ≡ 0. The
following theorem summarizes the properties of the martingale transformed
processes under the local alternative.

Theorem 3. Assume Assumptions A1–A6 hold. Under the local alternative
of (8); we have

ST (x) ⇒ B(1− 2F(x)) + �[v(x) + :v(x)]; x¡ 0;

ST (x) ⇒ B(2F(x)− 1) + �[v(x) + :v(−x)]; x ¿ 0;

where

:v(x) =
∫ 0

x

[
ḟ(y)

(∫ y

−∞
g(z)2f(z) dz

)−1 ∫ y

−∞
g(z) dv(z)

]
dy:

To show that the proposed tests have local power, we need to establish that
v(x) + :v(x) ≡ 0. Consider the integral equation (or functional relationship):

v(x) + :v(x) ≡ 0: (9)

Obviously, v(x) ≡ 0 is a solution to the above equation. The following lemma
provides a general solution to Eq. (9) and is proved in Bai (2000).
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Lemma 2. The only nonzero solution to the integral equation (9) is v(x) =
a[f(x)− f(0)]; where a = 0 is an arbitrary constant.

A diPerent constant a corresponds to a diPerent solution, but this is the
only class of nonzero solutions to the integral equation. Notice that by the
de3nition of v(x)=H (x)+H (−x)−2H (0), in order for (9) to hold, we must
also have

H (x) +H (−x)− 2H (0) = a[f(x)− f(0)]: (10)

Therefore, to show that the tests have nontrivial power, we need only show
that no asymmetric distribution will satisfy (10) and thus (9) under the main-
tained assumption that E(eTt) = 0. Under the local alternative (8), F(x) is
the distribution function of a symmetric random variable and thus has a
zero mean. That is,

∫
x dF(x) = 0. Under the assumption that E(eTt) = 0,

the distribution H (x) must also have a zero mean. DiPerentiate the identity
(10), multiply by x, and then integrate both sides, we have

∫∞
−∞ xh(x) dx −∫∞

−∞ xh(−x) dx = ∫∞
−∞ aḟ(x) dx, where h(x) is the density of H (x). Each of

the two terms on the left-hand side is zero and the right-hand side is −a,
which shows a=0. But then H (x)+H (−x)−2H (0)=0 by (10), which in turn
implies H (x) is a symmetric distribution, contradicting the assumption on H .
Thus, under the zero-mean restriction on the errors, imposed by Assumption
A1, no asymmetric distribution can satisfy (9). This leads to the following:

Corollary 2. Assume Assumptions A1–A6 hold. Then the proposed tests
have nontrivial local power against all departures from symmetry.

3.2. Fixed alternatives

In this subsection, we show that the proposed tests are consistent against
3xed alternatives and that the tests diverge at the rate of

√
T . Let ;(x)=F(x)+

F(−x) − 2F(0). Under the alternative hypothesis that et has an asymmetric
distribution, ;(x) ≡ 0.

Theorem 4. Assume that Assumptions A1–A6 hold and that et has an asym-
metric distribution. Then

|ST (x)−
√
T [;(x) + :−

; (x)]|=Op(1); x¡ 0

and

|ST (x)−
√
T [;(x)− :+

; (x)]|=Op(1); x¿ 0;
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where Op(1) is uniform over x and

:−
; (x) =

∫ 0

x

[
ḟ(y)

(∫ y

−∞
g(z)2f(z) dz

)−1 ∫ y

−∞
g(z) d;(z)

]
dy;

:+
; (x) =

∫ x

0

[
ḟ(y)

(∫ ∞

y
g(z)2f(z) dz

)−1 ∫ ∞

y
g(z) d;(z)

]
dy:

In addition; the test is consistent.

Again, by Lemma 2, the only class of nonzero solution to the integral
equation ;(x)+:−

; (x) ≡ 0 is given by ;(x)=a[f(x)−f(0)] for some a = 0.
This implies

F(x) + F(−x)− 2F(0) = a[f(x)− f(0)]: (11)

However, no asymmetric distribution can satisfy the above restriction. This
is because the left-hand side of (11) is an even function, implying that f(x)
is an even function. But if f(x) is an even function, then et has a symmetric
distribution and a contradiction is arrived. Thus, under a 3xed alternative,
;(x)+:−

; (x) ≡ 0, and CS−=
√
T maxx¡0 |;(x)+:−

; (x)|+Op(1)=Op(
√
T ). This

establishes the consistency of CS− under a 3xed alternative. Similarly, ;(x)−
:+
; (x) ≡ 0. Thus, all the three tests are consistent. To our knowledge, the

rate of divergence is faster than the existing consistent tests in the literature.

4. Simulations

We 3rst present simulations to assess the size and power of the tests. In
addition to some well-known distributions such as the normal and t, we also
consider distributions from the generalized lambda family. This family en-
compasses a range of symmetric and asymmetric distributions that can be
easily generated since they are de3ned in terms of the inverse of the cumula-
tive distribution F−1(u)=�1+[u�3−(1−u)�4 ]=�2; 0¡u¡ 1. The � parameters
are taken from Table 1 of Randles et al. (1980).

4.1. Testing for symmetry in the demeaned series

In this subsection, we only use a constant as the conditioning variable.
The demeaned data are then standardized to have unit variance. The sizes
of the tests are assessed by drawing random variables from seven symmetric
distributions, which include normal, t5, mixture normal, and four symmetric �
distributions. To assess power, we simulate data from eight asymmetric dis-
tributions, which include lognormal, 72(2), exponential, and 3ve asymmetric �
distributions. The distributions, along with the coe2cient of skewness (�) and
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Table 1
Size of the tests: (H0: symmetry around the mean) (asymptotic nominal size = 0:05)a

T = 50 T = 100 T = 200 � =

CS CS− CS+ CS CS− CS+ CS CS− CS+

S1 0.037 0.011 0.031 0.051 0.023 0.039 0.049 0.026 0.040 0.0 3.0
S2 0.067 0.015 0.057 0.081 0.023 0.069 0.071 0.025 0.056 0.0 9.0
S3 0.042 0.013 0.035 0.042 0.024 0.031 0.045 0.024 0.041 0.0 2.5
S4 0.044 0.028 0.025 0.047 0.024 0.035 0.044 0.022 0.038 0.0 3.0
S5 0.078 0.021 0.065 0.087 0.028 0.069 0.075 0.022 0.066 0.0 6.0
S6 0.106 0.028 0.088 0.110 0.034 0.085 0.091 0.033 0.050 0.0 11.6
S7 0.134 0.036 0.110 0.140 0.029 0.124 0.117 0.045 0.092 0.0 126.0

aNotes: S1: N (0; 1); S2: t5; S3: e1Iz≤0:5 + e2Iz¿0:5, where z ∼ U (0; 1) e1 ∼ N (−1; 1),
and e2 ∼ N (1; 1); S4: F−1(u) = �1 + [u�3 − (1 − u)�4 ]=�2; 0¡u¡ 1; �1 = 0; �2 = 0:19754;
�3 = 0:134915; �4 = 0:134915; S5: F−1(u)= �1 + [u�3 − (1− u)�4 ]=�2; 0¡u¡ 1; �1 = 0; �2 =
−1; �3 =−0:08; �4 =−0:08; S6: F−1(u) = �1 + [u�3 − (1− u)�4 ]=�2; 0¡u¡ 1; �1 = 0; �2 =
−0:397912; �3 =−0:16; �4 =−0:16; S7: F−1(u) = �1 + [u�3 − (1− u)�4 ]=�2; 0¡u¡ 1; �1 =
0; �2 =−1; �3 =−0:24; �4 =−0:240:

Table 2
Power of the tests (based on 5% asymptotic critical values)a

T = 50 T = 100 T = 200 � =

CS CS− CS+ CS CS− CS+ CS CS− CS+

A1 0.977 0.942 0.832 1.000 1.000 0.996 1.000 1.000 1.000 6.18 113.9
A2 0.882 0.803 0.542 0.995 0.991 0.775 1.000 1.000 0.981 2.0 9.0
A3 0.878 0.795 0.541 0.997 0.993 0.759 1.000 1.000 0.982 2.0 9.0
A4 0.566 0.487 0.314 0.850 0.815 0.669 0.9982 0.958 0.998 0.5 2.2
A5 0.418 0.315 0.205 0.697 0.647 0.262 0.972 0.961 0.631 1.5 7.5
A6 0.307 0.177 0.180 0.416 0.350 0.146 0.647 0.626 0.140 2.0 21.2
A7 0.932 0.870 0.664 0.999 0.998 0.870 1.000 1.000 0.997 3.16 23.8
A8 0.961 0.915 0.729 1.000 1.000 0.929 1.000 1.000 0.999 3.8 40.7

aNotes: A1: lognormal: exp(e); e ∼ N (0; 1); A2: 722; A3: exponential: −ln(e); e ∼ U (0; 1);
A4: F−1(u) = �1 + [u�3 − (1− u)�4 ]=�2; 0¡u¡ 1; �1 = 0; �2 = 1:0; �3 = 1:4; �4 = 0:25; A5:
F−1(u)=�1 + [u�3 − (1−u)�4 ]=�2; 0¡u¡ 1; �1 =0; �2 =−1; �3 =−0:0075; �4 =−0:03; A6:
F−1(u) = �1 + [u�3 − (1 − u)�4 ]=�2; 0¡u¡ 1; �1 = 0; �2 = −1; �3 = −0:1; �4 = −0:18; A7:
F−1(u)= �1 + [u�3 − (1− u)�4 ]=�2; 0¡u¡ 1; �1 = 0; �2 =−1; �3 =−0:001; �4 =−0:13; A8:
F−1(u) = �1 + [u�3 − (1− u)�4 ]=�2; 0¡u¡ 1; �1 = 0; �2 =−1; �3 =−0:0001; �4 =−0:17:

kurtosis (=), are given in Tables 1 and 2. The choice of these distributions
is motivated by a number of considerations. First, they are used in previous
studies of testing symmetry and thus provide benchmarks for comparing size
and power. Second, these distributions have a wide range of skewness and
kurtosis and thus should cover the sample skewness and kurtosis of many
economic series encountered in practice. For example, for the empirical data
listed in Table 7, the sample kurtosis is in the range of 3–20, while the
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kurtosis in the simulated data varies from 3 to 130. Third, some of distri-
butions are chosen to evaluate the robustness of test statistics when certain
assumptions are not met. For example, the t5 distribution does not have 3nite
sixth moment, which is required by the �̂ test.

The asymptotic critical values of the tests are 2.78, 2.20, and 1.91 at the
1%, 5%, and 10%, levels, respectively. To conserve space, we only report
the results for the 5% test. The sizes of the tests in Table 1 indicate that
both CS− and CS+ tend to be undersized, but the size of CS is generally
more accurate. Of the seven symmetric distributions considered, the CS is
slightly oversized under S5, with larger size distortions under S6 and S7.
Notice that S6 and S7 have large kurtosis. The results for power are reported
in Table 2. The power being reported is not adjusted for size because the null
hypothesis is satis3ed by a class of distributions (composite hypothesis), each
of which has diPerent size properties. In spite of this caveat, the CS statistic
has substantially more power than CS− or CS+. This is to be expected since
the CS rejects conditional symmetry if either CS− or CS+ rejects, or both.
This gain in power is nontrivial. For example, in the 722 case, the rejection
rate for the CS is over 0.9, while the CS+ rejects only 54% of the time in
small samples.
All tests considered have low power for cases A4–A6. Zheng’s test also has

low power when tested against these alternatives. Note that these distributions
also have large kurtosis. Indeed, the results reported in Randles et al. (1980)
for an unconditional test of symmetry also show the same phenomenon. Thick
tailed distributions seem to pose both size and power problems for testing
skewness, problems that are not unique to our proposed tests. For other asym-
metric distributions, the CS generally has good power even when the sample
size is small. For example, the distributions A7 and A8 were also consid-
ered in Zheng (1998). The CS test has a marked improvement in power over
Zheng’s test for these two distributions. Compared with the results of Fan
and Gencay (1995), who also examined distributions A1–A3, our CS test has
comparable power, rejecting the null hypothesis over 90% of the time even
when the sample size is small. This comparison of power may not be fair
due to the lack of size adjustment. Nevertheless, the CS stacks up well with
tests in the literature that are applicable to i.i.d. data only.

4.2. Testing for conditional symmetry in time series regressions

To consider the size and power of the tests in a more general setting, we
consider the following regression models:

1. yt = a+
∑k

i=1 xit + et ; xit ∼ i.i.d., i = 1; : : : ; k;
2. AR(1): yt = >yt−1 + et ; >= 0:5; 0:8;
3. MA(1): yt = et + >et−1; >= 0:5; 0:8;
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Table 3
Size and power of the CS and �̂ tests: regression model with i.i.d. regressorsa

DGP 1: yt = 1 +
∑k

i=1 Xti + et
Regression: yt = �+

∑k
i=1 Xti�i + et

Model

Test k T 1 2 3 4 5 6

CS 1 50 0.053 0.074 0.042 0.937 0.880 0.980
�̂ 0.035 0.044 0.026 0.510 0.427 0.322
CS 1 100 0.046 0.067 0.038 0.999 0.998 1.000
�̂ 0.043 0.030 0.026 0.753 0.571 0.437
CS 1 200 0.042 0.061 0.044 1.000 1.000 1.000
�̂ 0.039 0.040 0.039 0.898 0.661 0.651

CS 4 50 0.052 0.051 0.030 0.813 0.716 0.783
�̂ 0.047 0.069 0.027 0.592 0.564 0.584
CS 4 100 0.046 0.062 0.042 0.999 0.984 0.994
�̂ 0.045 0.049 0.029 0.811 0.663 0.817
CS 4 200 0.042 0.081 0.037 1.000 1.000 1.000
�̂ 0.047 0.053 0.047 0.911 0.772 0.925

aNotes: Model 1: et ∼ N (0; 1); Model 2: et ∼ t5; Model 3: et ∼ N (−1; 1)Iz¡0:5 +
N (1; 1)Iz¿=0:5; z ∼ U (0; 1); Model 4: et ∼ 722; Model 5: F−1(u) = �1 + [u�3 − (1 −
u)�4 ]=�2; 0¡u¡ 1; �1 = 0; �2 = −1; �3 = −0:001; �4 = −0:13; Model 6: F−1(u) = �1 +
[u�3 − (1− u)�4 ]=�2; 0¡u¡ 1; �1 = 0; �2 =−1; �3 =−0:0001; �4 =−0:17.

4. GARCH(1,1): yt = 1 + ut; ut = tet ; 2t = :0 + :12t−1 + :2u2t−1;
:0 = 2; :1 = 0:5; :2 = 0:3; :0 = 2; :1 = 0:9; :2 = 0:05.

The errors et are drawn from three symmetric distributions (normal, t-
distribution, and mixture normal) to assess size, and from three asymmet-
ric distributions (chi-square, and two lambda distributions) to assess power
(see note to Table 3). After et is drawn, the population mean and standard
deviation of et are used to standardize the series. The models are estimated,
and the estimated residuals are tested for conditional symmetry.
Since the CS test dominates CS+ and CS− on both theoretical and empir-

ical grounds, we only consider the CS test hereafter. Table 3 reports results
based on the least squares residuals of a linear model with a constant and
k i.i.d. variables as regressors. Table 4 reports results using residuals from
least squares estimation of an AR(1) model. Since the sampling properties
of the conditional skewness coe2cient is known when the conditional mean
is estimated by least squares, we also report the size and power of �̂.
Compared to the results in Table 2 which did not include the random

regressors, the power of CS is generally lower in small samples. As in
Fan and Gencay (1995), power also decreases as the number of regressors
increases in small samples. But this is a small sample phenomenon. For
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Table 4
Size and power of the CS and �̂ tests: AR(1)

DGP 2: yt = >yt−1 + et
Regression: yt = �+ �yt−1 + et

Model

Test > T 1 2 3 4 5 6

CS 0.5 50 0.044 0.061 0.032 0.938 0.862 0.908
�̂ 0.033 0.043 0.043 0.489 0.409 0.383
CS 0.5 100 0.046 0.087 0.046 1.000 0.998 1.000
�̂ 0.044 0.033 0.026 0.731 0.560 0.554
CS 0.5 200 0.047 0.071 0.037 1.000 1.000 1.000
�̂ 0.037 0.039 0.046 0.891 0.750 0.660

CS 0.8 50 0.047 0.073 0.035 0.941 0.850 0.899
�̂ 0.024 0.035 0.023 0.489 0.409 0.382
CS 0.8 100 0.047 0.075 0.047 1.000 0.996 0.996
�̂ 0.036 0.042 0.056 0.745 0.582 0.545
CS 0.8 200 0.053 0.066 0.042 1.000 1.000 1.000
�̂ 0.052 0.029 0.047 0.915 0.742 0.679

sample sizes that we are likely to encounter in economic analysis, increasing
the number of regressors should not have implications for power. Evidently,
the CS has good size and power even the autoregressive coe2cient is large.
Comparing the CS with �̂, the size of �̂ is comparable to that of CS

in static regressions (see Table 3). However, in dynamic regressions (Table
4), �̂ tends to be slightly undersized. Most importantly, the power of CS
is always higher than �̂. The conditional skewness coe2cient has power at
T =200 observations comparable to the CS with T =50. There is a nontrivial
trade-oP between power and computation ease. Interestingly, the �̂ test has
correct size for the t5 distribution, even though sixth moment of t5 does not
exist.
Results for MA(1) and GARCH(1,1) are reported in Tables 4– 6. Note that

in the GARCH(1,1) case, it is ê t=û t=̂t that is being tested. The CS generally
has good size and power, correctly rejecting symmetry with probability close
to one when T ¿ 100. Even when T is small, the power is usually well over
70%. The results are robust even when the error process is close to being an
IGARCH.

4.3. Empirical applications

The tests are applied to 21 macroeconomic time series. Data for GDP, the
GDP de6ator, the consumption of durables, 3nal sales, the consumption of
nondurables, residential investment, and nonresidential investment are taken
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Table 5
Size and power of the CS test: MA(1) regressor

DGP 3: yt = et + >et−1
Regression: yt = �+ et + >et−1

Model

> T 1 2 3 4 5 6

0.5 50 0.045 0.060 0.047 0.833 0.780 0.816
0.5 100 0.050 0.084 0.043 0.991 0.987 0.995
0.5 200 0.041 0.065 0.042 1.000 1.000 1.000

0.8 50 0.051 0.062 0.037 0.793 0.740 0.758
0.8 100 0.039 0.090 0.049 0.995 0.980 0.991
0.8 200 0.045 0.063 0.036 1.000 1.000 1.000

Table 6
Size and power of the test: GARCH(1,1) regressor

DGP 4: yt = 1 + ut , ut = ett , 2t = :0 + :12t−1 + :2u2t−1
Regression: GARCH(1,1) with Gaussian likelihood

Modela

: T 1 2 3 4 5 6

(20.0, 0.5, 0.3) 50 0.035 0.072 0.036 0.937 0.884 0.905
(20.0, 0.5, 0.3) 100 0.047 0.080 0.044 0.995 0.989 0.994
(20.0, 0.5, 0.3) 200 0.046 0.069 0.048 1.000 1.000 1.000

(20.0, 0.9, 0.05) 50 0.053 0.093 0.040 0.758 0.810 0.873
(20.0, 0.9, 0.05) 100 0.052 0.060 0.031 0.989 0.989 0.992
(20.0, 0.9, 0.05) 200 0.047 0.097 0.041 1.000 1.000 1.000

aModels 1 to 6 are the same as in Table 3.

from the national accounts and are quarterly data. The unemployment rate,
employment, M2, CPI are monthly series. The 30 day interest rate, and M2
are weekly data. 6 With the exception of the interest rate and the unem-
ployment rate (which we do not take logs), we take 3rst diPerence of the
logarithm of the data. We then estimate an AR(2) model for each series
by least squares. The residuals are then used to test conditional symmetry. 7

We also considered three exchange rates (in logged 3rst diPerences), and the

6 All data (except for the stock returns which are obtained from CRSP) are taken from the
Economic Time Series Page, and URL is vos.business.uab.edu=data.htm.

7 GARCH errors are also considered but we only report results with nonGARCH errors in
order to compare with the skewness coe2cient (�̂) test, which would require a new theory
under GARCH errors. Moreover, the test statistics are found similar with or without GARCH
errors.
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Table 7
Application to macroeconomic dataa

Sample Series CS CS− CS+ �̂ �̂ =̂

71:1-97:12 Canada–US ex. rate 1.896 1.896 1.186 1.554 0.226 3.139
71:1-97:12 German–US ex. rate 0.814 0.643 0.814 −0:644 −0:134 3.499
71:1-97-12 Japan–US ex. rate 3.968 3.033 3.968 −2:369 −0:481 3.905
48:1-97:12 Unemployment rate 0.750 0.750 0.719 0.074 0.015 9.476
46:1-97:12 Ind. prod. 1.233 1.178 1.233 1.659 0.963 12.322
59:1-97:4 In6ation (GDP) 1.021 1.021 0.739 0.598 0.175 4.475
59:1-97:4 GDP 0.756 0.586 0.756 −0:633 −0:275 4.830
47:1-97:12 In6ation (CPI) 2.283 2.283 1.607 1.181 0.799 8.059
92:01:03-96:05:10 30 day int. rate 0.949 0.949 0.882 0.978 0.930 10.376
92:01:06-96:05:13 M2 0.863 0.832 0.863 −0:167 −0:025 3.013
59:3-96:4 Con. durables 2.641 2.115 2.641 −1:958 −0:854 5.116
59:3-96:4 Con. non-durables 1.117 0.806 1.117 0.785 0.260 4.454
46:1-96:11 Employment 1.504 1.022 1.504 −1:615 −0:299 3.778
69:3-97:4 Investment 0.568 0.392 0.568 −1:440 −0:724 5.716
46:1-97:12 Manu. employment 2.256 1.013 2.256 −0:326 −0:239 18.125
46:1-97:12 Non-Manu. employment 1.330 0.891 1.330 1.007 0.302 8.281
59:3-97:4 Final sales 0.988 0.954 0.988 0.416 0.257 5.893
59:3-97:4 Non-resid. invest 2.190 1.479 2.190 −0:891 −0:273 3.825
59:3-97:4 Resid. invest 0.906 0.906 0.687 −0:555 −0:211 5.203
90:01:02-96:12:31 Stock returns(V) 1.795 1.795 1.394 −2:426 −0:421 5.202
90:01:02-96:12:31 Stock returns(E) 5.577 3.998 5.577 −2:466 −0:594 7.864

aNote: The critical values for the CS tests are 2.78, 2.20 and 1.91 at the 1, 5, and 10% levels respectively. The two tailed critical values for
�̂ are ±2:32, 1.96, and 1.64. (V) denotes value weighted, and (E) denotes equal weighted, both exclude dividends.
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value as well as the equal weighted CRSP daily stock returns. For these 3nan-
cial series, we simply remove the mean. The sample skewness and kurtosis
coe2cients for the 21 series of estimated residuals are also reported.
The results in Table 7 indicate evidence of conditional asymmetry at the

1% level in the Japan–US exchange rate and equal weighted stock returns, at
the 5% level for the CPI in6ation, consumption of durables and manufacturing
employment, and at the 10% level for nonresidential investment. The statistics
for the US=Canada exchange rate and value weighted stock returns are also
close to being signi3cant at the 10% level. The evidence for the Japan–US
exchange rate, stock returns, and durables is particularly convincing because
the CS+ and CS− reject the null hypothesis. The 3ndings for 3nancial series
are consistent with those of French et al. (1987). Hsieh (1988) 3nds that the
residuals from an exchange rate model with conditional heteroskedasticity are
skewed. Our test, which takes into account that estimated residuals are used in
the testing, corroborates his evidence. The 3nding that investment, durables,
and manufacturing employment reject conditional symmetry is also interesting
because the dynamics of these series are often believed to be aPected by 3xed
costs of adjustments.
We also apply the �̂ statistic to each of the 21 series. Consistent with the

CS test, �̂ also rejects conditional symmetry in the Japan–US exchange rate,
consumption durables, and equal weighted stock returns. However, �̂ cannot
reject conditional symmetry in CPI in6ation and manufacturing employment.
The only case when �̂ rejects and the CS does not is the value weighted
stock returns.
It is useful to put into perspective these results for conditional symme-

try vis-Wa-vis the evidence for cyclical asymmetry in the macroeconomic lit-
erature. If Xt is an ARMA process, it can equivalently be represented as
Xt=

∑∞
i=0 aiet−i : It follows that if et is symmetric, Xt will also be symmetric.

Our evidence of conditional symmetry in US output growth and industrial
production is consistent with the evidence of Delong and Summers (1982)
for unconditional symmetry in the two series. We note that, however, if et is
asymmetric, it does not necessarily imply Xt is asymmetric.

5. Conclusion

In this paper, we propose a consistent test for conditional symmetry in
dynamic models. Unlike other tests that exist in the literature, the CS test is
valid whether or not the data are i.i.d. and is suited for time series appli-
cations. The proposed test is asymptotically distribution free and, in general,
has good 3nite size and power properties.
We also consider the use of the skewness coe2cient in testing for con-

ditional symmetry. Although the skewness coe2cient is less powerful than
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the CS test, it is still quite useful for two reasons. The 3rst is computa-
tion ease. Second, it is conceivable that the CS test may miss asymmetry in
small samples, whereas skewness coe2cient can identify it. This is because
consistent tests have to take into account departures from symmetry over all
directions, whereas the skewness coe2cient delivers its best power at one
particular direction, the third moment.
In terms of computation, the proposed test has a high one-time program-

ming cost, but in some sense it actually demands less work from applied
researchers than does the skewness coe2cient test. This is because the only
required input for the test is the estimated residuals. Given the residuals, the
construction of the test does not depend on the speci3cation of conditional
mean or conditional variance. Thus, the same computer code can be used for
all speci3cations. 8 In contrast, to construct the �̂ test, the asymptotic variance
of the estimated skewness coe2cient (�̂) must be derived case by case be-
cause it varies with model speci3cations and estimation methods. Once these
issues are taken into account, the proposed test is more versatile and should
serve as a useful complement to the skewness coe2cient or other tests for
symmetry in the literature.
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Appendix A. Proofs

Proof of Lemma 1. First we derive the variance and covariance function
for the process WT (x). For x; y 6 0, it is straightforward to show that
EWT (x)WT (y) = E{[I(et 6 x) − I(−et 6 x)][I(et 6 y) − I(−et 6 y)]} =
2F(x ∧ y), where x ∧ y = min{x; y}. The 3nite dimensional convergence of
WT (x) to normal random variables and tightness follow from standard empir-
ical process theorems. Thus, WT (x) converges weakly to a Gaussian process.
Because a time-scaled Brownian motion B(2F(x)) has the same variance and
covariance function as WT (x), it follows that WT (x) ⇒ B(2F(x)). Similarly,
for x ¿ 0; y ¿ 0, EWT (x)WT (y) = E{[I(et 6 x) − I(−et 6 x)][I(et 6
y)− I(−et 6 y)]}=2[1−F(x∨y)], where x∨y=max{x; y}. A time-scaled

8 The code is available from the authors upon request.
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Brownian motion B(2[1−F(x)]) has the same variance and covariance func-
tion as WT (x), we have WT (x) ⇒ B(2[1− F(x)]) (for x ¿ 0).

To prove Theorem 2, we need a number of lemmas.

Lemma A.1. Let B(r) be a standard Brownian motion on [0; 1] and let g
be a function on [0; 1] such that

∫ 1
s g

2(v) dv¿ 0 for every s ∈ [0; 1). Then

J (r) = B(r)−
∫ r

0


g(s)

(∫ 1

s
g(v)2 dv

)−1 ∫ 1

s
g(v) dB(v)


 ds

is also a standard Brownian motion on [0; 1].

Proof. J (r) is Gaussian because it is a linear transformation of B(r).
Elementary calculation (although tedious) shows that EJ (r)J (s) = r ∧ s.

Lemma A.2. Let B(r) be a standard Brownian motion on [0; 1] and let g
be a function on [0; 1] such that

∫ s
0 g(v)

2 dv¿ 0 for every s ∈ (0; 1]. Then

J (r) = B(r)− B(1) +
∫ 1

r

[
g(s)

(∫ s

0
g(v)2 dv

)−1 ∫ s

0
g(v) dB(v)

]
ds

is a time-reversed Brownian motion on [0; 1]. That is; EJ (r)J (s)=1−(r∨s).

Proof. Again this follows from a direct calculation showing that EJ (s)J (r)=
1− (s ∨ r).

Lemma A.3. Let B(r) be a standard Brownian motion on [0; 1] and let H (x)
be a distribution function with density function h and H (0) = 1=2.
(i) Let g(x) be a function de"ned on (−∞; 0] such that

∫ y
−∞ g(v)2h(v) dv

¿ 0 for every y 6 0. De"ne W (x) = B(2H (x)) (for x 6 0). Then the
process J− de"ned as

J−(x) =W (x)−W (0)

+
∫ 0

x

[
g(y)h(y)

(∫ y

−∞
g(v)2h(v) dv

)−1 ∫ y

−∞
g(v) dW (v)

]
dy

is a zero-mean Gaussian process on (−∞; 0] with EJ−(x)J−(y)=1−2H (x∨
y). So J−(x) is time-scaled and time-reversed Brownian motion on (−∞; 0].
(ii) Let g(x) be a function de"ned on [0;∞) such that

∫∞
y g(v)2h(v) dv¿ 0

for every y ¿ 0. De"ne W (x)=B(2[1−H (x)]) (for x ¿ 0). Then the process
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J+ de"ned as

J+(x) =W (x)−W (0)

−
∫ x

0

[
g(y)h(y)

(∫ ∞

y
g(v)2h(v) dv

)−1 ∫ −∞

y
g(v) dW (v)

]
dy

is a zero-mean Gaussian process on [0;∞) with variance–covariance function
EJ+(x)J+(y) = 2H (x ∧ y)− 1 (for x; y ¿ 0). Thus J+(x) is a time-rescaled
Brownian motion on [0;∞).

Remark. We can write J−(x) d=B(1 − 2H (x)) because they have the same
variance–covariance function. Note that the argument of B is 1− 2H (x) not
2[1−H (x)]. Similarly, we can write J+(x) d=B(2H (x)− 1).

Proof. Part (i) follows from a change in variable (r = 2H (x)) and Lemma
A.2. Part (ii) follows from a change in variable and Lemma A.1.

Lemma A.4. Let B(r) and H (x) be the same as in the above lemma. Sup-
pose that WT (x) is a sequence of stochastic process such that WT (x) ⇒
B(2H (x)) for x 6 0 and WT (x) ⇒ B(2[1 − 2H (x)]) for x ¿ 0. De"ne J−

T
as in Lemma A:3 part (i) but with W (·) replaced by WT (·) in the transfor-
mation. De"ne J+

T as in Lemma A:3 part (ii); but again replacing W (·) by
WT (·). Then

J−
T ⇒ J− d=B(1− 2H (·))

and

J+
T ⇒ J+ d=B(2H (·)− 1)

Proof. This follows from the continuous mapping theorem and Lemma A.3.
Also see the Remark above.

Note that the sequence WT with the said property occurs in Lemma 1.

Lemma A.5. Let WT satisfy the conditions of Lemma A:4. Suppose that gT
and hT are estimates of g and h; respectively; such that∫ ∞

−∞
(hT − h)2 dx = op(1) and

∫ ∞

−∞
(gT − g)2 dH = op(1):

De"ne

J̃
−
T (x) =WT (x)−WT (0) +

∫ 0

x
gT (y)hT (y)(∫ y

−∞
gT (v)2hT (v) dv

)−1 ∫ y

−∞
gT (v) dWT (v) dy
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and

J̃
+
T (x) =WT (x)−WT (0)−

∫ x

0
gT (y)hT (y)(∫ ∞

y
gT (v)2hT (v) dv

)−1 ∫ −∞

y
gT (v) dWT (v) dy:

Then

J̃
−
T (x) = J−

T (x) + op(1); and J̃
+
T (x) = J+

T (x) + op(1); (A.1)

where op(1) is uniform over x; and J−
T and J+

T are de"ned in Lemma A:4.
Therefore;

J̃
−
T (x) ⇒ B(1− 2H (x)); and J̃

+
T (x) ⇒ B(2H (x)− 1): (A.2)

Proof. Eq. (A.1) is implied by the result of Bai (2000, Theorem 2).
Eq. (A.2) follows from Eq. (A.1) and Lemma A.4.

This lemma says when g and h are consistently estimated, the limiting
distribution will not be aPected.
The following lemma is concerned with the residual empirical process. Let

Û
+
T (x) = T−1=2∑T

t=1 [I(ê t 6 x)− F(x)] be as de3ned in the text.

Lemma A.6. Under Assumptions A1–A5; we have

Û
+
T (x) =U+

T (x) + f(x)(1T + xf(x)(2T + op(1); (A.3)

where

(1T =
1
T

T∑
t=1

@ht
@�

(�0)′
√
T (�̂ − �0)=t (A.4)

and

(2T =
1
T

T∑
t=1

@ log t(�0)
@�

√
T (�̂− �0):

Proof. Let ̂t=(�̃t ; �̂); ĥt=h(�̃t ; �̂); t=(�t; �0), and ht=h(�t; �0). From
ê t = [Yt − ĥt]=̂t = [tet − (ĥt − ht)]=̂t , we have ê t6 x if and only if et6
x(1 + (̂t − t)=t) + (ĥt − ht)=t . From Theorem A:2 of Bai (1996), with
at =

√
T (̂t − t)=t and bt =

√
T (ĥt − ht)=t , we obtain

Û
+
T (x) =U+

T (x) + f(x)
1
T

T∑
t=1
bt + xf(x)

1
T

T∑
t=1
at + op(1):

It is easy to show that, under Assumptions A2–A5, (1T − (1=T )
∑

t bt = op(1)
and (2T − (1=T )

∑
t at = op(1).
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Proof of Theorem 2. Note that ŴT (x) = Û
+
T (x) − Û

−
T (x); where Û

+
T (x) =

T−1=2 ∑T
t=1 [I(ê t 6 x)−F(x)] and Û

−
T (x)=T−1=2∑T

t=1 [I(−ê t 6 x)−F(x)].
From I(−ê t 6 x)−F(x)=I(ê t ¿ −x)−F(x), we have 1−I(ê t ¡−x)−F(x)=
−{I(ê t ¡− x)−F(−x)} since 1−F(x)=F(−x) under symmetry. Therefore
Û

−
T (x) = −Û+

T (−x) (a.s.) under symmetry. Similarly, U−
T (x) = −U+

T (−x). It
follows from (A.3) that

Û
−
T (x) =U−

T (x)− f(−x)(1T − (−x)f(−x)(2T + op(1): (A.5)

Take the diPerence of (A.3), (A.5), and use f(x)=f(−x) and WT=U+
T −U−

T ,
we obtain

ŴT (x) =WT (x) + 2f(x)(1T + op(1): (A.6)

Next we consider transforming ŴT (x) − ŴT (0) for x 6 0. Because fT (x) −
f(x) = op(1) uniformly in x by Assumption A:6, we can rewrite (A.6) as

ŴT (x) =WT (x) + 2fT (x)(1T + op(1); (A.7)

from which we have (subtracting Ŵ (0) = WT (0) + 2fT (0)(1T + op(1) from
above)

ŴT (x)−ŴT (0) =WT (x)−WT (0)+2[fT (x)−fT (0)](1T +op(1): (A.8)

De3ne the mapping :T : B ∈ D[0; 1] → C[0; 1],

:T (B)(x) =
∫ 0

x
gT (y)fT (y)

(∫ y

−∞
gT (v)2fT (v) dv

)−1

∫ y

−∞
gT (v) dB(v) dy: (A.9)

Then :T is a linear mapping with :T (c) = 0 for any constant c (or random
variable not depending on x). In addition, :T (fT )(x)=

∫ 0
x ḟ T (y) dy=fT (0)−

fT (x). Note that ST (x) in Eq. (6) can be equivalently rewritten as ST (x) =
ŴT (x)− ŴT (0) + :T (ŴT )(x). By the linearity property of :T and (A.7), we
have

:T (ŴT ) =:T (WT ) + :T (fT )2(1T + op(1)

=:T (WT ) + [fT (0)− fT (x)]2(1T + op(1): (A.10)

Thus, for x¡ 0,

ST (x) = ŴT (x)− ŴT (0) + :T (ŴT )(x)

= WT (x)−WT (0) + 2[fT (x)− fT (0)](1T + op(1) by (A:8)

+:T (WT )(x) + [fT (0)− fT (x)]2(1T + op(1) by (A:10)

= WT (x)−WT (0) + :T (WT )(x) + op (1)
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= J̃
−
T (x) + op replacing hT by fT in Lemma A:5

⇒ B(1− 2F(x)) by Lemma A:5:

The proof of weak convergence of ST (x) (for x¿ 0) to B(2F(x) − 1) is
the same. The convergence of CS−

T and CS+
T follows from the continuous

mapping theorem. This completes the proof of Theorem 2.

Proof of Theorem 3. Let KT (x)=(1−�=√T )F(x)+�=√TH (x). By (8), eTt ∼
KT (x). It is easy to show that −eTt ∼ GT (x), where GT (x)=KT (x)+ (�=

√
T )

[1−H (x)−H (−x)]. De3ne

Z+
T (x) = T−1=2

T∑
t=1

[I(eTt 6 x)− KT (x)];

Ẑ
+
T (x) = T−1=2

T∑
t=1

[I(ê Tt 6 x)− KT (x)]

and

Z−
T (x) = T−1=2

T∑
t=1

[I(−eTt 6 x)−GT (x)];

Ẑ
−
T (x) = T−1=2

T∑
t=1

[I(−ê Tt 6 x)−GT (x)]:

Again, using the results of Bai (2000 or 1996), we have

Ẑ
+
T (x) = Z+

T (x) + f(x)(1T + xf(x)(2T + op(1); (A.11)

where (1T and (2T are de3ned earlier. Eq. (A:11) is similar to (A:5). Note
that although Z+

T (x) involves KT (x) rather than F(x), we have KT (x)=F(x)+
O(T−1=2) and dKT (x)=dx = f(x) + O(T−1=2). This explains the presence of
f(x) in (A.11). We next consider the asymptotic representation for Ẑ

−
T (x).

Notice that I(−ê Tt 6 x) − GT (x) = 1 − I(ê Tt ¡ − x) − GT (x) = −[I(ê Tt ¡ −
x) − KT (−x)] because 1 − GT (x) = KT (−x). Thus Ẑ−

T (x) = −Ẑ+
T (−x) (a.s.),

and hence from (A:11) (replacing x by −x),
Ẑ
−
T (x) = Z−

T (x)− f(−x)(1T − (−x)f(−x)(2T + op(1): (A.12)

Adding and subtracting KT (x) and GT (x), we have

ŴT (x) =
1√
T

T∑
t=1

[I(ê Tt 6 x)− I(−ê Tt 6 x)]

= Ẑ
+
T (x)− Ẑ

−
T (x) + T 1=2[KT (x)−GT (x)]

= Z+
T (x)− Z−

T (x) + 2f(x)(1T from (A:11) and (A:12)

+ �[H (x) +H (−x)− 1] + op(1):
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The last expression follows from T 1=2[KT (x) − GT (x)] = �[H (x) + H (−x) −
1]. Let WT (x) = Z+

T (x) − Z−
T (x), then WT (x) ⇒ B(2F(x)) for x 6 0 and

WT ⇒ B(2[1 − F(x)]) for x¿ 0. This is true because the 3nite dimensional
convergence and tightness for Z+

T and Z−
T are guaranteed by the standard

empirical process theory. Moreover, for x; y 6 0; EWT (x)WT (y) = KT (x ∧
y)−KT (x)KT (y) +GT (x ∧ y)−GT (x)GT (y) +GT (x)KT (y) +KT (x)GT (y) →
2F(x ∧ y) because KT (x) → F(x) and GT (x) → F(x). This yields the weak
convergence of WT (x) for x¡ 0. Similarly, for x¿ 0; WT (x) ⇒ B(2[1−F(x)].
In summary,

ŴT (x) =WT (x) + 2f(x)(1T + �[H (x) +H (−x)− 1] + op(1); (A.13)

with WT converging weakly to a (time-rescaled) Brownian motion process
for both x¡ 0 and x¿ 0. Subtracting ŴT (0) from above we obtain

ŴT (x)− ŴT (0) =WT (x)−WT (0) + 2[f(x)− f(0)](1T

+ �v(x) + op(1);

where v(x)=H (x)+H (−x)− 2H (0). Under the local alternative hypothesis,
we can still construct consistent estimates for f(x) and g(x) = ḟ=f. The
reason is that we can write ê Tt=+t+Op(T−1=2), where +t ∼ F(x). To see this,
from eTt ∼ (1−�T−1=2)F(x)+(�T−1=2)H (x), we can write eTt=+t+BTt , where
BTt = 0 with probability 1 − �=

√
T and BTt = at − +t with probability �=

√
T ,

here +t and at are independent such that +t ∼ F(x) and at ∼ H (x). Hence,
BTt=Op(T−1=2). In addition, the estimated residuals satisfy ê Tt=eTt+Op(1=

√
T )

and thus ê Tt=+t+Op(1=
√
T ). Let fT and gT are estimates of f and g. De3ne

the mapping :T as in (A.9). Then using the same argument as in the proof
of Theorem 2, we have for x¡ 0,

ŴT (x)− ŴT (0) + :T (ŴT )(x)

=WT (x)−WT (0) + :T (WT )(x) + �v(x) + �:T (v)(x) + op(1):

By Lemma A.4, WT (x) − WT (0) + :T (WT )(x) ⇒ B(1 − 2F(x)). In addition,
:T (v)(x) → :v(x), which is de3ned in Theorem 3. Thus,

ST (x) ⇒ B(1− 2F(x)) + �v(x) + �:v(x);

obtaining the result for x¡ 0. Similar argument shows that for x¿ 0,

ST (x) ⇒ B(2F(x)) + �v(x)− �:∗
v (x);

where

:∗
v (x) =

∫ x

0

[
ḟ(y)

(∫ ∞

y
g(z)2f(z) dz

)−1 ∫ ∞

y
g(z) dv(z)

]
dy:

It can be shown that :∗
v (x) = −:v(−x) (follows from the fact that f and v

are even functions and g is an odd function). This obtains Theorem 3 for
x¿ 0. The proof of Theorem 3 is complete.
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Proof of Theorem 4. From I(−ê t 6 x) = 1− I(ê t 6 x) (a.s.), we have

ŴT (x) =
1√
T

T∑
t=1

[I(ê t 6 x)− I(−ê t 6 x)]

=
1√
T

T∑
t=1

[I(ê t 6 x)− F(x)]

+
1√
T

T∑
t=1

[I(ê t 6 −x)− F(−x)] +
√
T [F(x) + F(−x)− 1]

= Û
+
T (x) + Û

+
T (−x) +

√
T [F(x) + F(−x)− 1];

where Û
+
T (x) is de3ned earlier. Apply Lemma A.6 twice with x and −x,

respectively, we have

ŴT (x) =WT (x) + [f(x) + f(−x)](1T + x[f(x)− f(−x)](2T
+
√
T;1(x) + op(1);

where ;1(x)=F(x)+F(−x)− 1 and WT (x)=U+
T (x)+U+

T (−x), which again
converges weakly to a Brownian motion. In passing, it is pointed out that
the above equation reduces to (A.7) under the null hypothesis of symmetric
distribution. Similar to (A.8), we have

ŴT (x)− ŴT (0) =WT (x)−WT (0) + [f(x) + f(−x)− 2f(0)](1T

+ x[f(x)− f(−x)](2T +
√
T;(x) + op(1); (A.14)

where ;(x)=F(x)+F(−x)− 2F(0). To obtain ST (x), we apply the transfor-
mation :T (·) [see (A.9)] to ŴT (x) − ŴT (0) for x¡ 0. Except for the term√
T;(x), all terms on the right-hand side of (A.14) are stochastically bounded.

They are still stochastically bounded after the martingale transformation (it
is no longer important as to whether the terms involving (1T and (2T can be
eliminated from the transformation). The dominating term after transforma-
tion is

√
T [;(x) + :T (;)(x)]. From :T (;)(x) → :−

; (x), which is de3ned in
Theorem 4, we have ST (x) =

√
T [;(x) +:−

; (x)] +Op(1). This completes the
proof of Theorem 4 for x¡ 0. The proof for x¿ 0 is similar and is omitted.
Unlike the case of local alternatives, :−

; (x) and :+
; (x) do not necessarily

have any relationship because f is no longer an even function under the
alternative hypothesis.

Appendix B. Computation of the statistic

To compute the test statistic, we need to evaluate ŴT (x) and h±T (x). For
every given x, ŴT (x) is simply the diPerence between the number of ê t and
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the number of −ê t less than or equal to x, then divided by
√
T . To evaluate

h±T (x), we need to estimate the density f and its derivative g. They are
estimated by nonparametric method (see below for details), and are denoted
by fT and gT , respectively. Consider 3rst the terms

∫ y
−∞ gT (z) dŴT (z) and∫∞

y gT (z) dŴT (z). Note that these can equivalently be represented as∫ y

−∞
gT dŴT =

1√
T

T∑
t=1

[gT (ê t)I(ê t 6 y)− gT (−ê t)I(−ê t 6 y)];

and ∫ ∞

y
gT dŴT =

1√
T

T∑
t=1

[gT (ê t)(ê t ¿ y)− gT (−ê t)I(−ê t ¿ y)]:

Next, the integration (over z) of gT (z)2fT (z) is approximated by summations.
After obtaining h±T (y) [see Eqs. (6) and (7)], the integration of

∫ 0
x h

±
T (y) dy

is also approximated by summations. This makes the computation straightfor-
ward. Simulations show that the size and power of the tests are not aPected by
these approximations. Finally, the maximum of ST (x) is obtained by searching
over 2T ordered data points of ê t and −ê t (t = 1; 2; : : : ; T ).
When estimating the density and its derivative, we use the Gaussian kernel

with a plug-in bandwidth as discussed in Silverman (1986). For the Gaus-
sian kernel, the bandwidth which minimizes the approximate mean integrated
squared error in estimating the density is given by 1:06T−1=5, where T is
the sample size, and  is the standard error of the variable whose density
is to be estimated. All the simulation and empirical results are obtained us-
ing this systematic choice of bandwidth. However, in results unreported, we
increase and decrease the bandwidth by as much as 20% and the size and
power functions are robust to such variations in the bandwidth. Gauss and
Splus programs are available from the authors on request.
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