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a b s t r a c t

This paper studies estimation of panel cointegration models with cross-sectional dependence generated
by unobserved global stochastic trends. The standard least squares estimator is, in general, inconsistent
owing to the spuriousness induced by the unobservable I(1) trends. We propose two iterative procedures
that jointly estimate the slope parameters and the stochastic trends. The resulting estimators are referred
to respectively as CupBC (continuously-updated and bias-corrected) and the CupFM (continuously-
updated and fully-modified) estimators. We establish their consistency and derive their limiting
distributions. Both are asymptotically unbiased and (mixed) normal and permit inference to be conducted
using standard test statistics. The estimators are also valid when there are mixed stationary and non-
stationary factors, as well as when the factors are all stationary.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

This paper is concerned with estimating panel cointegration
models using a large panel of data. Our focus is on estimating
the slope parameters of the non-stationary regressors when the
cross sections share common sources of non-stationary variation
in the form of global stochastic trends. The standard least squares
estimator is either inconsistent or has a slow convergence rate.
We provide a framework for estimation and inference.We propose
two iterative procedures that estimate the latent common trends
(hereafter factors) and the slope parameters jointly. The estimators
are

√
nT consistent and asymptotically mixed normal. As such,
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inference can be made using standard t and Wald tests. The
estimators are also valid when some or all of the common factors
are stationary, and when some of the observed regressors are
stationary.

Panel data have long been used to study and test economic
hypotheses. Panel data bring in information from two dimensions
to permit analysis that would otherwise be inefficient, if not
impossible, with time series or cross-sectional data alone. A new
development in recent years is the use of ‘large dimensional
panels’, meaning that the sample size in the time series (T ) and
the cross-section (n) dimensions are both large. This is in contrast
to traditional panels in which we have data of many units over
a short time span, or of a few variables over a long horizon.
Many researchers have come up with new ideas to exploit the
rich information in large panels.1 However, large panels also raise
econometric issues of their own. In this analysis, we tackle two
of these issues: the data (yit , xit) are non-stationary, and the

1 See, for example, Baltagi (2005), Hsiao (2003), Pesaran and Smith (1995), Kao
(1999), and Moon and Phillips (2000, 2004) in the context of testing the unit root
hypothesis using panel data. Stock and Watson (2002) suggest diffusion-index
forecasting, while Bernanke and Boivin (2003) suggest new formulations of vector
autoregressions to exploit the information in large panels.

0304-4076/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
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structural errors eit = yit − x′
itβ are neither iid across i nor

over t . Instead, they are cross-sectionally dependent and strongly
persistent and possibly non-stationary. In addition, eit are also
correlated with the explanatory variables xit . These problems are
dealt with by putting a factor structure on eit and modelling the
factor process explicitly.

The presence of common sources of non-stationarity leads
naturally to the concept of cointegration. In a small panel made up
of individually I(1) (or unit root) processes yt and xt , where small
means that the dimension of yt plus the dimension of xt is treated
as fixed in asymptotic analysis, cointegration as defined in Engle
and Granger (1987) means that there exists a cointegrating vector,
(1 −β ′), such that the linear combinations yt −x′

tβ are stationary,
or are I(0) processes. In a panel datamodel specified by yit = x′

itβ+
eit where yit and xit are I(1) processes, and that eit are iid across
i, cointegration is said to hold if eit are ‘jointly’ I(0), or in other
words, (1, −β) is the common cointegrating vector between yit
and xit for all n units. A large literature already exists2 formodelling
panel cointegration when eit is cross-sectionally independent. A
serious drawback of panel cointegrationmodelswith cross-section
independence is that there is no role for common shocks, which,
in theory should be the underlying source of co-movement in
the cross-section units. Failure to account for common shocks can
potentially invalidate estimation and inference of β .3 In view of
this, more recent work has allowed for cross-sectional dependence
of eit when testing for the null hypothesis of panel cointegration.4
There is also a growing literature on panel unit root tests with
cross-sectional dependence.5

In this paper, we consider estimation and inference of
parameters in a panel model with cross-sectional dependence in
the form of common stochastic trends. The framework we adopt
is that eit has a common component and a stationary idiosyncratic
component. That is, eit = λ′

iFt + uit , so that panel cointegration
holds when uit = yit − βxit − λ′

iFt is jointly stationary. A
regression of yit on xit will give a consistent estimator for β
when Ft is I(0). We focus on estimation and inference about β
when Ft is non-stationary. Empirical studies suggest the relevance
of such a setup. Holly et al. (2006) analyzed the relationship
between real housing prices and real income at the state level,
allowing for unobservable common factors. They found evidence of
cointegration after controlling for common factors and additional
spatial correlations. Some economic models lead naturally to this
set up. Consider a panel of industry data on output and factor
inputs such as capital, and labor. Neoclassical production function
suggests that log output yit is linear in log factor inputs xit and
log productivity eit . Decomposing the latent eit into the industry
wide component Ft and an industry specific component uit and
assuming that Ft is the source of non-stationarity leads to a model
with latent common trends. In such a case, a regression of yit on
xit is spurious since eit is not only cross-sectionally correlated, but
also non-stationary.

Wedealwith theproblemby treating the common I(1) variables
as parameters. These are estimated jointly with β using an iterated

2 See, for example, Phillips and Moon (1999) and Kao (1999). Recent surveys can
be found in Baltagi and Kao (2000) and Breitung and Pesaran (2005).
3 Andrews (2005) showed that cross-section dependence induced by common

shocks can yield inconsistent estimates. Andrews’ argument is made in the context
of a single cross section and for stationary regressors and errors. For a single cross
section, not much can be done about common shocks. But for panel data, we can
explore the common shocks to yield consistent procedures.
4 See, for example, Phillips and Sul (2003), Gengenbach et al. (2005b), and

Westerlund (2006).
5 For example, Chang (2002, 2004), Choi (2006), Moon and Perron (2004),

Breitung and Das (2008), Gengenbach et al. (2005a), Westerlund and Edgerton
(2005), Bai and Ng (2004), and Pesaran and Yamagata (2006). Breitung and Pesaran
(2005) provide additional references in their survey.

procedure. The procedure is shown to yield a consistent estimator
of β , but the estimator is asymptotically biased. We then construct
two estimators to account for the bias arising from endogeneity
and serial correlation so as to re-center the limiting distribution
around zero. The first, denoted CupBC, estimates the asymptotic
bias directly. The second, denoted CupFM,modifies the data so that
the limiting distribution does not depend on nuisance parameters.
Both are ‘continuously-updated’ (Cup) procedures and require
iteration till convergence. The estimators are

√
nT consistent for

the common slope coefficient vector, β . The estimators enable the
use of standard test statistics such as t , F , and χ2 for inference. The
estimators are robust to mixed I(1)/I(0) factors, as well as mixed
I(1)/I(0) regressors. Thus, our approach is an alternative to the
solution proposed in Bai and Kao (2006) for stationary factors. As
we argue below, the Cup estimators have some advantages that
make an analysis of their properties interesting in its own right.

The rest of the paper is organized as follows. Section 2 describes
the basicmodel of panel cointegrationwith unobservable common
stochastic trends. Section 3 develops the asymptotic theory for
the continuously-updated and fully-modified estimators. Section 4
examines issues related to incidental trends, mixed I(0)/I(1)
regressors andmixed I(0)/I(1) common shocks. Section 5 presents
Monte Carlo results to illustrate the finite sample properties of
the proposed estimators. Section 6 provides a brief conclusion.
Appendix A contains the technical materials. A detailed technical
appendix is given in Bai et al. (2006).

2. The model

Consider the model

yit = x′
itβ + eit ,

where for i = 1, . . . , n, t = 1, . . . , T , yit is a scalar,

xit = xit−1 + εit (1)

is a set of k non-stationary regressors, β is a k × 1 vector of the
common slope parameters, and eit is the regression error. Suppose
eit is stationary and iid across i. Then it is easy to show that the
pooled least squares estimator of β defined by

β̂LS =
(

n∑

i=1

T∑

t=1

xit x′
it

)−1 n∑

i=1

T∑

t=1

xityit (2)

is, in general, T consistent.6 Similar to the case of time series
regression considered by Phillips and Hansen (1990), the limiting
distribution is shifted away from zero due to an asymptotic bias
induced by the long-run correlation between eit and εit . The
exception is when xit is strictly exogenous, in which case the
estimator is

√
nT consistent. The asymptotic bias can be estimated,

and a panel fully-modified estimator can be developed along the
lines of Phillips andHansen (1990) to achieve

√
nT consistency and

asymptotic normality.
The cross-section independence assumption is restrictive and

difficult to justify when the data under investigation are economic
time series. In view of co-movements of economic variables
and common shocks, we model the cross-section dependence by
imposing a factor structure on eit . That is,

eit = λ′
iFt + uit ,

where Ft is an r × 1 vector of latent common factors, λi is an
r × 1 vector of factor loadings and uit is the idiosyncratic error.
If Ft and uit are both stationary, then eit is also stationary. In this

6 The estimator can be regarded as
√
nT consistent butwith a bias of orderO(

√
n).

Up to the bias, the estimator is also asymptotically mixed normal.
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case, a consistent estimator of the regression coefficients can still
be obtained even when the cross-section dependence is ignored,
just like the fact that simultaneity bias is of second order in the
fixed n cointegration framework. Using this property, Bai and Kao
(2006) considered a two-step fully-modified estimator (2sFM). In
the first step, pooled OLS is used to obtain a consistent estimate of
β . The residuals are then used to construct a fully-modified (FM)
estimator along the line of Phillips and Hansen (1990). Essentially,
nuisance parameters induced by cross-section correlation are dealt
with just like serial correlation by suitable estimation of the long-
run covariance matrices.

The 2sFM treats the I(0) common shocks as part of the error
processes. However, an alternative estimator can be developed by
rewriting the regression model as

yit = x′
itβ + λ′

iFt + uit . (3)

Moving Ft from the error term to the regression function (treated
as parameters) is desirable for the following reason. If some
components of xit are actually I(0), treating Ft as part of the error
processwill yield an inconsistent estimate forβ when Ft and xit are
correlated. The simultaneity bias is now of the same order as the
convergence rate of the coefficient estimates on the I(0) regressors.
Estimating β from (3) with F being I(0) was suggested in Bai and
Kao (2006), but its theory was not explored.

When Ft is I(1), which is the primary focus of this paper, there
is an important difference between estimating β from (3) versus
pooled OLS in (2). More precisely, if

Ft = Ft−1 + ηt ,

then eit is I(1) and pooled OLS in (2) is, in general, not consistent.
To see this, consider the following data generating process for xit

xit = τ ′
i Ft + ξit (4)

with ξit being I(1) such that ξit = ξit−1 + ζit . For simplicity, assume
there is a single factor. It follows that xit is I(1) and can be written
as (1) with εit = τ ′

i ηt + ζit . The pooled OLS can be written as

β̂LS − β =

(
1
n

n∑
i=1

τiλi

) (
1
T2

T∑
t=1

F 2
t

)

1
nT2

n∑
i=1

T∑
t=1

x2it

+ Op(n−1/2) + Op(T−1).

If τi and λi are correlated, or when they have non-zero means, the
first term on the right-hand side is Op(1), implying inconsistency
of the pooled OLS. The best convergence rate is

√
n when xit and

Ft are independent random walks. The problem arises because as
seen from (3), we now have a panel model with non-stationary
regressors xit and Ft , and in which uit is stationary by assumption.
This means that yit conintegrates with xit and Ft with cointegrating
vector (1, −β ′, λi). Omitting Ft creates a spurious regression
problem. It is worth noting that the cointegrating vector varies
with i because the factor loading is unit specific. As F is not
observable, consistent estimation of the parameter of interest β
thus involve a new methodology.

In the rest of the paper, we will show how to obtain
√
nT

consistent and asymptotically normal estimates of β when the
data generating process is characterized by (3) assuming that
xit and Ft are both I(1), and that xit , Ft and uit are potentially
correlated. We will refer to Ft as the global stochastic trends since
they are shared by each cross-sectional unit. Hereafter, we write
the integral

∫ 1
0 W (s)ds as

∫
W when there is no ambiguity. We

define Ω1/2 to be any matrix such that Ω = (Ω1/2)(Ω1/2)′, and
BM(Ω) to denote Brownian motion with the covariance matrix
Ω . We use ‖A‖ to denote (tr(A′A))1/2, d−→ to denote convergence
in distribution,

p−→ to denote convergence in probability, [x] to

denote the largest integer less than or equal to x. We let M < ∞
be a generic positive number, not depending on T or n. We also
define the matrix that projects onto the orthogonal space of z as
Mz = IT − z(z ′z)−1z ′. We will use β0, F 0

t , and λ0
i to denote the

true common slope parameters, true common trends, and the true
factor loading coefficients. Denote (n, T ) → ∞ as the joint limit.
Denote (n, T )seq → ∞ as the sequential limit, i.e., T → ∞ first
and n → ∞ later. We use MN(0, V ) to denote a mixed normal
distribution with variance V .

Our analysis is based on the following assumptions.

Assumption 1. Factors and Loadings:

(a) E‖λ0
i ‖4 ≤ M . As n → ∞, 1

n

∑n
i=1 λ0

i λ
0′
i

p−→ Σλ, an r × r
diagonal matrix.

(b) E‖ηt‖4+δ ≤ M for some δ > 0 and for all t . As T →
∞, 1

T2
∑n

i=1 F
0
t F

0′
t

d−→
∫
BηB′

η , an r × r random matrix, where
Bη is a vector of Brownian motions with covariance matrix Ωη ,
which is a positive definite matrix.

Assumption 2. Letwit = (uit , ε
′
it , η

′
t)

′. For each i,wit = Πi(L)vit =∑∞
j=0 Πijvit−j where vit are i.i.d. over t ,

∑∞
j=0 j

2‖Πij‖ ≤ M , and
|Πi(1)| > c > 0 for all i. In addition, E(vit) = 0, E(vitv

′
it) = I > 0,

and E‖vit‖8 ≤ M < ∞; vit are independent of λj for all i, j, t .

Partition Πi(L) and vit conformably with wit ,

Πi(L) =




Πuu

i (L) Πuε
i (L) Π

uη
i (L)

Πεu
i (L) Πεε

i (L) Π
εη
i (L)

Π
ηu
i (L) Π

ηε
i (L) Π

ηη
i (L)



 , vit =
[
vu
it

vε
it

v
η
t

]

.

We assume, throughout, that vu
it , vε

it , and v
η
t are mutually

independent, and (v
η
it , v

ε
it) are also independent across i. Since

ηt does not depend on i, it must be the case that Π
ηu
i (L) =

0 and Π
ηε
i (L) = 0. Moreover, Π

ηη
i (L) = Πηη(L) does not

depend on i. The entry Π
uη
i (L) links the regression error uit and

the common shocks ηt . To prevent the regression error uit to have
strong cross-section correlation, one may assume Π

uη
i (L) = 0,

implying cross-sectional independence for uit . However, cross-
sectional independence for uit is not necessary. Write Π

uη
i (L) =∑∞

j=0 Π
uη
ij Lj.We shall assume that the coefficientsΠ

uη
ij are iid zero-

mean random variables across i. This assumption is similar to that
of Phillips and Moon (1999), who assume, in our notation, the
coefficients of every polynomial in thematrixΠi(L) are iid random
variables across i, but they do not consider common shocks. The
zero-mean assumption is sufficient for our purpose, and at the
same time, still permitting uit to be influenced by the common
shocks. For example, consider

uit = aiηt + bit ,

where ai are iid zero mean and bit are iid zero-mean random
variables across i and over t . Then 1√

nT

∑n
i=1

∑T
t=1 uit =

(n−1/2 ∑n
i=1 ai)(T

−1/2 ∑T
t=1 ηt) + 1√

nT

∑n
i=1

∑T
t=1 bit = Op(1).

Moreover, 1
n

∑n
i=1 uit → 0 in probability; its limit is not zero if

E(ai) *= 0. These properties are needed in our argument. Note that
zero-mean assumption is not made for other entries of Πi(L). In
particular, xit can be strongly correlated with the common factors.

Assumption 3. One of the following holds:

(a) Π
uη
i (L) = 0 so that uit are cross-sectionally independent.

(b) The coefficients Π
uη
ij in Π

uη
i (L) are iid across i for all j, and they

are independent of all other random variables of the model;
E(Π

uη
ij ) = 0, E‖Π

uη
ij ‖4 ≤ M , and E[∑∞

j=0 j
2‖Π

uη
ij ‖] ≤ M for

all i.
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Because Π
uη
ij are random variables that are independent of all

other random variables, they can be treated as constants when
convenient by invoking the conditional argument. Note that uit are
cross-sectionally independent conditional on {ηt}. The same is true
for xit . But unconditionally, they are cross-sectionally dependent
under Assumption 3(b).

Remark. When Π
uη
i (L) *= 0 and their coefficients are not zero

mean, the problem can be solved by including I(0) common factors.
For example, suppose that Π

uη
i (L) = ai1L + · · · aipLp. Define

F∗
t = (F ′

t , v
η′
t , . . . , v

η′
t−p)

′ and λ∗
i = (λ′

i, a
′
i1, . . . , a

′
ip)

′, then λ′
iFt +

uit = λ∗′
i F

∗
t + u∗

it , where u∗
it = Πuu

i (L)vu
it + Πuε

i (L)vε
it , which are

cross-sectionally independent, and F∗
t now includes I(0) factors.

However, p must be finite in order to obtain good estimate with
principal components. This is the approach employed by Bai (2004)
in the absence of regressors. Assumption 3 allows Π

uη
i (L) to have

infinite number of lags. Throughout our analysis, Ft is assumed to
be I(1) for simplicity. Extension to I(0) common factors is discussed
in Section 4.

Assumption 4. {xit , F 0
t } are not cointegrated.

Assumptions 2 and 3 imply that a multivariate invariance
principle for wit holds, i.e., the partial sum process 1√

T

∑[T ·]
t=1 wit

satisfies:
1√
T

[T ·]∑

t=1

wit
d−→ Bi(·) = B(Ωi) as T → ∞ for all i,

where
Bi =

[
Bui B′

εi B′
η

]′
.

The long-run covariance matrix of {wit} is given by

Ωi =
∞∑

j=−∞
Ec(wi0w

′
ij) = Πi(1)Πi(1)′ =

[
Ωui Ωuεi Ωuηi
Ωεui Ωεi Ωεηi
Ωηui Ωηεi Ωη

]

(5)

partitioned conformably with wit , where Ec is the conditional
expectation, conditional on {Πuη

ij }, see Lemma 3 of Phillips and
Moon (1999). Define the one-sided long-run covariance

∆i =
∞∑

j=0

Ec(wi0w
′
ij) =

[
∆ui ∆uεi ∆uηi
∆εui ∆εi ∆εηi
∆ηui ∆ηεi ∆η

]

. (6)

For future reference, it will be convenient to group elements
corresponding to εit and ηt taken together. Let

Bbi =
[
B′

εi B′
η

]′
Ωbi =

[
Ωεi Ωεηi
Ωηεi Ωη

]
.

Then Bi can be rewritten as

Bi =
[
Bui
Bbi

]
=

[
Ω

1/2
u.bi ΩubiΩ

−1/2
bi

0 Ω
1/2
bi

] [
Vi
Wi

]
,

where
[
Vi W ′

i
]′ = BM(I) is a standardized Brownian motion and

Ωu.bi = Ωui − ΩubiΩ
−1
bi Ωbui

is the long-run conditional variance of uit given (+x′
it , +F 0′

t )′. Note
that Ωbi > 0 since we assume that there is no cointegration
relationship in (x′

it , F
0′
t )′ in Assumption 4. Once again, we

emphasize that uit and xit are cross-sectionally independent
conditional on the common shocks {ηt}.

3. Estimation

In this section, we first consider the problem of estimating
β when F is observed. We then consider two iterative proce-
dures that jointly estimate β and F . The procedures yield two
estimators that are

√
nT consistent and asymptotically normal.

These estimators, denoted CupBC and CupFM, are presented in
Sections 3.2 and 3.3.

3.1. Estimation when F is observed

The true model (3) in vector form, is

yi = xiβ0 + F 0λ0
i + ui,

where

yi =





yi1
yi2
...
yiT



 , xi =





x′
i1
x′
i2
...
x′
iT



 , F =





F ′
1
F ′
2
...
F ′
T



 , ui =





ui1
ui2
...
uiT



 .

Define Λ = (λ1, . . . , λn)
′ to be an n× r matrix. In matrix notation

y = Xβ0 + F 0Λ0′ + u.

Given data y, x, and F 0, the least squares objective function is

S0nT (β, Λ) =
n∑

i=1

(y − xiβ − F 0λi)
′(y − xiβ − F 0λi).

After concentrating out λ, the least squares estimator for β is then

β̃LS =
(

n∑

i=1

x′
iMF0xi

)−1 n∑

i=1

x′
iMF0yi.

The least squares estimator has the following properties.7

Proposition 1. Under Assumptions 1–4, as (n, T )seq → ∞
√
nT (β̃LS − β0) − √

nφ0
nT

d−→MN(0, Σ0),

where

φ0
nT =

[
1

nT 2

n∑

i=1

x′
iMF0xi

]−1 [
1
n

n∑

i=1

θ0
i

]

, (7)

Σ0 = D−1

[

lim
n→∞

1
n

n∑

i=1

Ωu.biE
(∫

QiQ ′
i |C

)]

D−1, (8)

and with C being the σ -field generated by {Ft},

D = lim
n→∞

1
n

n∑

i=1

E
(∫

QiQ ′
i |C

)
,

Qi = Bεi −
(∫

BεiB′
η

) (∫
BηB′

η

)−1

Bη,

θ0
i = 1

T
x′
iMF0∆biΩ−1

bi Ωbui + (∆+
εui − δ0′

i ∆+
ηu),

δ0
i = (F 0′

F 0)−1F 0′
xi, ∆bi =

(
∆xi ∆F 0) ,

∆+
bui =

(
∆+

εui
∆+

ηu

)
=

(
∆bui ∆bi

) (
Ik

−Ω−1
bi Ωbui

)

= ∆bui − ∆biΩ
−1
bi Ωbui.

The estimator is
√
nT consistent if φ0

nT = 0, which occurs
when xit and Ft are strictly exogenous. Otherwise, the estimator
is T consistent as there is an asymptotic bias given by the term√
nφ0

nT . This is an average of individual biases that are data specific
as seen from the definition of θ0

i . The individual biases arise from
the contemporaneous and low frequency correlations between the

7 The limiting distribution when F is I(0) can also be obtained. Park and Phillips
(1988) provide the limiting theory with mixed I(1) and I(0) regressors in a single
equation framework.
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regression error and the innovations of the I(1) regressors as given
by terms such as Ωbui and ∆bui.

To estimate the bias, we need to consistently estimate the
nuisance parameters. We use a kernel estimator. Let

Ω̂i =
T−1∑

j=T+1

ω

(
j
K

)
Γ̂i(j),

∆̂i =
T−1∑

j=0

ω

(
j
K

)
Γ̂i(j)

Γ̂i(j) = 1
T

T−j∑

t=1

ŵit+jŵ
′
it ,

where ŵit = (ûit , ∆x′
it , ∆F 0′

t )′. To state the asymptotic theory for
the bias-corrected estimator, we need the following assumption,
taken from Moon and Perron (2004):

Assumption 5. (a) lim infn,T→∞(log T/ log n) > 1.
(b) The kernel function ω(·) : R → [−1, 1] satisfies (i) ω(0) =

1, ω(x) = ω(−x), (ii)
∫ 1
−1 ω (x)2 dx < ∞ and with Parzen’s

exponent q ∈ (0, ∞) such that lim 1−ω(x)
|x|q < ∞.

(c) The bandwidth parameter K satisfies K ! nb and 1
2q < b <

lim inf log T
log n − 1.

Let

φ̂0
nT =

[
1

nT 2

n∑

i=1

x′
iMF0xi

]−1

θ̂n,

where θ̂n = 1
n

∑n
i=1 θ̂i, θ̂i is a consistent estimate of θ0

i . The
resulting bias-corrected estimator is

β̃LSBC = β̃LS − 1
T

φ̂0
nT . (9)

This estimator can alternatively be written as

β̃LSFM =
(

n∑

i=1

x′
iMF0xi

)−1 n∑

i=1

(
x′
iMF0 ỹ

+
i − T

(
∆̃+

εui − δ0′
i ∆̃+

ηu
))

, (10)

where ỹ+ and ∆̃+ are consistent estimates of y+ and ∆+ etc., with

y+
it = yit − ΩubiΩ

−1
bi

(
∆xit
∆F 0

t

)
u+
it = uit − ΩubiΩ

−1
bi

(
∆xit
∆F 0

t

)
.

The bias-corrected estimator can be seen as a panel fully-modified
estimator in the spirit of Phillips and Hansen (1990), and is the
reason why the estimator is also labeled β̃LSFM. It is not difficult
to verify that β̃LSBC and β̃LSFM are identical. Panel fully-modified
estimators were also considered by Phillips and Moon (1999) and
Bai and Kao (2006). Here, we extend those analysis to allow for
common stochastic trends. By construction u+

it has a zero long-run
covariance with

(
∆x′

it ∆F 0′
t

)′ and hence the endogeneity can be
removed. Furthermore, nuisance parameters arising from the low
frequency correlation of the errors are summarized in ∆+

bui.

Proposition 2. Let β̃LSFM be defined by (10). Under Assumptions 1–5,
as (n, T )seq → ∞
√
nT (β̃LSFM − β0)

d−→MN
(
0, Σ0) .

In small scale cointegrated systems, cointegrated vectors are T
consistent, and this fast rate of convergence is already accelerated
relative to the case of stationary regressions, which is

√
T . Here

in a panel data context with observed global stochastic trends,
the estimates converge to the true values at an even faster rate of√
nT and the limiting distributions are normal. To take advantage

of this fast convergence rate made possible by large panels, we

need to deal with the fact that F 0 is not observed. This problem
is considered in the next two subsections.

3.2. Unobserved F 0 and the Cup estimator

The LSFM considered above is a linear estimator and can be
obtained if F 0 is observed. When F 0 is not observed, the previous
estimator is infeasible. Recall that least squares estimator that
ignores F is, in general, inconsistent. In this section, we consider
estimating F along with β and Λ by minimizing the objective
function

SnT (β, F , Λ) =
n∑

i=1
(y − xiβ − Fλi)

′ (y − xiβ − Fλi) (11)

subject to the constraint T−2F ′F = Ir and Λ′Λ is positive definite.
The least squares estimator for β for a given F is

β̂ =
(

n∑

i=1

x′
iMF xi

)−1 n∑

i=1

x′
iMF yi.

Define
wi = yi − xiβ

= Fλi + ui.

Notice that given β, wi has a pure factor structure. Let W =
(wi, . . . , wn) be a T × n matrix. We can rewrite the objective
function (11) as tr[(W − FΛ′)(W − FΛ′)′]. If we concentrate out
Λ = W ′F(F ′F)−1 = T−2W ′F , we have the concentrated objective
function:

tr(W ′MFW ) = tr(W ′W ) − tr(F ′WW ′F/T 2). (12)
Since the first term does not depend on F , minimizing (12) with
respect to F is equivalent to maximizing tr(T−2F ′WW ′F) subject
to the constraint T−2F ′F = Ir . The solution, denoted F̂ , is a
matrix of the first r eigenvectors (multiplied by T ) of the matrix
1

nT2
∑n

i=1(yi − xiβ)(yi − xiβ)′.
Although F is not observed when estimating β , and similarly, β

is not observed when estimating F , we can replace the unobserved
quantities by initial estimates and iterate until convergence. Such a
solution is more easily seen if we rewrite the left-hand side of (12)
with y − xβ substituting in forW . Define

SnT (β, F) = 1
nT 2

n∑

i=1
(yi − xiβ)′ MF (yi − xiβ) .

The continuously-updated estimator (Cup) for (β, F) is defined as
(
β̂Cup, F̂Cup

)
= argmin

β,F
SnT (β, F) .

More precisely, (β̂Cup, F̂Cup) is the solution to the following two
nonlinear equations

β̂ =
(

n∑

i=1

x′
iMF̂ xi

)−1 n∑

i=1

x′
iMF̂ yi (13)

F̂VnT =
[

1
nT 2

n∑

i=1

(
yi − xiβ̂

) (
yi − xiβ̂

)′
]

F̂ , (14)

where MF̂ = IT − T−2̂F F̂ ′ since F̂ ′̂F/T 2 = Ir , and VnT is a diagonal
matrix consisting of the r largest eigenvalues of the matrix inside
the brackets, arranged in decreasing order. Note that the estimator
is obtained by iteratively solving for β̂ and F̂ using (13) and
(14). It is a nonlinear estimator even though linear least squares
estimation is involved at each iteration. An estimate of Λ can be
obtained as:
Λ̂ = T−2̂F ′ (Y − X β̂

)
.
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The triplet
(
β̂, F̂ , Λ̂

)
jointly minimizes the objective function (11).

The estimator β̂Cup is consistent for β . We state this result in the
following proposition.

Proposition 3. Under Assumptions 1–4 and as (n, T ) → ∞,

β̂Cup
p−→β0.

The next proposition concerns the asymptotic representation of
β̂Cup.

Proposition 4. Suppose Assumptions 1–4 hold and (n, T ) → ∞
with

√
n/T → 0. Then

√
nT

(
β̂Cup − β0)

= D
(
F 0)−1

[
1√
nT

n∑

i=1

(

x′
iMF0 − 1

n

n∑

k=1

aikx′
iMF0

)

ui

]

+ op(1),

where aik = λ′
i(

Λ′Λ
n )−1λk, D

(
F 0

)
= 1

nT2
∑n

i=1 Z
′
i Zi and Zi = MF0xi−

1
n

∑n
k=1 MF0xkaik.

The term involving aik is due to the estimation of F . Thus in
comparison with the pooled least squares estimator for the case
of known F 0, estimation of the stochastic trends clearly affects the
limiting behavior of the estimator. This effect is carried over to
the limiting distribution and to the asymptotic bias, as we now
proceed to show. Let w̄it = (uit , ∆x̄′

i, η
′
t)

′ where x̄i = xi −
1
n

∑n
k=1 xkaik. For the rest of the paper, we use bar to denote those

long-run covariancematrices (including one-sided and conditional
covariances and so on) generated from w̄it instead of wit . Thus, Ω̄i
is the long-run covariance matrix of w̄it as in (5), and define ∆̄i is
the one-sided covariancematrix of w̄it . These quantities depend on
n, but this dependence is suppressed for notional simplicity.

Because the right-hand side of the representation does not
depend on estimated quantities, it is not difficult to derive the
limiting distribution of β̂Cup, even allowing for cross-sectional
correlation in uit . However, uit are cross-sectionally independent
conditional on the σ -field generated by {ηt} or equivalently
generated by {vη

t } by Assumptions 2 and 3. This conditional
independence together with bias-correction is sufficient for the
mixture normality.

Theorem 1. Suppose that Assumptions 1–4 hold. Let β̂Cup be
obtained by iteratively updating (13) and (14). As (n, T )seq → ∞,
we have
√
nT

(
β̂Cup − β

)
− √

nφnT
d−→MN(0, Σ),

where

φnT =
[

1
nT 2

n∑

i=1

Z ′
i Zi

]−1 (
1
n

n∑

i=1

θi

)

,

θi = 1
T
Z ′
i ∆b̄iΩ̄−1

bi Ω̄bui +
(
∆̄+

εui − δ̄′
i∆̄

+
ηu

)
,

Σ = D−1
Z

[

lim
n→∞

1
n

n∑

i=1

Ω̄u.biE
(∫

RniR′
ni|C

)]

D−1
Z ,

DZ = lim
n→∞

1
n

n∑

i=1

E
(∫

RniR′
ni|C

)
, (15)

Rni = Qi −
1
n

n∑

k=1

Qkaik,

∆b̄i =
(
∆x̄i ∆F 0) ,

x̄i = xi −
1
n

n∑

k=1

xkaik,

δ̄i = δi −
1
n

n∑

k=1

δkaik.

Theorem 1 establishes the large sample properties of the Cup
estimator. The Cup estimator is

√
nT consistent provided that

φnT = 0, which occurs when xit and Ft are exogenous. Since
φnT = Op(1), the Cup estimator is at least T consistent. This is
in contrast with pooled OLS in Section 2, where it was shown to
be inconsistent in general. Nevertheless, as in the case when F
is observed, the Cup estimator has an asymptotic bias and thus
the limiting distribution is not centered around zero. There is an
extra bias term (the term involving aik) that arises from having to
estimate Ft . In consequence, the bias is now a function of terms not
present in Proposition 1, which is valid when Ft is observed.

We now consider removing the bias by constructing a
consistent estimate of φnT . This can be obtained upon replacing
F 0, ∆b̄i, Ω̄bi, Ω̄bui, ∆̄+

εui, ∆̄+
ηu by their consistent estimates. We

consider two fully-modified estimators. The first one directly
corrects the bias of β̂Cup, and is denoted by β̂CupBC. The second one
will be considered in the next subsection,where correction ismade
during each iteration, and will be denoted by β̂CupFM. Let

̂̄Ω i =
T−1∑

j=T+1

ω

(
j
K

)
Γ̂i(j),

̂̄∆i =
T−1∑

j=0

ω

(
j
K

)
Γ̂i(j)

Γ̂i(j) = 1
T

T−j∑

t=1

̂̄wit+ĵ̄w
′
it ,

where

̂̄wit = (ûit , ∆ˆ̄x′
it , ∆F̂ ′

t )
′ with ∆ˆ̄xit = ∆xit − 1

n

n∑

k=1

∆xkt âik.

The bias-corrected Cup estimator is defined as

β̂CupBC = β̂Cup − 1
T

φ̂nT ,

where

φ̂nT =
[

1
nT 2

n∑

i=1

Ẑ ′
i Ẑi

]−1 (
1
n

n∑

i=1

θ̂i

)

,

θ̂i = Ẑ ′
i ∆̂b̄i ˆ̄Ω

−1

bi
ˆ̄Ωbui +

(
̂̄∆

+
εui − ˆ̄δ

′
i ∆̂+

ηu

)
,

ˆ̄δi = (̂F ′̂F)−1̂F ′̂x̄i ∆̂bi =
(
∆ˆ̄xi ∆F̂

)
,

̂̄xi = xi −
1
n

n∑

k=1

xkt̂aik, âik = λ̂′
i
(
Λ̂′Λ̂/n

)−1
λ̂k.

Theorem 2. Suppose Assumptions 1–5 hold. Then as (n, T )seq → ∞,
√
nT

(
β̂CupBC − β0) d−→MN(0, Σ).

The CupBC is
√
nT consistent with a limiting distribution that

is centered at zero. This type of bias-correction approach is also
used in Hahn and Kuersteniner (2002), for example, and is not
uncommon in panel data analysis. Because the bias-corrected
estimator is

√
nT and has a normal limit distribution, the usual t

and Wald tests can be used for inference. Note that the limiting
distribution is different from that of the infeasible LSBC estimator,
which coincides with LSFM and whose asymptotic variance is Σ0

instead of Σ . Thus, the estimation of F affects the asymptotic
distribution of the estimator. As in the case when F is observed,
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the bias-corrected estimator can be rewritten as a fully-modified
estimator. Such a fully-modified estimator is now discussed.

3.3. A fully-modified Cup estimator

The CupBC just considered is constructed by estimating the
asymptotic bias of β̂Cup, and then subtracting it from β̂Cup. In
this subsection, we consider a different fully-modified estimator,
denoted by β̂CupFM. Let

y+
it = yit − ̂̄Ωubi

̂̄Ω
−1
bi

(
∆̂x̄it
∆F̂t

)

ˆ̄δi = (̂F ′̂F)−1̂F ′̂x̄i,

where ̂̄Ωubi,
̂̄Ωbi, and ̂̄∆bui are estimates of Ω̄ubi, Ω̄bi and ∆̄bui,

respectively. Recall that β̂Cup is obtained by jointly solving (13) and
(14). Consider replacing these equations by the following:

β̂CupFM =
(

n∑

i=1

x′
iMF̂ xi

)−1 n∑

i=1

(
x′
iMF̂ y

+
i − T

(
̂̄∆

+
εui −̂̄δ

′
i
̂̄∆

+
ηu

))
(16)

F̂VnT =
[

1
nT 2

n∑

i=1

(
yi − xiβ̂CupFM

) (
yi − xiβ̂CupFM

)′
]

F̂ . (17)

Like the FM estimator of Phillips and Hansen (1990), the
corrections are made to the data to remove serial correlation
and endogeneity. The CupFM estimator for (β, F) is obtained by
iteratively solving (16) and (17). Thus correction to endogeneity
and serial correlation is made during each iteration.

Theorem 3. Suppose Assumptions 1–5 hold. Then as (n, T )seq → ∞,
√
nT

(
β̂CupFM − β0) d−→MN(0, Σ),

where Σ is given in (15).
The CupFM and CupBC have the same asymptotic distribution,

but they are constructed differently. The estimator β̂CupBC does the
bias-correction only once, i.e., at the final stage of the iteration,
and β̂CupFM does the correction at every iteration. The situation is
different from the case of known F , in which the bias-corrected
estimator and the fully-modified estimator are identical. The
equivalence breaks down because of the need to iterate. Again,
because of the mixture of normality, hypothesis testing on β can
proceed with the usual t or chi square distributions.

Kapetanios et al. (2006) suggest an alternative estimation
procedure based on Pesaran (2006). The model is augmented with
additional regressors ȳt and x̄t , which are cross-sectional averages
of yit and xit . These averages are used as proxy for Ft . The estimator
for the slope parameter β is shown to be

√
n consistent, but a fully-

modified estimator is not considered.
While the focus is on estimating the slope parameters β , the

global stochastic trends F are also of interest. We state this result
as a proposition:

Proposition 5. Suppose that Ft is I(1) and that Assumptions 1, 2 and
4 hold. Let F̂ be the solution of (17). Then
(i) under Assumption 3 (b), we have 1

T

∑T
t=1 ‖F̂t−HF 0

t ‖2 = Op(
1
n )+

Op(
1
T ),

(ii) under Assumption 3 (a), we have 1
T

∑T
t=1 ‖F̂t−HF 0

t ‖2 = Op(
1
n )+

Op(
1
T2 ),

where H is an r × r invertible matrix.
Thus, we can estimate the true global stochastic trends up

to a rotation. Part (ii) has the same rate as in Bai (2004,
Lemma B.1) under the cross-sectional independence of uit but
without regressors xit . Similarly, the factor loadings λi are
estimated with the same rate of convergence as in Bai (2004).

Without Assumption 3, Bai (2004) shows that the rate on the right-
hand side is only Op(1).

Thus far, our analysis assumes that the number of stochastic
trends, r , is known. If this is not the case, r can be consistently
estimated using the information criterion function developed in
Bai and Ng (2002). In particular, let

r̂ = arg min
1≤r≤rmax

IC(r),

where r ≤ rmax, rmax is a bounded integer and

IC(r) = log σ̂ 2(r) + rgnT ,

where gnT → 0 as n, T → ∞ and min[n, T ]gnT → ∞. For
example, gnT can be log(anT )/anT , with anT = nT

n+T . Then P(r̂ =
r) → 1 as n, T → ∞. This criterion estimates the total number
of factors, including I(0) factors. To estimate the number of I(1)
factors only, the criterion in Bai (2004) can be used. Our theory
allows us to group the I(0) common factors as part of the error
process uit , as shown in Assumptions 2 and 3. If uit are assumed
to be cross-sectionally independent, then I(0) factors must be
considered as part of Ft .

4. Further issues

The preceding analysis assumes that there are no deterministic
components and that the regressors and the common factors
are all I(1) without drifts. This section considers construction
of the estimator when these restrictions are relaxed. It will
be shown that when there are deterministic components, we
can apply the same estimation procedure to the demeaned
or detrended series, and the Brownian motion processes in
the limiting distribution are replaced by the demeaned and/or
detrended versions. Furthermore, the procedure is robust to the
presence of mixed I(1)/I(0) regressors and/or factors. Of course,
the convergence rates for I(0) and I(1) regressors will be different,
but asymptotic mixed normality and the construction of test
statistics (and their limiting distribution) do not depend on the
convergence rate.

4.1. Incidental trends

The Cup estimator can be easily extended to models with
incidental trends,

yit = αi + ρit + x′
itβ + λ′

iFt + uit . (18)

In the intercept only case (ρi = 0, for all i), we define the projection
matrix

MT = IT − ιT ι
′
T/T ,

where ιT is a vector of 1’s. When a linear trend is also included
in the estimation, we define MT to be the projection matrix
orthogonal to ιT and to the linear trend. Then

MTyi = MTxiβ + MTFλi + MTui,

or

ẏi = ẋiβ + Ḟtλi + u̇i,

where the dotted variables are demeaned and/or detrended
versions. The estimation procedure for the cup estimator is
identical to that of Section 3, except that we use dotted variables.

With the intercept only case, the construction of FM estimator
is also the same as before. Theorems 1–3 hold with the following
modification for the limiting distribution. The random processes
Bε,i and Bη in Qi are replaced by the demeaned Brownian motions.

When linear trends are allowed, ∆xit is now replaced by ε̂it =
∆xit −∆xi, which is detrended residual of xit . But since ẋi is already



Author's personal copy

J. Bai et al. / Journal of Econometrics 149 (2009) 82–99 89

a detrended series, and F̂ is also asymptotically detrended (since
it is estimating Ḟ ), ∆ẋit and ∆F̂t are also estimating the detrended
residuals. Thuswe can simply apply the sameprocedure prescribed
in Section 3 with the dotted variables. The limiting distribution
in Theorem 2 and consequently in Theorem 3 is modified upon
replacing the random processes Bεi and Bη by the demeaned and
detrended Brownian motions.8 The test statistics (t and χ2) have
standard asymptotic distribution, not depending on whether the
underlying Brownian motion is demeaned or detrended.

When linear trends are included in the estimation, the limiting
distribution is invariant to whether or not yit , xit and Ft contain a
linear trend. Now suppose that these variables do contain a linear
trend (drifted random walks). With deterministic cointegration
holding (i.e., cointegrating vector eliminates the trends), the
estimated β will have a faster convergence rate when a separate
linear trend is not included in the estimation. But we do not
consider this case. Interested readers are referred to Hansen
(1992).

4.2. Mixed I(0)/I(1) regressors and common shocks

So far, we have considered estimation of panel cointegration
models when all the regressors and common factors are I(1). There
are no stationary regressors or stationary common shocks. The
above results should be robust to mixed I(1)/I(0) regressors and
mixed I(1)/I(0) common shocks. Below, we sketch the arguments
for the LS estimator assuming the factors are observed. If they are
not observed, the limiting distribution is different, but the idea of
argument is the same.

Recall that the LS estimator is β̂LS = (
∑n

i=1 x
′
iMF0xi)−1 ∑n

i=1 x
′
i

MF0yi. The term

MF0xi = (IT − F 0(F 0′
F 0)−1F 0′

)xi = xi − F 0δi

with δi = (F 0′F 0)−1F 0′xi plays an important role in the properties
of the LS. When xit and Ft are I(1), δi = Op(1) and thus

(MF0xi)t√
T

= xit√
T

− δ′
i F

0
t√
T

= Op(1).

We now consider this term undermixed I(1) and I(0) assumptions.
I(1) regressors, I(0) factors. Suppose all regressors are I(1) and all
common shocks are I(0). With I(0) factors, we have T−1F 0′F 0 p−→
ΣF = Op(1). Thus

δi =
(
T−1F 0′

F 0
)−1 1

T

T∑

t=1

F 0
t x

′
it

d−→ Σ−1
F

∫
dBηB′

εi = Op(1).

It follows that
(MF0xi)t√

T
= xit − δ′

i F
0
t√

T
= xit√

T
+ op(1)

and xit√
T

d−→ Bεi as T → ∞. The limiting distribution of the LSwhen
the factors are I(0) is the same as when all factors are I(1), except
that Qi is now asymptotically the same as Bεi. For the FM, observe
that the submatrix Ωη in

Ωbi =
[

Ωεi Ωεηi
Ωηεi Ωη

]

is a zero matrix since η = ∆F 0
t is an I(−1) process and

has zero long-run variance. Similarly, Ωεηi is also zero. The
submatrix Ωuηi in Ωu.bi = Ωui − ΩubiΩ

−1
bi Ωbui as well as

the submatrices
(
∆ηui ∆ηi

)
in

(
∆bui ∆bi

)
are also degenerate

8 Alternatively, we can use ε̂it − 1
n

∑n
k=1 ε̂kt âik in place of ∆ˆ̄xit in Section 3.

Similarly, we use η̂t = ∆F̂t − ∆F̂ in place of ∆F̂t .

because the factors are I(0). Note that Ωbi is not invertible. Under
appropriate choice of bandwidth, see Phillips (1995), Ω−1

bi Ωbui
can be consistently estimated, so that FM estimators can be
constructed. This argument treats Ft as if it were I(1). If it is known
that Ft is I(0), one can assume uit to be independent of common
factors so that Ωuηi and ∆uηi are set to zero in the FM construction.
For example, if uit = aiηt + bit , then aiηt should be treated as part
of the common factors, leaving bit as the regression errors, which
are assumed to be independent of ηt .
I(1) regressors, mixed I(0)/I(1) factors. Consider the model

yit = x′
itβ + λ′

1iF1t + λ′
2iF2t + uit , (19)

where F1t = η1t is r1 × 1 and ∆F2t = η2t is r2 × 1. We again have
MF0xi = xi − F 0δi but δi =

[
δ1i δ2i

]′. Then

(MF0xi)t√
T

= xit√
T

− 1√
T

[
δ′
1i δ′

2i
] [

F 0
1t
F 0
2t

]

= xit√
T

− 1√
T

(
δ′
1iF

0
1t + δ′

2iF
0
2t

)

= xit√
T

− δ′
2iF

0
2t√
T

+ op(1)

since δ1i = Op(1), δ2i = Op (1) but F01t√
T

= op(1). The randommatrix
Qi involves Bεi and B2η . In the FM correction, the long-run variance
(uit , ∆x′

it , ∆F ′
1t , ∆F ′

2t)
′ is degenerate.With an appropriate choice of

bandwidth as in Phillips (1995), the limiting normality still holds.
Mixed I(1)/I(0) regressors and I(1) factors. Suppose k2 regressors
denoted by x2it are I(1), and k1 regressors denoted by x1it are I(0).
Assume Ft is I(1) and uit is I(0) as in (3). Consider

yit = αi + x′
1itβ1 + x′

2itβ2 + λ′
iFt + uit

∆x2it = ε2it .

With the inclusion of an intercept, there is no loss of generality
in assuming that x1it are mean zero. For this model, we add the
assumption that

E(x1ituit) = 0 (20)

to rule out simultaneity bias with I(0) regressors. Otherwise β1
cannot be consistently estimated. Alternatively, if uit is correlated
with x1it , we can project uit onto x1it to obtain the projection
residual and still denote it by uit (with abuse of notation), and by
definition, uit is uncorrelated with x1it . But then β1 is no longer
the structural parameter. The dynamic least squares approach by
adding ∆x2it is exactly based on this argument, with the purpose
of more efficient estimation of β2.

If one knows which variable is I(0) and which is I(1), the situ-
ation is very simple. The I(1) and I(0) variables are asymptotically
orthogonal, we can separately analyze the distribution of the es-
timated β1 and β2. The estimated β1 needs no correction and is
asymptotically normal, and the estimated β2 has a distribution as
if there is no I(0) regressors except the intercept. Note that the FM
construction for β̂2 is based on the residuals with all regressors in-
cluded. The rest of analysis is identical to the situation of all I(1)
regressors with an intercept.

In practice, the separation of I(0) or I(1) regressors may not
be known in advance. One can proceed by pretesting to identify
the integration order for each variable, and then apply the
above argument. One major purpose of separating I(0) and I(1)
variables is to derive relevant rate of convergence for the estimated
parameters. But if the ultimate purpose is to do hypothesis testing,
there is no need to know the rate of convergence for the estimator
since the scaling factor n or T are cancelled out in the end. One can
proceed as if all regressors are I(1). Then care should be taken since
the long-run covariance matrix is of deficient rank. Phillips (1995)
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Table 1
Mean bias and standard deviation of estimators.

σ31 = 0 σ31 = 0.8 σ31 = −0.8
LSDV 2sFM CupBC CupFM LSDV 2s FM CupBC CupFM LSDV 2sFM CupBC Cup FM

σ21 = 0

n, T = 20 1.352 0.349 0.030 0.030 −0.712 0.257 0.000 0.000 2.216 −0.086 0.030 0.030
(1.559) (0.387) (0.030) (0.029) (1.505) (0.372) (0.030) (0.029) (1.524) (0.394) (0.029) (0.029)

n, T = 40 3.371 −0.719 −0.000 −0.000 2.761 −0.246 −0.000 −0.000 1.010 −0.371 −0.000 −0.000
(1.139) (0.225) (0.009) (0.009) (1.529) (0.227) (0.010) (0.009) (1.124) (0.217) (0.009) (0.009)

n, T = 60 −2.006 0.094 −0.000 −0.000 −1.393 0.038 −0.000 −0.000 −1.073 0.199 −0.000 −0.000
(0.920) (0.138) (0.005) (0.005) (0.915) (0.139) (0.005) (0.005) (0.929) (0.138) (0.005) (0.005)

n, T = 120 0.204 −0.064 −0.000 −0.000 0.548 −0.062 −0.020 0.015 −0.163 −0.061 0.018 −0.000
(0.645) (0.056) (0.018) (0.002) (0.646) (0.056) (0.002) (0.002) (0.643) (0.056) (0.002) (0.002)

σ21 = 0.2

n, T = 20 4.333 0.317 −0.119 0.332 2.258 0.129 −0.158 0.293 4.903 −0.220 −0.117 0.322
(1.584) (0.385) (0.030) (0.029) (1.529) (0.382) (0.031) (0.029) (1.614) (0.396) (0.030) (0.028)

n, T = 40 4.567 −0.768 −0.113 0.100 4.051 −0.333 −0.117 0.101 1.964 −0.376 −0.115 0.102
(1.133) (0.223) (0.010) (0.009) (1.153) (0.227) (0.010) (0.009) (1.120) (0.216) (0.010) (0.009)

n, T = 60 −1.100 0.109 −0.071 0.045 −0.337 0.082 −0.067 0.049 0.032 0.150 −0.065 0.051
(0.923) (0.138) (0.005) (0.005) (0.925) (0.139) (0.005) (0.005) (0.938) (0.140) (0.005) (0.005)

n, T = 120 0.696 −0.059 0.000 0.178 1.161 −0.070 −0.017 0.017 0.151 −0.026 0.017 −0.017
(0.648) (0.055) 0.018 (0.002) (0.649) (0.055) (0.002) (0.002) (0.646) (0.055) (0.002) (0.002)

σ21 = −0.2

n, T = 20 −1.600 0.376 0.179 −0.274 −3.763 0.331 0.151 −0.291 −0.754 −0.049 0.169 −0.274
(1.588) (0.393) (0.031) (0.029) (1.593) (0.345) (0.031) (0.029) (1.603) (0.394) (0.031) (0.029)

n, T = 40 2.086 −0.653 0.105 −0.108 0.812 −0.077 0.101 −0.113 −0.353 −0.313 0.096 −0.112
(1.144) (0.225) (0.010) (0.009) (1.141) (0.223) (0.010) (0.009) (1.128) (0.218) (0.010) (0.009)

n, T = 60 −2.850 0.008 0.055 −0.062 −2.178 −0.018 0.058 −0.058 −1.872 0.236 0.056 −0.060
(0.917) (0.142) (0.005) (0.005) (0.905) (0.136) (0.005) (0.005) (0.921) (0.138) (0.005) (0.005)

n, T = 120 −0.501 0.000 0.000 0.000 −0.175 −0.000 −0.018 0.017 −0.839 0.029 0.000 −0.000
(0.650) (0.057) (0.002) (0.018) (0.646) (0.057) (0.002) (0.002) (0.654) (0.058) (0.002) (0.002)

Note: (a) The Mean biases here have been multiplied by 100. (b) c = 5, σ32 = 0.4.

shows that FM estimators can be constructed with appropriate
choice of bandwidth. Interested readers are referred to Phillips
(1995) for details.

Finally, there is the case of mixed I(1)/I(0) regressors andmixed
I(1)/I(0) factors. As explained earlier, I(0) factors do not change the
result. In practice, there is no need to know whether F 0 is I(1) and
I(0), since the Cup estimator only depends onMF̂ ; scaling in F̂ does
not alter the numerical value of β̂Cup.

5. Monte Carlo simulations

In this section, we conduct Monte Carlo experiments to assess
the finite sample properties of the proposed CupBC and CupFM
estimators. We also compare the performance of the proposed
estimators with that of LSDV (least squares dummy variables, i.e.,
the within group estimator) and 2sFM (2-stage fully modified
which is the CupFM estimator with only one iteration).

Data are generated based on the following design. For i =
1, . . . , n, t = 1, . . . , T ,
yit = 2xit + c

(
λ′
iFt

)
+ uit

Ft = Ft−1 + ηt

xit = xit−1 + εit

where9
(uit

εit
ηt

)
iid∼N

([0
0
0

]

,

[ 1 σ12 σ13
σ21 1 σ23
σ31 σ32 1

])

. (21)

We assume a single factor, i.e., r = 1, λi and ηt are generated
from i.i.d. N(µλ, 1) and N(µη, 1) respectively. We set µλ = 2

9 Random numbers for error terms, (uit , εit , ηt ) are generated by the GAUSS
procedure RNDNS. At each replication, we generate an nT length of random
numbers and then split it into n series so that each series has the same mean and
variance.

and µη = 0. Endogeneity in the system is controlled by only two
parameters, σ21 and σ31. The parameter c controls the importance
of the global stochastic trends. We consider c = (5, 10) , σ32 =
0.4, σ21 = (0, 0.2, −0.2) and σ31 = (0, 0.8, −0.8).

The long-run covariance matrix is estimated using the KERNEL
procedure in COINT 2.0. We use the Bartlett window with the
truncation set at five. Results for other kernels, such as Parzen
and quadratic spectral kernels, are similar and hence not reported.
The maximum number of the iteration for CupBC and CupFM
estimators is set to 20.

Table 1 reports the means and standard deviations (in
parentheses) of the estimators for sample sizes T = n =
(20, 40, 60, 120). The results are based on 10000 replications. The
bias of the LSDV estimator does not decrease as (n, T ) increases in
general. In terms ofmean bias, the CupBC and CupFM are distinctly
superior to the LSDV and 2sFM estimators for all cases considered.
The 2sFM estimator is less efficient than the CupBC and CupFM
estimators, as seen by the larger standard deviations.

To see how the properties of the estimator vary with n and
T , Table 2 considers 16 different combinations for n and T , each
ranging from 20 to 120. From Table 2, we see that the LSDV and
2sFM estimators become heavily biased when the importance of
the common shock is magnified as we increase c from 5 to 10. On
the other hand, the CupBC and CupFM estimators are unaffected by
the values of c . The results in Table 2 again indicate that the CupBC
and CupFM perform well.

The properties of the t-statistic for testing β = β0, are given
in Table 3. Here, the LSDV t-statistic is the conventional t-statistic
as reported by standard statistical packages. It is clear that LSDV
t-statistics and 2sFM t-statistics diverge as (n, T ) increases and
they are not well approximated by a standard N(0, 1) distribution.
The CupBC and CupFM t-statistics are much better approximated
by a standard N(0, 1). Interesting, the performance of CupBC is
no worse than that of CupFM, even though CupBC does the full
modification in the final stage of iteration.
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Table 2
Mean bias and standard deviation of estimators for different n and T .
(n, T ) c = 5 c = 10

LSDV 2sFM CupBC CupFM LSDV 2sFM CupBC CupFM

(20, 20) 2.258 0.129 −0.158 0.293 1.538 0.275 −0.158 0.294
(1.594) (0.382) (0.031) (0.028) (3.186) (0.771) (0.031) (0.029)

(20, 40) 4.832 −0.426 −0.067 0.107 8.141 −0.006 −0.067 0.106
(1.692) (0.288) (0.014) (0.014) (3.186) (0.566) (0.014) (0.014)

(20, 60) 0.460 0.282 −0.019 −0.058 −0.105 0.0561 −0.186 0.058
(1.560) (0.206) (0.009) (0.009) (3.121) (0.412) (0.009) (0.009)

(20, 120) 3.018 0.040 0.010 0.021 −6.550 0.067 0.010 0.021
(1.572) (0.123) (0.005) (0.005) (3.144) (0.245) (0.005) (0.004)

(40, 20) 4.012 −0.566 −0.225 0.320 5.092 −1.087 −0.226 0.320
(1.126) (0.280) (0.0218) (0.019) (2.252) (0.593) (0.021) (0.019)

(40, 40) 4.051 −0.332 −0.117 0.101 6.616 −0.622 −0.117 0.101
(1.153) (0.227) (0.010) (0.009) (2.305) (0.454) (0.010) (0.009)

(40, 60) 1.818 0.114 −0.055 0.051 2.628 0.248 −0.055 0.051
(1.098) (0.158) (0.007) (0.006) (2.196) (0.317) (0.007) (0.006)

(40, 120) 1.905 −0.090 −0.010 0.015 3.303 −0.178 −0.010 0.015
(1.111) (0.087) (0.003) (0.003) (2.243) (0.187) (0.003) (0.003)

(60, 20) 3.934 −0.317 −0.294 0.295 4.989 −0.544 −0.294 0.295
(0.921) (0.249) (0.018) (0.017) (1.841) (0.497) (0.014) (0.016)

(60, 40) 2.023 0.110 −0.125 0.108 2.573 0.267 −0.125 0.109
(0.923) (0.187) (0.009) (0.008) (1.296) (0.027) (0.009) (0.008)

(60, 60) −0.337 0.082 −0.067 0.049 −1.666 0.191 −0.067 0.049
(0.925) (0.139) (0.005) (0.005) (1.850) (0.279) (0.005) (0.005)

(60, 120) −1.168 0.109 −0.015 0.015 −2.839 −0.223 −0.014 0.015
(0.923) (0.075) (0.003) (0.003) (1.847) (0.151) (0.003) (0.003)

(120, 20) 2.548 −0.151 −0.304 0.294 2.236 −0.203 −0.304 0.294
(0.651) (0.182) (0.014) (0.011) (1.303) (0.362) (0.014) (0.011)

(120, 40) 1.579 −0.026 −0.013 0.001 1.678 0.000 −0.133 0.112
(0.661) (0.137) (0.006) (0.005) (1.321) (0.279) (0.006) (0.005)

(120, 60) 0.764 0.004 −0.077 0.013 0.539 0.061 −0.077 0.048
(0.634) (0.100) (0.004) (0.004) (1.267) (0.199) (0.004) (0.004)

(120, 120) 1.161 −0.070 −0.017 0.017 1.823 −0.134 −0.017 0.018
(0.649) (0.055) (0.002) (0.002) (1.298) (0.111) (0.002) (0.002)

(a) The Mean biases here have been multiplied by 100. (b) σ21 = 0.2, σ31 = 0.8, and σ32 = 0.4.

Table 3
Mean bias and standard deviation of t-statistics.

σ31 = 0 σ31 = 0.8 σ31 = −0.8
LSDV 2sFM CupBC CupFM LSDV 2s FM CupBC CupFM LSDV 2sFM CupBC CupFM

σ21 = 0

n, T = 20 0.036 0.006 0.016 0.016 0.006 0.0224 0.001 0.001 0.041 −0.001 0.019 0.019
(2.414) (2.445) (1.531) (1.502) (2.527) (2.449) (1.529) (1.503) (2.534) (2.455) (1.515) (1.491)

n, T = 40 0.092 −0.036 −0.007 −0.006 0.074 −0.052 −0.012 −0.011 0.019 0.008 −0.006 −0.005
(3.576) (2.589) (1.276) (1.256) (3.592) (2.618) (1.273) (1.254) (3.588) (2.581) (1.278) (1.217)

n, T = 60 −0.098 0.016 −0.019 −0.019 −0.036 −0.016 −0.011 −0.011 −0.060 0.045 −0.009 −0.009
(4.346) (2.647) (1.182) (1.169) (4.325) (2.640) (1.189) (1.178) (4.315) (2.644) (1.182) (1.169)

n, T = 120 0.046 −0.019 −0.003 −0.003 0.099 −0.019 −0.075 0.102 −0.088 −0.040 0.068 −0.011
(6.093) (2.696) (1.101) (1.096) (6.089) (2.661) (1.118) (1.094) (6.095) (2.705) (1.120) (1.095)

σ21 = 0.2

n, T = 20 0.104 0.040 0.001 0.185 0.070 0.037 −0.013 0.188 0.105 0.033 0.004 0.181
(2.508) (2.454) (1.558) (1.497) (2.529) (2.453) (1.561) (1.442) (2.539) (2.465) (1.543) (1.483)

n, T = 40 0.149 −0.013 −0.081 0.140 0.134 −0.022 −0.085 0.142 0.059 −0.003 −0.081 0.143
(3.563) (2.597) (1.304) (1.252) (3.578) (2.639) (1.307) (1.252) (3.578) (2.612) (1.314) (1.258)

n, T = 60 −0.032 0.039 −0.100 0.115 0.027 0.013 −0.094 0.123 0.011 0.038 −0.087 0.127
(4.357) (2.651) (1.209) (1.167) (4.357) (2.647) (1.215) (1.174) (4.325) (2.646) (1.204) (1.162)

n, T = 120 0.049 −0.016 0.003 0.002 0.097 −0.019 −0.059 0.114 0.012 −0.029 0.062 −0.109
(6.060) (2.640) (1.096) (1.092) (6.084) (2.645) (1.115) (1.093) (6.043) (2.635) (1.111) (1.089)

σ21 = −0.2

n, T = 20 −0.031 −0.013 0.029 −0.155 −0.064 0.005 0.125 −0.166 −0.031 −0.029 0.027 −0.152
(2.519) (2.456) (1.559) (1.497) (2.528) (2.439) (1.556) (1.498) (2.538) (2.458) (1.556) (1.498)

n, T = 40 0.033 −0.068 0.067 −0.153 −0.005 −0.071 0.061 −0.162 −0.035 −0.021 0.058 −0.159
(3.586) (2.593) (1.312) (1.255) (3.597) (2.618) (1.305) (1.248) (3.588) (2.574) (1.305) (1.252)

n, T = 60 −0.162 0.002 0.062 −0.154 −0.093 −0.035 0.067 −0.146 −0.114 0.028 0.067 −0.147
(4.335) (2.657) (1.212) (1.169) (4.283) (2.633) (1.210) (1.168) (4.308) (2.643) (1.206) (1.166)

n, T = 120 −0.066 0.001 0.007 0.007 −0.010 0.022 −0.062 0.117 −0.111 −0.004 0.077 −0.104
(6.098) (2.679) (1.106) (1.106) (6.152) (2.577) (1.116) (1.092) (6.119) (2.691) (1.125) (1.101)

Note: (a) c = 5, σ32 = 0.4.

Table 4 shows that, as n and T increases, the biases for the
t-statistics associated with LSDV and 2sFM do not decrease. For

CupBC and CupFM, the biases for the t-statistics become smaller
(except for a small number of cases) as T increases for each
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Table 4
Mean bias and standard deviation of t-statistics for different n and T .

(n, T ) c = 5 c = 10
LSDV 2sFM CupBC CupFM LSDV 2sFM CupBC CupFM

(20, 20) 0.070 0.037 −0.013 0.169 0.036 0.030 −0.013 0.169
(2.529) (2.453) (1.561) (1.497) (2.532) (2.562) (1.560) (1.496)

(20, 40) 0.130 −0.007 −0.009 0.110 0.106 −0.011 −0.009 0.110
(3.539) (1.863) (1.313) (1.286) (3.541) (1.896) (1.313) (1.286)

(20, 60) 0.029 0.009 0.015 0.085 0.009 0.003 0.016 0.085
(4.303) (1.553) (1.253) (1.239) (4.305) (1.569) (1.253) (1.239)

(20, 120) −0.090 0.015 0.057 0.064 −0.105 0.013 0.057 0.064
(6.131) (1.222) (1.156) (1.151) (6.132) (1.220) (1.156) (1.151)

(40, 20) 0.119 −0.015 −0.086 0.242 0.073 −0.019 −0.086 0.241
(2.518) (3.376) (1.549) (1.443) (2.520) (3.610) (1.549) (1.443)

(40, 40) 0.134 −0.022 −0.085 0.142 0.100 −0.026 −0.085 0.142
(3.578) (2.639) (1.307) (1.252) (3.580) (2.739) (1.307) (1.252)

(40, 60) 0.113 0.012 −0.048 0.109 0.085 0.008 −0.047 0.109
(4.328) (2.164) (1.209) (1.177) (4.329) (2.222) (1.209) (1.176)

(40, 120) 0.133 −0.014 −0.007 0.059 0.113 −0.019 −0.007 0.059
(6.097) (1.519) (1.131) (1.123) (6.098) (1.535) (1.131) (1.123)

(60, 20) 0.123 0.005 −0.161 0.276 0.067 −0.002 −0.160 0.276
(2.521) (4.042) (1.579) (1.424) (2.524) (4.409) (1.579) (1.425)

(60, 40) 0.100 0.069 −0.109 0.192 0.059 0.065 −0.109 0.192
(3.532) (3.206) (1.352) (1.272) (3.534) (3.375) (1.352) (1.272)

(60, 60) 0.027 0.013 −0.094 0.123 −0.006 0.010 −0.094 0.122
(4.426) (2.613) (1.215) (1.174) (4.359) (2.751) (1.215) (1.174)

(60, 120) −0.020 0.031 −0.024 0.077 −0.044 0.030 −0.025 0.077
(6.131) (1.866) (1.118) (1.104) (6.132) (1.902) (1.118) (1.104)

(120, 20) 0.139 0.044 −0.243 0.386 0.060 0.063 −0.243 0.386
(2.478) (5.269) (1.681) (1.404) (2.479) (5.969) (1.681) (1.404)

(120, 40) 0.135 0.037 −0.186 0.268 0.078 0.040 −0.186 0.268
(3.588) (4.369) (1.366) (1.233) (3.589) (4.706) (1.366) (1.233)

(120, 60) 0.099 0.011 −0.162 0.174 0.052 0.004 −0.162 0.174
(4.272) (3.683) (1.249) (1.166) (4.273) (3.902) (1.249) (1.167)

(120, 120) 0.097 −0.189 −0.589 0.114 0.063 −0.027 −0.059 0.114
(6.084) (2.645) (1.115) (1.093) (6.086) (2.741) (1.115) (1.093)

(a) σ21 = 0.2, σ31 = 0.8, and σ32 = 0.4.

fixed n. As n increases, no improvement in bias is found. The large
standard deviations in the t-statistics associated with LSDV and
2sFM indicate their poor performance, especially as T increases.
For the CupBC and CupFM, the standard errors converge to 1.0 as n
and T (especially as T ) increase.

6. Conclusion

This paper develops an asymptotic theory for a panel cointe-
gration model with unobservable global stochastic trends. Stan-
dard least squares estimator is, in general, inconsistent. In contrast,
the proposed Cup estimator is shown to be consistent (at least T -
consistent). In the absence of endogeneity, the Cup estimator is also√
nT consistent. Because we allow the regressors and the unob-

servable trends to be endogenous, an asymptotic bias exists for the
Cup estimator. We further consider two bias-corrected estimators,
CupBC and CupFM, and derive their rate of convergence and their
limiting distributions. We show that these estimators are

√
nT

consistent and this holds in spite of endogeneity and in spite of spu-
riousness induced by unobservable I(1) common shocks. A simula-
tion study shows that the proposed CupBC and CupFM estimators
have good finite sample properties.

Appendix A

Throughout we use (n, T )seq → ∞ to denote the sequential
limit, i.e., T → ∞ first and followed by n → ∞. We use
MN(0, V ) to denote a mixed normal distribution with variance V .
Let C be the σ -field generated by

{
F 0
t
}
. The first lemma assumes ui

is uncorrelated with (xi, F 0) for every i. This assumption is relaxed
in Lemma A.2.

Lemma A.1. Suppose that Assumptions 1–4 hold and that ui is
uncorrelated with (xi, F 0), then as (n, T )seq → ∞
(a)

1
n

n∑

i=1

1
T 2 x

′
iMF0xi

d−→ lim
n→∞

1
n

n∑

i=1

E
(∫

QiQ ′
i |C

)
,

(b)

1√
n

n∑

i=1

1
T
x′
iMF0ui

d−→MN

(

0, lim
n→∞

1
n

n∑

i=1

ΩuiE
(∫

QiQ ′
i |C

))

.

Proof. Note that

1
n

n∑

i=1

1
T 2 x

′
iMF0xi = 1

n

n∑

i=1

1
T 2 x

′
iMF0MF0xi = 1

n

n∑

i=1

1
T 2

T∑

t=1

x̃it̃ x′
it ,

where x̃it = xit − δ′
i F

0
t and

δi =
(
F 0′F 0)−1 F 0′xi

=
(
F 0′F 0

T 2

)−1 1
T 2

T∑

t=1

F 0
t x

′
it

d−→
(∫

BηB′
η

)−1 ∫
BηB′

εi

see, e.g., Phillips and Ouliaris (1990). Thus

x̃it√
T

= xit√
T

− δ′
i
F 0
t√
T

d−→ Bεi −
[(∫

BηB′
η

)−1∫
BηB′

εi

]′

Bη = Qi.
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By the continuous mapping theorem

1
T 2

T∑

t=1

x̃it̃ x′
it

d−→
∫

QiQ ′
i = ζ1i

as T → ∞. The variable ζ1i is independent across i conditional on
C , which is an invariant σ -field. Thus conditioning on C , the law of
large numbers for independent random variables gives,

1
n

n∑

i=1

ζ1i
p−→ lim

n→∞
1
n

n∑

i=1

E (ζ1i|C) = lim
n→∞

1
n

n∑

i=1

E
(∫

QiQ ′
i |C

)
.

Thus, the sequential limit is

1
n

n∑

i=1

1
T 2 x

′
iMF0xi

d−→ lim
n→∞

1
n

n∑

i=1

E
(∫

QiQ ′
i |C

)
.

This proves part (a).
Consider (b). Rewrite

1√
n

n∑

i=1

1
T
x′
iMF0ui = 1√

n

n∑

i=1

1
T

T∑

t=1

x̃ituit ,

where x̃it = xit − δ′
i F

0
t as before. By assumption, uit is I(0) and is

uncorrelated with x̃it . It follows that

1
T

T∑

t=1

x̃ituit
d−→

∫
QidBui = ξ2i ∼ Ω

1/2
ui

(∫
QiQ ′

i

)1/2

× Z,

where Z ∼ N (0, Ik) as T → ∞ for a fixed n. The variable ξ2i is
independent across i conditional on C , which is an invariant σ -
field. Thus conditioning on C ,

1
n

n∑

i=1

ξ2iξ
′
2i

p−→ lim
n→∞

1
n

n∑

i=1

E
(
ξ2iξ

′
2i|C

)

= lim
n→∞

1
n

n∑

i=1

Ωui

∫
E

(
QiQ ′

i |C
)
. (22)

Let Ii be the σ field generated by {F 0
t } and (ξ21, . . . , ξ2i). Then

{ξ2i, Ii; i ≥ 1} is a martingale difference sequence (MDS) because
{ξ2i} are independent across i conditional on C and

E(ξ2i|Ii−1) = E(ξ2i|C) = 0.

From
∑n

i=1 ξ2iξ
′
2i = Op (n), the conditional Lindeberg condition in

Corollary 3.1 of Hall and Heyde (1980) can be written as

1
n

n∑

i=1

E
(
ξ2iξ

′
2i1

(‖ξ2i‖ >
√
nδ

)
|Ii−1

) p→ 0 (23)

for all δ > 0. To see (23), notice that

1
n

n∑

i=1

E
(
ξ2iξ

′
2i1

(‖ξ2i‖ >
√
nδ

)
|Ii−1

)

= 1
n

n∑

i=1

E
(
ξ2iξ

′
2i1

(‖ξ2i‖ >
√
nδ

)
|C

)
.

Without loss of generality we assume that ξ2i is a scalar to save
notations. By the Cauchy–Schwarz inequality

E
(
ξ 2
2i1

(‖ξ2i‖ >
√
nδ

)
|C

)

≤
{
E

(
ξ 4
2i|C

)}1/2 {
E

[
1

(‖ξ2i‖ >
√
nδ

)
|C

]}1/2
.

Furthermore,

E
[
1

(‖ξ2i‖ >
√
nδ

)
|C

]
≤ E

(
ξ 2
2i|C

)

nδ2 .

It follows that

1
n

n∑

i=1

E
(
ξ 2
2i1

(‖ξi‖ >
√
nδ

)
|C

)

≤ 1√
nδ

[
1
n

n∑

i=1

[
E

(
ξ 4
2i|C

)
E

(
ξ 2
2i|C

)]1/2
]

= Op(n−1/2)

in view of

1
n

n∑

i=1

[E
(
ξ 4
2i|C

)
E(ξ 2

2i|C)]1/2 = Op(1).

This proves (23). The central limit theorem for martingale
difference sequence, e.g., Corollary 3.1 of Hall and Heyde (1980),
implies that

1√
n

n∑

i=1

ξ2i
d−→

[

lim
n→∞

1
n

n∑

i=1

E
(
ξ2iξ

′
2i|C

)
]1/2

× Z, (24)

where Z ∼ N (0, I) and Z is independent of limn→∞ 1
n

∑n
i=1 E(

ξ2iξ
′
2i|C

)
. Note that

[

lim
n→∞

1
n

n∑

i=1

E
(
ξ2iξ

′
2i|C

)
]1/2

=
(

lim
n→∞

1
n

n∑

i=1

ΩuiE
(∫

QiQ ′
i |C

))1/2

.

Thus, as (n, T )seq → ∞, we have

1√
n
1
T

n∑

i=1

T∑

t=1

x̃ituit
d−→

(

lim
n→∞

1
n

n∑

i=1

ΩuiE
(∫

QiQ ′
i |C

))1/2

× Z

which is a mixed normal. The above can be rewritten as

1√
n
1
T

n∑

i=1

T∑

t=1

x̃ituit
d−→MN

(

0, lim
n→∞

1
n

n∑

i=1

ΩuiE
(∫

QiQ ′
i |C

))

.

This proves part (b). "

The convergence in parts (a) and (b) of Lemma A.1 holds jointly.
The proofs for Propositions 1 and 2 (with observable F ) follow
immediately from Lemma A.1. Propositions 3 and 4 are proved in
the supplementary appendix of Bai et al. (2006).

To derive the limiting distribution for β̂Cup, we need the
following lemma. Hereafter, we define δnT = min

{√
n, T

}
.

Lemma A.2. Suppose Assumptions 1–5 hold. Let Zi = MF0xi −
1
n

∑n
k=1 MF0xkaik. Then as (n, T )seq → ∞

(a)

1
nT 2

n∑

i=1

Z ′
i Zi

d−→ lim
n→∞

1
n

n∑

i=1

E
(∫

RniR′
ni|C

)
.

(b) If ui is uncorrelated with (xi, F 0) for all i, then

1√
nT

n∑

i=1

Z ′
i ui

d−→MN

(

0, lim
n→∞

1
n

n∑

i=1

ΩuiE
(∫

RniR′
ni|C

))

.

(c) If ui is possibly correlated with (xi, F 0), then

1√
nT

n∑

i=1

Z ′
i ui −

√
n θn

d−→MN

(

0, lim
n→∞

1
n

n∑

i=1

Ω̄u.biE
(∫

RniR′
ni|C

))

,
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where

Rni = Qi −
1
n

n∑

k=1

Qkaik,

aik = λ′
i
(
Λ′Λ/n

)−1
λk,

Qi = Bεi −
(∫

BεiB′
η

) (∫
BηB′

η

)−1

Bη

θn = 1
n

n∑

i=1

[
1
T
Z ′
i
(
∆x̄i ∆F

)
Ω̄−1

bi Ω̄bui +
(
Ik −δ̄′

i

) (
∆̄+

εui
∆̄+

ηu

)]

with δ̄i =
(
F 0′F 0

)−1
F 0′ x̄i, and x̄i = xi − 1

n

∑n
k=1 xkaik.

Proof of (a). Recall

MF0xi = xi − F 0
(
F 0′

F 0
)−1

F 0′
xi = xi − F 0δi,

where

δi =
(
F 0′

F 0
)−1

F 0′
xi

=
(
F 0′F 0

T 2

)−1
1
T 2

T∑

t=1

F 0
t x

′
it

d−→
(∫

BηB′
η

)−1 ∫
BηB′

εi = πi

is an r × kmatrix as T → ∞. Write x̃i = MF0xi = xi − F 0δi, a T × k
matrix. Hence

Zi = MF0xi −
1
n

n∑

k=1

MF0xkaik

=
(
xi − F 0δi

)
− 1

n

n∑

k=1

(
xk − F 0δk

)
aik = x̃i −

1
n

n∑

k=1

x̃kaik,

where aik = λ′
i
(
Λ′Λ/n

)−1
λk is a scalar and

x̃it√
T

= xit√
T

− δ′
i
F 0
t√
T

d−→ Bεi −
[(∫

BηB′
η

)−1∫
BηB′

εi

]′

Bη = Qi

a k × 1 vector, as T → ∞. It follows that

Zit√
T

d−→Qi −
1
n

n∑

k=1

Qkaik = Rni

and using similar steps in part (a) in Lemma A.1 as n → ∞,

1
nT 2

n∑

i=1

∫
RniR′

ni
p−→ lim

n→∞
1
n

n∑

i=1

E
(∫

RniR′
ni|C

)
.

Hence

1
nT 2

n∑

i=1

Z ′
i Zi

d−→ lim
n→∞

1
n

n∑

i=1

E
(∫

RniR′
ni|C

)

as (n, T )seq → ∞, showing (a).

Proof of part (b). Notice that

1√
nT

n∑

i=1

Z ′
i ui = 1√

nT

n∑

i=1

(

MF0xi −
1
n

n∑

k=1

MF0xkaik

)′

ui

= 1√
nT

n∑

i=1

(
MF0xi

)′ ui −
1√
nT

n∑

i=1

(
1
n

n∑

k=1

MF0xkaik

)′

ui

= Ib + IIb.

Ib is proved in Lemma A.1, as (n, T )seq → ∞,

Ib = 1√
nT

n∑

i=1

(
MF0xi

)′ ui

d−→MN

(

0, lim
n→∞

1
n

n∑

i=1

ΩuiE
(∫

QiQ ′
i |C

))

if x̃it and uit are uncorrelated. Similarly, for IIb, we have

1√
nT

n∑

i=1

(
1
n

n∑

k=1

aikMF0xk

)′

ui

d−→MN

(

0, lim
n→∞

1
n

n∑

i=1

ΩuiE (Cni|C)

)

,

where Cni = 1
n

∑n
k=1 aik

∫
QkQ ′

k we have used the fact that
1
n2

∑n
k=1

∑n
j=1 aikaij = 1

n

∑n
k=1 aik. Thus both Ib and IIb have a

proper limiting distribution. These distributions are dependent
since they depend on the same ui. We can also derive their joint
limiting distribution. Given the form of Zi, it is easy to show that
the above convergences imply part (b).
Proof of part (c). Now suppose x̃it and uit are correlated. It is known
that

1
T

T∑

t=1

x̃ituit = 1
T

T∑

t=1

(
xit − δ′

i F
0
t
)
uit = 1

T

T∑

t=1

(
Ik −δ′

i
) (

xit
F 0
t

)
uit

=
(
Ik −δ′

i
) 1
T

T∑

t=1

(
xit
F 0
t

)
uit

d−→
(
Ik −π ′

i
) [∫ (

BεidBui
BηdBui

)
+

(
∆εui
∆ηu

)]

=
∫

QidBui +
(
Ik −π ′

i
) (

∆εui
∆ηu

)
(25)

as T → ∞ (e.g., Phillips and Durlauf (1986)). First we note
∫

QidBui =
∫

Qid
(
Ω

1/2
u.biVi + ΩubiΩ

−1/2
bi Wi

)

=
∫

QidBu.bi +
∫

QidB′
biΩ

−1
bi Ωbui

such that

E
[∫

QidVi

]
= E

[
E

[∫
QidVi

]
|πi

]

= E
[
E

[∫ (
Bεi − π ′

i Bη

)
dVi|πi

]]
= 0.

Note that
1
T
x′
iMF0

(
∆xi ∆F 0) Ω−1

bi Ωbui = 1
T
x̃′
i
(
∆xi ∆F 0) Ω−1

bi Ωbui

=
(
Ik −δ′

i
) 1
T

T∑

t=1

(
xit
F 0
t

)
Ω−1

bi Ωbui

(
∆xit
∆F 0

t

)

d−→
(
Ik −π ′

i
) [∫ (

Bεi
Bη

)
dB′

biΩ
−1
bi Ωbui + ∆biΩ

−1
bi Ωbui

]
.

Therefore
1
T
x̃′
iui −

[
1
T
x′
iMF0

(
∆xi ∆F 0) Ω−1

bi Ωbui

+
(
Ik −δ′

i
) [

∆bui − ∆biΩ
−1
bi Ωbui

] ]
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= 1
T
x̃′
iui −

[
1
T
x′
iMF0

(
∆xi ∆F 0) Ω−1

bi Ωbui +
(
Ik −δ′

i
)
∆+

bui

]

d−→ Ω
1/2
u.bi

∫
QidVi ∼

[
Ω

1/2
u.bi

∫
QiQ ′

i

]1/2

× N (0, Ik) , (26)

where

∆+
bui = ∆bui − ∆biΩ

−1
bi Ωbui.

Let

θn
1 = 1

n

n∑

i=1

[
1
T
x′
iMF0

(
∆xi ∆F 0) Ω−1

bi Ωbui +
(
Ik −δ′

i
)
∆+

bui

]
.

Then we use similar steps in part (b) in Lemma A.1 to get

1√
nT

n∑

i=1

x̃′
iui −

√
nθn

1 = 1√
nT

n∑

i=1

T∑

t=1

x̃ituit − √
nθn

1

d−→MN

(

0, lim
n→∞

1
n

n∑

i=1

Ωu.biE
(∫

QiQ ′
i |C

))

as (n, T )seq → ∞.
Note Zi = x̃i− 1

n

∑n
k=1 x̃kaik is a demeaned x̃i where 1

n

∑n
k=1 x̃kaik

is the weighted average of x̃i with the weight aik. It follows that

Zi = x̃i −
1
n

n∑

k=1

x̃kaik

=
(
xi − F 0δi

)
− 1

n

n∑

k=1

(
xk − F 0δk

)
aik

=
(

xi −
1
n

n∑

k=1

xkaik

)

− F 0

(

δi −
1
n

n∑

k=1

δkaik

)′

= x̄i − F 0δ̄′
i ,

where x̄i = xi − 1
n

∑n
k=1 xkaik and δ̄i = δi − 1

n

∑n
k=1 δkaik.

We then can modify (25) as

1
T

T∑

t=1

Zituit = 1
T

T∑

t=1

(
x̄it − δ̄′

i F
0
t
)
uit

= 1
T

T∑

t=1

(
Ik −δ̄′

i

) (
x̄it
F 0
t

)
uit

=
(
Ik −δ̄′

i

) 1
T

T∑

t=1

(
x̄it
F 0
t

)
uit

d−→
(
Ik −π̄ ′

i
) [∫ (

B̄εidBui
BηdBui

)
+

(
∆̄εui
∆̄ηu

)]

=
∫

RnidBui +
(
Ik −π̄ ′

i
) (

∆̄εui
∆̄ηu

)
, (27)

where B̄εi = Bεi − 1
n

∑n
k=1 Bεiaik and

δ̄i = δi −
1
n

n∑

k=1

δkaik
d−→

(∫
BηB′

η

)−1 ∫
BηB̄′

εi = π̄i.

The Rni terms appear in the last line in (27) because

B̄εi − π̄ ′
i Bη =

(

Bεi −
1
n

n∑

k=1

Bεkaik

)

−
(∫

BηB′
η

)−1 ∫
Bη

(

Bεi −
1
n

n∑

k=1

Bεkaik

)′

Bη

= Bεi −
[(∫

BηB′
η

)−1 ∫
BηB′

εi

]

Bη

− 1
n

n∑

k=1

{

Bεk −
[(∫

BηB′
η

)−1 ∫
BηB′

εk

]

Bη

}

aik

= Qi −
1
n

n∑

k=1

Qkaik = Rni.

Let

θn = 1
n

n∑

i=1

[
1
T
Z ′
i
(
∆x̄i ∆F 0) Ω̄−1

bi Ω̄bui +
(
Ik −δ̄′

i

)
∆̄+

bui

]
.

Clearly

1√
nT

n∑

i=1

Z ′
i ui −

√
n θn = 1√

nT

n∑

i=1

(

x̃i −
1
n

n∑

k=1

x̃kaik

)′

ui

d−→MN

(

0, lim
n→∞

1
n

n∑

i=1

Ω̄u.biE
(∫

RniR′
ni|C

))

as (n, T → ∞) with Rni = Qi − 1
n

∑n
k=1 Qkaik. This proves (c). "

Proof of Theorem 1. This follows directly from Lemma A.2 as
(n, T ) → ∞ when n

T → 0
√
nT

(
β̂Cup − β

)
− √

nφnT

d−→MN

(

0,D−1
Z

[

lim
n→∞

1
n

n∑

i=1

Ω̄u.biE
(∫

RniR′
ni|C

)]

D−1
Z

)

,

where

DZ = lim
n→∞

1
n

n∑

i=1

E
(∫

RniR′
ni|C

)

and

φnT =
[

1
nT 2

n∑

i=1

Z ′
i Zi

]−1

θn. "

Proof of Theorem 2 and 3. The proof for Theorem 2 is similar to
that of Theorem 3, thus omitted. To prove Theorem 3, we need
some preliminary results. First we examine the limiting distribu-
tion of the infeasible FM estimator, β̃CupFM. The endogeneity cor-
rection is achieved by modifying the variable yit in (3) with the
transformation

y+
it = yit − Ω̄ubiΩ̄

−1
bi

(
∆x̄it
∆F 0

t

)

and

u+
it = uit − Ω̄ubiΩ̄

−1
bi

(
∆x̄it
∆F 0

t

)
.

By construction u+
it has zero long-run covariance with(

∆x̄′
it ∆F 0′

t

)′ and hence the endogeneity can be removed. The se-
rial correlation correction term has the form

∆̄+
bui =

(
∆̄+

εui
∆̄+

ηu

)
=

(
∆̄bui ∆̄bi

) (
Ik

−Ω̄−1
bi Ω̄bui

)

= ∆̄bui − ∆̄biΩ̄
−1
bi Ω̄bui,

where ∆̄bui denotes the one-sided long-run covariance between uit
and (εit , ηt). Therefore, the infeasible FM estimator is

β̃CupFM =
(

n∑

i=1

x′
iMF0xi

)−1 n∑

i=1

(
x′
iMF0y

+
i − T

(
∆̄+

εui − δ̄′
i∆̄

+
ηu

))
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with δ̄i =
(
F 0′F 0

)−1
F 0′ x̄i.

The following lemma gives the limiting distribution of β̃CupFM.

Lemma A.3. Suppose assumptions in Theorem 1 hold. Then as
(n, T )seq → ∞
√
nT

(
β̃CupFM − β0)

d−→MN

(

0,D−1
Z

[

lim
n→∞

1
n

n∑

i=1

Ω̄u.biE
(∫

RniR′
ni|C

)]

D−1
Z

)

.

Proof. Let w+
it =

(
u+
it ε′

it η′)′ and we have

1√
T

[Tr]∑

t=1

w+
it

d−→




B+
ui

Bεi
Bη



 =
[
B+
ui

Bbi

]
= BM

(
Ω+

i
)

as T → ∞, (28)

where

Bbi =
[
Bεi
Bη

]
, Ωu.bi = Ωui − ΩubiΩ

−1
bi Ωbui,

Ω+
i =

[
Ωu.bi 0
0 Ωbi

]
=

[
Ωu.bi 0 0
0 Ωεi Ωεηi
0 Ωηεi Ωη

]

= Σ+ + Γ + + Γ +′
,[

B+
ui

Bbi

]
=

[
I −ΩubiΩ

−1
bi

0 I

] [
Bui
Bbi

]
.

Define ∆+
i = Σ+

i + Γ +
i and let u+

1it = uit − ΩubiΩ
−1
bi

(
∆xit
∆Ft

)
. First

we notice from (26) in Lemma A.2 that

ζ+
1iT = 1

T

T∑

t=1

x̃itu+
1it =

(
Ik −δ′

i
) 1
T

T∑

t=1

(
xit
F 0
t

)
u+
1it

=
(
Ik −δ′

i
)
[
1
T

T∑

t=1

(
xit
F 0
t

)
uit − 1

T

T∑

t=1

(
xit
F 0
t

)
ΩubiΩ

−1
bi

(
∆xit
∆F 0

t

)]

d−→ Ω
1/2
u.bi

∫
QidVi +

(
∆+

εui − π ′
i ∆

+
ηu

)
(29)

as T → ∞. Now let

ζ ∗
1iT = ζ+

1iT −
(
∆+

εui − δ′
i∆

+
ηu

)
.

Clearly,

ζ ∗
1iT

d−→ Ω
1/2
u.bi

∫
QidVi.

Thus,

1√
nT

n∑

i=1

(
x′
iMF0u

+
1i − T

(
∆+

εui − δ′
i∆

+
ηu

))

= 1√
nT

n∑

i=1

(
T∑

t=1

x̃itu+
1it − T

(
∆+

εui − δ′
i∆

+
ηu

)
)

d−→MN

(

0, lim
n→∞

1
n

n∑

i=1

Ωu.biE
(∫

QiQ ′
i |C

))

as (n, T )seq → ∞. Next, we modify (29).

1
T

T∑

t=1

Zitu+
it = 1

T

T∑

t=1

(
x̄it − δ̄′

i F
0
t
)
u+
it

=
(
Ik −δ̄′

i

)
[
1
T

T∑

t=1

(
x̄it
F 0
t

)
u+
it − 1

T

T∑

t=1

(
x̄it
F 0
t

)
ΩubiΩ

−1
bi

(
∆x̄it
∆F 0

t

)]

d−→
(
Ik −π̄ ′

i
) {∫ (

B̄εi
Bη

)
dBui

+
(

∆̄εui
∆̄ηu

)
−

[∫ (
B̄εi
Bη

)
dB′

biΩ̄
−1
bi Ω̄bui + ∆̄bi

]}

=
∫

RnidBui +
(
Ik −π̄ ′

i
) (

∆̄εui
∆̄ηu

)

−
∫ [

RnidB′
biΩ̄

−1
bi Ω̄bui +

(
Ik −π̄ ′

i
) (

∆̄εi
∆̄η

)
Ω̄−1

bi Ω̄bui

]

= Ω̄
1/2
u.bi

∫
RnidVi +

(
∆̄+

εui − π̄ ′
i ∆̄

+
ηu

)
.

Therefore,

1√
nT

n∑

i=1

(
Z ′
i u

+
i − T

(
∆̄+

εui − δ̄′
i∆̄

+
ηu

))

d−→MN

(

0, lim
n→∞

1
n

n∑

i=1

Ω̄u.biE
(∫

RniR′
ni|C

))

as (n, T )seq → ∞. Then
√
nT

(
β̃CupFM − β0)

d−→MN

(

0,D−1
Z lim

n→∞
1
n

n∑

i=1

Ωu.biE
(∫

RniR′
ni|C

)
D−1
Z

)

as (n, T )seq → ∞. This proves the theorem. "

To show
√
nT

(
β̂CupFM − β̃CupFM

)
= op(1), we need the

following lemma.

Lemma A.4. Under Assumptions 1–5, we have
(a)

√
n

(
∆̂+

εun − ∆+
εun

)
= op(1),

(b) 1√
n

∑n
i=1

(
δ′
i∆̂

+
ηu − δ′

i∆
+
ηu

)
= op(1),

(c) 1√
nT

∑n
i=1

(
x′
iMF̂ û

+
i − x′

iMF0u
+
i
)

= op(1)

where û+
it = uit − Ω̂ubiΩ̂

−1
bi

(
∆xit
∆F̂t

)
, ∆̂+

εun = 1
n

∑n
i=1 ∆̂+

εui and ∆+
εun =

1
n

∑n
i=1 ∆+

εui.

Note that the lemma holds when the long-run variances are
replaced by the bar versions. Since the proofs are basically the same
(as demonstrated in the proof of Theorem ), the proof is focused on
the variances without the bar.
Proof. First, note that

∆+
bui =

(
∆+

εui
∆+

ηu

)
=

(
∆bui ∆bi

) (
1

−Ω−1
bi Ωbui

)

= ∆bui − ∆biΩ
−1
bi Ωbui.

Then

∆+
εui = ∆εui − ∆εiΩ

∗−1
εi Ωεui,

whereΩ∗−1
εi is the first k×k block ofΩ−1

bi . Following the arguments
as in the proofs of Theorems 9 and 10 of Hannan (1970) (also see
similar result of Moon and Perron (2004)), we have

E
∥∥√

n
(
∆̂+

εun − ∆+
εun

)∥∥2 ≤ sup
i

E
∥∥∆̂+

εui − E∆̂+
εui

∥∥2

+ n sup
i

∥∥E∆̂+
εui − ∆+

εui

∥∥2

= O
(
K
T

)
+ O

( n
K 2q

)
.
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It follows that

√
n

(
∆̂+

εun − ∆+
εun

)
= Op

(

max

√
K
T

,

√
n

K 2q

)

.

From Assumption 5. K ! nb. Then

n
K 2q !

n
n2qb = n(1−2qb) → 0,

if 1 < 2qb or 1
2q < b. Next

K
T

!
nb

T
= exp

(
log

(
nb

T

))

= exp
(
b − log T

log n

)
log n = nb− log T

log n ≤ nb−lim inf log T
log n → 0

if b < lim inf log T
log n by Assumption 5. Then

√
n

(
∆̂+

εun − ∆+
εun

)
= Op

(

max

√
K
T

,

√
n

K 2q

)

= op(1)

as required. This proves (a).
To establish (b), we note

1√
n

n∑

i=1

(
δ′
i∆̂

+
ηu − δ′

i∆
+
ηu

)
=

(
1
n

n∑

i=1

δ′
i

)
√
n

(
∆̂+

ηu − ∆+
ηu

)

= Op(1)Op

(

max

{√
K
T

,

√
n

K 2q

})

= op(1)

as required for part (b).
Let ũ+

it = uit − Ω̂ubiΩ̂
−1
bi

(
∆xit
∆F0t

)
. Next,

1√
nT

n∑

i=1

(
x′
iMF̂ û

+
i − x′

iMF0u
+
i
)

= 1√
nT

n∑

i=1

(
x′
iMF̂ û

+
i − x′

iMF̂ ũ
+
i

+ x′
iMF̂ ũ

+
i − x′

iMF̂ u
+
i + x′

iMF̂ u
+
i − x′

iMF0u
+
i
)

= 1√
nT

n∑

i=1

(
x′
iMF̂ ũ

+
i − x′

iMF̂ u
+
i
)

+ 1√
nT

n∑

i=1

(
x′
iMF̂ u

+
i − x′

iMF0u
+
i
)

+ 1√
nT

n∑

i=1

(
x′
iMF̂ û

+
i − x′

iMF̂ ũ
+
i
)

= 1√
nT

n∑

i=1

x′
iMF̂

(
ũ+
i − u+

i
)
+ 1√

nT

n∑

i=1

(
x′
iMF̂ − x′

iMF0
)
u+
i

+ 1√
nT

n∑

i=1

x′
iMF̂

(
û+
i − ũ+

i
)

= 1√
nT

n∑

i=1

x′
iMF̂

(
ũ+
i − u+

i
)
+ 1√

nT

n∑

i=1

x′
i
(
MF̂ − MF0

)
u+
i

+ 1√
nT

n∑

i=1

x′
iMF̂

(
û+
i − ũ+

i
)

= I + II + III.

From the proof of Proposition 4 in the supplementary appendix,

II = 1√
nT

n∑

i=1

x′
i
(
MF̂ − MF0

)
u+
i = op(1)

if we replace ui by u+
i . Let ∆bi =

(
∆xi ∆F 0) be a T × (k + r)

matrix. Consider I .

1√
nT

n∑

i=1

x′
iMF̂

(
ũ+
i − u+

i
)

= 1√
nT

n∑

i=1

x′
iMF̂

(
ui − ∆biΩ̂−1

bi Ω̂bui − ui + ∆biΩ−1
bi Ωbui

)

= 1√
nT

n∑

i=1

x′
iMF̂

(
∆bi

(
ΩubiΩ

−1
bi − Ω̂ubiΩ̂

−1
bi

))

= 1√
nT

n∑

i=1

x′
i

(

IT − F̂ F̂ ′

T 2

)
(
∆bi

(
ΩubiΩ

−1
bi − Ω̂ubiΩ̂

−1
bi

))

= 1√
nT

n∑

i=1

x′
i∆bi

(
ΩubiΩ

−1
bi − Ω̂ubiΩ̂

−1
bi

)

− 1√
nT

n∑

i=1

x′
i
F̂ F̂ ′

T 2

(
∆bi

(
ΩubiΩ

−1
bi − Ω̂ubiΩ̂

−1
bi

))

= Ic + IIc .

Along the same lines as the proofs of Theorems 9 and 10 of
Hannan (1970), we can show that

sup
i

E
∥∥Ω̂ubiΩ̂

−1
bi − ΩubiΩ

−1
bi

∥∥2 = O
(
K
T

)
+ O

(
1

K 2q

)
.

Then we have

ΩubiΩ
−1
bi − Ω̂ubiΩ̂

−1
bi = Op

(

Max

{√
K
T

,

√
1

K 2q

})

and

1√
n

n∑

i=1

∥∥ΩubiΩ
−1
bi − Ω̂ubiΩ̂

−1
bi

∥∥2

= √
n
1
n

n∑

i=1

∥∥ΩubiΩ
−1
bi − Ω̂ubiΩ̂

−1
bi

∥∥2

≤ √
n sup

i

∥∥ΩubiΩ
−1
bi − Ω̂ubiΩ̂

−1
bi

∥∥2

= √
n

[

Op

(

Max

{√
K
T

,

√
1

K 2q

})]2

.

For Ic., by the Cauchy–Schwarz inequality,

‖Ic‖ =
∥∥∥∥∥

1√
nT

n∑

i=1

x′
i∆bi

(
ΩubiΩ

−1
bi − Ω̂ubiΩ̂

−1
bi

)
∥∥∥∥∥

≤
(

√
n
1
n

n∑

i=1

∥∥∥∥
x′
i∆bi
T

∥∥∥∥
2
)1/2

×
(

1√
n

n∑

i=1

∥∥ΩubiΩ
−1
bi − Ω̂ubiΩ̂

−1
bi

∥∥2
)1/2

≤
[
Op

(√
n
)]1/2 (√

n
)1/2 Op

(

Max

{√
K
T

,

√
1

K 2q

})

= Op
(√

n
)
Op

(

Max

{√
K
T

,

√
1

K 2q

})

.
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Similarly,

‖IIc.‖ =
∥∥∥∥∥

1√
nT

n∑

i=1

x′
i
F̂ F̂ ′

T 2

(
∆bi

(
ΩubiΩ

−1
bi − Ω̂ubiΩ̂

−1
bi

))
∥∥∥∥∥

=
∥∥∥∥∥

1√
n

n∑

i=1

x′
îF
T 2

F̂ ′∆bi
T

(
ΩubiΩ

−1
bi − Ω̂ubiΩ̂

−1
bi

)
∥∥∥∥∥

≤

∥∥∥∥∥∥



√
n
1
n

n∑

i=1

∥∥∥∥∥
x′
îF
T 2

F̂ ′∆bi
T

∥∥∥∥∥

2



1/2

×
(

1√
n

n∑

i=1

∥∥ΩubiΩ
−1
bi − Ω̂ubiΩ̂

−1
bi

∥∥2
)1/2

∥∥∥∥∥∥

= Op
(√

n
)
Op

(

Max

{√
K
T

,

√
1

K 2q

})

.

Combining Ic. and IIc , we have

1√
nT

n∑

i=1

x′
iMF̂

(
û+
i − ũ+

i
)

= Op
(√

n
)
Op

(

Max

{√
K
T

,

√
1

K 2q

})

= Op

(

Max

{√
nK
T

,

√
n

K 2q

})

.

Recall K ! nb and lim inf log T
log n > 1 from Assumption 5. It follows

that, as in Moon and Perron (2004)

nK
T

!
nb+1

T
= exp

(
log

(
nb+1

T

))
= exp

(
b + 1 − log T

log n

)
log n

= nb+1− log T
log n ≤ nb+1−lim inf log T

log n → 0

by Assumption 5 and b < lim inf log T
log n − 1. Also note

n
K 2q !

n
n2qb = n(1−2qb) → 0

by Assumption 5 and 1
2q < b. Therefore

1√
nT

n∑

i=1

x′
iMF̂

(
û+
i − ũ+

i
)

= Op

(

Max

{√
nK
T

,

√
n

K 2q

})

= op(1).

Let

∆̂bi =
(
∆xi ∆F̂

)
.

Note that

∆bi − ∆̂bi =
(
∆xi ∆F 0) −

(
∆xi ∆F̂

)
=

(
0 ∆F 0 − ∆F̂

)
.

Consider III.

1√
nT

n∑

i=1

x′
iMF̂

(
û+
i − ũ+

i
)

= 1√
nT

n∑

i=1

x′
iMF̂

(
ui − ∆̂biΩ̂−1

bi Ω̂bui − ui + ∆biΩ̂−1
bi Ω̂bui

)

= 1√
nT

n∑

i=1

x′
iMF̂

(
∆bi − ∆̂bi

)
Ω̂−1

bi Ω̂bui

= 1√
nT

n∑

i=1

x′
iMF̂

(
∆F 0 − ∆F̂

)
Ω̂−1

bi Ω̂bui.

We use Lemma 12.3 in Bai (2005) to get

1
nT

n∑

i=1

x′
iMF̂

(
∆F 0 − ∆F̂

)
= Op

(
β̂ − β0) + Op

(
1

min(n, T )

)
.

It follows that

1√
nT

n∑

i=1

x′
iMF̂

(
∆F 0 − ∆F̂

)

= √
n

[
Op

(
β̂ − β0) + Op

(
1

min(n, T )

)]

= √
nOp

(
1
T

)
+ Op

( √
n

min(n, T )

)
= op(1)

since n
T → 0 as (n, T ) → ∞. Collecting I–III we prove (c). "

Proposition A.1. Under Assumptions 1–5,
√
nT

(
β̂CupFM − β̃CupFM

)
= op(1).

Proof. To save the notations, we only show that results with xi
in place of x̄i and δi in place of of δ̄i since the steps are basically
the same. In the supplementary appendix, it is shown that (see the
proof of Proposition 4)
(

1
nT 2

n∑

i=1

x′
iMF̂ xi

)

=
(

1
nT 2

n∑

i=1

x′
iMF0xi

)

+ op(1).

Then
√
nT

(
β̂CupFM − β̃CupFM

)

=
(

1
nT 2

n∑

i=1

x′
iMF0xi

)−1
1√
nT

×






n∑

i=1

(
x′
iMF̂ û

+
i − T

(
∆̂+

εui − δ′
i∆̂

+
ηu

))

−
n∑

i=1

(
x′
iMF0u

+
i − T

(
∆+

εui − δ′
i∆

+
ηu

))





+ op(1)

=
(

1
nT 2

n∑

i=1

x′
iMF0xi

)−1
1√
nT

×






n∑

i=1

(
x′
iMF̂ û

+
i − x′

iMF0u
+
i
)

−nT
(
∆̂+

εun − ∆+
εun

)
− T

n∑

i=1

(
δ′
i∆̂

+
ηu − δ′

i∆
+
ηu

)





+ op(1)

=
(

1
nT 2

n∑

i=1

x′
iMF0xi

)−1

×






1√
nT

n∑

i=1

(
x′
iMF̂ û

+
i − x′

iMF0u
+
i
)

−√
n

(
∆̂+

εun − ∆+
εun

)
− 1√

n

n∑

i=1

(
δ′
i∆̂

+
ηu − δ′

i∆
+
ηu

)






+ op(1),

where ∆̂+
εun = 1

n

∑n
i=1 ∆̂+

εui and ∆+
εun = 1

n

∑n
i=1 ∆+

εui. Finally using
Lemma A.4,
√
nT

(
β̂CupFM − β̃CupFM

)
= op(1). "

Proof of Theorem 3. This follows directly from Proposition A.1.
"

Proof of Proposition 5. Consider (i). In the supplementary ap-
pendix, it is shown that

1
T

T∑

t=1

‖F̂t − HF 0
t ‖2 = T Op(‖β̂ − β0‖2) + Op

(
1
n

)
+ Op

(
1
T

)
.
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From
√
nT (β̂ − β0) = Op(1), the first term on the right-hand side

is Op(1/(nT )), which is dominated by O(1/n)+Op(1/T ). The proof
of (ii) is similar. "

Appendix B. Supplementary data

Supplementary data associated with this article can be found,
in the online version, at doi:10.1016/j.jeconom.2008.10.012.
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