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a b s t r a c t

It is known that the principal component estimates of the factors and the loadings are rotations of the un-
derlying latent factors and loadings. We study conditions under which the latent factors can be estimated
asymptotically without rotation. We derive the limiting distributions for the estimated factors and factor
loadingswhenN and T are large andmake precise how identification of the factors affects inference based
on factor augmented regressions.Wealso consider factormodelswith additive individual and time effects.
The asymptotic analysis can bemodified to analyze identification schemes not considered in this analysis.
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1. Introduction

Large dimensional factor analysis has been found to be useful
in an increasingly large number of applications, and the theoreti-
cal properties of the principal components estimates are quitewell
understood. The method of principal components estimates the
space spanned by the latent factors instead of the factors them-
selves. Thus, if Ft is the r × 1 vector of latent factors, and F̃t is the
vector of factor estimates, there exists an r × r invertible matrix H
such that F̃t estimates H ′Ft . Asymptotic results are stated in terms
of F̃t − H ′Ft . Similarly, if λi is the vector of factor loadings and λ̃i
is the corresponding estimate, asymptotic results are known for
λ̃i − H−1λi.

In some instances, the object of interest is the conditional
mean, and interpretation of the parameters that determine the
conditional mean is not necessary. For example, in diffusion in-
dex forecasting analysis of Stock and Watson (2002), the primary
interest is the predicted value of the dependent variable. In factor
augmented regressions, the factors are merely present to control
for latent common effects. In problems with errors-in-variables or
endogeneity such as considered in Bai and Ng (2010), one only
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needs the factors to be strongly correlated with the endogenous
regressor to validate the factors as instruments. In all these cases,
we are not interested in the coefficients on the factors per se and
being able to estimate a rotation of Ft suffices.

There are, however, cases when the parameters of interest are
the coefficients associated with the factors, or even the factors
themselves. For example, in arbitrage pricing theory, restrictions
on the factor loadings would be necessary to pin down the sen-
sitivity to risk factors such as inflation, real activity, and finan-
cial markets. In factor augmented regressions of the form yt =

α′F̃t + W ′
tβ + εt , one might be interested in testing a hypothe-

sis concerning α. Since the asymptotic theory is only available for
√
T (α̂ − H−1α), the test is uninformative except when α is zero. If

H is known, α̂ can be given economic interpretation.
We study three sets of restrictions such that F and Λ are ex-

actly identified. If the underlying F and Λ that generate the data
satisfy those restrictions then H is asymptotically an identity ma-
trix. This is useful because F̃t can be treated as though they were
the latent Ft and α can be learnt from α̂. We derive the asymptotic
distributions for the estimated factors and the loadings based on
these restrictions. In case there exist no F and Λ that satisfy any of
the identification conditions considered here, the rotation matrix
H will not be an identity matrix asymptotically and we will be es-
timating rotations of the underlying F and Λ. Other identification
conditionsmay be considered; themethod developed in this paper
should be useful to derive the corresponding limiting distributions.

0304-4076/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
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Author's personal copy

J. Bai, S. Ng / Journal of Econometrics 176 (2013) 18–29 19

Our analysis is extended to allow for (i) additive individual effects,
(ii) common time effects, and (iii) heterogeneous time trends in the
panel of data.

2. Factor models and identification

Let T and N denote the sample size in the time series and
cross-section dimensions, respectively. For i = 1, . . . ,N and t =

1, . . . , T , the observation Xit has a factor structure represented as

Xit = λ′

iFt + eit .

As written, there are no deterministic terms. Individual fixed ef-
fects and time trends will be considered subsequently. Let X and e
be T × N matrices. The factor model in matrix form is

X = FΛ′
+ e

where F = (F1, F2, . . . , FT )′ is the T × r matrix of factors and Λ =

(λ1, λ2, . . . , λN)′ is the N × r matrix of factor loadings. Our objec-
tive is to estimate both F and Λ. We make the following assump-
tions:

Assumption A. There exists an M < ∞, not depending on N and
T , such that

(a) E∥Ft∥4
≤ M and 1

T

T
t=1 FtF

′
t

p
−→ ΣF > 0 is a r × r non-

randommatrix.
(b) λi is either deterministic such that ∥λi∥ ≤ M , or it is stochas-

tic such that E∥λi∥
4

≤ M . In either case, N−1Λ′Λ
p
−→ ΣΛ >

0 is a r × r non-randommatrix as N → ∞.
(c.i) E(eit) = 0 and E|eit |8 ≤ M .
(c.ii) E(eitejs) = σij,ts, |σij,ts| ≤ σ̄ij for all (t, s) and |σij,ts| ≤ τts for

all (i, j). Furthermore,
N

i=1 σ̄ij ≤ M for each j,
T

t=1 τts ≤ M
for each s, and 1

NT


i,j,t,s=1 |σij,ts| ≤ M .

(c.iii) For every (t, s), E|N−1/2N
i=1 [eiseit − E(eiseit)] |4 ≤ M .

(d) {λi}, {Ft}, and {eit}, are three mutually independent groups.
(e) (i) N−1/2N

i=1 λieit
d
−→ N(0, Γt); (ii) T−1/2T

t=1 Fteit
d
−→

N(0, Φi).

Assumptions A(a) and (b) imply the existence of r factors. The
idiosyncratic errors eit are allowed to be cross-sectionally and
serially correlated, but only weakly as stated under condition A(c).
If eit are iid, then A(c.ii) and A(c.iii) are satisfied. Assumption A(d)
allows within group dependence, meaning that Ft can be serially
correlated, λi can be correlated over i, and eit can have serial and
cross-sectional correlations that are not too strong so that A(a)–(c)
hold. We assume no dependence between the factor loadings and
the factors, or between the factors and the idiosyncratic errors,
which is the meaning of mutual independence between groups.
Part (e) of Assumption A defines the limiting covariance of the
factors.

The method of principal components minimizes the objective
function tr[(X − FΛ′)′(X − FΛ′)] by choosing the normalizations
that F ′F/T = Ir and Λ′Λ is diagonal. The estimator for F , denoted
F̃ = (F̃1, . . . , F̃T )′, is a T×r matrix consisting of r unitary eigenvec-
tors (multiplied by

√
T ) associated with the r largest eigenvalues

of the matrix XX ′/(TN) in decreasing order. Then Λ̃ = (λ̃1, . . . ,

λ̃N)′ = X ′F̃/T is a N × r matrix of estimated factor loadings.
The estimators F̃ and Λ̃ satisfy the normalization restrictions since
F̃ ′F̃/T = Ir holds by construction and Λ̃′Λ̃/N = Ṽ where Ṽ is a r×r
diagonalmatrix consisting of the r largest eigenvalues of XX ′/(TN).

While the restrictions used by the principal components esti-
mator identify the space spanned by the columns of F and the space
spanned by the columns of Λ, they do not necessarily identify the
individual columns of F or of Λ. To be precise, let H be an r × r
matrix whose transpose is

H ′
= Ṽ−1(F̃ ′F/T )(Λ′Λ/N). (1)

Under Assumption A, Stock and Watson (2002) and Bai and Ng
(2002) showed that H is invertible, F̃ estimates FH (a rotation of
F ), and Λ̃ estimates ΛH ′−1 (a rotation of Λ), though the product
F̃Λ̃′ estimates FΛ′.

We are specifically interested in conditions underwhichwe can
identity the columns of F and the columns of Λ from the product
FΛ′. Notice that FΛ′

= FRR−1Λ′ for any r × r invertible matrix R,
andRhas r2 free parameters. Thusweneed at least r2 restrictions in
order to identity F and Λ, see Lawley and Maxwell (1971). While
more than r2 restrictions can be imposed as in Heaton and Solo
(2004) and Reis and Watson (2010), the method of principal com-
ponents is not suitable for imposing over-identifying restrictions.
We consider three sets of restrictions that will lead to exact iden-
tification. We then show that if the true F and true Λ satisfy these
restrictions, then the corresponding rotation matrix is asymptoti-
cally an identity matrix.1

Identifying restrictions:
Restrictions
on F

Restrictions on Λ

(2.1): PC1 1
T F

′F = Ir Λ′Λ is a diagonal matrix
with distinct entries

(2.2): PC2 1
T F

′F = Ir Λ =


Λ1

Λ2


, Λ1 =

λ11 0 · · · 0
λ21 λ22 · · · 0
...

...
. . .

...

λr1 λr2 · · · λrr

 , λii ≠

0, i = 1, . . . , r

(2.3): PC3 Unrestricted Λ =


Ir
Λ2



2.1. PC1

PC1 requires that the diagonal elements of Λ′Λ are distinct
and positive and are arranged in decreasing order. The standard
method of principal components implicitly invokes the first re-
striction in PC1 but does not require the diagonal matrix Λ′Λ to
have distinct elements.Without this restriction, the principal com-
ponents estimator cannot identity the individual columns of F and
those of Λ, and there will be rotational indeterminacy. Under PC1,
the normalization on F gives r(r + 1)/2 restrictions since a sym-
metric matrix contains r(r+1)/2 free parameters. The diagonality
of Λ′Λ gives r(r − 1)/2 restrictions. Together, the two normaliza-
tions lead to exactly r2 restrictions. We show in the Appendix that
if the restrictions defined by PC1 also hold for the underlying F and
Λ that generate the data, then

H = Ir + Op(δ
−2
NT ), (2)

where δNT denotes min
√

N,
√
T

throughout this paper.

PC1 is a statistical restriction and is often used in the maximum
likelihood estimation, see Lawley andMaxwell (1971). This identi-
fication condition is less restrictive than it appears. A block diago-
nal matrix of factor loadings also satisfies PC1.2 For example, with

1 By symmetry, three different sets of identification restrictions can be obtained
by switching F and Λ. For example, 1

T F
′F is diagonal and 1

N Λ′Λ = Ir . Since the
asymptotic results still hold by switching the role of F and Λ, we only consider the
three sets of restrictions given above.
2 An extension of this model is the inclusion of a global factor, see for example,

Moench and Ng (2011), Hallin and Liska (2008) and Wang (2008). However, the
factor loading matrix does not necessarily satisfy PC1; it will satisfy PC2 if there is
a cross-section unit which is affected by the global factor only.
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r = 3, the following loading matrix will satisfy PC1:

Λ =


π1 0 0
0 π2 0
0 0 π3


where πi is a vector of Ni × 1 with N1 + N2 + N3 = N . The load-
ing matrix implies that the first factor affects the first N1 individ-
uals, the second factor affects the next N2 individuals, and so on.
This case is potentially useful for economic applications. PC1 still
holds under an arbitrary permutation of the cross sections. Thus in
the block diagonal case, it is not required to knowwhich cross sec-
tion units belong to the first group (affected by the first factor) and
which belong to the second group, and so forth.

The next two sets of restrictions, PC2 and PC3, involve ordering
the data. Both of which are frequently used in empirical work.

2.2. PC2

PC2 restricts Λ1 to be an invertible lower triangular matrix. It
thus requires knowledge of which variable is affected by the first
factor only, which variable is affected by the first two factors only,
and so on.3 PC2 is analogous to a triangular system of simultaneous
equations. The choice of the first r variables of Xt and their ordering
provide the auxiliary information for identification.

Given the unrestricted estimates F̃ and Λ̃, it is easy to obtain
estimators satisfying PC2. Let Λ̃1 be the first r×r block of Λ̃ and let
F̂ and Λ̂ denote the estimators that satisfy PC2, i.e., F̂ ′F̂/T = Ir and
Λ̂1 is lower triangular. Then F̂ and Λ̂ can be obtained as follows.
• Step 1: obtain a QR decomposition of Λ̃′

1 to yield Λ̃′

1 = Q · R,
where R is an upper triangular matrix with positive diagonal
elements, and Q is an r × r orthogonal matrix such that Q ′Q =

Ir . This decomposition is unique for any invertible Λ̃1.
• Step 2: define

F̂ = F̃ · Q , Λ̂ = Λ̃ · Q =


R′

Λ̂2


.

By construction, F̂ ′F̂/T = Q ′(F̃ ′F̃/T )Q = Q ′Q = Ir . The new
rotation matrix is H∗

= HQ .
Since F̂ and Λ̂ are rotations of the principal component esti-

mates F̃ and Λ̃, they are equivalent in a certain sense. However,
their asymptotic distributionswill be different.We show in the Ap-
pendix that H∗ is asymptotically an identity matrix, but

√
T (H∗

−

Ir) is asymptotically non-negligible unless r = 1.More specifically,
if the true F and Λ satisfy PC2, then
H∗

− Ir = Op(δ
−2
NT ), r = 1

H∗
− Ir = Op(T−1/2), r > 1.

This implies thatΞ =
√
T (H∗

−Ir) = op(1) for r = 1. In fact, when
r = 1, PC1 and PC2 are identical and (2) is in agreement with Ξ =

op(1). However,Ξ =
√
T (H∗

−Ir) = Op(1)when r > 1. In fact, the
limit of Ξ is a skew-symmetric random matrix.4 In consequence,
the limiting distributions of F̂t and λ̂i will be affected by Ξ .

2.3. PC3

The third set of identification restrictions specify the first r ×

r block of Λ (denoted Λ1) to be an identity matrix and leaves
the factor process F completely unrestricted other than requiring
F ′F/T to be invertible so that r factors exist. Unlike PC1 and PC2,

3 The structure of Λ is similar to Stock and Watson (2005), though they are
interested in identification of shocks to the factors rather than the factors. A
variation to PC2 is to normalize the diagonal elements λii (i = 1, 2, . . . , r) to be
1, with F ′F/T being diagonal (instead of an identity matrix).
4 A matrix C is skew-symmetric (also known as anti-symmetric) if C + C ′

= 0.
So the diagonal elements of a skew-symmetric matrix are zero, and Cij = −Cji .

all r2 restrictions are imposed on Λ under PC3. The restrictions
imply that the first variable X1t is affected by the first factor only,
the second variable X2t is affected by the second factor only, etc.
The resulting structure resembles the classical ‘errors-in-variables’
model in which Xit = Fti + eit for i = 1, . . . , r , as in Pantula
and Fuller (1986), and Wansbeek and Meijer (2000, pp. 148–150).
While PC3 requires the choice of the first r variables, the estimators
for Λ and F are easy to obtain. Given the principal components
estimates Λ̃ and F̃ , let

Λ̂ = Λ̃Λ̃−1
1 , F̂ = F̃Λ̃′

1.

The rotation matrix in this case is HĎ
= HΛ̃′

1 because F̂ = F̃Λ̃′

1 =

FHΛ̃′

1 + op(1). If the F and Λ underlying the data satisfy PC3, then
HĎ will converge in probability to Ir . It follows that F̂ estimates F
and Λ̂ estimatesΛwithout rotation.We show in the Appendix that
√
T (HĎ

− Ir) = ξT + op(1) (3)

where ξT is defined in (11) below. The fact that
√
T (HĎ

− Ir) is not
negligible for all r ≥ 1 will affect the limiting distributions of λ̂i

and F̂t .

Remark 1 (Local vs. Global Identification). Conditions for global and
local identification of factor models are discussed, for example, in
Bekker (1986) and Algina (1980). Both PC1 and PC2 identity F and
Λ up to a column sign change. Changing the sign of any column
of F and the sign of the corresponding column of Λ will leave the
product FΛ′ unchanged.

The resulting new F and new Λ still satisfy PC1, and hence ob-
servationally equivalent to the original F and Λ. Thus PC1 and PC2
are local identification conditions. However, once we fix the col-
umn signs of Λ (or F ), PC1 and PC2 become global identification
conditions. There will be no other F and Λ with the given column
signs and the given product FΛ′.

To understand how global identification is achieved, consider
PC2. Once FΛ′ is given then Λ(F ′F/T )Λ′

= ΛΛ′ is known, since
F ′F/T = Ir . Let C = ΛΛ′. From Λ′

= (Λ′

1, Λ′

2), we have

ΛΛ′
=


Λ1Λ

′

1 Λ1Λ
′

2
Λ2Λ

′

1 Λ2Λ
′

2


, C =


C11 C12
C21 C22


where we also partition matrix C correspondingly. Suppose for
concreteness that r = 3. Knowing C11 is equivalent to knowing
the elements of

Λ1Λ
′

1 =

λ2
11 λ11λ21 λ11λ31

− λ2
21 + λ2

22 λ21λ31 + λ22λ32

− − λ2
31 + λ2

32 + λ2
33

 .

If the sign of λ11 is known, then λ11 is identified from λ2
11. Since

λ11 ≠ 0, λ21 and λ31 can be identified, which further implies the
identification of λ2

22. If the sign of λ22 is known, then λ22 is also
identified. Since λ22 ≠ 0, this implies the identification of λ32. The
same reasoning implies the identification of λ33, given its sign. In
summary,we can identifyΛ1 provided thatΛ1 is invertible and the
signs of λii (i = 1, 2, 3) are known.5 Next, from C21 = Λ2Λ

′

1, we
identify Λ2 from Λ2 = C21(Λ

′

1)
−1. Thus PC2 together with the col-

umn signs of Λ (or F ) imply global identification in the restricted
parameter space that ensures invertibility of Λ1.

5 Identification of Λ1 alone does not require λ33 ≠ 0, but further identification
of Λ2 does need λ33 ≠ 0 so that Λ1 is invertible.
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PC3 also implies global identification, but sign restrictions are
not necessary. To see this, let C = Λ(F ′F/T )Λ′ be given. Under
PC3,

Λ(F ′F/T )Λ′
=


(F ′F/T ) (F ′F/T )Λ′

2
Λ2(F ′F/T ) Λ2Λ

′

2


.

Knowing C11 is equivalent to knowing F ′F/T . Thus we identity Λ2
from Λ2 = C21(F ′F/T )−1

= C21C−1
11 .

3. Asymptotic theory

We are interested in the implications of using the factor
estimates identified using PC1, PC2, or PC3 for inference. To this
end, let

ZTi = (F ′F/T )−1T−1/2
T

t=1

Fteit .

By Assumption A(e), ZTi
d
−→ Zi where ZTi is a zero mean normal vec-

tor as T → ∞. To derive the limiting distribution for F̂t and λ̂i, we
use the asymptotic representations for F̃t and λ̃i, given in Theorems
1 and 2 of Bai (2003). Specifically, if

√
N/T → 0, then

√
N(F̃t − H ′Ft) = Ṽ−1


F̃ ′F
T


1

√
N

N
i=1

λieit + op(1) (4)

and if
√
T/N → 0,

√
T (λ̃i − H−1λi) = H ′

1
√
T

T
t=1

Fteit + op(1). (5)

A useful and alternative expression for (4) is

√
N(F̃t − H ′Ft) = H ′


Λ′Λ

N

−1 1
√
N

N
i=1

λieit + op(1) (6)

because (1) implies Ṽ−1


F̃ ′F
T


= Ṽ−1


F̃ ′F
T


(Λ′Λ/N)(Λ′Λ/N)−1

= H ′(Λ′Λ/N)−1.

3.1. PC1

Under PC1, H ′
= Ir + Op(δ

−2
NT ). It follows that

√
N(F̃t − Ft) =

√
N(F̃t −H ′Ft)+

√
N(H̃ ′

− Ir)Ft =
√
N(F̃t −H ′Ft)+op(1), provided

that
√
N/δ2

NT = o(1), or equivalently,
√
N/T → 0. Thus under PC1,

we can rewrite (6) as

√
N(F̃t − Ft) =


Λ′Λ

N

−1 1
√
N

N
i=1

λieit + op(1). (7)

This result says that F̃t is asymptotically equivalent to the least
squares estimator for Ft in a cross-section regression with Λ as the
regressor, as if Λ were observable. Similarly, if

√
T/N → 0 and

H−1
= Ir + Op(δ

−2
NT ), then

√
T (λ̃i − λi) =


F ′F
T

−1 1
√
T

T
t=1

Fteit + op(1) (8)

because F ′F/T = Ir and
√
T (H−1

− Ir) = op(1) if
√
T/N → 0. In

view of (8), we can now interpret λ̃i as the least squares estima-
tor for λi in a time series regression with F as regressor, as though
it were observed. These representations and the required relative
rate between N and T are the same as in (4) and (5), except that

we replace H by an identity matrix in view of the identification re-
strictions.

The fact that H is an r dimensional identity matrix asymptoti-
cally simplifies the limiting distributions for F̃t and λ̃i because the
right hand sides of (7) and (8) do not depend on any estimated
quantities.

Theorem 1. Suppose that Assumption A and PC1 hold. Let F̃t and λ̃i
be obtained by the method of principal components. Then as N, T →

∞ with
√
N/T → 0, we have

√
N(F̃t − Ft)

d
−→ N(0, Σ−1

Λ ΓtΣ
−1
Λ ). (9)

Furthermore, if
√
T/N → 0,

√
T (λ̃i − λi)

d
−→ N(0, Φi). (10)

A formal proof is given in the Appendix. In essence, F̃ ′F/T = Ir +

Op(δ
−1
NT ), and Ṽ = Λ′Λ/N + Op(δ

−2
NT ) under PC1. Thus the limit of

F̃ ′F/T is Ir and the limit of Ṽ is ΣΛ. Since Λ′Λ/N → ΣΛ by As-
sumption A(b), and (9) follows from (7). Furthermore, (8) together
with F ′F/T = Ir implies (10). Theorem 1 sheds light on the role of
identification assumptions on the principal components estimator.
As H and Q are now identity matrices, the identification assump-
tions affect not just where we center the limiting distribution of
the factor estimates, but also their asymptotic variances.

Using the limiting result in (10) we can test if λi or some com-
ponents of λi are zero. Consider testing the null hypothesis that
Rλi = λ̄i, where R is a (q× r) known restrictionmatrix (q ≤ r) and
λ̄i is q × 1, a known vector. Under the null hypothesis,

T (Rλ̃i − λ̄i)
′(RΦ̂iR′)−1(Rλ̃i − λ̄i)

d
−→ χ2

q .

We can also test restrictions between λi and λj(i ≠ j). Put δ =

(λ′

i, λ
′

j)
′ and δ̂ = (λ̂′

i, λ̂
′

j)
′. Consider the hypothesis Rδ = δ̄, where

R is q × 2r and δ̄ is q × 1. By the asymptotic representation of (8),
if E(eitejt) = 0 for i ≠ j, then λ̂i and λ̂j are asymptotically indepen-
dent. So let Φ̂ = diag(Φ̂i, Φ̂j) (a block-diagonal matrix), then

T (Rδ̂ − δ̄)′(RΦ̂R′)−1(Rδ̂ − δ̄)
d
−→ χ2

q .

If E(eitejt) ≠ 0, then Φ will not be a block diagonal matrix, but it
is straightforward to estimate the joint asymptotic covariance ma-
trix. Statistics for testing hypotheses concerning the factors F can
be similarly constructed.

3.2. PC2

To derive the asymptotic distributions of F̂t and λ̂i for PC2, and
PC3, we need the following:

Assumption B. (Z ′

Ti, Z
′

T1, . . . , Z
′

Tr)
′

d
−→ (Z ′

i , Z
′

1 . . . , Z ′
r)

′.

The random variables ZTi are defined earlier. Assumption B
strengthens A(e) to require the joint convergence of ZTi and
(ZT1, . . . , ZTr) to the joint limit of Zi and (Z1, . . . , Zr). Hereafter, we
let ξT be an r × r matrix defined by

ξT =


F ′F
T

−1 1
√
T

T
t=1

(Fte1t , . . . , Ftert)

= (ZT1, . . . , ZTr). (11)

The limiting distributions of the factor estimates under PC2 de-
pend onwhether r = 1 or r > 1. If r = 1, PC1 and PC2 are identical,
so the limiting distributions F̂t and λ̂i are given in Theorem1.When
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r > 1, the representations for F̂t and λ̂i each has an extra term be-
cause

√
T (H∗

− Ir) is non-negligible. More specifically, for i > r ,

√
T (λ̂i − λi) =


F ′F
T

−1 1
√
T

T
t=1

Fteit

−
√
T (H∗

− Ir)λi + op(1) (12)

and for each t ,

√
N(F̂t − Ft) =


Λ′Λ

N

−1 1
√
N

N
i=1

λieit

− (N/T )1/2
√
T (H∗

− Ir)Ft + op(1). (13)

Let Ξ =
√
T (H∗

− Ir) and let Ξkh denote the (k, h)th element of
Ξ (1 ≤ k, h ≤ r). We show in the Appendix that

Ξkh =

(ξTΛ
′
−1
1 )kh + op(1), k > h

op(1) k = h
−Ξhk + op(1), k < h

(14)

where op(1) holds if
√
T/N → 0. The limit of the off-diagonal el-

ements of Ξ are determined by the limit of the off-diagonal ele-
ments of ξT (Λ′

1)
−1, where ξT is defined in (11).

It turns out that (12) also holds for i = 1, 2, . . . , r , not just for
i > r . For 1 ≤ i ≤ r , the last r − i components of λ̂i and of λi are
zero. Using the asymptotic representation of

√
T (H∗

− Ir) in (14),
it can be shown that the last r − i components of the right hand
side of (12) indeed have zero limits.

Recall that ΣF = Ir under PC2, and Zi is the limiting distri-

bution of


F ′F
T

−1
1

√
T

T
t=1 Fteit . Let veck(A) denote the column

vector that stacks the lower triangular elements of A (excluding
the diagonal elements). Note that veck(·) is different from vech(·).
For any skew-symmetric matrix A, there is a duplication matrix
D such that vec(A) = D veck(A). Eq. (14) implies veck(Ξ) =

veck(ξTΛ
′
−(1)
1 ) + op(1). From ξT (Λ

′

1)
−1 d

−→ (Z1, Z2, . . . , Zr)(Λ′

1)
−1

we have veck(Ξ)
d
−→ η, where η is defined as η = veck((Z1,

Z2, . . . , Zr)(Λ′

1)
−1). Then

√
T (H∗

− Ir)λi = Ξλi = (λ′

i ⊗ Ir)vec(Ξ)

= (λ′

i ⊗ Ir)D veck(Ξ)

d
−→ (λ′

i ⊗ Ir)Dη.

Let Zi be the limit of the first term on the right hand side of (12).
We have

Theorem 2. Suppose that Assumptions A, B, and PC2 hold. Let F̂t and
λ̂i denote the estimates with the restrictions of PC2.
(i) Let Zi =d N(0, Φi). Then for each i and as N, T → ∞ with

√
T/N → 0,

√
T (λ̂i − λi)

d
−→ Zi − (λ′

i ⊗ Ir)Dη

where η = veck[(Z1, Z2, . . . , Zr)Λ
′
−1
1 ] and D is a duplication

matrix linking vec(·) and veck(·).
(ii) Let Gt =

d N(0, Σ−1
Λ ΓtΣ

−1
Λ ) and is independent of η. If N/T → c

with 0 ≤ c < ∞,
√
N(F̂t − Ft)

d
−→ Gt +

√
c(F ′

t ⊗ Ir)Dη,

In part (i) of Theorem 2, (λ′

i ⊗ Ir)Dη is the limit of
√
T (H∗

− Ir)λi,
which is also normal since η is normal. Similarly, for part (ii) of
the theorem, Gt is the limit of the first term on the right hand side
of (13), and

√
c(F ′

t ⊗ Ir)Dη is the limit of the second term of (13).
Hypothesis testing can be performed as in Section 3.1.

3.3. PC3

Similar to PC2, the representations for F̂t and λ̂i each has an
extra term because

√
T (HĎ

− Ir) is non-negligible. As λi is known
for i ≤ r , we only need to consider i ≥ r + 1. We show in the
Appendix that

√
T (λ̂i − λi) =


F ′F
T

−1 1
√
T

T
t=1

Fteit

−
√
T (HĎ

− Ir)λi + op(1) (15)

and for each t ,

√
N(F̂t − Ft) =


Λ′Λ

N

−1 1
√
N

N
i=1

λieit

+ (N/T )1/2
√
T (HĎ

− Ir)′Ft + op(1) (16)

where
√
T (HĎ

− Ir) is given in (3).

Theorem 3. Suppose that Assumptions A, B, and PC3 hold. Let F̂t and
λ̂i denote the estimates with the restrictions of PC3.

(i) Let Zi =d N(0, Σ−1
F ΦiΣ

−1
F ). Then for i ≥ r + 1, as N, T → ∞

with
√
T/N → 0,

√
T (λ̂i − λi)

d
−→ Zi − (Z1, . . . , Zr)λi.

(ii) Let Gt =
d N(0, Σ−1

Λ ΓtΣ
−1
Λ ) and is independent of (Z1, . . . , Zr).

If N/T → c with 0 ≤ c < ∞,
√
N(F̂t − Ft)

d
−→ Gt +

√
c(Z1, . . . , Zr)′Ft .

To understand part (i) of Theorem 3, note that Zi is the limit of
the first term on the right hand side of (15). Under Assumptions A,
B, and PC3, the second term in (15) satisfies
√
T (HĎ

− Ir)
d
−→ (Z1, Z2, . . . , Zr),

which is an r × r matrix of random variables.6 Although F ′F/T
(whose limit is ΣF ) is not required to be an identity matrix under
PC3, Zi is normally distributed. As a consequence, (Z1, . . . , Zr)λi is
also normally distributed if λi is non-random. It follows that λ̂i is
still normally distributed. Similarly, part (ii) of Theorem 3 comes
from the fact that Gt is the limiting random variable for the first
term on the right hand side of (16). Again, hypothesis testing can
be performed similarly as in Section 3.1.

4. Implications for factor-augmented regressions

Consider the infeasible regression model

yt = F ′

tα + W ′

tβ + εt

where Ft is not observable and is replaced by F̂t estimated under
one of the three identification assumptions. Let δ̂ = (α̂′, β̂ ′)′ de-
note the least squares estimator of the ‘‘factor augmented regres-
sion’’

yt = F̂ ′

tα + W ′

tβ + vt = ẑ ′

tδ + vt (17)

where vt = εt + (Ft − F̂t)′α, ẑt = (F̂ ′
t ,W

′
t )

′, and δ = (α′, β ′)′. To
state the asymptotic behavior of δ̂, we also need the following:

6 The matrix convergence in distribution implicitly refers to the convergence
with vectorization. In any event,

√
T (HĎ

− Ir )λi is already a vector, so its
convergence to the vector (Z1, . . . , Zr )λi is well defined.
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Assumption C. For zt = (F ′
t ,W

′
t )

′, E∥zt∥4
≤ M < ∞; E(εt |

zt−1, zt−2, . . .) = 0; zt and εt are independent of the idiosyncratic
errors eis for all i and s. Furthermore, 1

T

T
t=1 ztz

′
t

p
−→ Σzz > 0 and

T−1/2T
t=1 ztεt

d
−→ N(0, Σzz,ε), where Σzz,ε = plim 1

T

T
t=1 ε2

t ztz
′
t

> 0.

If Ft was observed, then under Assumption C, the asymptotic
variance of δ̂ would be given byΣ−1

zz Σzz,εΣ
−1
zz . As shown in Bai and

Ng (2006), α̂ is an estimate of H−1α (and not α) when F̃t is used in
place of Ft . The following theorem studies the properties of δ̂ when
F̂t is used in place of Ft .

Theorem 4. Suppose
√
T/N → 0 and Assumptions A–C hold. Define

Σδ = Σ−1
zz Σzz,εΣ

−1
zz . Let δ′

= (α′, β ′) and let δ̂ be obtained by the
least squares estimation of factor augmented regression (17), where F̂t
is obtained under the restrictions defined by PC1, PC2, or PC3. Then
√
T (δ̂ − δ)

d
−→ N(0, Avar(δ̂))

where Avar(δ̂) = Σδ under PC1, Avar(δ̂) = Σδ + diag[(α′
⊗ Ir)

Dvar(η)D′(α ⊗ Ir), 0] under PC2, and Avar(δ̂) = Σδ + diag(var
[(Z1, . . . , Zr)α], 0) under PC3. Furthermore, η and D are defined in
Section 3.2, and (Z1, . . . , Zr) is defined in Section 3.3; diag(A, B)
refers to the block diagonal matrix with blocks A and B.

Theorem 4 states that under PC1, δ̂ has properties as though the
latent factors Ft were available as regressors. Although the distri-
bution of β̂ is invariant to identification assumptions used, the dis-
tribution of α̂ does depend on whether PC1, PC2, or PC3 is used.

To understand Theorem 4, note that under PC1,
√
T (α̂ − α) =

√
T (α̂ − H−1α) −

√
T (H − I)H−1α.

The first term on the right is analyzed by Bai and Ng (2006). Under
PC1,

√
T (H − Ir) = op(1) provided

√
T/N → 0 since H − Ir =

Op(δ
−2
NT ). As H is asymptotically an identity matrix, α̂ now directly

estimates α. Thus, the limiting distribution for
√
T (α̂ − H−1α)

stated in Bai and Ng (2006) simplifies to the case of standard least
squares as if Ft were observed. Under PC1, the asymptotic variance
of Σδ̂ can be consistently estimated by

Σδ̂ =


1
T

T
t=1

ẑt ẑ ′

t

−1 
1
T

T
t=1

ẑt ẑ ′

t v̂
2
t

−1 
1
T

T
t=1

ẑt ẑ ′

t

−1

which is White’s heteroskedasticity robust covariance estimator
using ẑt as regressors.

Under PC2 and PC3,
√
T (H∗

− Ir) and
√
T (HĎ

− Ir) are not
asymptotically negligible when r > 1. The asymptotic variance
of α̂ under PC2 has an extra term given by the variance of (α ⊗

Ir)Dη. Under PC3, the extra term in the asymptotic variance of α̂ is
due to var[(Z1, . . . , Zr)α]. Details on estimation of the asymptotic
variances are given in Appendix A. It is however useful to note that
if ejt are independent for j = 1, 2, . . . , r , then the normal vectors
Zj are also independent. In such a case, var[(Z1, . . . , Zr)α] =r

k=1 Φkαk can be consistently estimated by
r

k=1 Φ̂kα̂k.
It is useful to remark that when F̂t estimates Ft instead of a

rotation of Ft , we can give economic interpretation to the coeffi-
cients on the regressors F̂t . For example, in factor augmented auto-
regressions (FAVAR) or for the factor models considered in this
paper we can obtain the impulse responses of each observable Xit
in the panel to the common shocks that drive Ft .7 Suppose that

7 Similar issues have been considered by Stock andWatson (2005) and Forni et al.
(2009).

Ft = A1Ft−1 + · · · + ApFt−p + A0ut , where ut is a vector of struc-
tural shocks, and A0 is a r × r matrix linking the structural shocks
ut to the reduced form shocks vt such that vt = A0ut .8 Observing
Ft (with economic interpretations for each component) allows us
to use standard structural VAR analysis to identity A0 and compute
the impulse responses ∂Ft+k

∂ut
. It follows that we can compute the

impulse responses for the observable variables ∂Xi,t+k
∂ut

= λ′

i
∂Ft+k
∂ut

for each i and for all k ≥ 0.

5. Factor models with deterministic terms

In practice, the data are demeaned and trends are removed
before the factors are estimated. Factor models with deterministic
terms are of the form

Xit = µi + δi(t) + λ′

iFt + eit

where µi is an individual fixed effect and δi(t) is a time effect.
When δi(t) = δt , the time effects are common. When δi(t) =

δi · t , we have individual specific linear trends. These treatments of
deterministic terms will be analyzed in the next three subsections.

5.1. Individual fixed effects

We first assume that the time effect is absent. The model in
vector form is written as

Xt = µ + ΛFt + et .

The model is observationally equivalent to the following model
Xt = µ∗

+ ΛF∗
t + et where µ∗

= µ + ΛF̄ , and F∗
t = Ft − F̄ .

We impose the restriction F̄ =
1
T

T
t=1 Ft = 0. Equivalently, with

ιT = (1, 1, . . . , 1)′, a T × 1 vector, the restriction is

ι′T F =

T
t=1

Ft = 0. (FE1)

In the absence of fixed effects, the principal components esti-
mator is based on the T × T data matrix X ′X , where X = [X1, X2,
. . . , XT ]. To account for the fixed effects, we need to demean the
data. Equivalently, we can estimate µ by X̄ =

1
T

T
t=1 Xt and use

the residuals to estimate Λ and F . The demeaned data matrix is

Z = [X1 − X̄, . . . , XT − X̄] = X − X̄ ι′T .

The principal components of F , denoted F̃ , corresponds to the
eigenvectors


multiplied by

√
T


of the r largest eigenvalues of

the data matrix Z ′Z . That is,

(NT )−1Z ′ZF̃ = F̃ Ṽ (18)

where Ṽ is r × r diagonal matrix consisting of the first r largest
eigenvalues, arranged in decreasing order. The factor loading esti-
mator is Λ̃ = ZF̃/T . By construction, F and Λ already satisfy PC1,
namely, that F̃ ′F̃/T = Ir and Λ̃′Λ̃ = diagonal. We now want to
show that (i) these estimates also satisfy the constraint (FE1) and
(ii) that λ̃i has the same expression with or without demeaning.

To see (i), first note that ι′TZ
′
= ι′TX

′
− (ι′T ιT )X̄

′
= ι′TX

′
− T X̄ ′

which equals zero by the definition of X̄ . Multiply ι′T on each side
of (18), we have

0 = ι′TZ
′Z = ι′T F̃ Ṽ .

8 The model is still static even though Ft is dynamic.
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Since Ṽ is an invertible (diagonal) matrix of eigenvalues, it follows
that ι′T F̃ =

T
t=1 F̃t = 0, which is (FE1). The principal components

estimator for Λ can now be rewritten as

Λ̃ = ZF̃/T = (X − X̄ ι′T )F̃/T = XF̃/T

where the last equality makes use of the result ι′T F̃ = 0. Therefore,
the expression for λ̃i has the same formwith orwithout demeaning
the data.

To show (ii) that the limiting distribution for λ̃ is of the same
form with or without fixed effects note that since Ft = Ft − F̄ and
F̄ = 0 by assumption, the model in demeaned data is

Xit − X̄i = λ′

iFt + eit − ēi.

Replacing eit with eit − ēi in (8) and since
T

t=1 Ft ēi =
T

t=1
Ft

ēi = 0,

√
N(λ̃i − λi) =


F ′F
T

−1 1
√
T

T
t=1

Ft(eit − ēi) + op(1)

=


F ′F
T

−1 1
√
T

T
t=1

Fteit + op(1).

This representation coincides with (8). Thus under Assumptions A,
B, PC1 and (FE1), the limit is again

√
N(λ̃i − λi) ∼ N(0, Φi), which

is (10). The limiting distribution for F̃t also has the same formwith
or without demeaning. Replacing eit with eit − ēi in (7), we have

√
N(F̃t − Ft) =


Λ′Λ

N

−1 1
√
N

N
i=1

λi(eit − ēi) + op(1)

=


Λ′Λ

N

−1 1
√
N

N
i=1

λieit − T−1/2


Λ′Λ

N

−1

×
1

√
NT

N
i=1

T
t=1

λieit + op(1)

=


Λ′Λ

N

−1 1
√
N

N
i=1

λieit + op(1).

The second term on the right hand side is Op(T−1/2) because
(NT )−1/2N

i=1
T

t=1 λieit = Op(1). The asymptotic representation
for F̃t is thus the same aswhen fixed effects are absent. This implies
that the limiting distribution has the same form.

The estimators under identification restrictions PC2 and PC3 are
constructed exactly the sameway as when fixed effects are absent,
but using the newly defined principal components estimators F̃
and Λ̃. Thus when (FE1) holds, the expressions for λ̃i and F̃t are
the same with or without demeaning.

5.2. Common time effects

We now allow for common time effects.

Xit = µi + δt + λ′

iFt + eit .

For identification, we now need the additional restriction9

1
N

N
i=1

λi = 0. (FE2)

9 The restriction may be replaced by E(λi) = 0 if each λi is considered to be a
vector of random variables.

To estimate the model, we first remove the cross-section mean
and time series mean from the data. Let Ẋit = Xit − X̄i· − X̄.t + X̄··,
where X̄i· is time series mean for each i, X̄·t is the cross-section
mean for period t , and X̄·· is the overall mean of Xit . The variable
Ẋit is the usual within group transformation of Xit . By similarly
defining ėit , the demeaned model is

Ẋit = λ′

iFt + ėit .

This is now in the form of a pure factor model without individual
and time effects. We can again estimate the model using the data
Ẋit , with any of the three sets of identification restrictions, PC1,
PC2, and PC3. There is no need to directly impose the fixed effects
restrictions (FE1) and (FE2). When (within-group) transformed
data are used, these restrictions are automatically satisfied.

The limiting distributions can again be derived using represen-
tation (8) with eit replaced by ėit = eit − ēi· − ē·t + ē··. Specifically,

T−1/2
T

t=1

Ft(eit − ēi· − ē·t + ē··)

= T−1/2
T

t=1

Fteit − T−1/2
T

t=1

Ft ē·t

= T−1/2
T

t=1

Fteit − T−1/2 1
√
NT

N
i=1

T
t=1

Fteit

= T−1/2
T

t=1

Fteit − Op(T−1/2)

where the first equality follows from
T

t=1 Ft

ēi· = 0 andT

t=1 Ft

ē·· = 0 since

T
t=1 Ft = 0. Thus the limiting distribu-

tion is still determined by the limit of (F ′F/T )−1T−1/2T
t=1 Fteit .

Similarly,

N−1/2
N
i=1

λiėit = N−1/2
N
i=1

λieit + Op(N−1/2).

It follows that the limiting distribution for the factor loadings is
of the same form as when fixed effects are absent. The values of
the limiting variances will, however, be general different. If there
are no fixed effects in the true model but demeaned data are used
in estimation, the resulting estimates for the factors and their
loadings will, in general, have larger variances than those without
demeaning the data.

To see this, recall that under PC1 or PC2, the estimated factor
loadings in the fixed effects model are represented by

√
T (λ̂i − λi) =


F ′F
T

−1 1
√
T

T
t=1

Fteit + op(1)

whether or not the fixed effects are estimated. If eit ∼ (0, σ 2), Ft
is a stationary vector, then the limiting distribution is
√
N(λ̂i − λi)

d
−→ N(0, σ 2

[E(FtF ′

t )]
−1).

Now estimation of the fixed effects will also remove the mean
from Ft .10Although the representation looks the same, the limiting
variance of λ̂i is then σ 2

[var(Ft)]−1. As Ft can have non-zero mean,
the second moment E(FtF ′

t ) is in general larger than the variance
of Ft . As E(FtF ′

t ) ≥ var(Ft) implies [E(FtF ′
t )]

−1
≤ [var(Ft)]−1, the

limiting variance of λ̂i is smaller when fixed effects are known to
be absent and are not estimated.

10 Our assumption that F̄ = 0 is asymptotically equivalent to E(Ft ) = 0.
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5.3. Heterogeneous trends

Instead of common time effects, consider a model with hetero-
geneous coefficients on the linear trends:

Xit = µi + δit + λ′

iFt + eit .

Wenowassume that Ft is a zeromeanprocess that does not contain
a linear trend because in the presence of µi + δit , we cannot sepa-
rately identify the heterogeneous trends and the factor process. For
example, suppose that Ft = c + dt + ηt , where ηt is a zero mean
process, we can rewrite the model as Xit = µ∗

i + δ∗

i t + λ′

iηt + eit
with µ∗

i = µi + λ′

ic and δ∗

i = δi + λ′

id. We can only identify ηt .
We focus on the identification restriction PC1, i.e., F ′F/T = Ir

and Λ′Λ is diagonal. Let X τ
it denote the residuals from the least

squares detrending for each series i. We have

X τ
it = λ′

iF
τ
t + eτ

it ,

where F τ
t and eτ

it are also the residuals from the least squares
detrending (no actual detrending is performed on them since they
are unobservable). Let aF and bF be the OLS coefficients when Ft is
regressed on [1, t], and ai,e and bi,e are similarly defined, we have

F τ
t = Ft − aF − bF t
eτ
it = eit − ai,e − bi,et.

While F τ
t is not equal to Ft , one can easily show that F τ

t = Ft +

Op(T−1/2). Note that F ′F/T = Ir implies that F τ ′

F τ/T = Ir +

Op(1/T ) because Ft is a zero mean sequence by assumption in this
section. Together with diagonality of Λ′Λ under PC1, we can use
earlier arguments to show that

√
N(λ̃i − λi) =


F τ ′

F τ

T

−1
1

√
T

T
t=1

F τ
t e

τ
it + op(1)

=


F τ ′

F τ

T

−1
1

√
T

T
t=1

F τ
t eit + op(1).

Note that we can replace eτ
it by eit because {F τ

t } is orthogonal to the
sequence {1, t}. Similarly,

√
N(F̃t − F τ

t ) =


Λ′Λ

N

−1 1
√
N

N
i=1

λieτ
it + op(1)

=


Λ′Λ

N

−1 1
√
N

N
i=1

λieit −


Λ′Λ

N

−1

×
1

√
N

N
i=1

λi(ai,e + bi,et) + op(1)

=


Λ′Λ

N

−1 1
√
N

N
i=1

λieit + op(1).

The last equality follows from the fact that ai,e + bi,et is a linear

combination of 1
T

T
s=1 eis and


1
T

T
s=1

s
T eis


t
T , each of which is

Op(T−1/2). Using the assumption that eit has weak cross-sectional
correlation, we can show that N−1/2N

i=1 λi(ai,e + bi,et) = Op

(T−1/2). Asymptotic normality for
√
T (λ̃i − λi) and for

√
N(F̃t −

F τ
t ) follows from the fact that T−1/2T

t=1 F
τ
t eit andN−1/2N

i=1 λieit
are asymptotically normal. Once the data are demeaned and de-
trended, the estimation procedure is identical to the case with or
without linear trends. In addition, the asymptotic variances for λ̂i

and F̂t are estimated as if there were no deterministic terms. Anal-
ogous arguments can be used to establish that the limiting distri-
butions under PC2 and PC3 also have the same form as the case
without deterministic intercepts or trends. Details are omitted.

Table 1
Marginal R2: F̂t rotated under PC2.

Series Factor 1 2 3 4 5 6 7 8

1 ces002 0.789 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 ips10 0.564 0.349 0.000 0.000 0.000 0.000 0.000 0.000
3 sfygt1 0.034 0.043 0.794 0.000 0.000 0.000 0.000 0.000
4 puxhs 0.002 0.000 0.000 0.769 0.000 0.000 0.000 0.000
5 fygt1 0.068 0.016 0.007 0.004 0.797 0.000 0.000 0.000
6 hsbr 0.154 0.005 0.006 0.000 0.019 0.739 0.000 0.000
7 fmrra 0.000 0.001 0.000 0.009 0.000 0.001 0.648 0.000
8 fspcom 0.003 0.029 0.020 0.001 0.050 0.000 0.001 0.602

6. An application

Stock and Watson (2005) analyzed 132 series over the sample
1959:1 to 2003:12. The predictors include series in 14 categories:
real output and income; employment and hours; real retail,
manufacturing and trade sales; consumption; housing starts and
sales; real inventories; orders; stock prices; exchange rates;
interest rates and spreads; money and credit quantity aggregates;
price indexes; average hourly earnings; and miscellaneous. The
series are transformed by taking logarithms and/or differencing so
that the transformed series are approximately stationary. The IC1
and IC2 criteria developed in Bai and Ng (2002) find 7 static factors
explaining over 40 percent of the variation in the data.

Stock and Watson (2005) performed variance decompositions
and reported that the first factor explains much of the variation in
production and employment related series, while the second factor
explains movements in interest rates, consumption, and stock
prices. Variation in inflation is mainly explained by the second
and third factor. Factor four is highly correlated with interest rate
movements, factor fivewith employment, factor sixwith exchange
rates, stock returns, and hourly earnings.

We use the Stock–Watson data extended to 2007:12 and used
in Ludvigson and Ng (2011). After deleting a series that is no longer
published, the new dataset has 131 series. We first transform the
data to be stationary. The demeaned and standardized data are
then used to estimate the factors. The first 7 factors still explain
45% of the variation in the data, though the IC2 criterion now finds
the optimal number of factors to be 8.

An important aspect of PC2 is that it uses the ordering of the
variables to identify the factors. We reorder the data such that the
first eight series are (1) ces002, total employees on non-far payroll;
(2) ips10, industrial production total index; (3) sfygt1, spread
between one-year T-bill rate (fygt1) and fed funds rate; (4) puxhs,
CPI excluding shelter; (5) fygt1, one year T-bill rate; (6) hsbr,
housing units authorized; (7) fmrra, total reserves; (8) fspcom, S&P
500 index. Under PC2, employment responds to the first factor only
while industrial production responds to the first two factors. The
interest rate spread responds to factors one to three,while inflation
responds to factors one to four, and so on. This in turn implies
that shocks to F̂1 are shocks to employment, while shocks to F̂2
are industrial production shocks orthogonal to employment, and
so forth.

Table 1 reports the marginal explanatory power of the j-th fac-
tor. The (i, j)th entry of the table is computed as follows. LetR2(j)be
the R2 in a regression of the series in question on the first j rotated
factors.We first regress the ith series on the first j rotated factors to
get R2(j), and then regress the same series on the first j− 1 rotated
factors to get R2(j − 1). The (i, j)th entry equals the difference be-
tween R2(j) and R2(j− 1). The results conform that under PC2, the
first two factors are real activity factors while factor four is infla-
tion. Factors three and five are related to interest rates, while factor
seven is a monetary factor. Factor six is a housing factor, and factor
8 is that of the stock market.

It is useful to compare the marginal R2s obtained by regressing
these same series on the standard principal component estimates,
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Table 2
Marginal R2: F̃t .

Series Factor 1 2 3 4 5 6 7 8

1 ces002 0.695 0.005 0.000 0.017 0.050 0.004 0.001 0.016
2 ips10 0.662 0.032 0.002 0.076 0.092 0.001 0.008 0.041
3 sfygt1 0.113 0.385 0.005 0.025 0.162 0.139 0.038 0.004
4 puxhs 0.003 0.028 0.701 0.035 0.000 0.001 0.002 0.000
5 fygt1 0.196 0.144 0.018 0.257 0.242 0.003 0.011 0.022
6 hsbr 0.288 0.005 0.010 0.173 0.188 0.218 0.024 0.017
7 fmrra 0.000 0.001 0.028 0.007 0.001 0.142 0.477 0.003
8 fspcom 0.002 0.170 0.004 0.009 0.027 0.064 0.003 0.426

F̃t . This is reported in Table 2. The results are in line with what
was reported in Stock andWatson (2005) that the first two factors
highly correlatedwith output and employment data. However, the
remaining factors load on a variety of other variables.

Using the PC2 rotation, the eight factors are much more con-
centrated on the variations in eight series which facilitates the in-
terpretation of these factors. This is useful in subsequent factor
augmented regressions in which economic interpretation of the
coefficients on F̂ is warranted.

7. Conclusion

This paper considers principal-components-based estimation
of factors and factor loadings. In general, the method does not
separately identify the factors and factor loadings but only their
rotations. This paper considers identification restrictions under
which the latent factors and the loadings are identified so that the
estimates are not rotated. Three sets of restrictions are considered.
We show that if the underlying factors and factor loadings satisfy
the restrictions used in the estimation, then the rotation matrix
is asymptotically an identity matrix. Limiting distributions are
derived, and the asymptotic covariance matrices are obtained for
each case separately. Other restrictionsmay also be considered and
the asymptotic properties of the corresponding estimators may be
derived based on similar arguments.

Acknowledgments

We thank Silvia Goncalves, Benoit Perron, and Dalibor Ste-
vanovic for helpful comments. The authors acknowledge financial
support from the NSF (SES-0962410, SES-0962431).

Appendix A

This appendix shows how to consistently estimate the asymp-
totic covariances under PC1–PC3.
PC1. This is straightforward. We estimate ΣΛ by Σ̂Λ = Λ̃′Λ̃/N .
To estimate Φi and Γt , we can use one of the three methods given
in Bai and Ng (2006). Let Φ̂i and Γ̂t denote these estimates. Then
Σ−1

Λ ΓtΣ
−1
Λ is estimated by Σ̂−1

Λ Γ̂tΣ̂
−1
Λ .

PC2. To estimate the asymptotic variance of λ̂i, first consider the
case when eit are cross-sectionally independent, so that Zi are
independent over i. This implies that Zi (i > r) is independent of
η (the latter depends on (Z1, . . . , Zr)). Noting that (F ′F/T ) = Ir
under PC2,

Avar(λ̂i) = Φi + (λ′

i ⊗ Ir)D var(η)D′ (λi ⊗ Ir)

which is the sum of the variances of Zi and of (λ′

i ⊗ Ir)Dη. To es-
timate the variance of η, we let ζt = veck[Ft(e1t , . . . , ert)Λ′−1

1 ].
Then η is the limit of T−1/2T

t=1 ζt . In the absence of serial cor-
relation in ejt (j = 1, 2, . . . , r), the variance of η is equal to the
probability limit of 1

T

T
t=1 ζtζ

′
t , and is estimated by var(η) =

1
T

T
t=1 ζ̂t ζ̂

′
t with ζ̂t = veck[F̂t(ê1t , . . . , êrt)Λ̂′−1

1 ]. With serial cor-
relation in ejt , the variance of η is the limit of 1

T

T
t=1
T

s=1 E(ζtζ
′
s ),

and it is estimated by the Newey–West method using the series
ζ̂t(t = 1, 2, . . . , T ). Given var(η), we estimate Avar(λ̂i) by

Avar(λ̂i) = Φ̂i + (λ̂′

i ⊗ Ir)Dvar(η)D′(λ̂i ⊗ Ir)

where Φ̂i =
1
T

T
t=1 F̂t F̂

′
t ê

2
it in the absence of serial correlation in

eit , and Φ̂i is constructed by the Newey–Westmethod based on the
series F̂t êit in the presence of serial correlation.

If the eits are cross-sectionally correlated, Zi can be correlated
with η. Especially for the case of i ≤ r, Zi is correlated with η.
To account for this correlation, we let τt be the vector that stacks
Fteit and ζt so τt is an r + r(r − 1)/2 dimensional vector. Then
√
T (λ̂i − λi) = [Ir , −(λ′

i ⊗ Ir)D]T−1/2T
t=1 τt + op(1). In the

absence of serial correlation in eit , we estimate the variance of
T−1/2T

t=1 τt by V̂τ =
1
T

T
t=1 τ̂t τ̂

′
t ; in the presence of serial

correlation, V̂τ is the Newey–West estimator using the series τ̂t .
Finally,

Avar(λ̂i) = [Ir , −(λ̂′

i ⊗ Ir)D]V̂τ [Ir , −(λ̂′

i ⊗ Ir)D]
′.

Consider nowestimating the asymptotic variance of F̂t .Whether
or not eit are cross sectionally correlated, Gt is independent of η
since Gt is obtained by the CLT with the entire cross sections, and
η only depends on eit for i ≤ r . Thus

Avar(F̂t) = Σ−1
Λ ΓtΣ

−1
Λ + c(F ′

t ⊗ Ir)D var(η)D′(Ft ⊗ Ir).

It is estimated by

Avar(F̂t) = Σ̂−1
Λ Γ̂tΣ̂

−1
Λ + (N/T )(F̂ ′

t ⊗ Ir)Dvar(η)D′(F̂t ⊗ Ir)

where Σ̂Λ = (Λ̂′Λ̂/N), and Γ̂t is given by any one of the three
methods in Bai and Ng (2006) using the series λ̂iêit (i = 1, 2,
. . . ,N). Furthermore, Our earlier discussion on estimating var(η)
does not assume e1t , . . . , ert to be uncorrelated, so var(η) given
earlier is valid whether or not eit are cross-sectionally correlated.
PC3. We separately discuss whether or not eit is cross-sectionally
independent.
Case i: If eit are cross-sectionally independent, then Zi are indepen-
dent over i and

Avar(λ̂i) = Σ−1
F


Φi +

r
k=1

Φkλ
2
ik


Σ−1

F

which is the sum of variance of Zi and that of (Z1, . . . , Zr)λi. Fur-
thermore, as Gt is the limit from the central limit theorem applied
to all the cross section units, Gt is independent of Z1, . . . , Zr . Thus

Avar(F̂t) = Σ−1
Λ ΓtΣ

−1
Λ + c2

k
r=1

ΦkF 2
tk. (19)

An estimate of Avar(F̂t) is given by Σ̂−1
Λ Γ̂tΣ̂

−1
Λ + (N/T )

r
k=1

Φ̂kF̂ 2
tk, and an estimate of Avar(λ̂i) is Σ̂−1

F (Φ̂i +
r

l=1 Φ̂kλ̂
2
ik)Σ̂

−1
F ,

where Σ̂F = F̂ ′F̂/T , Σ̂Λ = (Λ̂′Λ̂/N), and Γ̂t and Φ̂i have the same
form as under PC1 and PC2 but using the new F̂ and Λ̂.
Case ii: If eit is cross-sectionally correlated, then combining (15)
and (3), we have

√
T (λ̂i − λi) =


F ′F
T

−1

(Ir , −Ir)


1

√
T

T
t=1

Ft ⊗ bit


+ op(1)

where bit is a 2 by 1 vector with eit as the first element and
(e1t , . . . , ert)λi =

r
k=1 ektλik as the second element. Thus the lim-

iting covariance is given by

Avar(λ̂i) = Σ−1
F (Ir , −Ir)Ψi(Ir , −Ir)′Σ−1

F
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where Ψi = lim 1
T

T
t=1
T

s=1 E(FtF ′
s ⊗ bitb′

is), which specializes

to Ψi = plim 1
T

T
t=1(FtF

′
t ⊗ bitb′

it)

in the absence of time se-

ries correlation. To estimate Ψi, apply the Newey–West estimator
to the sequence F̂t ⊗ b̂it . The asymptotic variance is estimated by
Avar(λ̂i) = Σ̂−1

F (Ir , −Ir)Ψ̂i(Ir , −Ir)′Σ̂−1
F .

Although Gt is still independent of Z1, . . . , Zr (because Gt is
obtained from averaging the entire cross sections), Z1, . . . , Zr
are dependent among themselves. Under PC3 and cross section
dependence,

√
N(HĎ

− Ir)′Ft = (F ′

t ⊗ Ir)vec


1

√
T

T
s=1

F ′

s ⊗ as


+ op(1)

d
−→ (F ′

t ⊗ Ir)vec[(Z1, . . . , Zr)′]

where at = (e1t , . . . , ert)′. Let

Υ = Avar(vec[(Z1, . . . , Zr)′])

=
1
T

T
s=1

T
t=1

E[vec(F ′

s ⊗ as)vec(Ft ⊗ a′

t)]

which simplifies to Υ =
1
T

T
s=1 E[vec(F ′

s ⊗ as)vec(Fs ⊗ a′
s)] in the

absence of time series correlations. Let c be the limit of N/T . The
limiting variance of

√
N(F̂t − Ft) becomes

Avar(F̂t) = Σ−1
Λ ΓtΣ

−1
Λ + c2(F ′

t ⊗ Ir)Υ (Ft ⊗ Ir).

To estimate Υ , apply the Newey–West estimator to the sequence
F̂ ′
s ⊗ âs. The asymptotic variance of F̂t is estimated by Avar(F̂t) =

Σ̂−1
Λ Γ̂tΣ̂

−1
Λ + (N/T )2(F̂ ′

t ⊗ Ir)Υ̂ (F̂t ⊗ Ir).

Appendix B

Proof of (2). Rewrite

F̃ ′F/T = (F̃ − FH)′F/T + H ′F ′F/T

= H ′F ′F/T + Op(δ
−2
NT ) (20)

because (F̃ − FH)′F/T = Op(δ
−2
NT ), see Lemma B.2 of Bai (2003).

Right multiply H to both sides,

F̃ ′FH/T = H ′(F ′F/T )H + Op(δ
−2
NT ).

Rewrite the left hand side of above as

F̃ ′FH/T = F̃ ′(FH − F̃ + F̃)/T = Op(δ
−2
NT ) + Ir

because F̃ ′(FH − F̃)/T = Op(δ
−2
NT ) and F̃ ′F̃/T = Ir , see Lemma B.3

of Bai (2003). Equating the above two equations we obtain

Ir = H ′(F ′F/T )H + Op(δ
−2
NT ). (21)

Thus if (F ′F/T ) = Ir , we have

Ir = H ′H + Op(δ
−2
NT ). (22)

Ignore the Op(δ
−2
NT ) term, the above shows that H is an orthogonal

matrix so that its eigenvalues are either 1 or −1. We need to show
that H is a diagonal matrix. From the definition of H

H ′
= Ṽ−1(F̃ ′F/T )(Λ′Λ/N) = Ṽ−1H ′(Λ′Λ/N) + Op(δ

−2
NT )

wherewe use the fact that F̃ ′F/T = H ′
+Op(δ

−2
NT ) under F ′F/T = Ir ,

see (20). Multiplying Ṽ on both sides and taking the transpose

(Λ′Λ/N)H = HṼ + Op(δ
−2
NT ). (23)

This equation implies that H (up to a negligible term) is a matrix
consisting of eigenvectors of (Λ′Λ/N). The lattermatrix is diagonal
and has distinct eigenvalues by assumption. Thus, each eigenvalue

is associated with a unique unitary eigenvector (up to a sign
change) and each eigenvector has a single non-zero element. This
implies that H is a diagonal matrix up to an Op(δ

−2
NT ) order. It is

already known that the eigenvalues ofH are 1 or−1,H is a diagonal
matrix with elements of 1 or −1 as its elements. Without loss of
generality, we can assume all elements are 1 (otherwise multiply
the corresponding columns of F̃ and Λ̃ by −1). This implies H =

Ir + Op(δ
−2
NT ). Moreover, from (23) we obtain

(Λ′Λ/N) = Ṽ + Op(δ
−2
NT ). �

Proof of Theorem 1. Result (2) leads to representations (7) and
(8). The theorem is a direct consequence of these representations
and Assumption A. �

Proof of (14). Note H∗
= HQ is the rotation matrix under PC2.

Under PC2, F ′F/T = Ir , thus (22) holds. This implies that H is an
orthogonal matrix, up to a negligible term, and so is HQ since Q
is also orthogonal. Furthermore, left multiply (22) by Q ′ and right
multiply it by Q , and use Q ′Q = Ir , we have

Ir = Q ′H ′HQ + Op(δ
−2
NT ). (24)

We next showHQ is a diagonal matrix, up to an Op(T−1/2) term. By
(5), for each i, λ̃i − H−1λi = Op(T−1/2), we have

Λ̃′

1 = (λ̃1, . . . , λ̃r) = H−1(λ1, . . . , λr) + Op(T−1/2).

That is, Λ̃′

1 = H−1Λ′

1 + Op(T−1/2). By the QR decomposition, we
have QR = Λ̃′

1 = H−1Λ′

1 + Op(T−1/2). Since Λ′

1 is also an upper
triangular matrix (an assumption of PC2) and H−1 is an orthogonal
matrix up to a negligible term, by the uniqueness of the QR de-
composition, we have Q = H−1

+ Op(T−1/2). Right multiply H
on each side we have HQ = Ir + Op(T−1/2). When r = 1,HQ
is a scalar, and combined with (24), we strengthen the rate to
HQ = Ir +Op(δ

−2
NT ). For general r > 1, the rate cannot be improved.

Let ∆ = HQ − Ir = Op(T−1/2). Eq. (24) implies (∆+ Ir)′(∆+ Ir) =

Op(δ
−2
NT ). That is, ∆′∆ + ∆′

+ ∆ = Op(δ
−2
NT ). But ∆′∆ = Op(1/T ),

so ∆′
+ ∆ = Op(δ

−2
NT ). This implies that the diagonal elements of

∆ are all Op(δ
−2
NT ) and ∆ is skew-symmetric up to an Op(δ

−2
NT ) term

(and especially for r = 1, ∆ = Op(δ
−2
NT )).

We next derive the asymptotic representation for ∆. Using (5),
we can write

Λ̃′

1 − H−1Λ′

1 = H ′
1
T

T
t=1

Ft(e1t , . . . , ert) + op(T−1/2).

Left multiplying H and using HH ′
= Ir + Op(δ

−2
NT ) = (F ′F/T )−1

+

Op(δ
−2
NT ) [see (22), which still holds under PC2], we have

HΛ̃′

1 − Λ′

1 =


F ′F
T

−1 1
T

T
t=1

Ft(e1t , . . . , ert) + op(T−1/2).

The first term on the right hand side is T−1/2ξT , where ξT given in
(11), so that

HΛ̃′

1 − Λ′

1 = T−1/2ξT + op(T−1/2).

By the QR decomposition of Λ̃′

1,HΛ̃′

1 = HQR = (HQ − I)R + R =

∆R + R. Thus HΛ̃′

1 − Λ′

1 = ∆R + (R − Λ′

1). It follows that

∆ = −(R − Λ′

1)R
−1

+ T−1/2ξTR−1
+ op(T−1/2).

Since both R and Λ′

1 are upper triangular matrices, the below di-
agonal elements of ∆ are equal to the corresponding elements
of T−1/2ξTR−1

+ op(T−1/2). Since ∆ is skew-symmetric up to an
Op(δ

−2
NT ) order, the elements of∆ above the diagonal are also given.
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That is, ∆ij = T−1/2(ξTR−1)ij + op(T−1/2) for i > j, and ∆ij =

−∆ji + Op(δ
−2
NT ) for i < j, and ∆ii = Op(δ

−2
NT ) (i, j = 1, 2, . . . , r).

Furthermore, we can replace R by Λ′

1. To see this, by the unique-
ness of QR decomposition, R = Λ′

1 + op(1). So T−1/2ξTR−1
=

T−1/2ξT (Λ
′

1)
−1

+ T−1/2ξTop(1) = T−1/2ξT (Λ
′

1)
−1

+ op(T−1/2). Fi-
nally, (14) is obtained by noting Ξ =

√
T∆. �

Proof of (12). Using λ̂i = Q ′λ̃i,

λ̂i − λi = Q ′λ̃i − λi = Q ′(λ̃i − H−1λi) + Q ′H−1(I − HQ )λi.

Multiplying
√
T ,

√
T (λ̂i − λi) = Q ′

√
T (λ̃i − H−1λi) − Q ′H−1

√
T (HQ − Ir)λi.

Since Q ′H−1
= Ir + op(1), the second term on the right hand side

is −
√
T (H∗

− Ir)λi + op(1). Using (5), the first term on the right
hand side is Q ′H ′T−1/2T

t=1 Fteit +op(1). But Q ′H ′
= Ir +op(1) =

(F ′F/T )−1
+op(1) under PC2. Combining the results yield (12). This

argument holds for all i = 1, 2, . . . ,N . �

Proof of (13). Using F̂t = Q ′F̃t ,

F̂t − Ft = Q ′F̃t − Ft = Q ′(F̃t − H ′Ft) + (Q ′H ′
− Ir)Ft .

Multiplying
√
N ,

√
N(F̂t − Ft) = Q ′

√
N(F̃t − H ′Ft) + (N/T )1/2

√
T (Q ′H ′

− Ir)Ft .

From (6), the first term on the right isQ ′H ′(Λ′Λ/N)−1N
i=1 λieit +

op(1); but Q ′H ′
= Ir + op(1). For the second term on the right,

√
T (Q ′H ′

− Ir)Ft = −
√
T (HQ − Ir)Ft + op(1) because

√
T (HQ −

Ir) is skew-symmetric up to an op(1) term when
√
T/N → 0.

Combining results we obtain (13). �

Proof of Theorem 2. This is a direct consequence of (14), (12),
(13), Assumptions A and B. �

Proof of (3). Note HĎ
= HΛ̃′

1 is the rotation matrix under PC3.
Since the principal components estimator satisfies λ̃i − H−1λi =

Op(T−1/2), we have

Λ̃′

1 = (λ̃1, . . . , λ̃r) = H−1(λ1, . . . , λr) + Op(T−1/2).

Left multiply H to obtain HΛ̃′

1 = Ir + Op(T−1/2) because (λ1, . . . ,

λr) = Ir under PC3. That is, HĎ
= Ir +Op(T−1/2) so HĎ p

−→ Ir . Using
representation (5), we have

√
T (HĎ

− Ir) = HH ′
1

√
T

T
t=1

(Fte1t , . . . , Ftert) + op(1).

However, (21) implies HH ′
= (F ′F/T )−1

+ Op(δ
−2
NT ). This proves

(3). �

Proof of (15). Recall that

λ̂i − λi = Λ̃′−1
1 λ̃i − λi = Λ̃′−1

1 (λ̃i − H−1λi)

+ (Λ̃′−1
1 H−1

− Ir)λi.

Multiply
√
T on each side

√
T (λ̂i − λi) = Λ̃′−1

1

√
T (λ̃i − H−1λi)

+ Λ̃′−1
1 H−1

√
T (Ir − HĎ)λi.

For the first term on the right hand side, using (5),

Λ̃−1
1

√
T (λ̃i − H−1λi) = (Λ̃′−1

1 H−1)(HH ′)
1

√
T

T
t=1

Fteit + op(1).

Since HΛ̃′
= Ir + op(1) its inverse is also Ir + op(1). Furthermore,

as argued earlier, HH ′
= (F ′F/T )−1

+ Op(δ
−2
NT ). Thus

Λ̃−1
1

√
T (λ̃i − H−1λi) =


F ′F
T

−1 1
√
T

T
t=1

Fteit + op(1).

The second term on the right hand side equals
√
T (Ir − HĎ)λi +

op(1). This proves (15). �

Proof of (16). First note that F̂t −Ft = Λ̃1F̃t −Ft = Λ̃1(F̃t −H ′Ft)+
Λ̃1H ′Ft − Ft = Λ̃1(F̃t − H ′Ft) + (H ′Ď

− Ir)Ft . It follows that
√
N(F̂t − Ft) = Λ̃1

√
N(F̃t − H ′Ft) + (N/T )1/2

√
T (HĎ

− Ir)′Ft .

From (6), and using Λ̃1H ′
= Ir + op(1), the first term on the right

hand side is

Λ̃1
√
N(F̃t − H ′Ft) =


Λ′Λ

N

−1 1
√
N

N
i=1

λieit + op(1).

Combining the two equations leads to (16). �

Proof of Theorem 3. This follows from (3), (15), (16), and As-
sumptions A and B. �

Proof of Theorem 4. We first consider the case of identification
under PC1 so that we use F̃t in place of Ft in the regression model.
We can rewrite the model as in Bai and Ng (2006)

yt =

F̃ ′

t W ′

t

 H−1α
β


+ εt + (F ′

tH − F̃ ′)H−1α

= ẑ ′

tδ
∗
+ εt + at

where ẑ ′
t = (F̃ ′

t ,W
′
t )

′, δ∗
= (α′H−′, β ′)′, and at represents the

last term on the right hand side. When
√
T/N → 0, Bai and Ng

(2006) shows that the error at is negligible, and the least squares
estimator δ̂ has the standard limiting distribution as if F̃t contains
no estimation error (as if H ′Ft were observable). More specifically,
√
T (δ̂ − δ∗)

d
−→ N(0, Φ−′

0 Σ−1
zz Σzz,εΣzzΦ

−1
0 )

where Φ0 = diag(V−1QΣΛ, I) and V−1QΣΛ is the probability
limit ofH , whereQ represents the probability limit of F̃ ′F/T . In our
case, the limit of H is an identity matrix (also follows from Q = Ir
and V = ΣΛ in the present case) so that Φ0 is an identity matrix.
This implies that
√
T (δ̂ − δ∗)

d
−→ N(0, Σδ)

where Σδ = Σ−1
zz Σzz,εΣ

−1
zz . Furthermore,

√
T (δ̂ − δ) =

√
T (δ̂ − δ∗) +

√
T [(α − H−1α)′, 0′

]
′.

But
√
T (α − H−1α) =

√
T (H − Ir)H−1α = op(1) provided that

√
T/N → 0 because H − Ir = Op(δ

−2
NT ). It follows that under

√
T/N → 0,

√
T (δ̂ − δ)

d
−→ N(0, Σδ).

We next consider PC3. We use F̂t in place of Ft , where F̂t is
defined in the main text. Since F̂t is an estimate of HĎ′Ft , we define
δĎ = [(HĎ−1α)′, β ′

]
′. Then yt = ẑ ′

tδ
Ď

+ εt + aĎt , here aĎt =

(F ′
tH

Ď
− F̂ ′)HĎ−1α. The same argument in Bai and Ng (2006) leads

to
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√
T (δ̂ − δĎ)

d
−→ N(0, Φ−′

0 Σ−1
zz Σzz,εΣzzΦ

−1
0 )

where Φ0 = diag(plimHĎ, I). Under PC3, plimHĎ
= Ir . Thus,

√
T (δ̂ − δĎ)

d
−→ N(0, Σδ), where Σδ is defined earlier. Next,

√
T (δ̂ − δ) =

√
T (δ̂ − δĎ) +

√
T [(α − HĎ−1α)′, 0′

]
′.

But the term
√
T (α − HĎ−1α) =

√
T (HĎ

− Ir)HĎ−1α

is not negligible and
√
T (HĎ

− Ir)
d
−→ (Z1, . . . , Zr) and HĎ−1α =

α + op(1). It follows that

√
T (δ̂ − δ)

d
−→ N(0, Σδ) +


(Z1, . . . , Zr)α

0


.

Since the normal random variable N(0, Σδ) is derived from the
central limit theorem (CLT) involving {εt}, while (Z1, . . . , Zr) are
derived from the CLT involving {eit}, these normal variables are
independent of each other under Assumption C. Therefore, the
asymptotic variance of δ̂ is equal to Σδ + diag(var[(Z1, . . . , Zr)
α], 0), where diag means block-diagonal. Under the assumption
that ejt are independent over j = 1, 2, . . . , r , then Z1, . . . , Zr
are also independent so that var[(Z1, . . . , Zr)α] =

r
k=1 Φkαk.

For dependent ejt over j, (Z1, . . . , Zr)α = (α′
⊗ Ir)vec(Z1, . . . ,

Zr). Consistent estimation of var(vec(Z1, . . . , Zr)) is discussed in
Appendix A.

Finally consider PC2. Define δ∗
= [(H∗−1α)′, β ′

]
′. The same

analysis as in PC3 gives
√
T (δ̂ − δ) =

√
T (δ̂ − δ∗) +

√
T [(α − H∗−1α)′, 0′

]
′

with
√
T (δ̂ − δ∗)

d
−→ N(0, Σδ). Furthermore,

√
T (α − H∗−1α) =

√
T (H∗

− Ir)H∗−1α =
√
T (H∗

− Ir)α + op(1) = (α′
⊗ Ir)D

veck(ξTΛ′−1
1 ) + op(1), which converges in distribution to (α′

⊗

Ir)Dη. Thus the asymptotic variance of δ̂ is equal toΣδ +diag[(α′
⊗

Ir)D var(η)D′(α ⊗ Ir), 0], where diag means block-diagonal. �
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