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Abstract

This paper considers the role of normalization in least-squares estimation of cointe-
grating vectors. It is shown, using an empirical example and Monte-Carlo simulations of
bivartate models, that the least-squares estimates can have very poor finite sample prop-
erties when normalized in one direction but are well bechaved when normalized in the
other. This occurs when one of the /(1) variables is a weak random walk or is nearly
stationary. The choice of the regressand also has implications for residual based unit root
tests for cointegration. We provide theoretical explanations for why the lcast-squares esti-
mates from one normalization can be outright inconsistent in well-defined local asymptotic
frameworks. Ranking the spectral density at frequency zero of the first differenced series
is suggested as a practical guide to determining which variable to use as the regressand.

Kevwords:Unit root; Cointegration: Normalization; Spectral density function at frequency
Zero
JEL classification: C22: C51; E31

1. Introduction

Cointegration is an important concept. [t provides a tight analytical frame-
work for analyzing the comovements of variables at low frequencies. A conve-
nient way to obtain consistent estimates of cointegrating vectors is least-squares
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estimation. This paper is concerned with the robustness of the static least-squares
estimator in single equation estimations of cointegrating vectors and of the role
of normalization in estimating these cointegrating relationships.

A static cointegrating regression consists of regressing a variable belonging to
the cointegrated system on the contemporaneous values of the remaining variables
in the system, where all variables are known to be or can be tested as being /(1).
An important finding, due to Stock (1987), is that the least-squares estimator for
this regression is super-consistent. That is to say, it converges at rate 7, where T
is the sample size. However, it has also been shown that serial correlation in some
series and /or correlation among the variables in the system will, in general, induce
asymptotic bias, asymmetry, and nuisance parameters to the limiting distribution
of the least-squares estimator. See Phillips and Hansen (1990) among others.
Accordingly, the least-squares estimator is sub-optimal relative to fully efficient
estimators such as the FIML estimator of Johansen (1991), and the dynamic
ordinary least-squares (DOLS) estimator of Saikkonen (1991) and Stock and
Watson (1993).

In spite of the inefficiency of the lecast-squares estimator, its properties are
still worthy of investigation for several reasons. First, the least-squares estimator
provides the theoretical basis for the construction of more efficient estimators. In-
deed, the fully modified estimator (FM-OLS) of Phillips and Hansen (1990) and
the canonical cointegrating regression (CCR) of Park (1992) are built upon con-
sistency of the static OLS estimator. Second, super-consistency of the static OLS
estimator implies that the estimates should be reasonably precise. This provides
a rationale for using the least-squares residuals from the static regression as the
basis of tests for cointegration. See, for example, Phillips and Ouliaris (1990).
Properties of the least-squares estimator have direct implications for the size and
power of tests for cointegration to the extent that they affect the properties of the
least-squares residuals. Third, least-squares estimation of the cointegrating vector
provides an estimate of ‘equilibrium error’ for use in subsequent estimations of
error correction models. Least squares cstimation of the long-run cointegrating
relationships therefore affects the estimated dynamics of the cointegrated system.

Estimations of cointegrating vectors require the practitioner to take a stand
on normalization. In the context of least-squares procedures, this means deciding
which variable to put on the left-hand side as the regressand. This has not been
seen as an issue of much consequence as the conventional wisdom holds that
while the normalization is known to imply different point estimates for elements
of the cointegrating vector (except in the unrealistic situation when the R* of the
regression is unity), it is not thought to have implications for the properties of the
estimator in large samples. In particular, all normalizations yield super-consistent
estimates. Accordingly, the regressions are usually normalized in a way to facili-
tate economic interpretation. However, few (if any) studies have examined if and
when normalization affects the precision of the estimates. Our analysis in sub-
sequent sections suggest that it does. We show, using bivariate models, that the
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least-squares estimator can yield drastically diflerent point estimates of the cointe-
grating vector depending on the normalization. This occurs when the cointegrated
system contains variables with different univariate properties, in particular, when
one of the variables has a weak random walk component or is nearly stationary.
We refer to such a case as a “nearly unbalanced nearly cointegrated system’,

The rest of the paper is structured as follows. We begin with an empirical
example to motivate the analysis, and summarize salient features of the statis-
tics that will be used. Section 3 describes two data-generating processes and
presents simulation results which highlight the parameter space where the esti-
mation problem will arise. Section 4 provides a theoretical explanation for the
simulation results by means of local asymptotic analyses. Section 5 studies the
properties of residual-based unit root tests in this context. Some observations
on alternative estimators of cointegrating vectors arc discussed in Section 6.
We conclude with practical guidelines for inference and estimation.

2. An empirical example: The Fisher equation

We shall use the after-tax Fisher cquation to give a synopsis of the problem.
The Fisher equation is defined as

(1 —Yi=r—+n"

where 7 is the average marginal tax rate. / 1s the nominal interest ratc. 7n° Is
the expected rate of inflation, and » is the real interest rate which 1s assumed
to be a constant. The expected rate of inflation is unobserved, and replacing it
by the actual rate of inflation will induce an errors-in-variable problem. Least-
squares estimation will yield estimates that are inefficient and possibly suffer
from simultancity bias. But as long as it can be shown that / and 7 arc /(1)
variables and that they are cointegrated, consistency of the cstimates is implied
by standard asymptotic results. To do this. we now review procedures which
reveal the univariate properties of the data.

2.1 Univariate statistics

We use three statistics to test for the presence of a unit root and the null
hypothesis of no cointegration. A constant term is included in the regressions
where appropriatc.

The Said and Dickey (1984) 1,,-statistic is constructed from an augmented
autoregression with a constant and 4 lagged first-differences of the data, where
k is selected using a general to specific procedure to test for the significance of
the last lag beginning from the largest order. & max. "

' See Ng and Perron (1995) for details concerning the relationship between & and size distortions.
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The Phillips and Perron (1988) Z,,-test is based on the autoregression y; = fi+
%yv,—1+u,. To estimate the spectral density at frequency zero of the residuals u,,
we apply the quadratic kernel to the least-squares residuals #,. The bandwidth is
selected using the automated procedure described in Andrews (1991).

The MZ,, statistic was suggested by Stock (1990) and analyzed in Perron
and Ng (1996). The statistic can be written as MZ,, = Z,, + T(% — 1)2/2, hence
can be seen as a modified Phillips—Perron test. Importantly, the statistic makes
use of an autoregressive spectral density estimator which bypasses the use of the
least-squares residuals. This estimator is defined as s2, = a2 /(1 — 5" 5;)% with
1;, and Ufk obtained from the regression Ay, =cy+ bov,—| + ijl bidvi_;+ey.
The advantages of MZ, over Z, and the role of the spectral density estimators
are detailed in Perron and Ng (1996).

Features of these statistics relevant to subsequent analysis are:

e The Z,, and M Z,, tests are asymptotically equivalent under standard assump-
tions. However, when the serial correlation parameter in the errors of the unit
root process is modeled as local to —1 and hence that the spectral density
at frequency zero of Ay, is small, Z,, diverges to —oc but MZ,, is Oy(1),
and the two tests have very different finite sample properties. As well, while
the autoregressive spectral density estimator is consistent, the kernel estimator
constructed using the least-squares residuals is not, irrespective of the choice
of the kernel and/or the truncation lag. The root of the problem is the severe
bias of the least-squares estimator for the autoregressive parameter when there
is large negative serial correlation in the errors. Of the three tests considered,
the size of Z,, is most distorted, and the size of MZ,, is more robust to a
large negative MA component than .

¢ When the objective is to estimate the spectral density at frequency zero of 43,
we consider two estimators that are more efficient than the ones used in the unit
root tests. First, we use the demeaned first differences of the data instead of the
estimated residuals to construct the kernel-based estimates. Second, we drop the
lagged level of v, from the autoregression used to construct the autoregressive
spectral density estimate. These alternative estimates are not guaranteed to be
bounded above zero when the series is stationary, and hence will yield unit
root tests that are inconsistent. However, as estimates of the spectral density
of Ay, at frequency zero, they are efficient because they do not depend on the
least-squares residuals from the first-order autoregression.

As we will see later, these statistic will play an important role in our analysis.
With this backdrop, we now return to our empirical example.

2.2, Empirical results

We use monthly observations from 1954:1 to 1993:11 for the US taken from
CITIBASE (479 observations). The interest rate is the three month yield on
treasury bills (fygm3) at annual rates, inflation is the annualized quarterly change
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Table 1
Analysis of the Fisher equation: unit root tests

$sT(OS) \i $HAR) \,:,
Zy M7y [ th (2) (3) (4)
i -9.63 —8.07 2.10 1.254 1.243 1.014 0.906
7 -40.31 —11.07 —2.54 1.160 0312 0.306 0.2533

Notes: s7((S} is the quadratic kemnel estimate, s2(4R) is the autoregressive spectral density estimate,
and .s'f, is the sample variance of the first differences of the data. (1) For .S':(QS)A Andrews’ (1991)
method is used to select the bandwidth. For i, an AR(1) approximation is used and the method selects
a bandwidth of $; for n. an MA(3) approximation is used and the method sclects a bandwidth of 11.
(1) The kernel estimator uses the estimated residuals from an autoregression with a constant. The
estimate 1s used in 7.

(2) The kernel estimator uscs the residuals from the demeaned first differences of the data.

{3) The s°(4R) is based on the augmented autoregression of Av, = ¢ + bgry_y + L° Avie + e
The estimate is used in MZ,, = (T~ li\'% — 2 (ART :E{ 7)1 where v is the demeancd series.
(4) The s*(AR) is based on the autoregression of Ay, =¢ ~ S,x Ay e

The eritical value for 7Z,, and MZ,, is —14.1. and is —2.86 for 7,,.

in the consumer price index (7, = 4 log( punew,, punew,_3)). The properties of the
data are reported in Table 1. All three unit roots tests conclude that therc is a
unit root in the nominal interest rate (/). However, while Z,,, strongly rejects the
presence of a unit root in the inflation rate (n). MZ,, and ¢,, cannot reject the
unit root hypothesis.

Now consider the estimates of the spectral density at frequency zero used in
the unit root tests. For i, both the (normalized) kernel and the autoregressive
spectral density estimates are in the range of unity [see columns (1) and (3) in
Table 1]. But, for n. there are marked differences. Whereas the kernel estimate
based on the least-squares residuals is around one. 1t is much smaller and is
closer to zero according to s3,. These discrepancies in the spectral density es-
timates. together with the observed discrepancy between Z,, and M Z,,. suggest
that there is negative serial correlation in errors of the inflation scries in view of
the discussion of the previous subsection.

Estimates of the spectral density at frequency zero of the first differences of
the data are shown in columns 2 and 4. The quadratic and autoregressive spectral
estimates are 1.243 and 0.906, respectively. for the interest rate. For the intlation
series they are 0.312 and 0.253, respectively. The small values of the latter
estimates again suggest negative residual serial correlation. It is of interest to note
the large discrepancy between the residuals-based kernel estimate (i.e. those used
in the unit root tests) and the kernel estimate based on the first-differenced data for
the inflation series. This discrepancy reflects the poor properties of least-squares
estimator in the autoregression, of which negative residual serial correlation 1s a
possible cause.
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Table 2
Coeflicient estimates tor the Fisher equation and cointegration tests

OLS DOLS(4) DOLS(¥) DOLS(12) Z, \iz, I
ionn 0.609 0.719 0.739 0.750 33.75 20.90 2.01
Toon 0.785 0.788 0.806 0.79% —61.02 -33.04 —-243

Notes: DOLS(k) denotes inclusion of & leads and lags of the first differences of the regressors in
the static least squares regression. See (1) and (3) in notes to Table 1 for the spectral density at
frequency zero used in the construction of 7, and MZ,. The 3% critical value for Z, and MZ, is
—20.5. and —3.36 for ¢,,.

The conclusion that one would draw from these resuits is that the interest rate
series is unambiguously /(1). The more robust M Z,, and ¢, tests suggest that
7 is also /(1) but there is strong negalive serial correlation in the errors which
induces a strong force for the series to revert to its mean. Indeed, estimations
of ARIMA models for n reveal the significance of negative moving average
lags. The best model selected by the AIC criterion suggests © is an ARMA(1.3)
with an autoregressive coefficient that is almost one and with the moving-average
coefficient at the third lag in the neighborhood of —0.8. far outweighing the sum
of the positive moving average coefficients at lags one and two.

Granted the result that both ¢ and = are /(1), we then proceed to estimate the
Fisher equation and test if the two series are cointegrated. The Fisher equation
makes no suggestion as to whether empirical tests of the relationship should use
i or m as the regressand, so that without a strong a priori reasoning, it is equally
legitimate to use 7 as the regressand as it is to usc /. Assuming an average
marginal tax rate in the US of around 0.3 over the sample, one would expect
a regression of i on 7 to yield an estimatec of I.(1 — 1)>1. If we regress =
on i. we would expect a regression coeflicient of 0.7. Furthermore, the estimates
from the two equations should be (approximately) the reciprocal of each other.
Table 2 reports the estimation results.

The estimated coeflicient from the equation with / as the regressand is quite
different from our prior as it falls short of unity. The coeflicient from the equation
with 7 as the regressand suggests a marginal tax rate of 0.22. which seems
plausible. But, the two estimated coeflicients are cvidently not the reciprocal of
one another. One might argue that inefficiency of the static least-squares estimator
might be the source of the problem. However, discrepancies remain even when the
equations are estimated with an efficient estimator such as the DOLS. The second
through fourth columns of Table 2 augment the static least-squares regression
with four, eight, and 12 leads and lags of the first differences of the regressor.
For the equation with / on the left-hand side, estimation by DOLS raises the
point estimate of the coefficient, but it continues to fall short of one. For the
equation with 7 on the left-hand side, the additional regressors made practically
no change to the static least-squares estimates. Furthermore, the coetficients from
the two regressions look like they are identical rather than being the reciprocal
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of one another. Not only do the regressions give puzzling evidence about the
empirical Fisher relationship, the results from the various residual based tests
for cointegration are just as confusing. The Phillips—Perron statistic always reject
the null hypothesis of no-cointegration, the Said-Dickey statistic suggests no-
cointegration. while the MZ, statistic gives mixed results depending on which
variable is used as the regressand.

The above example suggests that the choice of normalization can potentially
yield dramatically different point estimates on coeflicients of economic interest.
As will become clear. one of the two estimates has very poor properties. The key
to finding the appropriate normalization lies in the spectral density at frequency
zero of the first differences of the regressand relative to those of the first differ-
ences of the regressors. The rest of this analysis provides a formal framework for
analyzing the issues raised, with the aim of providing practical recommendations
for which variable to use as the regressand.

3. When might normalization matter?

In this section, we first present the two data-generating processes used, and then
report simulations to illustrate the nature of the problem. Unless noted otherwise,
all simulations are performed using 1000 replications. The programs are written
in C with routines from Press, Toukolsky. Vetterling and Flannery (1992) running
under IRTX 5.2 on an SGI system.

3.1 The duta-generating processes
Consider a bivariate model
o - 2
X =0 ey, ef, ~(0,a7)
. . « 2
Voo tes. e~ (0007).
=g y— . t~{(0.07).

The variables x;, and v, are driven by a common stochastic trend g,. as well as
stationary innovations e, and ¢3, that are serially and mutually uncorrelated. Fur-
thermore, ¢}, and e3, are uncorrelated with r, at all leads and lags by assumption.
A nonzero drift can be added to g,. but is omitted without loss of generality.
Letting x, =X, /g1, )y = 1) 0o, €, =€],°01, ¢ = ¢35, 02,1 =]i0], and 7> = 5/00,
we have

DGPL: oy, = ~er. e~ (0. 1)
V=g e, e~ (001)

W=y + z",w(().alz). (1)
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The variables x, and y, are now of unobserved components form as in Clark
(1987). The DGPs can be written as

Axp =70+ ey — ey =u; + b,

Aye =720+ ey — ey =u; + 0w, (2)
where 0, is such that 0,(1 +02)"' = ai[yi6? +207]7" and 0, is such that 0,(1 +
(),2)7] :622[”,‘2205 + 20'22]_]. The model can also be parameterized as

Axp =10+ ey — ey =1,

Y= 3;.\} — Een — ey = —zr, + 0. (3)

where E(i1; i1 ) # 0. Because of the absence of exogeneity between x, and y,, OLS
estimation is, in principle, sub-optimal asymptotically regardless of the choice of
the normalization.

The above parameterization of DGPI shows that it belongs to the class of
triangular models analyzed in Phillips (1991)

DGP2: Ax; = uy,, u), =e, + Oiey,- 1 + g1203,
Vo= Pxtuy, uy=ey + Orelrfl + on e, (4)

where E(u,u2,) may or may not be zero.

3.2. Simulation results

We begin our analysis with DGP1. Suppose it is known that there is a coin-
tegrating vector in the bivariate system. Substituting out the common trend in x,
and v, of DGPI1, we can either write

V= /))\w\’, + e — /{\L)];. /))‘ = (S)
or
xo= Py vey = Prey, =710 (6)

Since standard asymptotic results show 7 consistency for the coefficients of both
regressions, (5) and (6) form equally legitimate basis for estimating the cointe-
grating vector.

We simulate DGP1 with ¢; = 1. The coefficient ;2 is set to one and we vary
1 over the range 0.01 and 5. Table 3 reports the simulation results for sample
sizes of 50, 200 and 500. Turning first to the results from regressing x;, on v,
(Table 3a), we sec that the true regression coefficient, 7| = f§,.. 1s precisely esti-
mated over the range of parameter values considered and the accuracy of the
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estimates increases as the sample size increases. Therc is one feature of the
results that is noteworthy. Since by construction, v, is not weakly exogenous for
X;, the least-squares estimator for f§, and all test statistics associated with it should
have nonstandard limiting distributions. Upon examining the upper and lower 5%
critical values of the empirical distribution of the -statistic on f3,, we find that
for large values of |, the empirical distribution of the ¢-statistic is indeed being
shifted to the left of the normal distribution. However, as the value of 7 falls,
the distribution approaches normality. In the extreme case when ;) =0.01, the
upper and lower 5% critical values are practically the same as those from the
normal distribution, even with a moderate sample size of 200.

The picture is very different when we regress 1, on x; (see Table 3b). The true
value of . is 171, which we also report for convenience. For large values of ;).
fi, tends to be downward biased when 7 = 50. but the estimates are reasonably
accurate. The preciston of the estimates starts to deteriorate when 7| falls below
unity. When 7 =0.2, the least-squares estimator is severely biased downwards.
For example, the mean of /}\, is only 1.101 when fi, =5 at 7 =50. Although the
bias is reduced as T increases, there is still a substantial discrepancy between
the true value of 5 and the average estimated value of 3.483 at 7 =3500. Even
though f, is downward biased. one might expect /}\ to at least increase with
the true coefficient. fi;. However, the simulations reveal that as 7 —0 and hence
By— ¢, B, tends towards 0 rather than increases with f3,. Curiously, the ¢-statistic
associated with /}_‘. appears to diverge to —x as ;; —0 but approaches normality
as ;' Increases.

The above simulation results clearly illustrate the fact that the choice of the
regressand can severely affect the precision of the estimates. How do these results
relate to our empirical example of the Fisher equation? We want to suggest that x,
should be treated as inflation and 1, as the interest rate. We also want to suggest
that the estimate from a regression of © on / is to be trusted. To justify thesc
interpretations, we first note that regressions ot 1, on x, become problematical
when 7 is small. Also recall that DGP1 implies that Ax, 1s an MA(]) process
with parameter 0, where

i, o7
ST T TS 5 (7)
(1 +03) 7767 + 207
Since 7y =7 @1, ;1 —0 if either ;7 —0, or it a7 — . The former corresponds

to the case when the common trend. . is a weak driving force of x,. The latter
corresponds to the case of large variability in the idiosyncratic noise of x,. so
large that their impact dominates that of the stochastic trend in x,.

The value of 3y affects the econometric analysis involving x, because it follows
from (7) that as ;y — 0. 0, — - 1. Such a process. referred to as nearly integrated
nearly white noise by Nabeya and Perron (1994), has a strong tendency to be
mean reverting. This feature is inherent in our inflation series. As mentioned
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earlier, a moving average coefficient at lag 3 of —0.8 is found in the inflation
series. The issue, of course, is not so much the size of the MA coefficient on a
particular lag, but the sum of the coefficients at all lags. Although DGP1 allows
only an MA(1) in the noise function of Ax,, it nevertheless encompasses the
feature that is of interest.’

One way to judge if the simulated values of x, indeed behave like a nearly
integrated nearly white noise process is to examine the size of the unit root tests.
The parameter space of interest is when 3y falls short of unity. A 7 of 0.5 trans-
lates into a moving-average coeflicient in Ax, of —0.6. Previous work by Schwert
(1989) and Agiakloglou and Newbold (1992) have documented that many unit
root tests suffer from size distortions even when @ is —0.5. One exception is
MZ.,,, which is more robust to negative serial correlation. At 7 =(.5, the exact
size of Z,, is 0.58, of MZ,, and t,, is 0.10, when the nominal size is 0.05.
When ;1 = 0.2, the exact size of the tests are 0.98, 0.19, and 0.26, respectively.
The size discrepancy amongst the tests increase as 7, becomes smaller.

If large negative residual serial correlation is indeed the reason why the esti-
mates have properties that depend on the normalization, then we should observe
similar results from DGP2 given by (4). We simulate DGP2 letting the noise
function in Ax, be a moving average process. Given that v, = fix, +uy,, it follows
that Av, = f4x, + Auy,. Since uy, is itself a stationary moving-average process,
Auy, is overdifferenced. Thus, if Ax; has a negative moving-average component,
Ay, will inherit a moving average component that implies an even stronger ten-
dency for mean reversion. In other words, the moving-average component in y; is
more negative than that in x,. In light of the results from DGPI, one might then
expect that if the data were generated by DGP2, using y; as the regressand will
give more precise estimates because it has a smaller spectral density at frequency
zero than x,.

Fig. | provides a summary of the results for DGP2 assuming o; =02, =0 for
the case f§ = |. Least-squares regressions of 1, on x, give very accurate estimates
regardless of the values of 0, and (),. However, when we use x, as the regressand,
the estimates, while little affected by the values of #},, are severely downward
biased when (), is negative and the biases are larger the closer ), is to —1. For
example, when 0. = — 0.8, f§ is estimated to be below 0.5 when we use x; as
the regressand, half the true value.

The picture that emerges from the simulations of the two DGPs points to
the following general observation. If the first difference of one of the series
has negative serial correlation (or a small spectral density at frequency zero),

ZPerron (1994) suggests that a ncgative moving-average component should be present in the inflation
series if the monetary authorities react to offsct inflationary/disinflationary pressures that are incon-
sistent with an inflation target for the path of the price level. This makes inflation strongly mean
reverting.
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Fig. 1. Average values of the estimates with data from DGP2 with 612 =02 =0 and ff=1: (a) from
a regression of x on 31 (b) from a regression of 1 on x.

estimates based upon an equation with that series as the regressand always have
better properties than those normalized on the other variable. The next section
provides a theoretical rationale for this result.

4. Local asymptotic analyses

This section uses local asymptotic analyses to explain why the static least-
squares estimator experiences substantial downward bias for certain normaliza-
tions only. The first subsection analyzes DGP1, and the second subsection focuses
on DGP2.

4.1. DGPI: y local 100

A notable feature of the simulation results reported for DGP1 is that the least
squares estimator is severely downward biased when -y is small and when we
use 3, as the regressand. We therefore use the following parameterization

Q=T ¢ # 0,

where we recall that DGP1 is the unobserved components model given by (1).
The parameter 7, tends to zero as 7 — x at rate V'T. We also recall that 7} — 0
if the noise to signal ratio is large (¢) — x ) or if the common trend component
is small (7 — 0). This in turn implies that the moving average component ({,)
in (2) 1s

O,= -1+ VT — —1 as T — .

for some noncentrality parameter ¢ > 0. This local parameterization of 0, has
been used in Nabeya and Perron (1994) and Perron and Ng (1996) to analyze
the local asymptotic properties of /(1) processes with MA(1) noise functions.
Extending the ‘nearly integrated nearly white noise’ terminology in the univariate
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case to the present multivariate model, 1, and x, can be said to have a ‘nearly
cointegrated nearly unbalanced’ relationship when 3y is local to zero. We begin
our analysis with the following lemma.

Lemma 1 (Sample moments).  Ler x; and v, be generated by (1) with 7y =
¢/VT. Let Wi(r) be a Wiener process defined on C[0.1]. Then as T — ~x:
() 7050 = el fy W dr + 1

(i) 7250 w2 =30 [ W dr

(iii) 7737 2171 VX, = a0 _];)1 W.(ry dr.

The proof to the lemma is standard and is omitted. Part (ii) of the lemma is the
usual result for an /(1) process and follows from the fact that y, is invariant to
local variations in 7. However, this is not the case with x,, which is a white noise
process in the limit and Zrl x7 is Op(7T). A consequence of this slower rate of
normalization is that the sample moment for x; is influenced by a7 (normalized
to 1) in the limit. The properties of the least-squares estimator from the two
normalizations are then immediate from Lemma 1. These results are summarized
in the following theorem.

Theorem 1. Let x; and v, be generated by (1) with 3y =c¢ VT. Let 5. be the
least-squares estimate from a vegression of x; on v, and let f. be the least-
squares estimate from a regression of v, on x;. Let Wi(r) be a Wiener process
independent of W(r). As T — x.
From a regression of x, on v, with ff, =+
205 ;
1T =i = TR

y
R We(r)ydm(r
2. T(/f\.—/f‘.)ﬁ————'lo E YA
' 2200 f, Wr)*dr
3. l/;) = N(O, 1)
From a regression of v, on x; with =27,
207 ]0] Wo(r) dr

-,
F

LT = g ;
ol [, Wrydr+1
2. T - o= St :
) 2ol [, W) dr + 1

-1

3. Tﬁlzl/; = : T3
cor(fy Wity dr)

Remurk: .
1. The main result of the theorem is that in this local framework, f3. is consis-

tent but /3\. is not. Absent the influence of a7 (normalized to 1) on the sample
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moment of x7, 7-' 2 would have converged to > ¢, the true regression co-
efficient. However. the presence of o7 =1 in the denominator of the estimator
induces a downward bias to the estimator. This explains the simulation results
that regressions with 1, as the regressand yield estimates that can be far below
the true value.

Note that ¢ appears in the numerator and the denominator of the limiting
distribution of the normalized least-squares cstimator when 14 is the regressand.
For this reason, and as seen from Table 3b. /} -0 when ¢ is very large or
when ¢ 1s small.

In the standard asymptotic framework with 7 fixed. the distribution ot 7; is
nonstandard since weak exogeneity between x, and 1, is not satisfied in the
regressions. Obtaining asymptotic normality of the test statistics is the moti-
vation for the modifications to t; ntroduced by Phillips and Hansen (1990).
However, as stated in the theorem, f3, is asymptotically mixed normal and
b is asymptotically standard normal even though the exogeneity assumption
is violated in fimite samples. The reason for this result is that as fi, —0, v
becomes weakly exogenous for the innovations in x, in the regression with
X, as the regressand. However, this is not so when v, is used as the regres-
sand. In such cases, the regression residuals have a nontrivial correlation with
the innovations driving x,;, and in consequence, the ¢ statistic has nonstandard
properties even when suitably standardized.

The theorem suggests that it is desirable trom the point of view ot both
estimation and hypothesis testing to use as regressand the variable that is
‘less integrated’, in other words. to use the variable whose spectral density
at frequency zero is the smallest. There are two intuitive reasons why this
works well. The first is that using the “more integrated’ variables as regressors
amounts to putting the variables with more variability on the right hand side
of the regression. As is well known, the greater are the variations in the
regressors, the more precise are the parameter estimates. The second rationale
can be seen with reference to the two regression specifications given i (5)
and (6). Given that ;| — 0, iy — > and f, — 0 asymptotically. the regression
error in (5) with 1, as the regressand has a variance that diverges at the same
rate as 7 approaches 0. The regression noise in (6) with x; as the regressand
is, on the other hand, invariant to ;' and has finite variance in the limit. The
choice of normalization is obvious vicwed in this light.

4.2 DGP2: 0, local to —1

Recall that DGP2 is the triangular representation of a cointegrated system:
Ax; = uy. oy =ey ey )+ oe

V=LY A U i, =0 ey - Gy
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To rationalize the results of Fig. 1, our local asymptotic framework lets 0, — — 1
in the limit with

0= — 148/ VT, 5>0.

A distinct feature of DGP2 is that ¢\, and ¢;; may or may not be zero. As
we will now show, the properties of the least squares estimator depend on these
quantities.

Lemma 2 (Sample moments). Let x, und v, be generated by (4) and let Wi(r)
and Ws(r) be independent Wiener processes defined on the space C[0,1].

If 612 #0:
L T2 a2 =0, [ W) dr

— T ) 2 1 4

LT = Ba fy W) dr;
T2 Z,ll Xtz — 0;
T2 Z/T:1 X Vy = /fafz j;)] [’Vz(r)z dr.
If 612=0:
1. 77! ZIT:I x} =0} + d%a} fol Wi(r)> dr;
T=US L v Bot(+ 8% [ Wi dr) + (200 + 03))a + (1 + 02 )ok:
r-! Zyrzl Xpldy — 0'210'%"

7! Z,T___l x v = fai(l + 62 _[;)l Wi(r)* dr) + gy 0.

oW

D o

Results for the case 0> =0 are straightforward applications of the results in
Nabeya and Perron (1994). Of note is that the rates of normalization for the case
012 #0 are higher than for the case o> = 0. The reason is that x, is driven by two
partial sums when o), #0: one relating to its own innovations, and one relating
to the innovations in the y, process. Therefore, even though the partial sum of
innovations in x, induces mean reversion, this effect is dominated by the stochastic
trend consisting of integrated innovations in y,. Accordingly, x, behaves like a
strictly /(1) variable when 4,2 #£0. The properties of the least-squares estimator
can now be summarized in the following theorem.

Theorem 2. Let x; and y, be gyenerated by (4). Let fi. be the least-squares
estimator of f.=1/f from « regression of x, on y,. and let 5. be the least
squares estimator of fy=f from a regression of v, on x,.

If a12#0:

T — =

N
1

{2107 +a1203(1 +0,)[1 +.[;,' WalrydHs ()] + a,;ngm,@j;}‘ Wiy dW (M} +1o3(L+02) + 03,078

s 2 s s
/f—ahoi '[” Wi(ry-dr
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. o167 + apas(l+ 001 + [")' Walr) dWA(r)] + 6120210102 {0' Wa(r) dWi(r)
T(h, = por= ' ’ :

o103 [ W) dr
If )2=0:
i = B+ 8 [ () dr) + oy BVEYE
RO [ MG dr) + Qo + a3~ (0 + 0)adar
b=+ 7 £ 5=

(1402 [, Wi(r)2dr)

Remarks:

. The issue of normalization is irrelevant when a2 #0 as far as consistency of

the least-squares estimator is concerned. The intuition is essentially that both
x, and v, have the same order of variability as standard /(1) variables in the
limit. In particular, both variables are dominated by the stochastic trend built
upon innovations in ¥, even though the DGP looks superficially as though in-
novations in x, were the source of variation. Although cross correlation among
variables of a cointegrated system induces nuisance parameters which inval-
idate classical inference, ;> # 0 has the unusual but desirable effect of re-
taining the /(1) nature of the series, allowing rate 7 convergence to apply to
this local asymptotic framework. Note, however, that neither T(ﬁ\, — f,) nor
T(/;’x — f.) is mixture normal, both are noncentrally located, and are influenced
by all the nuisance parameters in the model. Accordingly, although both esti-
mators are super-consistent, test statistics associated with them cannot be used
for inference.

. In a regression of v, on x, with g;»=0. /}\ — = f, only if g2; =0. We are

back to the result of the standard /(0) asymptotic framework, where the least
square estimator is susceptible to simultaneity bias. The result stated in the
above theorem generalizes to cases where the innovations are correlated at
different lags, and the extent of the bias is independent of the value of f.
When 6> =a,, =0, both v, and x, behave like stationary processes in the
limit. Accordingly. the least-squares estimator does not converge at the fast
rate of 7 as would be the case with strictly integrated variables, but at the
slower rate of \/T as in the case of stationary variables.

. From a regression of x, on v, fi, does not converge to 1/ = f, even if

21 = 0. The reason is that in this case, 1, inherits the nearly integrated nearly
white noise property of x;, and its sample moments also require a smaller rate
of normalization. Stationary innovations in v, which would otherwise have
converged to zero in the standard asymptotic framework have a nontrivial
effect in this local asymptotic framework. as seen from the sample moment of
V> in Lemma 2. This in turn generates a downward bias on the least-squares
estimator. In general, the bias in /;'1. is a function of ¢2; and the true value of



70 S. Ny, P. Perron! Jownual of Econometrics 79 (1997 33 81

peto
045 0.5 055 06

beta A
045 05 055 06

Fig. 2. Average values of the estimates with data tfrom DGP2 with ff=2: (a) top graphs are with

== 08,0, =0 and T =200 with results for a regression of & on y on the left and of 3 on x on
the right: (b) bottom graphs are with ¢, = - 0.88. (/, =0 and 7 =500 with resuits for a regression
of v on v on the left and of 1 on x on the right.

p.. However. it can be shown that holding >, fixed, the larger is 5, the more
precise are the estimates /}r and /3\. for . and f3, irrespective of the value of
a>1. Simulations confirm this to be the casc.

. An implication of Theorem 2 is that there i1s a discontinuity in the limiting
distribution of the least-squares estimator at o;» =0. However, as we show
in Fig. 2, there is substantial leakage around 6,> =0 in finite samples in the
sense that when o> 1s greater than but closc to zero, the precision of the
estimates are still affected. This i1s so even when the sample size is as large
as 500.

. From a practical standpoint, normalizing the cointegrating regression on the

variable with the smallest spectral density at frequency zero (in this case

vy ) is still the preferred choice. When o> # 0, the issue of normalization is
irrelevant and hence the prescription can do no worse than alternative nor-
malizations. When 61> = 0>, =0. using v, as the regressand is the only nor-
malization that can yield asymptotically unbiased estimates. When 4> =0 but
a» # 0, the estimates can be asymptotically unbiased and efficient when
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is the regressand if the regression crror is made uncorrelated with the re-
gressors. Estimators such as the DOLS and the FM-OLS serve this purpose.
However, 31 is not the only source of bias in a regression with x, as the
regressand. Thus, even fully efficient estimators cannot remove the bias in the
estimates.

6. DGPI is a special case of DGP2 with 6> =0 and 4, £ 0 for a given sam-
ple size. It would seem, by implication of Theorem 2, that the static least-
squares estimator will be biased whether normalized on x, or v,. However,
Theorem | suggests that a consistent estimator can be obtained when nor-
malized on x,. To understand these apparently contradicting results, we need
to clarify the assumptions underlying the two local asymptotic models. In
the first model, parameterizing ;| to be local to zero has two effects. It
induces a (noninvertible) negative moving average component to the noise
function of x,, and it changes the correlation between the regression inno-
vation and the regressor. As mentioned earlier, the regression innovations
with x, as the regressand are weakly exogenous for y, in the hmit. Under
DGP2, ), is parameterized to be local to —1 holding o2 and o>, fixed. The
results of the two theorems therefore hold under similar but not identical
conditions.

5. Residual-based tests for cointegration

Residual-based tests for cointegration are valid in the standard asymptotic
framework because the least-squares estimator is super-consistent. However, to
the extent that the choice of normalization affects the properties of the least-
squares residuals, the size and power of tests of cointegration tests might also
be affected. Using the least-squares residuals implied by the cointegrating vectors
reported in Section 3, we construct Z,, MZ,. and ¢,, to test for the presence of a
unit root. The overall impression from the simulations, available upon request, is
that the statistics generally have good power in rejecting the null hypothesis of no
cointegration. The one exception is DGP1 when 3| is small. When the residuals
are taken from a regression of v, on x;, the unit root hypothesis is under rejected,
especially when we use the tests more robust to negative moving average errors.
namely, MZ, and ¢,. When the residuals are taken from a regression of x; on ;.
all tests have high power but the statistic Z,, and to some extent f,. suffer from
size distortions. Hence, the practical recommendation is to test for cointegration
using MZ, and the residuals from a regression which uses the variable with the
smallest spectral density at frequency zero as the regressand. We now provide
an intuitive explanation for the results.

The least-squares residuals under DGP1 with v, as the regressand [see (5)] are

f = (B — BOx, + ex — feen (8)
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where B, =72/71. Theorem 1 shows that fi. is an inconsistent estimator for f, if
»1 — 0 as T increases. Then

Aty = (B — Poyno + dexy — fAen,

is a stationary and invertible process even as T increases. Accordingly, the least-
squares autoregression in #,, will yield a regression coefficient of one. This evi-
dence of a unit root will lead us to conclude that there is no cointegration even
though x, and y, shares the common trend .

The least-squares residuals from a regression with x, as the regressand are
similarly defined as

i = (B — By + e — Prex, 9

with . =</, Since B‘. is a consistent estimator for f,, 23—1 Uy, is Op(Tl %),

which is indicative of a process that is stationary or /(0). An autoregression

in 4., will yield a least-squares coeflicient that is away from one in the limit,

and the null hypothesis of no cointegration is rejected. However, under the null

hypothesis of no cointegration, the presence of a large negative moving average

error in x, makes Z,, and to some extent 7,, subject to severe size distortions.
Under DGP2, the regression residuals are

v = (B = Box + ux (10)
when normalized on v,, and

L;_r/ = (/5\ - /}, Yve — /3_\‘“21 (11)

when normalized on x,. Given super-consistency of /ﬁ‘ and /}r when a2 # 0,
both series have partial sums that are Op(TI 2). Unit root tests on these residuals
are then consistent following the analysis of Phillips and Ouliaris (1990). When
01> =0, the residuals-based cointegration tests will also reject the null hypothesis
of no cointegration, The reason, in this case, is that although the least-squares
estimator is biased and inconsistent, both x, and y, are stationary series in the
limit. The two sets of residuals defined above have partial sums that are Op(Tl 2y,
and standard tests once again reject the null hypothesis of a unit root as confirmed
by our simulations results. In this setting, the least size distortions occur using
MZ, in a regression of y, on x,, and therefore the practical recommendation
remains the same as stated above for DGPI.

6. Some observations on alternative estimators

Asymptotically efficient methods of estimating cointegrating vectors have been
proposed in the literature. Does least-squares bias of the type examined here
extends to these estimators? This section sheds some light on this issue.
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6.1. Leust-squares-based methods

As the OLS estimator is known to be asymptotically inefficient, we also con-
sider some least-squares-based methods that are asymptotically efficient to ensure
that the aforementioned results are not specific to the least-squares estimator.
The FM-OLS and CCR estimates of ¢i/¢n from the Fisher equation are 0.61 and
0.97 when normalized on i, but are 0.75 and 0.81 when normalized on 7. These
are in the same range as the estimates presented in Table 1, suggesting that the
normalization problem also applies to the FM-OLS and the CCR.

To further investigate the properties of the estimators, we simulate DGP1 de-
fined in (1) and DGP2 defined in (4) using the same parameterizations as pre-
sented in Tables 3a and 3b. We also vary the truncation lag of the kernel estimator
in the case of the FM-OLS and the CCR,* and the number of leads and lags
of first differences of the regressor in the case of the DOLS. While these fully
efficient estimates are closer to the true values for both normalizations than the
OLS estimates, the estimates remain noticeably inferior when normalized in one
direction. We report results in Table 4a for DGP1 with 7; =0.2, and DGP2 for
12 =0 and g, =0.5, both with f= 1. Evidently, there is a ‘good’ and a ‘bad’
normalization, the latter being v, on x, in the case of DGP! and x, on y, in the
case of DGP2.

An observation of note from Table 4a is that the FM-OLS and the CCR
estimates cannot be improved upon by varying the choice of truncation lag and
of the kernel itself. However, the DOLS estimates for the ‘bad’ normalization can
be made more precise when the lag length is sufficiently large. It can be shown
that increasing & in the DOLS regression ‘fixes up® the moment matrix of the
regressors as indicated in Lemma 1. Interestingly, the DOLS estimates remain
superior to the OLS estimates, but not because of satisfying valid conditioning
that the estimator was designed for.

While increasing & removes some of the biases in the DOLS estimator when
v, is used as the regressand, it does not restore normality of the associated ¢-
statistic as can be seen from Table 4b. The upper and lower 5% critical values are
still far from those of the normal distribution even as 4 increases. The departure
from normality of the f-statistic associated with the CCR and the FM-OLS from
the ‘bad’ normalization is even more apparent. Thus, from the point of view
of inference, it remains preferable to use the variable with the smallest spectral
density at frequency zero as the regressand.

Our focus has been on least-squares-based estimators with the regressand ex-
pressed in level form. It is important to emphasize that our recommendation of

* In these simulations. we use the Coint 2.0 package ot Ouliaris and Phillips (1994) running under
Gauss 3.2. The Parzen window is used in place of the Quadratic window as it provides the flexibility
to set the kernel weights outside the bandwidth to zero. The two kernels give similar results when
cvaluated at the same bandwidth.
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using as regressand the vartable whose spectral density of the differenced series
is smallest is based on analyses of regression models of this class. There are
evidently other methods of estimating cointegrating vectors. For example, the
regressand can be expressed in first-differenced form as in the case of “nonlinear
ECM’.* Evaluating the many alternative cstimators is outside the scope of the
present analysis, and we have not explored whether our criteria for choosing
the regressand will generalize. We have nevertheless considered a method of
estimating cointegrating vectors outside an OLS bascd framework. and to this we
now turn.

6.2. The Johansen method

For most methods of estimating cointegrating vectors, “normalization” 1s taken
to mean the choice of the regressand. An exception is the reduced-rank regression
approach of Johansen (1991), wherein normalization is taken fo mean the choice
of the length of the eigenvectors. This is sometimes referred to as an empirical
normalization. The Johansen procedurc does not pretest for the presence of a unit
root, and it analyzes all the variables as a system. Because of these fundamental
differences with other estimators that belong to the LAMN class. it is of interest
to ask if the Johansen approach is rid of the problem being analyzed.

Simulations are again conducted for all parameterizations of DGPI1 reported
in Table 3 and of DGP2 for combinations of the parameters, while varying the
number of Jagged first differences that enter the reduced rank regressions. In each
experiment, we report the averaged values for the pair of eigenvectors (normalized
on x,), tabulate the frequency distribution of the cointegrating rank (#) chosen by
the Trace and «-max statistics, and record the upper and lower 3 critical values
of the Wald-type statistic for testing if the estimated cointegrating vector cquals
the null value. In Table 5. we only report results with 'y =0.2 for DGPIL. and
). = — 0.8 for DGP2. Suffice it to mention that results for values of ;1| > 0.5 and
), > —0.5 accord with theory, in the sense that the tests have cxact size close to
the nominal size and the cointegrating vector is well estimated.

Of interest from the results is that in all cases. the cointegrating vector is
very precisely estimated if we condition on »=1. Phillips (1994) noted some
advantages of maximum likelihood estimation of a triangular system over re-
duced rank regressions. His results. however, are based on the assumption that
#.=0612=a> =0 in our DGP2. Compared with the estumates reported earlier,
our results suggest that when the error structure is more complex, as are the
cases considered here, there may be unexplored benefits in using reduced rank
regressions over estimation of the triangular system (such as by FM-OLS). A
systematic analysis of the two estimation mcthods is to be left for future inves-
tigations.

4 See Gonzalo (1994) for a review of these methods.
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The results in Table 5 also reveal that the Wald test tends to overreject the
hypothesis that the cointegrating vector equals its null value. The problem is
reminiscent of the size distortions in the z-test associated with the three fully
efficient estimators when the ‘bad’ normalization is used. Using a test with a
nominal size of 10%, the frequency that the Trace statistic concludes r=1 is
between 0.8 and 0.9 for DGP1, and also for DGP2 with g, # 0, noting in passing
that » is never chosen to be zero. In such cases, the finite sample size of the test
seems acceptable. However, for DGP2 with ¢;» =0, the size of the statistics is
distorted and is more so the shorter the number of lags. With 4 lags, the statistics
report # =1 at a frequency of only 0.4, and finds » =2 in the remaining cases.
The exact size of the test remains above 50% for a nominal size of 10% when
61> =0.25. This is the leakage problem around o> =0 discussed earlicr.

A finding that » =2 in these bivariate DGPs is confounding because if there
are n /(1) series, there cannot be more than n — 1 cointegrating vectors. A finding
that » =2 implies that both series are stationary. Some intuition for this result can
be gained by examining the properties of the second eigenvector. Consider DGP2
with 1> =0, the case when both series are strongly mean reverting. As seen from
Table 5, the first eigenvector is the correct estimate of the cointegrating vector.
The second is the unit vector that selects x,. Since », is weakly exogenous for
X, by construction, the eigenvector optimally puts zero weight on the redundant
regressor. Simulations of more complex parameterizations of DGPI also found
the statistics to under report » =1 when the second eigenvector is (1,0). In such
cases, applying a zero weight on the decisively /(1) process will also give a
stationary combination of the variables, although the combination is economically
uninteresting. Whether the statistics will select one or two cointegrating vectors
will depend on how strong are the unit root components relative to the mean-
reverting components, and on the causal structure underlying the variables. In
general, the stronger is the unit root component in both series, the less chance
there is of finding two cointegrating vectors and vice versa.

Do size distortions in testing for the cointegrating rank arise in practice? Re-
turning to the Fisher equation example, the Trace and /-max statistics are 29.17
and 22.03 for the null hypothesis that = 0 against the alternative » =1, and 7.15
for both statistics for the hypothesis that » =1 against the alternative that » =2.
While we can decisively reject the absence of any cointegrating vector, we reject
the presence of one cointegrating vector in favor of two cointegrating vectors at
the 10% level but not at the 5% level. The » =2 scenario is therefore of empirical
relevance. However, if one had pretested for the presence of a unit root, one
would have dismissed the possibility that /- =2 since it implies both variables are
[(0). One would then obtain the unique cointegrating vector (normalized on 7)
of [1.—-0.87], in line with the fully eflicient least-squares estimates based on the
7 normalization. This, however, is based upon results from pretesting for a unit
root using a test robust to serial correlation. In this regard, MZ,, still plays a
useful role.
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7. Concluding comments

Estimations of cointegrating vectors are by now standard practice in dynamic
analysis of time series data. This paper questions two conventional wisdoms on
least-squares estimation of cointegrating vectors. First, we show that although
the least-squares estimator achieves strong consistency in the standard asymptotic
framework, 1t is not so when a regressor has a large negative moving-average
component that is modeled as local to —1. Second, we show that normalization
in one direction can yield estimates that are consistent but not the other. These
results extend to least squares based fully efficient estimators.

Using an unobserved components framework, we show that a negative moving-
average component can arise when a variable in the cointegrating system has a
weak correlation with the common trend, or when the idiosyncratic noise of the
variable dominates its total asymptotic variance. Such a variable has properties
of an /(1) process, but also exhibits a strong tendency to revert to its mean.
For this reason, standard tests have trouble determining whether or not a unit
root 1s present in the series. Gahi (1992) presented cvidence for a negative mov-
ing component in the noise function of many macroeconomic time series, and
Vogelsang (1994) discussed how negative moving average crrors can arise as a
result of additive outliers. The issues analyzed in the present paper are therefore
not merely of theoretical interest, but are also issues of practical concern.

Our theoretical and empirical investigations lead to the following practical
guideline. The cointegration analyses should begin with tests for the presence
of a unit root in the variables, preferably using a test that is robust to negative
MA errors such as the MZ,. Step two is to rank the variables by their estimated
normalized spectral density at frequency zero, preferably using estimators that are
more efficient than those used in the unit root tests. For instance, one can usc
a kernel-based estimator with the demeaned first-differences of the data, or an
autoregressive spectral density estimator based on the autoregression without the
lagged level. Step three is to choose the variable with the smallest estimated nor-
malized spectral density at frequency zero as the regressand. The steps proposed
applies to other least-squares-based estimators ot the cointegrating vector.

There are other instances when a regression can be nearly unbalanced. For
example, if the error process of an /(1) series has a large autoregressive root, so
that the series is close to being twice integrated. Accordingly, its spectral density
at frequency zero is very large. Although we have not provided a theoretical
analysis to such cases, simulations reveal that the least-squares estimator is also
more biased when normalized in one direction. However, using the variable with
the smallest spectral density at frequency zero as the regressand still gives more
precise cstimates.

Our focus has been on estimating a single cointegrating vector. As discussed
in Hargreaves (1994), ordinary least squares (and its more eflicient variants) can
also be used to estimate multiple cointegrating vectors from a single equation
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with multiple regressors. In that methodology, the second through » cointegrating
vectors are constructed to be orthogonal to the first. The choice of the regressand
Is even more important in that context because all cointegrating vectors are nor-
malized on the same regressand. Our recommendation of comparing the values
of the spectral density function at the origin will be especially useful.
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