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Abstract

Ever since the development of the Autoregressive Conditional Heteroskedasticity
(ARCH) model (Engle, 1982), testing for the presence of ARCH has become a routine
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1. Introduction

Ever since the development of the Autoregressive Conditional Heteroskedastic-
ity (ARCH) model (Engle, 1982), testing for the presence of ARCH has
become a routine diagnostic. One popular method of testing for ARCH is ¹ times
the R2 from a regression of the squared residuals on a constant and p of its lags.
This test inherently assumes that the conditional mean is correctly speci"ed.

Tests of parameter instability have likewise become a central focus of applied
researchers. Failure to model the conditional mean correctly can lead to erron-
eous inference. An example of this is given in Perron (1989); here failure to model
a break in the trend function will lead to conclusions of excess persistence in
many macroeconomic time series.

Failure to account for parameter instability in either the "rst or second
moments is a speci"c example of the general notion of model misspeci"cation.
Robinson (1991), Wooldridge (1991a, b), and Hansen (1992), derive ways of
&robustifying' tests to allow for possible misspeci"cation of higher-order mo-
ments. In these cases, the tests of interest can be modi"ed to correct for the
misspeci"cation of a higher moment by means of a bias correction which can be
shown to be distributed as a s2 random variable. For example, Wooldridge
(1991a) shows that valid inference regarding the conditional mean parameters is
still possible in the presence of conditional variance misspeci"cation. In general,
tests about the kth moment of the residuals implicitly assume correct speci"ca-
tion of lower moments. Analogous &robusti"cation' of tests about higher mo-
ments in the presence of possible lower-order moment misspeci"cation is more
di$cult, though some authors have employed nonparametric methods to con-
sider hypotheses about unconditional moments in this situation.1

A number of authors have documented cases where rejection of the null of
conditional homoskedasticity may be a result of model misspeci"cation. Bera et
al. (1992), citing Engle et al. (1985), note that &the presence of autocorrelation can
readily be mistaken for ARCH when, in fact, no ARCH is present.' Besides
autocorrelation, ARCH is often detected in models with nonlinear dynamics.
Bera and Higgins (1997) compare ARCH and bilinear processes, noting that the
latter have &an unconditional moment structure very similar to ARCH and
hence may be easily mistaken for ARCH' (see also Weiss (1986) and Tong
(1990)). Via Monte Carlo simulation, Giles et al. (1993) consider a number of
tests for ARCH and GARCH in the case of an omitted regressor and "nd the
null hypothesis of conditional homoskedasticity tends to be rejected too often.

In this paper, we consider testing for ARCH in the general context of
a possibly misspeci"ed conditional mean. We assume that correct inference

1E.g., Lee (1992) considers tests for unconditional heteroskedasticity in the presence of condi-
tional mean misspeci"cation; Rilstone (1992) and Whang (1998) develop tests for normality based on
third and fourth moments, allowing lower moments to take on a general (nonspeci"ed) form.
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regarding the conditional variance is of primary interest to the researcher (as in
many examples in "nance). Section 2 "rst formalizes the problem of testing for
ARCH when the conditional mean is possibly misspeci"ed. We then discuss
possibilities for guarding against misspeci"cation in the mean function. One
solution is to exploit the information available from the "rst step estimation to
further improve the estimation of the conditional mean. This amounts to
treating the estimation of the conditional mean as a "rst-stage ancillary regres-
sion. Section 3 investigates this &robusti"ed' ARCH test. Section 4 examines the
properties of the statistic via Monte Carlo simulation. Section 5 contains two
empirical examples. Section 6 concludes.

2. Testing for ARCH when the conditional mean is misspeci5ed

Suppose we have data My
t
: t"1,2, ¹N, with data generating process

y
t
"m

t
#e

t
, (1)
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t
"E(y

t
D IH

t
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nonlinear), IH
t
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t
, and e
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,

and unconditional variance E(e2
t
)"p2. We assume m

t
is nonconstant and that

the data are stationary.2 The hypothesis of conditional homoskedasticity in-
volves determining whether E(e2

t
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t
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t
are unknown, we estimate the following model:
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o I
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tion set of the econometrician. Denote the estimated residuals by
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"(m
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where k(
t
is the estimate of the conditional mean k

t
. If the mean function is

correctly speci"ed in the sense that k
t
,m

t
with I

t
,IH

t
, then k(

t
!.4.
P m

t
under mild

regularity conditions. It follows that u
t
,e

t
, and u(

t
"e

t
#o

1
(1). It is then

2The stationarity assumption is not necessary but is useful in deriving the argument below. In the
simulations, we also consider the case where y

t
is I(1).
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obvious that testing hypotheses about E(u( 2
t

D IH
t~1

) is asymptotically equivalent
to testing E(e2

t
D I

t~1
). In this case, the estimated residuals u(

t
are appropriate for

testing the null hypothesis of interest. The standard ARCH test thus involves
regressing u( 2

t
on p of its lags, that is

u( 2
t
"a

0
#a

1
u( 2
t~1

#2#a
p
u( 2
t~p

#l
t
, (4)

and testing the hypothesis that a
i
"0, i"1,2, p. Engle (1982) shows that if e

t
is

conditionally normal, then ¹R2 from this regression is asymptotically equiva-
lent to a Lagrange multiplier test and is distributed asymptotically as a s2(p)
random variable under the null hypothesis. More formally, the statistic is
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)@. Weiss (1986) extended this result to cases where

e
t
has "nite fourth moments.
Consider now the case when the model is not correctly speci"ed in a way that
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1; 0 with u(
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.3 It follows that
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The conditional second moment of the squared estimated residuals can be
separated into two pieces: a part that is related to the conditional mean
E[m

t
D I

t~1
], and a conditional variance part E[e2

t
D I

t~1
]. The conditional and

unconditional means of u( 2
t

generally will di!er from those of e2
t

if m
t
!k(

t
1; 0.4

Thus the LM test implicitly tests the constancy of m
t
and e2

t
rather than just e2

t
.

Put somewhat di!erently, the ARCH regression is an autoregression with

errors-in-variables when m
t
!k(

t
1; 0.

Model misspeci"cation can arise if the functional form and/or the condition-
ing information set is misspeci"ed. For linear dynamic models, notable

3Througout the remainder of the paper, the term &correctly speci"ed' will refer to this de"nition.

4 In the special case that (m
t
!k(

t
) o I

t~1
, then e

t
(m

t
!k(

t
) has a conditional mean of zero by the law

of iterated expectations, and so E(u( 2
t

D I
t~1

)'E(e2
t

D I
t~1

). In general, however, the conditional
second moment of (5) will involve both squared terms and the cross-product term.
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examples are omitted shifts in the trend function, selecting a lag length in an
autoregression that is lower than the true order, failure to account for parameter
instability, residual autocorrelation, and omitted time series variables. Of note is
that such misspeci"cations in dynamic models often result in serial correlation
in g

t
"m

t
!k(

t
. It is easy to show that the sum of two stationary processes will be

serially correlated if at least one series is serially correlated. As shown in
Granger and Morris (1976), the resulting (summed) process will have ARMA-
like autocovariance properties. Thus, for model misspeci"cation of the types
likely to arise in practice, u(

t
"e

t
#g

t
will, in general, be serially correlated

insofar as g
t
is serially correlated.

To see how misspeci"cation in the conditional mean a!ects the LM test,
consider the test for ARCH(1). If we could observe the e2

t
, we would run the

following regression:
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t
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t

is indeed serially uncorrelated with a8
1
"0, the ARCH test based upon
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t

will yield correct inference only if u( 2
t

is also not serially correlated. But as
discussed earlier, u(

t
will, in general, be serially correlated when the conditional

mean of the dynamic model is misspeci"ed. Since the square of a serially
correlated process is itself serially correlated, u( 2

t
will be serially correlated in

most instances even if e2
t

is not.5
As an example, suppose y
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t
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t
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unconditionally homoskedastic, z
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t
, and ez

t
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sian error (with variance p2
z
) that is uncorrelated with e

t
. Without loss of

generality, let c"1. Consider the test for ARCH(1) when the reseacher does not
control for z

t
and simply uses y2

t
to test for ARCH(1). That is, we omit an AR(1)

regressor when estimating the conditional mean, and g
t
"z

t
in this example. As

shown in the Appendix, z2
t

is then an ARMA(2, 1) process and can thus be
represented as z2

t
"k

z
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is a white noise process,
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. Consider the least

5For Gaussian processes, this result follows from Granger and Newbold (1976). For non-
Gaussian processes, serial correlation in the squared process arises even under mild moment
conditions.
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squares estimate of a
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Thus, a(
1

does not consistently estimate a8
1
"0 unless U

i
"0, ∀i'1, which in

turn requires that /"0.6 Given the probability limit of a(
1
, the R2 of the

ARCH(1) regression (which, in this simple example is just a( 2
1
) will be biased

upwards. Evidently, the autocorrelations at longer lags of u( 2
t

are also nonzero in
this example. As discussed in Granger and TeraK svirta (1993), the LM test can be
seen as a Box}Ljung statistic for testing the signi"cance of the autocorrelation
coe$cients corresponding to u( 2

t
. Thus, evidence for higher order ARCH e!ects

could be found signi"cant.7
Although the probability limit of a(

1
will depend on the exact nature of the

model misspeci"cation, this example shows that serial correlation in m
t
!k(

t
is

the root of the problem as far as inference is concerned.8

3. Robustifying the ARCH test

If the existence of ARCH is of primary importance to the applied researcher
(as in the case, for example, of options pricing), and the problem with a misspeci-
"ed conditional mean is u( 2

t
"e2

t
#m

t
, it is evident that any solution to this

errors-in-variables problem must involving removing or minimizing the m
t
piece.

Otherwise, persistence in u( 2
t
arising from model misspeci"cation will continue to

be misinterpreted as evidence of ARCH. But m
t
originates from g

t
"m

t
!k(

t
. It is

then clear that our goal should be to obtain as accurate an approximation to
m

t
as possible (in an ¸2 sense).
We propose two ways of guarding the LM test against misspeci"cation of the

regression function; both aim at maximizing the "t from the "rst stage (ancillary)
regression (2). Both are motivated by the fact that projecting y
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onto the

sigma-algebra generated by My
t~1

, y
t~2

,2, X
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N is valid and will approximate

6 In particular, if we denote the resulting ARMA(2, 1) representation as (1!/
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, for i*2. These calculations are available from the authors on request.

7This suggets model selection methods such as the AIC and BIC will likely conclude in favor of an
higher-order ARCH process. In a similar example, Ng and Vogelsang (1996) "nd the AIC over-
parameterizes a VAR when shifts in the mean function are omitted.

8 van Dijk et al. (1996) compute the numerator of the score for a
1

in the case of additive outliers in
an AR(1) model. These authors showed that the presence of outliers also introduces noncentrality to
the s2 distribution.
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m
t
no worse (and possibly better) than a projection of y

t
onto the sigma-algebra

generated My
t~1

, y
t~2

,2N only, provided X
t~1

is in the econometrician's in-
formation set. Identifying the correct conditioning information set (i.e., X

t~1
) is

an important part of this exercise.
In what follows, we assume that the (possibly misspeci"ed) conditional mean

is given by a linear regression model,

y
t
"z@

t
c#u

t
.

The "rst approach we consider is to include additional lags in the estimated
model. The motivation comes from the fact that we can approximate the serial
correlation in u

t
by A(¸)u

t
"e

t
, where A(¸) is the induced polynomial in the lag

operator and e
t
is white noise. Inverting A(¸) to solve for u

t
immediately yields

a speci"cation for y
t
in lags of y

t
and z

t
with a lag order that is higher than the

true order. We refer to this as the &naive' approach, in that it is perhaps
the solution that one's intuition would "rst suggest.

Remember, however, that g
t
(and hence m

t
) is unobserved. Thus any Wold

representation is merely an approximation to the true autocorrelation function
of g

t
, which could be highly nonlinear. The second approach, therefore, is to

approximate it by functions of the recursive residuals de"ned in Brown et al.
(1975). Our motivation is that any unobserved nonlinearlities will be manifested
in the recursive residuals; this is supported by discussion in Kianifard and
Swallow (1996), who also demonstrate that among many standard tests for
model misspeci"cation, use of recursive residuals (rather than standard OLS
residuals) increases the power of such tests.

More precisely, we suggest a two-step estimation procedure. Step 1 is to start
from the (k#1)5) observation for some predetermined k and perform recursive
estimation of y

t
on z

t
over the remaining ¹!k observations. This leads to a set

of c(
t
and a set of recursive residuals w(

t
"y

t
!z@

t
c(
t~1

. These recursive residuals
contain the information used to update c(

t
from c(

t~1
and cannot be predicted by

the regression model given information at time t!1. They are serially uncor-
related by construction if the model is correctly speci"ed, but when the model is
misspeci"ed, w(

t
will contain information about the true conditional mean not

captured by the regression function. Step 2 is to estimate

y
t
"z@

t
c#g(w(

t~1
)#v

t
, (6)

where g(w(
t~1

) is a (possibly nonlinear) function of the recursive residuals w(
t~1

.
Then use v( 2

t
(the square of the residuals from estimation of (6)) to test for ARCH

e!ects.
It should be evident that minimizing (m

t
!k(

t
) is equivalent to making l

t
closer

to zero, so that the objective of (6) is to improve the estimate of the conditional
mean using the information available. In this framework, this is provided by
g(w(

t~1
). Another way to think about the role of g(w(

t~1
) is that it attempts to
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orthogonalize u
t
so that the conditional mean of the resulting regression error

l
t
shrinks towards zero.
The recursive residuals are appealing not just because they are easy to

compute, but because w(
t~1

o I
t~1

and hence is in the econometrician's informa-
tion set at time t. This is why w(

t~1
is used in (6) at time t rather than w(

t
. Note that

for this same reason, the use of the OLS residuals is invalid. In non-time-series
situations, one would have considered using a semiparametric estimate of the
conditional mean (see, for example, Robinson, 1988), using a two-sided window
with triangular weights. Because the hypothesis of ARCH involves conditional
moments, only information available at time t!1 can be used. Thus leads of the
recursive residuals are also not valid.

To make the two-step procedure operational, it remains to specify g. Given
that the objective of the exercise is to guard against misspeci"cation in func-
tional form and the conditioning information set, the natural candidate is to
make g as #exible a function of the recursive residuals as possible. One simple
alternative is to use a polynomial in the recursive residuals, i.e.
g(w(

t~1
)"+m

i/1
b
i
w( i

t~1
for a series expansion of length m in w(

t~1
. This is appeal-

ing because polynomials have a nonparametric interpretation. Furthermore,
signi"cance of bK

i
can be interpreted as a diagnostic for misspeci"cation in the

conditional mean.
We additionally propose use of the cumulated sum of the recursive residuals

with g(w(
t~1

)"b
1
(+t~1

i/1
w(
i
). Many authors (e.g., Harvey, 1990) have suggested the

use of cusum and cusumsq tests to detect potential nonlinearity. However, in
the present context, the cusum of w(

t~1
could be especially useful in cases of

omitted mean or trend shifts and when the data have unit roots. This is because
misspeci"cation errors are cumulative when the data are I(1), and the cusum of
the recursive residuals is the same order in probability as the error causing
misspeci"cation. The use of cusum of w(

t~1
nevertheless requires caution as the

partial summed series is no longer stationary.
Another alternative, similar to the cusum but which retains stationarity of the

g(w(
t~1

) is a one-sided sum of the past recursive residuals over a "xed length. This
is analogous to a nonparametric estimation of g(w(

t~1
) using a #at kernel with

a truncated bandwidth, and is more common in the literature. A further
possibility is to use varying instead of "xed kernel weights. Hong and Shehadeh
(1999) propose tests using declining weights in nonparametric tests for ARCH
and show that the performance of these tests is better than the standard LM test.
These alternatives are not considered here but are worthy of further investiga-
tion.

It should be clear that in contexts when the nature of the misspeci"cation
involves contemporaneous variables, use of g(w(

t~1
) will not be optimal since

they will only provide information with a one-period lag. But the contempor-
aneous variable must not have been considered by the econometrician in the
"rst place, so that while g(w(

t~1
) is a suboptimal improvement, it still can do no
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Fig. 1. Is there ARCH in this simulated series?

worse than simply using z
t
as the regressor. Clearly, if the econometrician has

some idea as to the type of misspeci"cation, the estimated model should
incorporate the information a priori. Augmenting the mean regression with
functions of w(

t~1
as discussed above is only a guard against model misspeci"ca-

tion. It should also be clear that the robusti"ed test statistic will have a central
s2 distribution only if m

t
can be estimated consistently. Nevertheless, if our

robust procedures succeed in reducing the deviation of the "nite sample distri-
bution of the test from the s2

p
distribution, size distortions will be reduced

relative to the standard test. In e!ect, including functions of the recursive
residuals serves several precautionary purposes: "rst, there will be cases when
the exact form of model misspeci"cation is unknown; and second, when the
model is misspeci"ed in more than one way (such as the case where there is
a structural change and a few large outliers, for example). As we will see in the
simulations, inclusion of g(w(

t~1
) alleviates the size distortion of the ¹R2

test associated with model misspeci"cation without a substantial loss of
power.

As an example of when we believe our two-step ARCH test will be useful,
consider the data shown in Fig. 1. We initially estimate an AR(1); from the
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"gure, it is not entirely obvious that the model is misspeci"ed. Estimating an
AR(1) with constant autoregressive coe$cient, a test of the residuals for
ARCH(1) rejects the null hypothesis of no conditional heteroskedasticity; the
value of the test statistic is 5.07. Inclusion of the recursive residuals and their
squares results in a reduction of the test statistic to 2.81, which is no longer
statistically signi"cant; adding the third and fourth powers further reduces the
statistic to 2.22. Alternatively, adding in the cusum of the recursive residuals
immediately reduces the statistic to 1.34. Using both the cusum and the "rst two
terms of the polynomial reduces the statistic to 0.91.

Is there ARCH in the data? In fact, the DGP that generates this data, detailed
in Example 2 to follow, is an AR(1) with autoregressive coe$cient equal to 0.3,
but it contains a mean shift half way through the sample that cannot be
immediately visualized. The detection of ARCH here is therefore spurious;
rejection of the standard ARCH test is due to failure to account for the shifted
mean. The optimal procedure in this example is obviously to remove the break.
Indeed, a test for structural change in the mean strongly rejects a null hypothesis
of no break. If we include an indicator variable in the regression to allow for
a mean shift at the true break date, the value of the test statistic for ARCH is
0.48. Even if we did not know the true break date, the break fraction can be
consistently estimated under mild regularity conditions9 and imposing the
estimated break date will also restore the asymptotic convergence of k(

t
to m

t
.

Using the procedure developed in Banerjee et al. (1992) to control for the mean
shift, for example, the LM test is 1.67, still well below the rejection region. Thus,
if we suspect a break, we should test and remove it prior to testing for
ARCH.10

However, failing to diagnose the break may not be altogether damaging if we
consider the robust procedures. Fig. 2 shows a plot of the recursive residuals
from the "rst-step regression, along with corresponding standard error bands,
where g(w(

t~1
)"0, c

1
w(
t~1

#c
2
w( 2
t~1

, and c
1
w(
t~1

#c
2
w( 2
t~1

#c
3
+t~1

i/1
w(
i
, respec-

tively. It is clear from the plot that the addition of the cusum term results in
recursive residuals that are much closer to zero. Most importantly, either
speci"cation for g(w(

t~1
) will shift inference from rejection to nonrejection,

illustrating that even &nonoptimal' functions will reduce the di!erence m
t
!k(

t
.

This underscores the importance of accounting for model misspeci"cation and
how consistently estimating the conditional mean is fundamental to inference
regarding the ARCH test.

9See, e.g., Banerjee et al. (1992) or Zivot and Andrews (1992).

10Similarly, Lamoureux and Lastrapes (1990) include equally spaced dummy variables in the
ARCH equation to absorb potential nonlinearity and demonstrate that the evidence for ARCH is
weakened in their emperical example.
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Fig. 2. Plot of recursive residuals.

4. Monte Carlo evidence

In each of the simulations, we consider "ve LM tests which di!er in the
estimation of the conditional mean. These are speci"ed as:

(LM) y
t
"c

0
#c

1
y
t~1

#u
t
, (7a)

(LM!naive) y
t
"c

0
#c

1
y
t~1
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2
y
t~2

#c
3
y
t~3
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y
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, (7b)

(LMa) y
t
"c
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#c

1
y
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3
w( 2
t~1
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, (7c)

(LMb)
y
t
"c

0
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1
y
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+
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#v

4t
, (7d)

(LMc)
y
t
"c

0
#c

1
y
t~1

#c
2
w(
t~1

#c
3
w( 2
t~1

#c
4

t~1
+
i/1

w(
i
#v

5t
, (7e)

where w(
t
are the recursive residuals and computed as discussed in Section 3. The

"ve LM tests are based on u(
t
and v( 2

it
, i"2,2, 5. The sample size is ¹"200.

Random numbers are generated using the rndn( ) function in Gauss V 3.27 with
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seed"99. The simulations are performed on a Pentium 300 Mhz personal
computer running Windows NT 4.0. Throughout the 10,000 simulations,
a
0
"0.5 and we use a nominal size of 5% and thus the standard error of the

Monte Carlo simulations is 0.0022.

Example 1 (Slope shift). The data are generated according to the following:

y
t
"a

t
y
t~1

#e
t
, e

t
&N(0, 1)

a
t
"G

a
1
, for t)1

2
¹,

a
2
, for t'1

2
¹,

where ¹ is the sample size. That is, the data generating process has a break in the
coe$cient on the lagged dependent variable halfway through the sample. Note
here that e

t
is conditionally homoskedastic but that y

t
is conditionally hetero-

skedastic due to the mean shift. The results are in Table 1. Because the null
hypothesis of no ARCH is true, this table documents the size of the test. The "rst
panel of the table gives the percentage of rejections for the standard LM statistic
for a variety of values of a

1
and a

2
. Along the diagonal of the matrix (when

a
1
"a

2
), the model is correctly speci"ed. Here the size of the test is approxim-

ately equal to its nominal level. The o!-diagonal elements detail the extent of
size distortion that occurs due to misspeci"cation of the conditional mean. As
we saw in Section 2, the test for ARCH is contaminated by the misspeci"cation
of the conditional mean. It is evident that in many cases, the size distortions are
large. When Da

1
!a

2
D'0.6, the size distortion is more than twice its level.

The next panel of Table 1 shows the improvement when the conditioning
variables are naively expanded to include longer lags. In this case, overparamet-
rizing the model has desirable e!ects because lags of y

t
approximate the serial

correlation in u(
t
. In panel three, the information set is expanded to include

recursive residuals and their squares. For the most extreme cases (where
Da

1
!a

2
D'0.6), the improvement is greater than 50%. Even greater improve-

ment in test performance results from inclusion of the cumulative sum of the
recursive residuals, as shown in the "fth panel of Table 1. The cusum by itself,
however, does not greatly reduce the size distortions (panel 4).

Example 2 (Mean shift). In this example, the data are generated according to the
following:

y
t
"G

a
1
y
t~1

#e
t
, for t)1

2
¹, e

t
&N(0, 1)

k#a
1
y
t~1

#e
t
, for t'1

2
¹

where ¹ is the sample size. That is, the data generating process has a shift in the
mean halfway through the sample. The four panels in Table 2 mirror those in
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Table 1
Size of the tests:

y
t
"a

1
y
t~1

#e
t
, t("100, e

t
&N(0, 1)

y
t
"a

2
y
t~1

#e
t
, 101)t)200

a
2

0.1
a
1

0.3 0.5 0.7 0.9 1.0

Standard LM test
0.1 0.0417 0.0479 0.0736 0.1702 0.3427 0.5111
0.3 0.0446 0.0413 0.0447 0.0731 0.1498 0.2341
0.5 0.0781 0.0455 0.0385 0.0457 0.0712 0.0985
0.7 0.1712 0.0676 0.0448 0.0426 0.0482 0.0543
0.9 0.3495 0.1534 0.0712 0.0493 0.0460 0.0456
1.0 0.1690 0.2235 0.4067 0.3540 0.1038 0.0410

**Naive++ LM
0.1 0.0413 0.0425 0.0649 0.1273 0.1742 0.1686
0.3 0.0445 0.0383 0.0460 0.0619 0.0943 0.0985
0.5 0.0687 0.0430 0.0405 0.0439 0.0649 0.0644
0.7 0.1249 0.0668 0.0435 0.0397 0.0424 0.0486
0.9 0.1807 0.0988 0.0605 0.0432 0.0394 0.0404
1.0 0.1531 0.2172 0.3064 0.2876 0.0633 0.0433

Modixed LM(a)
0.1 0.0395 0.0411 0.0581 0.1285 0.2402 0.2801
0.3 0.0397 0.0402 0.0395 0.0538 0.0989 0.1221
0.5 0.0581 0.0374 0.0371 0.0396 0.0516 0.0641
0.7 0.1047 0.0516 0.0388 0.0411 0.0422 0.0420
0.9 0.1497 0.0816 0.0498 0.0398 0.0400 0.0388
1.0 0.0531 0.0554 0.0617 0.0769 0.0494 0.0383

Modixed LM(b)
0.1 0.0417 0.0461 0.0739 0.1681 0.3428 0.4415
0.3 0.0457 0.0422 0.0450 0.0710 0.1509 0.1986
0.5 0.0772 0.0474 0.0390 0.0450 0.0704 0.0887
0.7 0.1670 0.0663 0.0431 0.0430 0.0474 0.0497
0.9 0.3313 0.1432 0.0723 0.0450 0.0454 0.0447
1.0 0.1635 0.2283 0.3968 0.3394 0.0917 0.0431

Modixed LM(c)
0.1 0.0412 0.0408 0.0572 0.1242 0.2353 0.2697
0.3 0.0370 0.0396 0.0386 0.0537 0.0975 0.1167
0.5 0.0583 0.0369 0.0386 0.0382 0.0515 0.0617
0.7 0.1036 0.0500 0.0365 0.0400 0.0424 0.0418
0.9 0.1537 0.0804 0.0494 0.0386 0.0408 0.0379
1.0 0.0549 0.0558 0.0598 0.0737 0.0492 0.0399

Note: The simulations are based on 200 observations and 10,000 replications. Each element of the
table gives the rejection frequencies of ¹R2 from an autoregression of the squared residuals onto
a constant and one lag, where the residuals are obtained via estimation of the following "ve models
(Eqs. (7a)}(7e) in the text): Standard LM uses a "rst-order autoregression, &Naive' LM is a fourth-
order autoregression; LM(a), LM(b), and LM(c) are based on estimated models of the form
y
t
"c

0
#c

1
y
t~1

#g(w(
t~1

)#v
t
, where g(w(

t~1
)"w(

t~1
#w( 2

t~1
, +t~1

i/t
w(

i
, and w(

t~1
#w( 2

t~1
#+t~1

i/1
w(

i
,

for (a), (b), and (c), respectively, and w(
t~1

are the lagged recursive residuals, computed from the "rst
order autoregression (used in the standard LM). The nominal site of the test is 5%.
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Table 2
Size of the tests:

y
t
"a

1
y
t~1

#e
t
, t)100

y
t
"k#a

1
y
t~1

#e
t
, 100)t)200

k 0.0
a
1

0.5 1.0 1.5 2.0 2.5

LM test
0.1 0.0417 0.0413 0.0426 0.0567 0.1102 0.1781
0.3 0.0388 0.0420 0.0410 0.0651 0.1188 0.1619
0.5 0.0406 0.0422 0.0492 0.0688 0.1087 0.1652
0.7 0.0423 0.0413 0.0489 0.0699 0.1350 0.2939
0.9 0.0387 0.0454 0.0519 0.1396 0.4184 0.7718
1.0 0.0413 0.0432 0.0727 0.2269 0.6180 0.9264

&Naive+ LM
0.1 0.0413 0.0391 0.0393 0.0491 0.0698 0.1078
0.3 0.0380 0.0402 0.0411 0.0496 0.0774 0.1401
0.5 0.0375 0.0408 0.0422 0.0568 0.1021 0.2068
0.7 0.0407 0.0437 0.0451 0.0681 0.1654 0.3362
0.9 0.0395 0.0414 0.0471 0.1004 0.2476 0.4340
1.0 0.0424 0.0391 0.0420 0.0449 0.0534 0.0763

Modixed LM(a)
0.1 0.0395 0.0393 0.0462 0.0612 0.0803 0.1142
0.3 0.0370 0.0395 0.0401 0.0500 0.0732 0.1133
0.5 0.0394 0.0366 0.0401 0.0493 0.0778 0.1235
0.7 0.0391 0.0374 0.0426 0.0562 0.0820 0.1373
0.9 0.0370 0.0407 0.0421 0.0554 0.0874 0.1430
1.0 0.0384 0.0379 0.0353 0.0739 0.3688 0.8241

Modixed LM(b)
0.1 0.0417 0.0435 0.0425 0.0513 0.0776 0.1190
0.3 0.0398 0.0420 0.0435 0.0559 0.0970 0.1577
0.5 0.0416 0.0429 0.0469 0.0594 0.1131 0.2038
0.7 0.0419 0.0405 0.0461 0.0743 0.1312 0.2530
0.9 0.0398 0.0433 0.0493 0.1180 0.3356 0.6264
1.0 0.0422 0.0432 0.0742 0.2025 0.4220 0.6124

Modixed LM(c)
0.1 0.0412 0.0402 0.0356 0.0388 0.0511 0.0877
0.3 0.0365 0.0402 0.0362 0.0413 0.0661 0.1034
0.5 0.0387 0.0357 0.0399 0.0449 0.0743 0.1200
0.7 0.0392 0.0375 0.0383 0.0545 0.0730 0.1145
0.9 0.0385 0.0405 0.0397 0.0519 0.0819 0.1185
1.0 0.0393 0.0401 0.0399 0.0553 0.0874 0.1313

See notes to Table 1.
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Table 1, although here the "rst column (under the 0.0 heading) corresponds to
the case of no structural change. In this "rst column, the standard ARCH test
seems to be slightly undersized. For the most part, the standard ARCH test is
fairly robust to mean-shift misspeci"cation, except when the shift if very large (2
times the standard deviation) or when the autoregressive parameter displays
a lot of persistence. The naive approach of including more lags alleviates size
distortions in many cases but is still inadequate for extremely large breaks. The
third panel contains rejection frequencies of the modi"ed ARCH test, where the
"rst stage residuals are generated from a regression of y

t
on one lag, the lagged

recursive residuals and their squares. The size distortions that were evident in
panel 1 for high values of k and a

1
are signi"cantly reduced. Addition of the

cusum function reduces the distortions in the unit root case substantially.

Example 3 (Additive outlier). This example is similar to the one considered in van
Dijk et al. (1996). The data are generated according to

y
t
"a

1
y
t~1

#e
t
#t

t
, e

t
&N(0, 1)

t
t
&N(0, p2

2
) for ¹/2!1)t)¹/2#1

so that the data generating process experiences an outlier in the middle three
periods of the sample (for ¹"200). The results are in Table 3. The standard
ARCH test has size approximately equal to its level when the variance of the
outlier (i.e. p2

2
) is small. When p2

2
exceeds the variance of e, however, the standard

ARCH test rejects the null hypothesis too frequently. There is also some
evidence that this is exacerbated by higher levels of persistence (as given by
higher a

1
). When the information set includes the recursive residuals and their

squares, the size distortions are not appreciably smaller when the outlier
variance is large (as seen in panel 2 of Table 3). The inclusion of the cusum
function reduces the distortions by up to 40%. It is not surprising that the
proposed functions do not improve the size of the ARCH test as substantially as
they did in the previous two examples. In this example, the misspeci"cation is
contemporaneous, that is, it is unpredictable at previous periods. Therefore,
functions of lagged information will not completely robustify the ARCH test.

Other examples: Table 4 presents three additional simulations. The "rst panel
shows results from ignoring an MA(1) error in the data generating process. That
is, the DGP is y"C#e

t
, where e

t
is MA(1) with moving average coe$cient h.

From the "rst row of this panel, we see that failure to account for an MA(1) error
results in large size distortions for the ARCH test, especially when the MA root
is large. Inclusion of the second order polynomial in the recursive residuals (lines
3 and 5) virtually eliminates these distortions, while the cusum (line 4) has little
e!ect. The cusum result is not surprising, since autocorrelations of an MA(1)
process are zero beyond the "rst lag. Thus we would not expect lags of
standardized residuals (beyond the "rst lag) to have any predictive power.
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Table 3
Size of the tests:

y
t
"a

1
y
t~1

#e
t
#t

t
t
t
&N(0, p2

2
), 101)t)103, and 0 otherwise

p
2

0.0
a
1

1.0 2.5 5.0 7.5 10.0

LM test
0.1 0.0422 0.0455 0.1269 0.4139 0.4805 0.4904
0.3 0.0379 0.0449 0.1127 0.4200 0.4919 0.4971
0.5 0.0395 0.0415 0.1222 0.4261 0.5057 0.5095
0.7 0.0419 0.0481 0.1221 0.4330 0.5246 0.5342
0.9 0.0409 0.0502 0.1251 0.4542 0.5377 0.5625
1.0 0.0423 0.0439 0.1369 0.4628 0.5532 0.5740

&Naive+ LM
0.1 0.0382 0.0432 0.1206 0.4106 0.4773 0.4992
0.3 0.0427 0.0473 0.1190 0.4016 0.4728 0.4921
0.5 0.0403 0.0441 0.1180 0.4141 0.4826 0.4926
0.7 0.0428 0.0470 0.1162 0.4091 0.4739 0.4883
0.9 0.0454 0.0426 0.1168 0.4065 0.4793 0.4973
1.0 0.0418 0.0455 0.1184 0.4065 0.4768 0.4836

Modixed LM(a)
0.1 0.0439 0.0463 0.1267 0.4122 0.4786 0.4884
0.3 0.0391 0.0436 0.1143 0.4172 0.4897 0.4944
0.5 0.0402 0.0431 0.1214 0.4223 0.5021 0.5069
0.7 0.0413 0.0481 0.1233 0.4313 0.5212 0.5322
0.9 0.0405 0.0505 0.1245 0.4503 0.5368 0.5615
1.0 0.0437 0.0448 0.1334 0.4595 0.5477 0.5662

Modixed LM(b)
0.1 0.0370 0.0420 0.0882 0.2510 0.2827 0.2866
0.3 0.0367 0.0395 0.0781 0.2512 0.2894 0.2875
0.5 0.0385 0.0372 0.0805 0.2587 0.2874 0.2865
0.7 0.0373 0.0386 0.0806 0.2548 0.3049 0.3014
0.9 0.0373 0.0439 0.0802 0.2688 0.3078 0.3234
1.0 0.0383 0.0389 0.0810 0.2805 0.3223 0.3374

Modixed LM(c)
0.1 0.0379 0.0435 0.0884 0.2508 0.2809 0.2847
0.3 0.0373 0.0384 0.0782 0.2507 0.2887 0.2864
0.5 0.0384 0.0384 0.0816 0.2565 0.2877 0.2858
0.7 0.0371 0.0379 0.0791 0.2553 0.3023 0.3012
0.9 0.0369 0.0429 0.0810 0.2679 0.3079 0.3226
1.0 0.0385 0.0391 0.0791 0.2790 0.3186 0.3371

See notes to Table 1.

272 R.L. Lumsdaine, S. Ng / Journal of Econometrics 93 (1999) 257}279



Table 4

MA(1) error

h 0.0 0.1 0.3 0.5 0.7 0.9 1.0

LM 0.0432 0.0505 0.1734 0.5126 0.7668 0.8509 0.8552
&Naive' 0.0412 0.0395 0.0379 0.0396 0.0403 0.0447 0.0489
LM(a) 0.0389 0.0380 0.0386 0.0447 0.0569 0.0689 0.0735
LM(b) 0.0431 0.0491 0.1692 0.4964 0.7531 0.8406 0.8449
LM(c) 0.0395 0.0384 0.0392 0.0424 0.0562 0.0678 0.0719

AR(1) regressor omitted

o 0.1 0.3 0.5 0.7 0.9 1.0

LM 0.0454 0.0400 0.0408 0.0614 0.3971 1.0000
&Naive' 0.0423 0.0438 0.0459 0.0677 0.4000 1.0000
LM(a) 0.0433 0.0376 0.0331 0.0380 0.0446 0.0942
LM(b) 0.0455 0.0424 0.0404 0.0607 0.3263 1.0000
LM(c) 0.0433 0.0387 0.0331 0.0395 0.0387 0.5151

Diwerence a trend-stationary series

a 0.1 0.3 0.5 0.7 0.9 1.0

LM 0.7224 0.3591 0.1457 0.0686 0.0451 0.1689
&Naive' 0.7247 0.3584 0.1484 0.0702 0.0438 0.1660
LM(a) 0.0584 0.0490 0.0491 0.0459 0.0400 0.0791
LM(b) 0.1297 0.0834 0.0588 0.0468 0.0440 0.0420
LM(c) 0.0532 0.0463 0.0411 0.0407 0.0396 0.0373

See notes to Table 1.

Inclusion of the lagged recursive residual, however, is analogous to performing
a GLS correction. Similarly, the &naive' approach of adding four lags of the
dependent variable removes much of the distortion; this is because the example
involves unaccounted for serial correlation and adding additional lags alleviates
some of the bias induced by this type of misspeci"cation.

The second panel of Table 4 explores the e!ects of omitted variables bias,
when the omitted variable is serially correlated. That is, the data generating
process is y

t
"C#x

t
#e

t
where x

t
"ox

t~1
#l

t
but the regression is

y
t
"C#u

t
(this is the example considered in Section 2). For highly persistent

values of o, the size distortion is very large because the variance of
x
t
(p2l/(1!o2)), is large relative to that of e

t
. Thus, as in the example with the

additive outlier, size distortions are large when the variance from the speci"ca-
tion error is large. In the extreme case when o"1, x

t
is an integrated process

and the ARCH test rejects 100% of the time. This is consistent with the example
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presented in Section 2 which shows that the extent of serial corrleation in the
squared residuals is determined by the degree of serial correlation in g

t
. In these

highly persistent cases (o"0.9 and o"1), the size distortions are substantially
reduced when the recursive residuals and their squares are included because
they provide a GLS-type correction. However, the cusum provides almost no
improvement because the cusum series is doubly integrated and its inclusion
leaves the regression unbalanced.

The third panel of Table 4 considers the common question of trend-stationar-
ity versus di!erence stationarity. In particular, suppose the data generating
process is y

t
"d

0
#d

1
t#ay

t~1
#e

t
, with DaD(1, so that y

t
is trend stationary

but we estimate *y
t
"c#u

t
; that is, we accidentally "rst di!erence the data and

thus u
t
is over-di!erenced. In the simulation, we choose d

0
"0 and d

1
"0.1. The

size distortions of the ARCH test are quite severe when a is small. In the extreme
when a"0, u(

t
has a noninvertible moving-average component. As a increases,

the ARCH test has size approximately equal to its level. This is because a near
unit root is well approximated by a unit root process in "nite samples, and
"rst-di!erencing appears to have little implication for the ARCH test.

4.1. Size-adjusted power of the tests

Table 5 considers the power of the tests when the alternative of ARCH is true.
The data are generated as in Example 1 but the errors e

t
are conditionally

normal with mean 0 and conditional variance h
t
. We assume for this example

that h
t
is an ARCH(1), that is h

t
"u#a

0
e2
t~1

, where a
0
"0.5 and u"1. There

appears to be a tradeo! between the number of regressors included in the "rst
stage regression and the power of the tests. While increasing the information
set only can improve the extent to which we "t m

t
, beyond a certain point,

the marginal improvement is minimal. Thus it is important to determine the
optimal set of projection instruments.11

5. Empirical examples

Our "rst example considers the daily S&P500 returns from Bera and Higgins
(1997). Following Bera and Higgins, we estimate an AR(1) for the conditional
mean equation and use the residuals to conduct a standard ARCH(1) test; the
value of the test statistic is 5.39, rejecting the null hypothesis of conditional
homoskedasticity. If we additionally include the recursive residuals and their
squares in the conditional mean equation, however, the resulting ARCH(1) test

11Similar conclusions regarding power hold for the other examples considered } these are
available from the authors on request.
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Table 5
Size-adjusted power of the tests

y
t
"a

1
y
t~1

#e
t
, t("100

y
t
"a

2
y
t~1

#e
t
, 101)t)200

a
2

0.1
a
1

0.3 0.5 0.7 0.9 1.0

LM test
0.1 0.9729 0.9732 0.9599 0.8853 0.6958 0.5256
0.3 0.9726 0.9765 0.9737 0.9571 0.8534 0.6934
0.5 0.9586 0.9736 0.9765 0.9700 0.9433 0.8745
0.7 0.8931 0.9620 0.9726 0.9725 0.9678 0.9467
0.9 0.6734 0.8508 0.9368 0.9668 0.9792 0.9690
1.0 0.2936 0.3665 0.3390 0.3667 0.9451 0.9745

&Naive+ LM
0.1 0.9715 0.9696 0.9570 0.9008 0.7807 0.6867
0.3 0.9733 0.9720 0.9659 0.9538 0.8897 0.8109
0.5 0.9563 0.9711 0.9725 0.9717 0.9405 0.8950
0.7 0.9130 0.9511 0.9671 0.9714 0.9663 0.9385
0.9 0.7566 0.8711 0.9380 0.9660 0.9706 0.9644
1.0 0.3167 0.3478 0.4082 0.5728 0.9471 0.9703

Modixed LM(a)
0.1 0.9252 0.9254 0.9024 0.7830 0.6187 0.5169
0.3 0.9325 0.9305 0.9265 0.8996 0.7825 0.7048
0.5 0.8978 0.9266 0.9280 0.9190 0.8799 0.8257
0.7 0.8016 0.9036 0.9246 0.9240 0.9126 0.8836
0.9 0.6338 0.7691 0.8663 0.9130 0.9302 0.9114
1.0 0.2638 0.3470 0.4790 0.6544 0.8902 0.9230

Modixed LM(b)
0.1 0.9531 0.9497 0.9236 0.8035 0.5825 0.4385
0.3 0.9514 0.9571 0.9500 0.9189 0.7664 0.6194
0.5 0.9156 0.9504 0.9570 0.9450 0.8987 0.8165
0.7 0.8188 0.9252 0.9521 0.9564 0.9445 0.9144
0.9 0.5726 0.7753 0.8937 0.9467 0.9568 0.9428
1.0 0.2235 0.2767 0.2210 0.1870 0.8973 0.9522

Modixed LM(c)
0.1 0.9192 0.9200 0.9010 0.7848 0.6173 0.5194
0.3 0.9282 0.9258 0.9227 0.8956 0.7812 0.7074
0.5 0.8923 0.9236 0.9240 0.9162 0.8742 0.8221
0.7 0.8014 0.9014 0.9219 0.9212 0.9088 0.8774
0.9 0.6315 0.7666 0.8628 0.9095 0.9250 0.9076
1.0 0.2635 0.3461 0.4787 0.6586 0.8851 0.9121

Note: e
t
&N(0, h

t
), where h

t
"1.0#0.5e2

t~1
, as discussed in the text. Also see notes to Table 1.
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statistic is 0.022, well below the corresponding critical value. Further tests for
structural change indicate strong evidence in favor of these types of nonlinearity.
Bera and Higgins compare two competing nonlinear models and "nd that
neither can be rejected, supporting the notion that this series exhibits nonlin-
earity. They argue that a GARCH(1, 1) model is preferred to a bilinear speci"ca-
tion (which allows for nonlinearity in the conditional mean). Our results suggest
that perhaps some other nonlinear model would be preferred to the GARCH
speci"cation; accounting for this nonlinearity weakens the evidence in favor of
conditional heteroskedasticity.

Our second example is meant to show that the modi"cations we propose do
not substantially reduce the power of the test if in fact there is ARCH. The
example uses data from Engle and Bollerslev (1986) (the weekly US$/Swiss
Franc exchange rate, originally from Diebold and Nerlove (1989); the data are
in log "rst di!erences. The data are tested for ARCH (4), with one lag included in
the conditional mean equation. The value of the ¹R2 test os 50.21. Under the
null hypothesis of no ARCH, this statistic is distributed s2(4); this hypothesis is
strongly rejected. Using the &naive' approach of including four lags in the
conditional mean equation to control for some apparent serial correlation,
the statistic is reduced to 49.95. Including the recursive residuals and their
squares reduces the statistic further, to 37.90. Thus while the evidence for
conditional heteroskedasticity is diminished, it is still apparent in this dataset.
An informal examination of a plot of the pre-di!erenced data suggests the
possible presence of a structural break in trend. As discussed earlier, if the nature
of the misspeci"cation is known, it is possible to improve the size properties of
the ¹R2 test to account for such misspeci"cation; a formal test of the null
hypothesis of no structural break using a recursive Quandt likehood ratio
statistic with four lags (Banerjee et al., 1992) rejects this hypothesis, estimating
a break in November 1977. We recompute the ARCH test controlling for
a break at this estimated date (i.e., we regress the data on a constant and an
indicator variable equal to zero before the date and 1 afterwards; we use the
residuals from this "rst stage regression to perform the ARCH test); the value of
the statistic decreases to 47.47 but is still highly signi"cant.

6. Conclusions

This paper has emphasized the importance of testing for model misspeci"ca-
tion in lower moments before conducting routine diagnostic tests regarding
conditional heteroskedasticity. We have shown that failure to account for
conditional mean misspeci"cation can produce spurious results and lead to
overrejection of the null hypothesis of conditional homoskedasticity when
testing for ARCH(1). This intuition extends more generally to LM-based tests
for higher-order ARCH. We have proposed a method for adjusting the standard
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ARCH test to allow for possible misspeci"cation of unknown form. This method
has been shown in simulations to reduce the size distortions of the ARCH(1) test
by a substantial amount. In addition, we consider two empirical examples.
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Appendix

If X
t

is AR(1), then X2
t

is an ARMA (2, 1).
Suppose a random variable X

t
is an AR(1) with Gaussian errors e

t
(mean zero,

variance p2
e
).

X
t
!k"o(X

t~1
!k)#e

t
.

Let p2"p2
e
/(1!o2) denote the variance of X

t
. Then f

t
"(X

t
!k)/p, is a mean

zero, unit variance AR(1) process with cov (f
t
, f

t~q)"oq for q'0. Consider

>
t
"X2

t
"(k#pf

t
)2"k2#2kpf

t
#p2f2

t
,

E(>
t
)"k2#p2,

>
t
!E(>

t
)"2kpf

t
#p2(f2

t
!1).

Then

cov (y
t
, y

t~q)"E[4k2p2f
t
f
t~q#p4(f2

t
!1)(f2

t~q!1)

#2kp3f
t
(f2

t~q!1)#2kp3f
t~q(f2t !1)]

"4k2p2oq#2p4o2q.

To show that >
t

has the same autocovariance structure as an ARMA(2, 1)
process, it su$ces to show that f2

t
can be written as the sum of two AR(1)

processes (see, e.g., Hamilton (1994), p. 108). As in Granger and Newbold (1976),
consider the following two AR processes:

u
1t
"ou

1t~1
#l

1t
,

u
2t
"o2u

2t~1
#l

2t
,
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where l
1t

and l
2t

are Gaussian and uncorrelated with each other, with variance
p2l1"4k2p2(1!o2) and p2l2"2p4(1!o4), respectively. Let C

i
(q) denote the qth

autocovariance for u
it
, i"1, 2. Consider u

1t
. Then

Cu1
(q)"oqCu1

(0)

where Cu1
(0)"p2l1/(1!o2). Therefore Cu1

(q)"4oqk2p2. Similarly, consider u
2t
.

Then

Cu2
(q)"o2qCu2

(0)

where Cu2
(0)"p2l2/(1!o4). Therefore Cu2

(q)"2o2qp4. Because u
1t

and u
2t

are
uncorrelated covariance stationary AR(1) processes, the autocovariance
generating function of their sum (i.e., f2

t
) is equal to the sum of their individual

autocovariance generating functions. By construction, this is 4k2p2oq#2p4o2q.
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