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Abstract. This paper derives expressions for the exact bias and variance of a general 
class of spectral density estimators at the zero frequency, building on the work of 
Neave (The exact error in spectrum estimates. Ann. Math. Statist. 42 (1971), 961-75) 
who studied the case where the mean of the series is assumed known. These 
expressions are evaluated for 15 different windows and for a wide variety of stationary 
time series. The exact error of the estimators is found to depend on whether the sample 
mean has to be estimated, and some windows are noticeably inferior at certain values 
of the bandwidth. A response surface analysis reveals that the finite sample 
relationships between the bandwidth and the exact error are quite different from the 
ones suggested by asymptotic theory. 

Keywords. Kernel; persistence measures; bandwidth; lag window; non-parametric 
inference. 

1. INTRODUCTION 

Recent developments on several fronts have made the spectral density at 
frequency zero a concept of increasing importance in economics. In studies of 
business cycles, the spectral density function is used to measure the degree of 
persistence of shocks on aggregate activities. In econometric applications, an 
estimate of the spectral density at frequency zero is often required in analyses of 
non-stationary time series and in Generalized Methods of Moments estimations 
that require a consistent estimate of the variance-covariance matrix. 

An important element in the recent debate concerning whether or not an 
aggregate time series is better characterized by the presence of a unit root is 
the degree of persistence of the innovations on the level of the series. If a 
series contains a unit root, the innovations will have a lasting effect on its level 
and the shocks are said to be persistent. If the variable is stationary around a 
deterministic trend, the effects of the innovations will eventually vanish and the 
shocks are said to have zero persistence. 

An area of research has developed in recent years to quantify the degree of 
persistence in aggregate data. Studies of this nature include Campbell and 
Mankiw (1987), Cochrane (1988), Watson (1986) and Clark (1987). Campbell 
and Mankiw’s (1987) measure of persistence is motivated by the fact that for 
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an integrated process, say yt, its first difference, denoted d y ,  has a moving- 
average representation dyt = V(L)Et, Et - i.i.d. (0, $), where d is the first 
difference operator and L is the lag operator such that Lyr = yt-1. A natural 
measure of persistence is ~ ( 1 )  since it is the cumulative effect of a unit shock 
on the level of y, in the indefinite hture. If yt has a unit root, V(l)  will be 
non-zero, implying that a unit shock has a lasting effect on the level of yr 
However, if y, is stationary, ~ ( 1 )  will be zero, implying that a shock will only 
have transitory effects on y,. 

The role of the spectral density function in these analyses can be seen by 
noting that &(O) = $v( 1)2/2x is the non-normalized spectral density of d y ,  
evaluated at the zero frequency. If dyt is an autoregressive moving-average 
( A M )  process with autoregressive and moving-average polynomials A(L)  
and B(L) respectively, its non-normalized spectral density function at frequency 
zero is f&O) = {4B(1)2/A(1)2}/2x, hence V(1) = B(l)/A(l) = {2~cfd~(O)/$}'/~. 
An estimate of V(1) can therefore be recovered given an estimate of $ and the 
spectral density function evaluated at the origin.' Other measures of persistence 
such as the variance ratio statistic of Cochrane (1988), defined as V(k) = 
var(y, - yl-k)/{kvar(y, - yt-l)}, can be shown to relate to V(1) by noting that 
V(k) can also be expressed as 1 + 2cik,;'(l - j / k )  corr(dy,, dyr-j), con-(*) 
being the autocorrelation function. Hence limk,m V(k) = 2nfd,(O). 

The second need for an estimate of the spectral density at frequency zero is 
also related to the unit root literature. It is now known that classical inference 
does not apply when the regressors are integrated and new estimation and 
inference techniques have been developed for analyzing non-stationary time 
series. The need for a consistent estimate of the spectral density at the origin 
by these procedures is a rule rather than an exception.2 

A third need for an estimator of the spectral density function at the origin 
arises in a somewhat different context. In econometric applications, especially 
in estimating the first-order conditions of rational expectations models, it is 
often necessary to correct for conditional heteroscedasticity and serial 
correlation in the residuals while ensuring that the resulting variance- 
covariance matrix is positive semi-definite. The widely used variance estimator 
proposed by Newey and West (1987) is a matrix version of the scaled spectral 
density at frequency zero using modified Bartlett weights to smooth the sample 
autocovariance function. In spite of the popularity of this estimator, little is 
known about the relative efficiency of the Bartlett weights as compared with 
other kernels which serve the same purpose. Our analysis sheds light on this 
issue. 

Obtaining a consistent estimate of the spectral density function has been an 
area of much research (see Priestley (1981) for an overview). We shall analyze 
the properties of estimators at the zero frequency for two cases. The first is 
when the mean of the series is known. The second case is when the mean of 
the series is unknown, as in the analyses of Cochrane (1988) and Campbell and 
Mankiw (1987). Although the periodogram of a series and its mean-corrected 
variant are identical at non-zero frequencies, the equivalence breaks down at 
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frequency zero (Brockwell and Davies, 1991, Section 10.4). It is therefore 
necessary to consider the case with and without an estimated mean. 

2. NON-PARAMETRIC ESTIMATORS OF THE SPECTRAL DENSITY FUNCTION 

Consider a real-valued, weakly stationary linear process X, with finite mean 
p = E(X,) and autocovariance at lag v given by R(v) = E{(X,  - P)(X,+~ - p ) } .  It 
is assumed that R(v) is continuous at v = 0 and s'Ip,IR(v)I dv < 00. Then the 
power spectrum of X, exists over -n G w S n and is defined as follows: 

noting that the relation R(v) = J?&o) cos (vw) do holds. A formal treatment of 
the properties of Ao) can be found in Priestley (1981). 

Our focus is on a class of spectral density estimators defined for p = 0 by 

where &v) = T' C ~ ~ X ~ X ~ + ,  and k ; ( v / M ~ )  is a non-negative, bounded even 
function often referred to as a lag window or kernel. Many proposed windows 
assume that k ; ( v / M ~ )  = 0 if v > MT, in which case MT acts as a truncation lag 
parameter. In general, MT is the bandwidth which, together with the lag window, 
imposes different weights on different sample autocovariances. Estimators of the 
form (2.2) are consistent for Ao) if M T I T ~  0 and MT -+ 00 as T - t  00. 

We are interested in estimating c&b(l)* = 2nf(O) = C,M_-,R(v) which, for 
notational simplicity, we shall denote as h(0). Also denote 6 as the ratio vIMT. 
The estimator corresponding to (2.2) is given, for the case of a zero mean 
series, by 

T-1 

In the case where the mean is unknown, the estimator is given by 
T- 1 

with RF(v) = T"CL;"(X - x)(Xt+v - x) and 
The asymptotic properties of this class of estimators were analyzed by Parzen 

(1957), for example, under the assumption that the mean of X, is known. Let r 
be the characteristic exponent of k;(8), i.e. r is the largest integer such that 
k;'" = lime +0[{1 - k;(e)}/\OY] exists, is finite and is non-zero. Let 
h'(0) = C?.Jsl'IR(s)I be the Parzen 'generalized rth derivative' of the spectral 

= T I C T = l & .  
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density function evaluated at frequency zero. It coincides with the rth 
derivative of h(0) only when r is even. If there exists a q 3 r such that 
hQ(0) < 00 and TI(MT)' ---t 00 as T-+ 00, the asymptotic bias can be 
approximated by (see Priestley, 198 1) 

asymptotic bias ( 4 ~ )  x ( - M;)-'h'(0)kfG'. (2.5) 
However, if r > q, then the relationship between bias and MT is less precise and 
it can only be said that the asymptotic bias is o(M-4) if MTIT ---t 0. The 
asymptotic variance of these kernel estimators has the property that 

1 
lim (T /MT)  Var (4,) = 2h2(0) J k;'(8) d8 (2 * 6) 

T-CC -1 

if MTIT-+O and kf~-+00 as ?"--too. 
The limiting bias and variance are kernel dependent since the value of r, 

k:'" and k;li2 are kernel specific. In large samples, it can readily be seen that 
the bias is decreasing, but the variance is increasing in the bandwidth. Note 
also that while the asymptotic bias depends on the curvature of the spectral 
density function evaluated at frequency zero, as given by h'(O), the variance 
depends on the value of h(0) itself. 

in finite samples. A 
number of lag windows have been proposed to estimate the spectral density 
function. Useful references on this topic can be found in Priestley (1981), 
Hannan (1970) and Neave (1972). We select for analysis 15 lag windows that 
are more or less common in this literature. The complete list of windows is 
summarized in Table I. All the windows considered satisfy the conditions 
discussed in Andrews (1991), namely that kF(0) = 1 ,  k;(x) = kF(-x), 
JZmk;(x)' < 00 and k;(.) is continuous at 0 and all but a finite number of 
other points. With the exception of the quadratic window, k;(8) is set to 0 if 
8 > 1 .  This restriction is not always imposed on the Daniell window, but was 
used in Neave (1972), whose definition we followed. 

Of the 15 window generators considered, only six have non-negative Fourier 
transforms. These are the Bartlett (2,3), Panen (4), Bohman (7), Daniell (8) 
and Quadratic (14) windows. We include the Bartlett window specified as (10) 
because it was used in many studies which measure the degree of persistence 
in macroeconomic aggregates (e.g. Campbell and Mankiw, 1987). Also of 
interest is the quadratic spectral kernel found by Andrews (1991) to have some 
optimal properties, but it is the only kernel considered where MT does not act 
as a truncation lag. The trapezoid window has recently been shown to have 
relatively small bias in Politis and Romano (1995), and is also included in the 
analysis. 

Some of the windows listed above have been studied from both a theoretical 
and a numerical point of view. Neave (1972) found some optimality properties 
for the Parzen, normal and Bohman generators in that they have quite a narrow 
peak at 8=0. Neave (1971) analyzed the exact bias and variance of the 
spectral estimator f r (w)  when the mean is known using the Parzen and the 

Our interest is in the bias and variance of 4~ and 
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TABLE I 
LIST OF WINDOWS CONSIDERED 

1 
2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

Truncated periodqgam 
Bartlett (a) with RF(v) 

Bartlett (b) with Rr(v) 

Parzen (a) 

Tuke y-Hamming 

Tuke y-Hanning 

Bohman 

Daniel1 

Parzen (b) 

Bartlett (c) 

Parzen (c) 

Tukey - Parzen 

Normal 

Quadratic 

Trapezoid 

k*(O) = 1 
k*(e) = 1 - e 

(1 - 8)T 
T - v  k*(e)  = - 

k*(O) = 0.54 + 0.46cos(d)  

k*(e) = ;{I + cos(ne)) 

k*(e)  = ( I  - e)cos(ne) + sin(ne)/n 
sin (no) k*(e) = - 

ne 
k*(e)  = 1 - eZ 

k*(e) = 
I + &  

k*(e) = 

Tukey-Hamming windows for various shapes of the spectral density function. 
To the authors' knowledge, no extensive study has provided exact analytical 
results for estimators of the spectral density function in the important special 
case of zero frequency. The purpose of the following sections is to present such 
a study. To do this, we shall first derive the exact bias and variance of the 
estimators and &. 

3. THE EXACT BIAS AND VARIANCE OF h z  KNOWN MEAN 

In this section, we derive the exact error of as defined in (2.3) given an 
arbitrary lag window k;(v) and bandwidth Mr.  Note that (2.3) is based on R;,  
the biased estimator of autocovariances. Of course, oneAcould use the unbiased 
estimator kT(v) = ( T  - v)-' C z X , X , + v  instead of R;(v). There is some 
evidence, however, that the biased estimator has better properties in terms of 
mean-squared error (MSE) (e.g. Priestley, 1981, p. 323). In most of the cases 
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studied, the exact bias and variance are derived for h~ based on if(.). The 
exception is the Bartlett (b) and Bartlett (c) windows, which are based on ~ T ( v ) ,  
so as to analyze the specification used by Campbell and Mankiw (1987) and 
Cochrane (1988). 

For mathematical convenience, it is useful in the derivations to rescale the 
lag window so that h~ can be expressed in terms of RT instead of R;,  noting 
that both are even functions of v. By defining k ~ ( v )  = (1 - v/T)k;(v), 
k ~ ( O ) = 0 . 5 ,  (2.3) can be rewritten as 

T-  1 

Since k ~ ( v )  is an unbiased estimate of R(v), we have E(&) = 2xF:d k~(v)R(v)  
and the bias is given by 

T-1 00 

bias ( h ~ )  = E { ~ T  - h(O)} = 2 C { k ~ ( v )  - l}R(v) - 2 c R(v). (3.2) 
zJ= 1 W=T 

The exact variance of 6 ,  is given by 

var (8,) = - {E<&>}~ 

u, v=o 

whose close form was derived by Neave (1971) under the assumption that X, is 
normal. Evaluating Neave's result at the zero frequency gives 

I T-v 

+ C (T - Z, - x){R2(x) + R(x - v ) R ( ~  + v)} 
x= 1 

+ 2  c (T - v)(T - u) 
0 S u S v S  T-1 

T-TI 
+ R(u - x)R(x + v)} + c ( T  - v - x){R(x)R(x + v - u)  

x=u-v+l 

+ R(x - u)R(x + v)} . (3.3) I> 
Expressions (3.2) and (3.3) enable us to computeAnumerically the exact bias and 
variance, and hence the MSE of the estimator h~ for various combinations of 
windows, bandwidths and underlying data generating processes for the Xs.  
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4. THE EXACT BIAS AND VARIANCE OF hz UNKNOWN MEAN 

The estimator given by (2.4) for the unknown mean case is expressed in terms 
of R*,. As in the previous section, it proves convenient to express in terms 
of the estimates k ~ ( v )  = (T - v)-' CL;v(Xt - f ) (X t+ ,  - f ) .  Letting k~(v) = 
( I  - v/~)k*,(v)  gives 

T- 1 

v=o 

Since the sample mean is subtracted from each observation, ~ T ( D )  is not an 
exactly unbiased estimator of R(v), the true autocovariance at lagv. Define the 
quantities 

T 
var(f)  = E ( f  - ~ 1 ) ~  = T-2 c R(t - S) = T-'R(O) + 2 

t ,  s=l 

and 
T 

RO') = T-' CR(k - j ) .  (4.3) 
k= 1 

It is then straightforward to show the following results: 

T - U  

E { k ~ ( v ) }  = R(v) + var(f) - (T - v)-' C{R(t + v) + R( t ) } .  (4.6) 
t=l 

Using (4.6) we obtain the following expression for the bias of &: 
bias(&) = E{hT - h(O)} 

T- 1 T - U  

v=o t=l 
= bias (&) + 2 kT(v)[var (X) - (T  - v)-' c{R(t) + R(t + v)}]. 

(4.7) 
It is straightforward to show, under the conditions assumed here, that the second 
term on the right-hand side of (4.7) is O(MTIT). Hence, the difference between 
the bias in the known and unknown mean cases vanishes as T increases. 
However, it also highlights the fact that larger differences can be expected if the 
truncation lag is large relative to the sample size. 

The exact variance of h~ can be derived following the method used by Neave 
(1971) for the case of fir. Using 



3 86 S .  NG AND P. PERRON 

T-1 

where 

cov {&(v), i i T ( U ) }  = E { i i T ( V > i i T ( U ) }  - E{iiT(v)}E{iiT(u)}. (4.9) 

Using the expression for cov { ~ T ( P ) ,  &u)} and the simplifications given in the 

x [2 var (R)' + var ( X ) { R ( ~  - s) + ~ ( t  + v - s - u)  

+ R(t - s - u) + R(t + P - s)} - 2 var(R){ii(t + v) + R(t) 

+ ii(s) + ii(s + u)}  + 2{ii(t)B(t + v) + ii(s)ii(s + u)}  

+ {R(t -I- v) + R ( ~ ) } { ~ ( s )  + R(s + u)}  - R(t + v){R(t - s) 

+ R(t - s - u) }  + B(t){R(t  + P - s - u)  + R(t + v - s)} 

- B(s + u){R(t - s) + R(t + v - s)} + R(s){R(t + v - s - u)  

+ R(t - s - u ) } ]  . (4.10) 

This expression for the exact variance is valid under normality of X,, or at least, 
under the condition that the fourth cumulant of the distribution function is zero 
(see Priestley, 1981, p. 325). A comparison of (4.7) and (4.10) with (3.2) and 
(3.3) indicates that the bias and variance of &(O) involve additional (not 
necessarily positive) terms that are absent from the corresponding expressions 
for the zero mean case. Thus, the exact error in estimating the spectral density at 
the origin depends on the treatment of the sample mean. 

1 

5 .  RESULTS 

The expressions derived in Sections 3 and 4, while complex, can easily be 
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evaluated numerically given (i) a value of the bandwidth MT; (ii) a value for the 
number of observations, T; (iii) a lag window function k~(v); and (iv) the 
autocovariance function R T ( ~ )  of the underlying process. For each of the 15 
windows described in Section 2, we consider three values for the sample size, 
T =  50, 100, 150, and for each sample size, ten different values for the 
bandwidth parameter MT. These are chosen as follows: 

(i) T = 5 0 ,  MT =2 ,  4, 8, 12, 16, 20, 25, 30, 40, 49; 
(ii) T =  100, MT = 2 ,  4, 8, 14, 20, 30, 40, 50, 70, 99; 
(iii) T =  150, MT = 2 ,  4, 8, 14, 20, 30, 50, 70, 100, 149. 

We increase MT all the way up to T - 1 in order to analyze fully the effect of a 
large value of the bandwidth on the properties of the estimators. As will 
transpire from the results below, some estimators have peculiar properties at such 
extreme values of the bandwidth. 

We analyze the behaviour of and & for 24 time series processes within 
the class of ARMA models. Those models, the associated autocovariance 
function and true value of the spectral density at frequency zero are given in 
Table 11. For conciseness in the discussion below, we organize the 24 data 
generating processes into five groups: 

(1) Nearly integrated models: AR1(0.9), AW(1.30, -0.35), ARMA(0.9, 0.6) 
and ARMA (0.9, -0.5). The autoregressive root is close to the unit circle and 
hence h(0) is large. 

(2) Positively autocorrelated models: AR1(0.4), AW(0.2, 0.4), ARMA(0.6, , 

(3) Negatively autocorrelated models: AR1(-0.4), AR1(-0.9). 
(4) Positive moving-average models: MA1(0), MA1(0.5), MA1(1.0), 

MA2(0.5, OS), ARMA(-0.3, 0.6), ARMA(0.3, 0.6). The moving-average 
coefficients are positive and larger in absolute value than the autoregressive 
coefficients. 

( 5 )  Negative moving-average models: MA1(-OS), MA1(-0.8), MA1(- l.O), 
MA2(-0.5, -0.5), ARMA(0.9, -l.O), ARMA(0.6, -l.O), ARMA(0.6, -0.8) 
and ARMA( -0.6, - 1 .O). The moving-average coefficients are negative and 
larger in absolute value than the autoregressive coefficients, and hence h(0) is 
small. 

Our experimental design is guided by the empirical properties of various 
macroeconomic time series of interest. The highly persistent processes in 
Group 1 are typical characterizations of the logarithm of many economic time 
series, and in many cases the data cannot reject an autoregressive unit root. As 
discussed earlier, the distinction between a trend stationary and a differenced 
stationary process is an important issue in empirical macroeconomics, and is 
the motivation for using the spectral density function at frequency zero of the 
first-differenced series to assess the degree of persistence of a shock. Groups 2- 
5 contain processes that are intended to capture different time series properties 
of such differenced series. Of particular concern is the case where a series is 

-0.5), and ARMA(0.9, -0.8). 
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overdifferenced since the first-differenced series has a non-invertible moving- 
average component. We therefore include a variety of overdifferenced processes 
in Group 5 to assess the properties of the estimators in such cases. In choosing 
the sample sizes, we are motivated, in part, by the size of the samples typically 
encountered in macroeconomic analyses, and in part by computational issues as 
discussed in the appendix. 
Our analysis results in the computation of 720 exact biases, variances and 

MSEs for each treatment of the sample mean. The complete set of results is 
available on request. 

5.1 .  Mean squared error 

The MSE is amongst the most commonly used criteria in kernel selection. It is 
of interest to identify the kernels with the smallest MSE. Tables I11 and 1V list, 
for each sample size, the window and the associated bandwidth that generates 
the smallest MSE for each of the 24 time series models considered. We focus the 
discussion on the mean unknown case with T =  100 without loss of generality.3 
Although the overall results reveal that no single estimator is uniformly best in 
terms of MSE, it is clear that the Bartlett (a) and Bartlett (b) windows are always 
dominated by the other windows considered. The trapezoid window has the 
smallest MSE for processes in Group 1, i.e. those with an autoregressive root 
close to unity. This window also appears to be the best for processes in Group 4, 
where the positive correlation is of the moving-average type. For processes in 
Group 2, the picture is less clear, with the trapezoid, truncated and Tukey- 
Hanning windows performing better than other windows. For Group 3 with 
negative autocorrelation of the autoregressive type, the quadratic and Tukey- 
Hanning windows appear to perform well. For processes with a strong negative 
moving-average coefficient (Group 5), there is no clear winner except when the 
process is non-invertible and the mean is unknown, in which case the truncated 
and Bartlett (c) windows have the smallest MSE. This last result is not surprising 
since, by construction, these two windows always yield an estimate of 0 (the true 
value) when MT = T - 1 and the mean is unknown. 

The relationship between the MSE and the bandwidth is of utmost 
importance in practice. We select ten processes that are representative of the 
five data groups and graph this relationship for the Bartlett (a), Parzen (a), 
Bohman, quadratic and trapezoid windows in Figure 1, noting that the 
bandwidth increases as we move along the horizontal axis until MT = T - 1. 
Hence, there are ten observations for each window. Since the relationship 
between the MSE and the bandwidth is similar for both treatments of the 
sample mean, we use the unknown mean case for illustration and focus on 
T =  50 without loss of generality. The following results are noteworthy. 

(i) For processes with roots away from unity (Groups 2, 3 and 4), the 
optimal bandwidth is around four and all kernels perform equally well at this 
value (Figures l(c), l(d), l(e), l(f) and l(g)). 
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TABLE I11 
WINDOW WITH LOWEST MSE AND THE ASSOCIATED BANDWITH; KNOWN MEAN 

T =  50 T = 100 T =  150 

Model Window MT Window MT Window MT 
ARl(0.9) 1 8 15 14 15 14 
AR2(1.3, -0.35) 1 8 15 14 1 14 
ARMA(0.9, 0.6) 1 8 15 14 15 14 
ARMA(0.9, -0.5) 1 8 1 8 15 14 

AN(0.2, 0.4) 1 4 1 4 15 8 

ARMA(0.9, -0.8) 14 8 1 8 1 8 

ARl(0.4) 15 2 1 2 1 2 

ARMA(0.6, -0.5) 4 4 6 4 8 4 

ARl( - 0.4) I ,  13 4 5 ,  6, 12 4 5 ,  6, 12 4 
AR1(-0.9) 4 8 4, 14 4 14 4 

4 2 4 2 4 2 
9 2 15 2 15 2 

MA 1(0) 
MA1 (0.5) 
MAl(1) 9 2 15 2 15 2 
MA2(0.5, 0.5) 12 2 1 2 1 2 
ARMA(-0.3, 0.6) 12 2 8 2 8 2 
ARMA(0.3, 0.6) 15 2 15 2 1 2 

8 4, 5, 6, 8 8 4, 5 ,  6, 8 8 
50 100 

MA1( - 0.5) 
MA 1 (-0.8) 25 

4 100 
149 

MAl(-1) 15 25 4 99 
99 ARMA(0.9, -1) 49 

15 149 
100 

15 49 9 99 
49 I0  

ARMA(0.6, -1) 
ARMA(-0.6, -1) 
ARMA(0.6, -0.8) 5 16 4 30 6 20 
MA2(-0.5, -0.5) 15 49 1 99 3 149 

Note: aWindow 2 has a significantly larger MSE but all other windows identical MSEs up to the 
second decimal place. 

a a 
4, 5 ,  6 

a a a 

a a a 

(ii) For nearly integrated processes (Group l), a bandwidth of at least one- 
fifth the sample size seems desirable (Figures l(a) and l(b)). There is more 
variation in the optimal bandwidth across windows, with the Bohman and 
Parzen (a) windows requiring more lags than the Bartlett and the quadratic 
spectral windows. 

(iii) For models with large negative moving-average coefficients (Group 5,  
Figures l(h), l(i) and l(j)), the MSE declines with MT. This negative 
relationship approaches monotonocity as the moving-average coefficient 
approaches -1. Thus, unlike models of Groups 2, 3 and 4, when the cost of 
a larger than optimal MT tends to be higher than a smaller than optimal MT, 
the opposite is true for models of Group 5 .  

Figure 1 also indicates that the performance of the estimator using any of the 
five kernels is similar at their optimal bandwidth. It is at sub-optimal 
bandwidths that differences across kernels become significant. In particular, the 
cost of using an unnecessarily large bandwidth is particularly high for the 
trapezoid window. On the other hand, when MT is too small, the MSE 



ESTIMATING THE SPECTRAL DENSITY AT THE ORIGIN 391 

TABLE IV 
WNWW WITH LOWEST MSE AND THE ASSOCIATED BANDWIDTH; UNKNOWN MEAN 

T =  50 T = 100 T = 150 

Model Window MT Window MT Window MT 

ARl(0.9) 1 8 15 14 1 14 

ARhU(0.9, 0.6) 1 8 15 8 1 14 
ARMA(0.9, -0.5) 1 8 15 14 1 14 
ARl(0.4) 15 2 1 2 1 2 
AU(0.2, 0.4) 1 4 1 4 15 8 
ARMA(0.6, -0.5) 14 2 6 4 8 4 
ARMA(0.9, -0.8) 14 8 1 8 1 8 
ARI( - 0.4) 4, 13 4 6 4 6, 12 4 
AR1(-0.9) 4 8 14 4 14 4 
MA l(0) 4 2 4 2 4 2 
MA1 (0.5) 15 2 15 2 15 2 
MAI(1) 15 2 15 2 15 2 
MA2(0.5, 0.5) 1 2 1 2 1 2 
ARMA(-0.3, 0.6) 12 2 8 2 8 2 
ARMA(0.3, 0.6) 15 2 15 2 1 2 

AU(1.3, -0.35) 14 16 1 14 1 14 

MA]( - 0.5) 4, 6 12 5 8 4, 5, 6 8 
MA 1 ( - 0.8) 11 49 9 99 2 125 
MA](-I) 1, loa 49 1, loa 99 1, 1oa 149 
ARMA(0.9, -1) 1, loa 49 1, loa 99 1, loa 149 
ARMA(0.6, -1) 1, 10a 49 1, loa 99 1, loa 149 
ARMA(-0.6, - 1) 1, 1 0 a  49 1, loa 99 1, 10a 149 

MA2(-0.5, -0.5) 1, 108 49 1, loa 99 1, 1oa 149 
ARMA(0.6, -0.8) 2 40 2 30 4, 5 ,  13 30 

Note: aWindows 1 and 10 are 0 by construction when Mr = T - 1. Hence, when h(0) = 0, which 
occurs when the moving-average root is 1, these windows yield the smallest MSE by definition. 

associated with the Parzen (a) window is large relative to the MSE of other 
kernels at the same bandwidth. Thus, the desirability of a window at a certain 
bandwidth does not imply its desirability at other bandwidths. 

5.2.  Bias, variance and the sample mean 

Although for a given data generating process and kernel the MSE of h~ and & 
appears quantitatively similar, the trade-off between bias and variance depends 
on whether the mean has to be estimated. To begin, we observe that windows 1 
(truncated) and 10 (Bartlett (c)) always yield an estimated spectral density of 
zero with MT = T - 1 when the sample mean is unknown. Accordingly, the bias 
recorded for these two windows at MT = T - 1 is the negative of the true 
spectral density at frequency zero with a corresponding variance of zero. While 
less extreme, the variance of other estimators is also attracted towards zero as 
MT increases, a feature that is unique to the case when the sample mean is 
unknown. 
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FIGURE 1. (a) ARMA(0.9, 0.6); (b) ARMA(0.9, -0.5); (c) AR(0.4); (d) AR(-0.4); (e) white 
noise; ( t )  ARMA(0.3, 0.6); (g) MA(-0.5); (h) ARMA(-0.5, -0.5); (i) ARMA(0.9, -1.0); 0) 

ARMA(0.6, -0.8). 
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The more substantive difference is that while bias is usually decreasing and 
variance increasing in the bandwidth when the mean is known, this is not the 
case when the sample mean has to be estimated. The difference in bias between 
the two cases can be explained using the relation (4.7). As discussed earlier, 
the difference in the two biases is O(MT/T). Hence for small values of the 
truncation lag (relative to the total sample), one can expect the biases to be 
similar. However, for large truncation lags, the bias in the unknown mean case 
is expected to diverge from that of the known mean case. This is consistent 
with our finding that the exact bias for stationary and invertible processes is 
monotonically decreasing in the bandwidth in the known mean case but that it 
eventually increases in the unknown mean case. 

Both bias and variance tend to be non-linear functions of the bandwidth 
when the sample mean is unknown. However, while minimum bias always 
occurs at a unique bandwidth, a small variance can be attained at either a very 
small or a very large bandwidth. To highlight the differences in the exact error 
arising from the treatment of the sample mean, we select one time series from 
each of the five groups and depict the relationship between the bandwidth and 
the biadvariance at T =  50 for representative kernels. The main findings in 
Figures 2-7 are as follows: 

(i) For models with positive serial correlation, such as AR(0.9), AR(0.4) and 
MA(0.5), we note from Figures 2, 3 and 5 that (a) h(0) is underestimated as 
the bias is negative whether or not the mean has to be estimated; (b) the bias 
and variance are not monotonic in the bandwidth when the sample mean is 
unknown; and (c) the more persistent the process, the larger is the bandwidth 
which minimizes the bias when the mean is unknown. 

(ii) For models with negative serial correlation such as AR1(-0.4) and 
MAl(-OS), we note from Figures 4 and 6 that (a) bias is positive when the 
mean is known and declines as the bandwidth increases; and (b) bias is positive 
at small bandwidths but is negative as MT increases when the mean is 
unknown, the absolute bias does not decline monotonically in MT. 

(iii) For models with negative moving-average components such as 
MA1(-0.5) we note from Figure 6 that variance is not monotonic in MT 
even when the mean is known. The variance declines with MT when the 
moving-average coefficient is close to - 1 .  This is so for both treatments of the 
sample mean, as seen from Figure 7. 

Looking at the results across the five groups makes it clear that the sign and 
magnitude of the bias is determined by whether the autoregressive coefficients 
are larger than the moving-average coefficients, and by whether the dominant 
root is positive or negative. The positive bias in estimating the spectral density 
of models with negative serial correlation is best understood by considering the 
case when the moving-average coefficient is - 1 .  Since h(0) = 0, estimators 
constructed to yield positive definite estimates must necessarily overestimate 
h(0). A continuity argument can be used to explain why the estimators have the 
tendency to overestimate h(0) when it is close to zero. 
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 FIGURE^. MA1(-OS), Pmen (a): (a) known mean; (b) unknown mean. 
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FIGURE 7. MAl(- l.O), trapezoid (a) known mean; (b) unknown mean. 

The finding that both the bias and the variance are lower with negative than 
with positive serial correlation is in accord with theory. This follows from the 
fact that h(0) = B(l)/A(l). The closer is the moving-average coefficient to - 1, 
the smaller is B(1). The more negative is the autoregressive coefficient, the 
larger is A(1). Negative serial correlation has the effect of reducing the 
absolute value of h(O), and hence the absolute exact error induced by the 
estimators. Thus, for a moving-average component of the same size, a positive 
autoregressive component magnifies both the bias and the variance, while a 
negative autoregressive component reduces these quantities. Accordingly, the 
MSE of positively autocorrelated series is generally much larger than that of 
negatively autocorrelated series. This can be seen by comparing AR1(0.4), 
Figure l(c) or 3, with AR1(-0.4), Figure l(d) or 4. Similarly, a negative 
moving-average component reduces the MSE of the estimators. This is 
highlighted by the dramatically different scaling in the MSE of the two nearly 
integrated models depicted in Figures l(a) and l(b) for ARMA(0.9, 0.6) and 
ARMA(0.9, -0.5). 

In Tables V and VI, we report the bias, variance and MSE and the rankings 
associated with these quantities for time series processes selected from each of 
the five groups. As expected, windows that tend to yield a large bias also tend 
to yield a low variance. Since the bias and variance are minimized at different 
bandwidths, the rankings of the MSE need not coincide with those for bias and 
variance. The rankings also depend on whether the mean has to be estimated. 
Although some windows might have the same ranking with both treatments of 
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the sample mean, their implications in terms of bias and variance can be rather 
different. In general, the exact bias for Groups 1, 2 and 4 is larger, and the 
variance smaller, when the mean has to be estimated. The MSE is usually 
lower when the mean is known with positively correlated processes, but is 
lower when the mean is unknown with negatively correlated processes. 
However, when the truncated and trapezoid windows perform well in a mean- 
squared sense, it is unambiguously because of their small biases. 

6. A RESPONSE SURFACE ANALYSIS 

The objective of this section is to provide a concise framework for evaluating 
how the bias and variance vary with parameters such as sample size, bandwidth 
and coefficients underlying the time series models in finite samples. This is 
accomplished using a response surface analysis such as discussed in Hendry 
(1984). The analysis involves estimating, for each window, one equation for bias 
and one for variance. 

Since the characteristic exponent Y for most of the windows considered here 
is even! the bias can be approximated in large samples by (2.5) under some 
conditions. Using this asymptotic result as basis, we then incorporate factors 
found in the previous section to influence the exact bias into the regression. 
These are functions of the value of the spectral density at the origin, the 
bandwidth, the sample size and how close is the sum of the autoregressive 
parameters to unity. Let a; and b; be the autoregressive and moving-average 
coefficients corresponding to an ARMA(p, q) process. After a specification 
search, we settle on the following equation for bias: 

(6.1) 
The specification for variance is based on the asymptotic consideration in 

(2.6) that the variance of the estimator is proportional to ( M T I T ) ~ ( O ) ~ .  As in 
the bias equation, we also allow other variables to enter the equation for 
variance. The best model (in terms of explanatory power) is found to be one 
which allows h(0) to have a non-linear effect on the variance. The equation for 
variance is 

The estimates &i and Pi,  i = 0, . . ., 4, are obtained by ordinary least-squares 
regressions of (6.1) and (6.2). In cases when the mean of the series is known, 
the estimations are based on the 720 observations derived from the various 
combinations of sample sizes, bandwidths and data generating processes. 



402 S. NG AND P. PERRON 

However, the estimated spectral density at frequency zero and its variance are 
attracted towards zero as MT increases when the sample mean is unknown. To 
prevent such idiosyncrasies from dominating the response surface analysis, we 
only use observations with MT S TI2 in the regressions. This leaves 504 
observations. 

Tables VII-X summarize the regression results. The R2s for the bias 
equations are higher when the mean is unknown, but the explanatory power of 

TABLE VII 
RESPONSE SURFACE ANALYSIS. SUMMARY OF THE BIAS EQUATIONS; KNOWN MEAN 

Window 
(1 - q a i ) - 2  h(0)IP {h(0)21A&} 

h"(0)IM' l M  (10~)  IT h(0)lT R2 

1 Truncated periodogram 
2 Bartlett (a) 
3 Bartlett (b) 
4 Parzen (a) 
5 Tukey-Hamming 
6 Tukey-Hanning 
7 Bohman 
8 Daniell 
9 Parzen (b) 

10 Bartlett (c) 
11 Parzen (c) 
12 Tukey-Parzen 
13 Normal 
14 Quadratic 
15 Trapezoid 

0.005 
0.005 
0.005 
0.005 
0.005 
0.005 
0.005 
0.005 
0.005 
0.005 
0.005 
0.005 
0.005 
0.005 
0.005 

2.45 
2.60 
2.88 
2.71 
2.77 
2.80 
2.74 
2.80 
2.80 
2.73 
2.62 
2.85 
2.73 
2.79 
2.82 

2.61 
6.53 
6.04 
7.05 
5.45 
5.70 
6.69 
5.02 
4.45 
5.87 
3.91 
6.09 
6.63 
4.9 1 
3.64 

0.15 
0.18 
0.16t 
0.20 
0.19 
0.19 
0.20 
0.18 
0.18 
0.15 
0.17 
0.19 
0.20 
0.18 
0.17 

-26.06 
-51.93 
-46.86 
-56.14 
-45.54 
-47.23 
-53.82 
-42.60 
-38.73 
-45.43 
-34.96 
-49.94 
-53.42 
-40.60 
-33.31 

0.88 
0.90 
0.86 
0.89 
0.88 
0.88 
0.88 
0.87 
0.87 
0.86 
0.88 
0.87 
0.88 
0.87 
0.86 

Note: All entries are statistically significant at the 5% level except those indicated by a dagger. 

TABLE VIII 
RESPONSE SURFACE ANALYSIS, SUMMARY OF THE BIAS EQUATIONS; UNKNOWN MEAN 

(1 - qai)-' h(0)IP {h(O)'/A&} 
Window h"(0)IM lM (10~)  IT h(0)lT R2 

1 Truncated periodogram 0.002 0.54 1 .oo 0.17 -78.68 0.97 
2 Bartlett (a) 0.003 1.09 1.17 0.20 -87.88 0.98 
3 Bartlett (b) 0.003 1.11 1.16 0.20 -88.03 0.98 
4 Parzen (a) 0.003 1.25 1.19 0.21 -89.03 0.97 
5 Tukey-Hamming 0.003 1.16 1.09 0.21 -83.82 0.98 
6 Tukey-Hanning 0.003 1.22 1.10 0.21 -84.27 0.98 
7 Bohman 0.003 1.25 1.16 0.21 -87.73 0.98 
8 Daniell 0.003 1.14 1.06 0.21 -82.40 0.98 
9 Parzen (b) 0.003 1.08 1.04 0.21 -80.90 0.98 

10 Bartlett (c) 0.002 1 .oo 1.14 0.19 -86.02 0.98 
11 Parzen (c) 0.002 0.84 1.04 0.19 -80.86 0.98 
12 Tukey-Parzen 0.003 1.30 1.11 0.22 -84.98 0.97 
13 Normal 0.003 1.23 1.16 0.21 -87.69 0.98 
14 Quadratic 0.003 1.11 1.07 0.21 -81.66 0.98 
15 Trapezoid 0.003 1.03 0.99 0.20 -78.09 0.98 

Note: All entries are statistically significant at the 5% level. 
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TABLE IX 
RESPONSE SURFACE ANALYSIS, SUh4MARY OF THE VARIANCE EQUATIONS; KNOWN M A N  

l/p M / F  h(O)/T h(O)’/T 
Window h2(0)M/T (lo6) (lo4) (lo4) (10’) h(O)/p R2 

1 Truncated periodogram 1.71 1.57 
2 Bartlett (a) 0.82 0.70 
3 Bartlett (b) 1.50 0.98 
4 Parzen (a) 0.68 0.67 
5 Tukey-Hamming 0.98 0.84 
6 Tukey-Hanning 0.93 0.82 
7 Bohman 0.74 0.71 
8 Daniell 1.08 0.91 

10 Bartlett (c) 1.52 0.90 

12 Tukey-Parzen 0.81 0.79 
13 Normal 0.75 0.70 
14 Quadratic 1.16 0.95 

9 Parzen (b) 1.23 1.01 

11 Parzen (c) 1.36 1.14 

15 Trapezoid 1.47 1.22 

-7.91 
-3.61 
-5.43 
-3.55 
-4.42 
-4.31 
-3.73 
-4.71 
-5.29 
-5.14 
-5.83 
-4.19 
-3.72 
-4.99 
-6.33 

1.13 
0.37 
0.30 
0.29 
0.44 
0.41 
0.3 1 
0.50 
0.59 
0.30 
0.73 
0.37 
0.32 
0.55 
0.74 

-1.35 
-7.04 

-15.86 
-1.33 
-8.54 
-8.67 
-7.68 
-9.04 
-9.40 

-15.49 
-8.05 
-8.88 
-7.59 
-9.00 

-10.74 

-5.44 
-1.67 
-1.08 
-1.25 
- 1.98 
-1.82 
-1.38 
-2.26 
-2.73 
-1.01 
-3.46 
-1.61 
- 1.40 
-2.54 
-3.41 

0.96 
0.98 
0.91 
0.97 
0.98 
0.98 
0.98 
0.98 
0.98 
0.98 
0.98 
0.98 
0.98 
0.98 
0.98 

TABLE X 
RESPONSE SURFACE ANALYSIS, SUMMARY OF THE VARIANCE EQUATIONS; UNKNOWN MEAN 

Window 

1 Truncated periodogram 
2 Bartlett (a) 
3 Bartlett (b) 
4 Parzen (a) 
5 Tukey-Hamming 
6 Tukey-Hanning 
1 Bohman 
8 Daniell 
9 Parzen (b) 

10 Bartlett (c) 
11 Parzen (c) 
12 Tukey-Parzen 
13 Normal 
14 Quadratic 
15 Trapezoid 

0.39 0.58 
0.21 0.36 
0.32 0.40 
0.21 0.37 
0.33 0.44 
0.34 0.44 
0.29 0.39 
0.36 0.46 
0.38 0.49 
0.32 0.40 
0.35 0.47 
0.35 0.46 
0.28 0.38 
0.38 0.47 
0.45 0.58 

-5.49 
-3.53 
-3.95 
-3.68 
-4.33 
-4.41 
-3.88 
-4.60 
-4.83 
-3.98 
-4.53 
-4.62 
-3.81 
-4.63 
-5.68 

0.46 
0.16 
0.18 
0.12 
0.19 
0.18 
0.13 
0.22 
0.26 
0.19 
0.3 1 
0.16 
0.13 
0.24 
0.32 

- 1.68t 
-2.14 
-2.51 
-2.41 
-2.63 
-2.78 
-2.52 
-2.77 
-2.71 
-2.37 
-2.02 
-3.05 
-2.45 
-2.15 
-3.16 

-2.34 
-0.79 
-0.86 
-0.57 
-0.94 
-0.86 
-0.64 
- 1.07 
-1.28 
-0.92 
-1.57 
-0.75 
-0.65 
-1.21 
-1.58 

0.83 
0.91 
0.91 
0.90 
0.91 
0.91 
0.90 
0.91 
0.90 
0.92 
0.87 
0.91 
0.91 
0.90 
0.90 

Note: All entries are statistically significant at the 5% level except those indicated by a dagger. 

the variance equations is higher when the mean is known. Based on standard 
errors corrected for hetero~cedasticity,~ most estimates are statistically signifi- 
cant at the 5% level. We therefore indicate coefficients that are insignificant 
instead. 

The results in Tables VII and VIII indicate that although the quantitative 
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effect depends on the treatment of the mean, all regressors have the same 
qualitative effect on the bias using any of the windows whether or not the mean 
has to be estimated. The estimated coefficients on (1 - Cai)-2/M3 c o n h  
that bias increases significantly as the sum of the autoregressive coefficients 
approaches one. The autoregressive parameters have an additional effect on bias 
via h(O), since h(0) = B( 1)2/A( 1)2. By contrast, the moving-average parameters 
affect bias only to the extent that they affect h(0). It is to be noted that the 
main reason why (6.1) performs well with both treatments of the mean, even 
though the difference in the two biases is O(MT/T), is that the sample for the 
mean unknown case is restricted to values of MT < T/2. Hence, we implicitlj 
restrict the sample to those cases where the biases are least different in the 
known and unknown mean cases. 

For the variance equations, the estimates reported in Tables IX and X suggesl 
a non-linear relationship between the variance of the estimators on the onc 
hand and the bandwidth and h(0) on the other. Interestingly, the sum of the 
autoregressive coefficients found significant in the bias equations are no1 
significant in the variance equations. The autoregressive and moving-averagc 
coefficients therefore have no statistically significant effect on variance beyonc 
that through h(0). 

The coefficient on h"(O)/M in the bias equations is always highly significan 
suggesting that the bias is larger the steeper is the spectral density function 
The approximation for the asymptotic bias in (2.5) assumes conditions such a: 
MTIT-~  0 for large T, and on values of r and q. These conditions are violatec 
in some of the cases considered, and could account for the discrepancies 
between the estimated coefficients and the asymptotic values reported ir 
Priestley (1981). 

The coefficient BO in (6.2) should correspond to the asymptotic proportion. 
ality factor 2J&t*(0)2 do. Unlike the asymptotic approximation for bias, whicl 
depends on such parameters as r and q as stated in (2.5), the asymptotic 
approximation of variance permits a more meaningful comparison with tht 
estimates PO. In general, the estimates are smaller than the asymptotic value! 
tabulated in Priestley (1981).6 To see how sensitive these results are to thc 
sample size, we also computed the exact bias and variance of the estimator: 
for T = 250. Including these observations and dropping those correspondinl 
to T =  50 tends to increase PO by 10%. Conversely, restricting the sample sizc 
to observations derived from 25 S TG 100 reduces PO to values mucl 
smaller than the tabulated asymptotic values. This suggests that asymptotic 
approximations should be used with caution when working with small samplc 
sizes. 

Analogous asymptotic values for a0 and PO are not available for the mea 
unknown case. While &O and PO are always significant and positive, they ten( 
to be smaller than the estimates for the known mean case. This is particular11 
so for PO of the variance equations. Care should also be taken in applyinl 
results valid when the mean is known to the case when the sample mean has tc 
be estimated. 
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7. CONCLUSION 

Our analysis reveals a marked difference in the finite sample bias and variance 
between estimators which have to estimate the sample mean from those which 
do not. While all windows produce exact errors of comparable size at optimal 
bandwidths, there is substantial variation in the performance of the estimators at 
suboptimal bandwidths. For most processes included in our simulations, small 
values of the bandwidth are adequate, but substantially larger values are 
necessary when the process is nearly integrated or when it has large negative 
moving-average errors. Asymptotic relationships which characterize the exact 
error are found to be poor guides for the sample sizes considered here. This has 
practical implications for plug-in rules which use the asymptotic values to guide 
the selection of the bandwidth. 

APPENDIX: DERIVATION AND COMPUTATION OF VAR (&) 

To derive the variance for A T ,  consider the expectation of the cross products of the 
autocovariances: 

~ { R T ( v ) f i T ( u ) )  = 
T - u  T - u  

(T-v)-'(T-u)-'Tj7~E{(X~ -X)(Xf+u - X ) ( X ,  -X>(Xs+, -X)}. (Al) 

It has been shown in Isserlis (1918) that for normally distributed variates A ,  B, C and 
D having zero- means, E(ABCD) = E(AB)E(CD) + E(_AC)E(BD) + E(AD)E(BC). Sub- 
stituting (X, - X), (xt+u - X), (X, - X) and (Xs+u - X )  for A ,  B, C and D, we have 

f = I  s=l 

E { R T ( v ) k T ( U ) }  

T - v  T - u  

= (T - v)-'(T - u>-1 c c [E{(X, - X)(X,+, - X>}E{(Xs - X)(Xs+u - X)} 

T - v  T-u 
= (T - v)-'(T - u)-l Tj7 7, [{R(t  - s) + var(X) - R(t) - R(s)} 

f = l  s=l 

. {R( t+v  -s - u) +var(X) -R( t+v )  -R(s  + u ) }  + {R(t  - s - u) 

+ var(X) - R(t) - R(s + u) } {R( t  + v - s) + var(X) - R(t + v) - R(s)}] 
T - v  T - u  

= (T - v)-'(T - u)-' c c [R(t - s)R(t + v - s - u)  
f = I  s=l 

+R(t-s-u)R(t+v-s)+2var(~)2 +var(X){R(t-s) 
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+ ~ ( t  + v - s - u)  + R(t - s - u) + R(t + v - s)} - 2var(X){R(t + v) 
+ R(t) + R(s) + R(s + u) }  + 2{R(t)R(t + v) + R(s)R(s + u) }  

- R(t){R(t  + v - s - u) + R(t + v - s)} - R(s + u){R(t - s) + R(t + v - s)} 
- R(s){R(t + v - s - u) + R(t - s - u) } ] .  

+ {R(t  + V) + R(t)}{R(s)  + R(s + U)} - R(t + v){R(t - S) + R(t - s - U)} 

(A3) 
It follows from (4.Q (A3) and the definition of var(&) that 

T-u T-u 

t=l s=l 

T- 1 
vfl(iT) = 4 c (T  - v)-'(T - #)-' c kT(u)kT(v) x [R(f - s)R(t + 'u - s - u) 

u, u=o 

+ R(t - s - u)R(t+ v - s) + 2var(x)2 +var(x){R(t - s) 

+ R(t + v - s - u) + R ( t  - s - u)  + R ( t  + v - s)} 
- 2 var (X){R(t  + v) + R( t )  + R(s) + R(s + u) }  + 2{R(t)R(t + v) 
+ R(s)R(s + u ) }  + {R(t  + v) + R(t)}{ii(s) + R(s + u) }  

- R(t + v){R(t - s) + R(t - s - u) }  + R(t){R(t + v - s - u) 

+ R(t + Z, - s)} - R(s + u){R(t - 8) + R(t + D - s)} 

+ R(s){R(t + v - s - u) + R(t - s - u) } ]  . 644) ) 
Equation (4.10) follows upon rearranging terms. 

computations, we define 
The expression (4.10) involves repeated calculations of many terms. To simplify the 

It is straightforward to show that 

(A6) 
TR(t + u) - C(t + u, u) 
TR(t) - C(t + u - T ,  u) 

if t + u d T 
otherwise 

T-P 
C R ( t - s ) =  { 
s= 1 

('47) 
T R ( t + u + v ) - C ( t + p + v ,  p)  if t + p + v  Q 

TR(t + v) - C(t + p + v - T ,  p)  otherwise 2 R(t + v - s) = 
s= 1 

T-P CR(t - s - u) = TR(t) - C(t, u)  
~~ 

s=l 

T-P 
E R ( t + v  - u -s) = TR( t+  V) - C ( t + v ,  u).  (A9) 

Interchanging s and by t and v gives expressions for CErR(t+ v - s - u), 
C z R (  t + v - s), C,=-rR(t - s) and C z R ( t  - s - u). Using (A6HA9) reduces 
(4.10) from a double summation to two single summations. 

All the calculations are performed using Turbo C Version 2 with supplementary 
numerical routines from Press et al. (1988). The numerical computations were very time 
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consuming due to the multiple loops involved. For example, with T =  100, the task took 
over a day to be executed on a 486 66Mhz. This precludes sample sizes greater than 
250. 

NOTES 

1. A consistent estimate of 4 can be obtained in the time domain using the sum of squared residuals 
from long autoregression estimated by ordinary least squares. One can also use a non-parametric 
method as suggested by Hannan and Nicholls (1977) to obtain strongly consistent and 
asymptotically normal estimates. Alternatively, one can taper the series in the frequency domain, 
a technique which Pukkila and Nyquist (1985) found to be particularly effective in reducing bias 
and variance when the series is near integrated. 

2. These statistics are valid under quite general regularity conditions on the moments of the 
innovations. See Phillips (1987) and Phillips and Perron (1988). 

3. The picture is basically similar at other sample sizes, except that with T= 150 the truncated 
window now performs better than the trapezoid window for processes in Group 1, and the Daniel1 
window performs reasonably well for processes in Group 2. The ranking is broadly similar when 
the mean is known. 

4. The exceptions are the Bartlett, truncated, quadratic and trapezoid windows. 
5. The regressions are estimated using the ‘ROBUST’ option in RATS Version 4.20. 
6. These are 4/3 for Bartlett (a), 1.08 for Parzen (a), 3/2 for Tikey-Hanning and 1.59 for Tukey- 

Hamming. 
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