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Abstract

Practitioners often have at their disposal a large number of instruments that are weakly exoge-
nous for the parameter of interest. However, not every instrument has the same predictive power
for the endogenous variable, and using too many instruments can induce bias. We consider two
ways of handling these problems. The first is to form principal components from the observed
instruments, and the second is to reduce the number of instruments by subset variable selection.
For the latter, we consider boosting, a method that does not require an a priori ordering of the
instruments. We also suggest a way to pre-order the instruments and then screen the instruments
using the goodness of fit of the first stage regression and information criteria. We find that the
principal components are often better instruments than the observed data except when the number
of relevant instruments is small. While no single method dominates, a hard-thresholding method
based on the t test generally yields estimates with small biases and small root-mean-squared errors.
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1 Introduction

Instrumental variables are widely used in empirical analysis. A good deal of
attention has been paid to the situation when a small number of instrumental
variables are weakly correlated with the endogenous regressors. An equally
practical problem is that many variables in the economic system can be weakly
exogenous for the parameters of interest. Even without taking into account
that lags and functions of predetermined and exogenous variables are also
valid instruments, the number of instruments that practitioners have at their
disposal can be quite large. This paper considers the selection of instrumental
variables in a ‘data rich environment’.

The problem is of empirical relevance for at least two reasons. First, the
weak instrument problem may be a consequence of not being able to pick
out those observed instruments most relevant for explaining the endogenous
regressors. Second, it is well known that the bias of instrumental variable
estimators increases with the number of instruments. Thus, irrespective of
whether the available instruments are strong or weak, a smaller instrument
set may be desirable on bias grounds. The question is how to determine this
set.

We evaluate three procedures for forming smaller instrument sets from two
larger sets of feasible instruments. These two feasible sets are (i) a set of N
observed variables that are weakly exogenous for the parameter of interest,
and (ii) the ordered principal components of the N variables. The three se-
lection procedures are (i) boosting, (ii) ranking the predictive ability of the
instruments one at a time, and (iii) information criteria applied to the ordered
instruments. Throughout, N is assumed to be large, at least 50.

The method of principal components has been used by Kloek and Mennes
(1960) to reduce the dimension of the instrument set. These authors were
concerned with situations when N is large relative to the given T (in their
case, T=30) so that the first stage estimation is inefficient. We are concerned
with a data rich environment when N may be smaller or larger than T , but is
large enough that a complete evaluation of the 2N possible instrument sets is
computationally burdensome, and that there is no natural ordering of the data
that can simplify the model selection process. Amemiya (1966) showed that
the method of principal components can be justified from a decision-theoretic
basis.

The use of principal components can be motivated from a different per-
spective. As Connor and Korajzcyk (1986) showed, the first r principal com-
ponents are consistent estimates of the r common factors underlying the pop-
ulation covariance of the data, if a factor structure indeed exists. Bai and
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Ng (2006) showed that when the factors driving the endogenous regressors
and the instruments are common, the principal components will estimate the
space spanned by the common factors, which in this case are also the ideal
instruments. Therefore, when the data admit a factor structure, using the
principal components will be more efficient than using the same number of
observed instruments directly. However, the factor structure is not necessary
to validate the use of principal components as instruments.

Instead of using subsets of the data orthogonalized by the method of prin-
cipal components, the instrument set can also be made smaller by eliminating
the unimportant variables. Amemiya (1966) conjectured that this method may
be even better than principal components if it is based on knowledge of the
correlation between the endogenous regressors and the instruments. However,
few procedures exist to select these instruments when the set of valid instru-
ments is large. We consider two possibilities:- information criteria and hard-
thresholding, both conditional on an ordering of the available instruments. We
also consider ‘boosting’ as an instrumental variables selection device. Boosting
is a statistical procedure that performs subset variable selection and shrinkage
simultaneously to improve prediction. It is a topic that has drawn a good
deal of interest in statistics in recent years. It has primarily been used in bio-
statistics and machine learning analysis as a classification and model fitting
device. Consideration of boosting in econometric analysis and especially as a
method for selecting instrumental variables appears to be new and is thus of
interest in its own right.

The rest of the paper proceeds by first presenting the estimation frame-
work in Section 2. The model selection procedures are discussed in Section 3.
Simulation results are presented in Section 4, and an application is given in
Section 5. Section 6 concludes.

2 The Econometric Framework

For t = 1, . . . T , let the endogenous variable yt be a function of a K × 1 vector
of regressors xt:

yt = x′1tβ1 + x′2tβ2 + εt

= x′tβ + εt (1)

The parameter vector of interest is β = (β′1, β
′
2)
′ and corresponds to the coef-

ficients on the regressors xt = (x′1t, x
′
2t)

′, where the exogenous and predeter-
mined regressors are collected into a K1×1 vector x1t, which may include lags
of yt. The K2 × 1 vector x2t is endogenous in the sense that E(x2tεt) "= 0 and
the least squares estimator suffers from endogeneity bias.
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We will be concerned with the properties of the standard GMM estimator.
Let Qt be a vector of instruments, and denote εt(β) = yt−x′tβ. Given a vector
of L moments gt(β) = Qtεt(β), and a L×L positive definite weighting matrix
WT , the linear GMM estimator is defined as

β̆QIV = argmin
β

ḡ(β)′WT ḡ(β)

= (S ′
QxWT SQx)

−1S ′
QxWT SQy

where ḡ(β) = 1
T

∑T
t=1 gt(β), SQx = 1

T

∑T
t=1 Qtx′t, and SQy is similarly defined.

Let ε̆t = yt − x′tβ̆QIV and let S̆ = 1
T

∑T
t=1 QtQ′

tε̆
2
t , where β̆QIV is a prelimi-

nary consistent estimator for β. Letting WT = S̆−1 gives the efficient GMM
estimator

β̂QIV = (S ′
QxS̆

−1SQx)
−1S ′

QxS̆
−1SQy.

This is the estimator whose properties will be evaluated for different choices
of Qt. Other estimators Properties of LIML and JIVE will also be considered.

We assume that there is a panel of valid instruments, Zt = (Z1t, . . . ZNt)′

that are weakly exogenous for β. Here, Zt can include lags of the endogenous
regressors, lags and functions (such as the square) of other predetermined
variables. Let Z = (Z1, Z2, ..., ZT ) be a N × T matrix. As many variables
in a large simultaneous system can be weakly exogenous for the parameter of
interest, N can be large.

The conventional approach is to take some zt ⊆ Zt to form a GMM esti-
mator with Qt = zt,

β̂ZIV = (S ′
zxS̆

−1Szx)
−1S ′

zxS̆
−1Szx.

If Z are valid instruments, linear combinations of Zt are also valid instruments.
Thus if F̃ are the principal components of the N×T matrix Z, F̃ is a matrix of
valid instruments. Let f̃t be a subset of F̃t. For example, f̃t may be the first few
principal components of Z. Estimation using the orthogonalized instruments
f̃t yields

β̂FIV = (S ′
efx

S̆−1S efx)
−1S ′

efx
S̆−1S efx.

How to choose f̃t from F̃t will be discussed below.
We consider two data generating processes, one assuming that the endoge-

nous variables and the instruments are correlated through common factors,
and one without being specific about this.

3

Ng and Bai: Selecting Instrumental Variables

Published by The Berkeley Electronic Press, 2008



DGP 1:

x2t =
N∑

i=1

πiZit + uit (2)

where E(Zitεt) = 0 and E(Zituit) = 0, π′ = (π1, ..., πN), π′π > 0 (positive
definite matrix). It is possible to have πi = 0 for some i. However, the
condition π′π > 0 implies that a sufficient number of valid instruments (no
smaller than K2) are contained in Zt.

DGP 2:

x2t = Ψ′Ft + ut (3)

Zit = λ′iFt + eit. (4)

where Ψ′ is K2 × r, λi is a r × 1 vector of loadings matrix, Ft is a r × 1
vector, and r is a small number. Endogeneity arises when E(Ftεt) = 0 but
E(utεt) "= 0. This induces a non-zero correlation between x2t and εt. We
assume that Ψ′Ψ > 0 and Ψ does not shrink to zero as T increases so that the
instruments Ft are ‘strong’. One interpretation of the model is that Ft is a vec-
tor of r common factors. Then λ′iFt is referred to as the common component of
Zit, eit is an idiosyncratic error that is uncorrelated with x2t and uncorrelated
with εt. In economic analysis, Ft is a vector of unobservable common shocks
that generate comovements amongst economic variables.1 A theoretical moti-
vation for this interpretation is given by Boivin and Giannoni (2006). Another
interpretation is that Zit and x2t are repeated but contaminated measures of
the ideal instrument, Ft.

Now viewed from either the factor model or the errors-in variables per-
spective, x2t is just K2 of the many other variables in the economic system
that contain information about Ft. If Ft were observed, β = (β′1, β

′
2)
′ could

be estimated by using Ft to instrument x2t. But the ideal instrument vector
Ft is not observed. In Bai and Ng (2006), we propose to use F̃ r

t , the first r
principal components of Z ′Z, as instruments, where r is assumed to be known.
Using a consistently estimated r will not affect the asymptotic results. Pro-
vided N and T tend to infinity, Theorem 1 of Bai and Ng (2006) showed that
the FIV (factor instrumental variable estimator) is

√
T consistent and asymp-

totically normal. Estimation and inference can proceed as though the ideal
instruments were observed. We also showed that if the FIV uses r factors as
instruments, it will be more efficient than a ZIV estimator that uses r observed

1Some factor loadings can be zero so that the corresponding series are not influenced by
the common shocks.
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instruments. While this efficiency argument hinges on a factor structure un-
derlying the data, consistency of the estimator using the principal components
as instruments does not.

Whether we use Zt or F̃t as instruments, and whether or not the data have
a factor structure, the factors that best explain the variation in Z may not be
the best in terms of explaining the endogenous variables, x2. For the purpose
of selecting instruments, we will simply refer to the instruments as Qt, which
can be F̃t or Zt.

There are two motivations for considering procedures that select instru-
ments. First, if Qt = Zt, few would expect every element of Zt to have the
same predictive power for x2t, even though they are all valid. It may also seem
that if Qt = F̃t, we can exploit the fact that the first principal component F̃1t

explains the most variance in Zit, F̃rt explains the most variance not explained
by (F̃1t, . . . , F̃r−1.t) and so on, with F̃jt orthogonal to F̃kt for j "= k. However,
of interest is not what explains the panel of instruments Zit per se, but what
explains x2t. Factors that have strong explanatory power for Zt need not be
good instruments for x2t. Second, Qt is a matrix with N columns, and the bias
of β̂GMM is known to increase with N . Both considerations motivate forming
a set of L instruments with K2 ≤ L ≤ N by removing those elements of Qt

that have weak predictive ability for x2t.
We call those Qjt ⊂ Qt with small explanatory power for x2t the ‘relatively

weak’ instruments, defined in Hahn and Kuersteiner (2002) as instruments
with Ψj in the T−δ neighborhood of zero and δ < 1

2 . They showed that
standard asymptotic results hold when such instruments are used to perform
two-stage least squares estimation. Let qt ⊂ Qt be a L × 1 vector of instru-
ments that remain after the relatively weak instruments are removed from Q,
where Q = (Q1, ..., QT )′ is a T × N matrix. The qt will be referred to as the
‘relevant instruments’. We do not allow for weak instruments in the sense of
Staiger and Stock (1997). This is considered analytically in Kapetanios and
Marcellino (2006) within a factor framework. We are interested in comparing
the properties of β̂QIV with an estimator that uses qt as instruments:

β̂qIV = (S ′
qxS̆

−1Sqx)
−1S ′

qxS̆
−1Sqy.

The estimator β̂QIV is a special case of β̂qIV with L = N . Both estimators are
consistent and asymptotically normal under the assumption that N is fixed.
It can also be shown that β̂QIV has a smaller variance, but β̂qIV has smaller
bias. There remains the question of how to form q from Q.

Several instrumental variable selection procedures have been considered in
the literature. In the case of simultaneous equations, Hall and Peixe (2000)
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suggest to first ‘structurally order’ the instruments as in Fisher (1965), and
then determine which instruments satisfy the required orthogonality condi-
tions. Andrews and Lu (2001) propose to use information type criteria to
select the number of moment conditions in a GMM setting, which amounts to
selecting instruments that satisfy the specified orthogonality conditions. Hall
and Peixe (2003) consider a ‘canonical correlation information criterion’ to
select relevant instruments from amongst those that satisfy the orthogonality
condition. Our setup is somewhat different as all instruments are valid and
thus satisfy the orthogonality condition.

Others have proposed procedures to select q with the goal of improving the
properties of β̂. Assuming that the instruments can be ordered, Donald and
Newey (2001) propose a selection method to minimize the mean-squared error
of β̂. Carrasco (2006) proposes to replace Szz by a matrix formed from L ≤ N
of the eigenvectors of Szz whose corresponding eigenvalues exceed a threshold.
The method is a form of regularization and is also referred to in the statistics
literature as the method of ‘supervised principal components’, see Bair et al.
(2006). The procedures proposed by Donald-Newey and Carrasco amount to
minimizing a Cp type criterion. Hall et al. (2007) consider an entropy-based
information criterion to select moments for GMM estimation that are both
valid and informative. Their criterion is based on the variance of the estimated
parameters instead of the fitted regression. Using Monte Carlo simulations,
Eryuruk et al. (2008) find that the method of Donald and Newey (2001), Hall
and Peixe (2003), and Hall et al. (2007) have similar median bias and finite
sample coverage probability.

A maintained assumption in studies that aim to minimize the mean-squared
error of β̂ is that N is either fixed, and/or the instruments can be ordered.
Otherwise, one would need to evaluate 2N models, which can be computation-
ally prohibitive. In what follows, we will be concerned with forming qt with
the objective of fitting x2t in the presence of x1t when the set of feasible instru-
ments is large and that there is no natural ordering to these instruments. This
amounts to selecting relevant instruments using the first stage regression. This
is a more modest task, but as Kapatanios (2006) pointed out, the problem of
minimizing the mean-squared error of β̂qIV when N is large is non-standard
since the space over which minimization occurs is discrete. He proposes to use
combinatorial algorithms to minimize the approximate mean-squared func-
tions over discrete domains. More delicate is the problem that consistency of
model selection procedures (such as the Cp) is proved under the assumption
that the number of models to be considered is finite. As discussed in Hansen
(2008), the chance of selecting a model that overfits increases with the number
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of model considered.

3 Determining the Relevant Instruments

We consider two methods: boosting, and a method that is based on first
ordering of the instruments by their relevance.

3.1 Boosting

Boosting was initially introduced by Freund (1995) and Schapire (1990) to the
machine learning literature as a classification device. It is recognized for its
ability to find predictors that improve prediction without overfitting and for
its low mis-classification error rate. Bai and Ng (2008) applied the boosting
method to forecasting in the presence of large number of predictors. An intro-
duction to boosting from a statistical perspective can be found in Buhlmann
and Hothorn (2006). For our purpose, it is best to think of boosting as a pro-
cedure that performs model selection and coefficient shrinkage simultaneously.
This means that variables not selected are set to zero, as opposed to being
shrunk to zero. In consequence, boosting results in very sparse models.

The specific L2 boost algorithm we use is based on component-wise least
squares. Component-wise boosting was considered by Friedman (2001) and
Buhlmann and Yu (2003). Instead of evaluating sets of regressors one set at
a time, the regressors are evaluated one at a time. Under component-wise
boosting the jth instrument (j is arbitrary) is as likely to be chosen as the
first; the ordering does not matter.

We are interested in finding instruments that can explain x2t after con-
trolling for x1t. To this end, let x̃2 = M1x2 and Q̃ = M1Q, where M1 =
I − x1(x′1x1)−1x1. Thus, x̃2t and Q̃t are the residuals from regressing x2t and
Qt, respectively, on x1t. Selecting the best subset qt out of Qt after control-
ling for x1t is then the same as extracting a q̃t from Q̃t that has the most
explanatory power for x̃2t.

Boosting is a multiple-stage procedure. Let Φ̂m be a T × 1 vector with
t-th component Φ̂t,m (t = 1, 2, ..., T ). Define φ̂m similarly. Let x̃2 denote the
sample mean of x̃2t. The boosting algorithm for fitting the conditional mean
of x̃2t given a set of N predictors, Q̃t, is as follows:

1 Initialize m = 0 and let Φ̂t,0 = φ̂t,0 = x̃2, (t = 1, 2, ..., T );

2 for m = 1, . . . M

a for t = 1, . . . T , let ut = x̃2t − φ̂t,m−1 be the ‘current residuals’;

7

Ng and Bai: Selecting Instrumental Variables

Published by The Berkeley Electronic Press, 2008



b for each i = 1, . . . N , regress the current residual vector u on Q̃.,i

(the i-th regressor) to obtain b̂i. Compute ê.,i = u − Q̃.,ib̂i as well
as SSRi = ê′.,iê.,i;

c let im be such that SSRim = mini∈[1,...N ] SSRi;

d let φ̂m = Q̃.,im b̂im ;

e for t = 1, . . . T , update Φ̂t,m = Φ̂t,m−1 + νφ̂t,m, where 0 ≤ ν ≤ 1 is
the step length.

Component-wise L2 boost may seem mysterious as it is relatively new to
economists, but it is nothing more than repeatedly fitting least squares to
the current residuals and selecting at each step the predictor that minimizes
the sum of square residuals. Note that component wise L2 boost selects one
predictor at each iteration, but the same predictor can be selected more than
once during the M iterations. This means that boosting makes many small
adjustments, rather than accepting the predictor once and for all. This seems
to play a role in the ability of boosting not to overfit.

After m steps, boosting produces Φ̂m(Q̃) = x̃2 ιT + Q̃δ̂m as an estimate
of the conditional mean, where δ̂m is a vector with potentially many zeros,
and ιT is a vector of 1’s. Zhang and Yu (2005) and Buhlmann (2006) showed
that boosting will consistently estimate the true conditional mean of x2. The
estimator δ̂m can be shown to follow the recursion (δ̂0 = 0)

δ̂m = δ̂m−1 + νb̂†m,

where b̂†m is an N × 1 vector of zeros, except that its imth element equals
b̂im . Thus, δ̂m and δ̂m−1 differ only in the im-th position. If x̃2 is T × K2,
the algorithm needs to be repeated K2 times. The boosting estimate of the
conditional mean can also be rewritten as Φ̂m(Q̃) = Bmx̃2, where

Bm = Bm−1 + νP (m)
eQ

(IT −Bm−1)

= IT − (IT − νP (0)
eQ

)(I − νP (1)
eQ

) · · · (IT − νP (m)
eQ

)

= IT −
m∏

j=0

(IT − νP (j)
eQ

) (5)

where, for m ≥ 1, P (m)
eQ

= Q̃.,im(Q̃′
.,imQ̃.,im)−1Q̃′

.,im is the projection matrix

based upon the regressor that is selected at the m-th step, and P (0) = 1
ν ιT ι′T /T

with ιT being a T × 1 vector of 1s. This implies that B0 = ιT ι′T /T so that
B0x̃2 = x̃2ιT , which is the value used to initialize the boosting procedure. A
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distinctive feature of boosting is that it will produce a sparse solution when
the underlying model structure is sparse. In our context, a sparse structure
occurs when there are many relatively irrelevant instruments and Ψ has small
values in possibly many positions.

If the number of boosting iterations (M) tends to infinity, we will eventually
have a saturated model in which case all predictors are used. The sparseness
of δ̂M is possible only if boosting is stopped at an ‘appropriate’ time. In the
literature, M is known as the stopping rule. It is often determined by cross-
validation in situations when a researcher has access to training samples. But
this is often not the case in time series economic applications. Let

dfm = trace(Bm).

We follow Buhlmann (2006) and let M = argminm=1,...M̄ IC(m) where

IC(m) = log(σ̂2
m) +

AT · dfm

T

and σ̂2
m = T−1SSRim . The BIC obtains when AT = log(T ), and AIC obtains

when AT = 2. The primary departure from the standard AIC/BIC is that the
complexity of the model is measured by the degrees of freedom, rather than
by the number of predictors. In our experience, the degrees of freedom in a
model with k predictors tends to be higher than k.

Under boosting, δ̂M is expected to be sparse if the number of truly relevant
instruments is small. The sparseness of δ̂M is a feature also shared by the
LASSO estimator of Tibshirani (1996), defined as

δ̂L = argmin
δ

∥∥∥x̃2 − Q̃δ̃
∥∥∥

2

+ λ
N∑

j=1

|δj|.

That is, LASSO estimates δ subject to a L1 penalty. Instrumental variable
selection using a ridge penalty has been suggested by Okui (2004) to solve the
‘many instrument variable’ problem. The ridge estimator differs from LASSO
only in that the former replaces the L1 by an L2 penalty. Because of the
nature of L2 penalty, the coefficients can only be shrunk towards zero but
will not usually be set to zero exactly. As shown in Tibshirani (1996), the
L1 penalty performs both subset variable selection and coefficient shrinkage
simultaneously. Efron et al. (2004) showed that certain forward stagewise
regressions can produce a solution path very similar to LASSO, and boosting is
one such forward-stagewise regression. We consider boosting because the exact
LASSO solution is numerically more difficult to solve, and that boosting has
been found to have better properties than LASSO in the statistics literature.
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3.2 Ranking the Instruments

Conventional variable selection procedures necessitate an evaluation of 2N pos-
sible models if there are N potential instruments. This can be computationally
costly if N is large and the instruments do not have a natural ordering. It
is, however, useful to compare boosting with alternative variable selection
methods. To reduce the number of model evaluations, we use the marginal
predictive power of the instruments for the endogenous regressor to rank the
instruments. More precisely, for each i = 1, . . . N , we consider least squares
estimation of

x2t = γ0 + x′1tγ1 + γ2iQit + error.

This is simply a first stage regression, the same regression that underlies the
first-stage F test in determining if an observed instrument is a weak. We
use the t statistic for γ̂2 to rank the relative importance of the instruments,
though the R2 can equivalently be used. The ranking yields {Q[1]t, . . . Q[N ]t},
the ordered instrument set. Again, Q[i]t can be Z[i]t or F̃[i]t . Given the ordered
instruments, the simplest subset-variable selection procedure is to form

qt = {Q[i]t : |t[i],bγ2 | > c}

where t[i],bγ2 is the t-statistic and c is a threshold value. This is essentially a
hard thresholding method that keeps as instruments all those variables whose
t statistic for γ̂2 exceeds c.

In addition to the t test, we also apply the information criterion to the
ordered instrument set. Specifically, We first rank Qt using the absolute value
of the t test. Given Q[1]t, Q[2]t, . . . Q[N ]t, the set of ranked instruments, we can

now obtain σ̂2
l = T−1

∑T
t−1 ê2

tl , where êtl is the residual from regressing x2t on
x1t and the first l of the ordered instruments. Let

L = argmin
n

log(σ̂2
n) + nAT /T.

The selected instrument set is then

qt = {Q[1]t, Q[2]t, . . . Q[L]t}.

We use the BIC with AT = log(T ), which is known to select more parsimonious
models.

4 Finite Sample Properties

In this section, we study the finite sample properties of the GMM estima-
tor when different methods are used to select the instruments. Estimation
proceeds as follows:
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1. Form the potential instrument set, Qt, which can be F̃t or Zt;

2. for boosting, partial out the effect of x1t from both x2t and Qt to yield
x̃2t and Q̃t;

3. use boosting, the t test, or the BIC to determine l1, . . . lL, the positions
in Qt to keep. Let qt = (Qtl1 , . . . QtlL);

4. perform GMM estimation with q+ = [x1 q] as instruments and an
identity weighting matrix to yield β̆. Let S̆ = 1

T

∑T
t=1 ε̆2

t q
+
t q+′

t , where

ε̆t = yt − x′tβ̆;

5. re-do GMM one more time using W = S̆−1 to yield β̂qIV .

We consider GMM estimation with six sets of instruments:

• FIVb: qt = f̃t ⊂ (F̃t,1 . . . F̃t,N)′ chosen by boosting

• FIVt: qt = f̃t ⊂ (F̃t,1 . . . F̃t,N)′ such that |tbγ2| > c;

• FIVic: qt = f̃t ⊂ (F̃t,1 . . . F̃t,lmax) chosen using the BIC;

• IVb: qt = zt ⊂ (Zt,1, . . . Zt,N)′ chosen by boosting;

• IVt: qt = zt ⊂ (Zt,1, . . . Zt,N)′ chosen such that |tbγ2| > c;

• IVic : qt = zt ⊂ (Zt,1, . . . Zt,N)′ chosen using the BIC.

We set the maximum number of boosting iterations M at M̄ = min[N1/3, T 1/3].
We follow the literature and set ν to 0.1. The threshold for the t test is set
at 2.5, which is slightly above the critical value for the two-tailed one percent
level. When the number of t statistics passing the threshold of 2.5 exceeds 20,
we take the top twenty variables. An upper bound of 20 variables is also put
on the BIC.

We consider five data generating processes in the simulations:

DGP 1. The model is adapted from Moreira (2003):

yt = x1tβ1 + x2tβ2 + σyεt

xi1t = αxxi1,t−1 + eix1t, i = 1, . . . K1

xi2t = λ′i2Ft + eix2t, i = 1, . . . K2

zit = λ′izFt + σzieit, i = 1, 2, ..., N

Fjt = ρjFjt−1 + ηjt, j = 1, . . . r

where εt = 1√
2
(ε̃2

t − 1) and eix2t =
√

rσx2
1√
2
(ẽ2

ix2t − 1) with ε̃t and ẽix2t to

be defined later; αx ∼ U(.2, .8), eix1t ∼ N(0, 1), and both αx and eix1t are
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uncorrelated with ẽjx2t and ε̃t. Furthermore, eit ∼ N(0, 1), ηjt ∼ N(0, 1),
λiz ∼ N(0, 1), and ρj ∼ U(.2, .8). Finally, (ε̃t, ẽ′x2t) ∼ N(0K2+1, Σ) where
diag(Σ) = 1,Σ( j, 1) =Σ(1 , j) ∼ U(.3, .6), and zero elsewhere. This means
that ε̃t is correlated with ẽix2t with covarianceΣ(1 , i) but ẽix2t and ẽjx2t are
uncorrelated (i "= j). By construction, the errors are heteroskedastic. The
parameter σ2

y is set to K1σ̄2
x1 + K2σ̄2

x2 where σ̄2
xj is the average variance of xjt,

j = 1, 2. This puts the noise-to-signal ratio in the primary equation of roughly
one-half. We considered various values of K2, σx2, σz, and r. The parameter
of interest is β2 whose true value is 2. The results are reported in Table 1 with
K1 = K2 = 1.

DGP 2, 3. The model is based on Carrasco (2006). Let

yt = β2x2t + εt

x2t = z′tπ + ut

(
εt

ut

)
iid N(0, Σ), Σ =

(
1 .5
.5 1

)

where zt ∼ N(0, IN), R2
x2 = π′π

1+π′π = {.9, .75, .5}. Two cases are considered

DGP 2: πj = d(1− .5j
L+1)

4, d is chosen such that π′π = R2
x2

1−R2
x2

.

DGP 3: πj = ( R2
x2

N(1−R2
x2)

)1/2.

In both cases, β2 = 1.0. Under DGP 2, the instruments are in decreasing
order of importance. The smaller is R2

x2, the less predictable is x2. When
R2

x2 = .9 and N = 100, π ranges from .628 to .047, with about 12% of the π
coefficients bigger than .5, and 30% of the π coefficients between .25 and .5.
When R2

x2 = .5, the coefficients range from .209 to .0139. While none of the
coefficients exceed .25, 34% exceed .1. Under DGP 3, the instruments are of
equal importance and there is no reason to choose one instrument over another.
The π coefficients are .3, .1732, and .1 for R2

x2 = .9, .75, .5, respectively. Thus
when R2

x2 = .5, DGP 2 simulates a case of few relevant instruments while DGP
3 simulates a case of many relatively weak instruments. Arguably, when R2

x2

falls below .5, DGPs 2 and 3 do not constitute a data rich environment as the
number of relevant instruments is in fact quite small.

DGPs 4, 5. An undesirable feature of DGPs 2 and 3 is that the degree of
endogeneity always increases as the predictability of the endogenous regressor
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decreases. In other words, the instruments are weaker when the endogeneity
bias is more severe. We consider two other DGPs that allow the variance of
εt to be a free parameter. Specifically, we let

Σ =

(
σ11 .25
.25 1

)

where σ11 = (2.5, 1.5, .5), holding R2
x2 fixed at 0.5. Under DGP 4, 20% of the

πs exceed 0.5, while the π coefficients are now .1414 under DGP 5. It should
be remarked that under DGPs 3 and 5, some relevant instruments will always
be omitted whenever L < N , and such omission cannot be justified on a priori
grounds.

4.1 Results

We compare the estimators using the mean estimate and the root-mean-
squared error in 1000 replications. We also report the average endogeneity
bias (ρ) as measured by the correlation between εt and x2, the predictability
of the endogenous variable as measured by the 1 − var(u2)

var(x2) , and a measure of
commonality in the instruments. In theory, if the data have r factors, the r
largest eigenvalues of the population covariance matrix of Z should increase
with N while the r+1-th eigenvalue is bounded. Therefore we also report µr+1

µr
,

the ratio of (r + 1)th over the rth eigenvalues. The smaller is this quantity,
the stronger is the factor structure.

The results for DGP 1 (the factor model) are reported in Table 1. The
impact of endogeneity bias on OLS is immediately obvious. The six IV es-
timators all provide improvements. Of the six methods, boosting and the t
test select more variables than the BIC. Under DGP 1, the instruments and
the endogenous regressor share common factors. Thus, many observed instru-
ments have strong correlations with x2. Not surprisingly, the t test detected
this. The number of instruments used by the t test is 20 in view of the upper
bound. The number of observed instruments being selected is always higher
than the number of principal components being selected, indicating that the
principal components is effective in compressing information. The BIC tends
to select the most parsimonious set of instruments.

The point estimates are closer to the true value when σ2
z is small. A

higher σ2
z increases both the bias and RMSE. Put differently, the estimates

are less precise when the common factors have weak explanatory power for
the endogenous regressor. In results not reported, the estimates are also more
precise when T increases but do not vary systematically with N . The t test
on the principal components produces estimates that are closest to the true
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value of 2. Although its RMSE is not always the smallest, no one method
systematically dominates the other in terms of RMSE. However, using the
principal components tends to yield smaller bias than the observed instruments
when the instruments are selected by boosting or the t test.

We now turn to DGP 2. Unlike DGP 1, the data no longer have a factor
structure. Thus, µr+1

µr
is much larger in DGPs 2 and 3 than in DGP 1. While

F̃t are still valid instruments under DGP 2 (and 3), these are no longer esti-
mates of the ideal instruments. Evidently, all estimators provide significant
improvements over OLS when R2

x2 (the strength of the instruments) is high.
However, as R2

x2 falls, the bias in all the estimators increases and the estimates
move toward OLS. By the construction of DGP 2, x2 is predicted only by a few
variables. If these variables can be isolated, they should be better instruments
than principal components as these are linear combinations of the available
instruments, some of which have no explanatory power. The results bear this
out. The three methods used to select observed instruments are quite compa-
rable both in terms of bias and RMSE. Of the three methods, the t test (with
c = 2.5) tends to select the smallest instrument set.

Under DGP 3, all instruments have the same predictive power for x2 and
there is no priori reason to choose one over another. Indeed, given that π is
a constant vector, an efficient instrument can be obtained by summing all N
series. Such an option is not available, though the principal components should
achieve this goal approximately. The simulations reveal that the estimates
using the principal components are better than those using a subset of observed
instruments. However, as the degree of endogeneity rises while the instruments
get weaker, all methods are biased, even though the estimates are closer to the
true value than OLS.

DGPs 4 and 5 allow the strength of the instruments to increase with the
degree of endogeneity. Evidently, the estimates are much less biased than those
reported in Table 2. However, as in DGP 2 when the endogenous regressor is
a function of just a few variables, carefully selecting the observed variables as
instruments dominates the principal components approach. And as in DGP
3 when all instruments have equal predictive power, the method of principal
components achieves dimension reduction and is generally superior to using
the observed variables as instruments. However, Table 3 reveals that even
when the instruments are strong (with R2

x2 well above .66), the bias in all
the estimates can still be quite substantial. Both the bias and RMSE are
increasing in N , the number of instruments available, and L, the number of
instruments chosen. This, however, is an artifact of the DGP which allows the
number of explanatory variables for x2 to increase with N .
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All three instrument selection methods involve pretesting, and it is of some
interest to see to what extent this affects the asymptotic distribution of the
estimators. Figure 1 presents the standardized distribution of β̂2 for DGP 1,
σ2

ε = σ2
z = 1. Notably, all distributions appear to be symmetric. The tails

of the distribution suggest that there are some large outliers, but the normal
distribution seems to be a reasonably good approximation to the finite sample
distribution of the estimators. The issue with the IV estimation is not so much
its shape, but where it is centered. From this perspective, the β̂2 produced by
using the t test to select the principal components (labeled FIVt) appears to
have the best properties.

Overall, using the observed data are better than the principal components
only when the endogenous variables can be predicted by a small number of
instruments. Or, in other words, when the data rich environment assumption
is not appropriate. Otherwise, principal components compress the information
in the available instruments to a smaller set of variables and is preferred on
bias grounds. The three methods considered have comparable properties when
T is large. For small T , the t test has better biased properties but sometimes
has large RMSE. Which method one chooses depends on the preference of the
practitioner. When (i) the degree of endogeneity is large, (ii) when the instru-
ments are weak or when ideal instruments do not exist, the point estimates
can be biased whichever method we use to select the instruments.

4.2 Other Estimators

The two stage least squares estimator is known to have poor finite sample prop-
erties, especially when the number of instruments is large. Newey and Smith
(2004) showed using higher order asymptotic expansions that the bias of the
GMM estimator is linear in N − K2, which is the number of overidentifying
restrictions. Phillips (1983) showed that the rate at which β̂2SLS approaches
normality depends on the true value of β and N . Hahn and Hausman (2002)
showed that the expected bias of 2SLS is linear in N , the number of instru-
ments. The result arises because E(x′PQε/T ) = E(u′PQε/T ) = σuεN/T . The
question then arises as to whether the instrument selection procedures we
considered is as effective when other estimators are used.

To gain some insight into this question, we also evaluate the finite sample
properties of LIML and the estimator by Fuller, both considered in Donald
and Newey (2001) and Hausman et al (2007), among others. These results are
reported in Tables 4, 5, and 6 for Models 1, 2, and 3 respectively. Compared
with results for the IV reported in Tables 1 to 3, LIML and FULLER have
smaller biases, with FULLER being the most accurate. However, as far as
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selecting instruments is concerned, the general picture holds up. Specifically,
for Model 1, using the t test to select the instruments gives more precise
estimates. For Models 2 and 3, all three methods (boosting, IC, and t test)
have rather similar performances, with no particular method dominating the
others. Comparing the LIML and FULLER results with those of the IV,
the advantage of using principal components over the observed instruments
is not as strong for Model 1, though for Models 2 and 3, forming principal
components still seems desirable.

5 Application

Consider estimating the elasticity of intertemporal substitution, denoted, ψ.
Let rt+1 be a measure of real asset returns, which for the purpose of illustration,
we will use the real interest rate. As discussed in Yogo (2004), ψ can be
estimated from

rt+1 = b +
1

ψ
∆ct+1 + er,t+1

by instrumenting ∆ct+1, where ∆ct is consumption growth. It can also be
estimated from the reverse regression

∆ct+1 = a + ψrt+1 + ec,t+1

by instrumenting rt+1. Whereas rt+1 is persistent and thus predictable, ∆ct+1

tends to be difficult to predict. The first formulation is thus more susceptible
to the weak instrument problem, especially when the number of instruments
considered is small.

We take the data used in Yogo (2004), who used the nominal interest rate,
inflation, consumption growth, and the log dividend price ratio lagged twice as
instruments. His results will be labeled IV. Additionally, we use data collected
in Ludvigson and Ng (2007), which consist of quarterly observations on a panel
of 209 macroeconomic series for the sample 1960:1-2002:4, where some are
monthly series aggregated to quarterly levels. Following Yogo (2004), we only
use data from 1970:3-1998:4 for the analysis for a total of 115 observations.
Principal components are estimated from the 209 series, all lagged twice.2

Thus Zt is of dimension 209+4, while F̃t is of dimension min[N, T ]+4, since the
four instruments used in Yogo (2004) are always included in the instrument set,
and there are min[N, T ] non-zero eigenvalues. We can give some interpretation
to the principal components by considering the marginal R2 of each factor
in each series. This is obtained by regressing each series on the principal

2The PCP criterion developed in Bai and Ng (2002) chooses 8 factors.
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components one at a time. This exercise reveals that the highest marginal
R2 associated with F̃1t is UTIL1 (capacity utilization), F̃2t is PUXHS (CPI
excluding shelter), and F̃3t is DLAGG (a composite index of seven leading
indicators).

The results are reported in Tables 7a and 7b. The upper bound on the
instruments considered by BIC is set at 20, and a threshold of 2.5 is used
for the t test. Notably, it is much easier to predict real interest rate than
consumption. Whichever is the endogenous regressor, there is predictability
beyond the instruments used in Yogo (2004). The R2

x2 increases from .08 to
as much as .375 in the regression for estimating 1/ψ, and from .279 to .528 in
the regression for estimating ψ.

For the first regression when the parameter of interest is 1/ψ, F̃1t, F̃6t,
and F̃7t along with 13 other factors and lagged consumption were selected
by boosting. The t test selects a principal component that corresponds to
those of the largest ten eigenvalues, along with lagged consumption. The BIC
selects 4 principal components along with lagged consumption growth. The
first three variables selected by boosting are GNSQF, GYFIR, and LBCPU,
though nominal interest rate was also significant. The top three observed
variables selected by the t test are PUXM, GNET, and PWIMSA. Lagged
consumption growth was also chosen. The BIC selects GDCD, along with
lagged consumption growth used in Yogo (2004). However, none of the first
stage R2

x2 exceeds 0.4.
For the second regression when the parameter of interest is ψ, F̃2t, F̃5t, F̃6t

and 8 other principal components are selected by boosting, along with inflation
and lagged consumption growth. The t test chooses F̃2t, consumption growth
and one other factor, while the BIC additionally selects seven other principal
components. However, these two methods do not select the variables used in
Yogo (2004). Along with the nominal interest and lagged inflation, boosting
selects FMD, GFINO, and GYDPCQ as additional observed instruments. The
t test selects all four variables used in Yogo (2004), along with BPB. The IC
selects the nominal interest rate along with GDFSFC, PUCX, HS6FR, and
LIPM. The picture is thus quite clear that information is available in predicting
the endogenous regressor beyond what was used in Yogo (2004).

As far as the estimates go, using the principal components as instruments
all come out much better determined than using the observed instruments.
The point estimate of 1/ψ ranges from .470 to 1.453. But the endogenous
regressor here is consumption growth, which has little predictability. Using the
simulation results of DGP 2 and 3 as guide, one might expect these estimates to
be strongly biased. The endogenous regressor associated with ψ in the second
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equation is the real interest rate, which is persistent and can be predicted by
many variables. Arguably, the real interest rate can be predicted by common
factors in the economy. Thus if we use DGP 1 as a guide, the estimates using
the principal components should be quite precise. The estimates for ψ range
from .066 to .109. They are slightly higher than the IV with four observed
instruments used in Yogo (2004). As the endogenous regressor is quite well
predicted by the principal components, the weak instrument problem is of
smaller concern. Our estimates suggest that the intertemporal elasticity of
substitution is around .1 and is only marginally significant.

6 Conclusion

It is not uncommon for practitioners to have at their disposal a large number
of variables that are weakly exogenous for the parameter of interest, some of
which are especially informative about the endogenous regressor. Yet, there are
few guides in the literature for forming subsets of instruments for estimation.
This paper considers three methods, and also evaluates the effectiveness of
using the principal components instead of the observed instruments directly.
The results suggest that when the instruments have a factor structure, the
principal components approach is unambiguously preferred to using the raw
data as instruments. Ranking the t statistics of the first stage regression is
effective in picking out those principal components most useful for estimation.
When there are truly only a few instruments that have predictive power for
the endogenous regressor, or in other words, the practitioner does not actually
have many variables informative about the endogenous regressor, the observed
data are better instruments than the principal components. When there is
a large number of instruments each contributing to a small fraction of the
variation in the endogenous regressor, the method of principal components is
still preferred, even when an ideal instrument may not exist. In such a case,
all three methods for selecting instruments have comparable properties.
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Table 1: Finite Sample Properties of β̂2, GMM

T Nσ x2 σz ρ µk+1
µk

R̂2
x2 FIVb FIVt FIVic IVb IVt IVic OLS

DGP 1: β0
2 = 2.0

200 50 1.0 1.0 0.253 0.053 0.527 2.037 2.024 2.038 2.055 2.075 2.041 2.389
0.154 0.155 0.155 0.157 0.166 0.163 0.420

5 4 5 9 20 4
200 50 1.0 5.0 0.633 0.325 0.241 2.333 2.148 2.205 2.421 2.380 2.283 3.178

0.436 0.346 0.375 0.493 0.463 0.427 1.202
6 3 4 10 16 2

200 100 1.0 1.0 0.429 0.042 0.527 2.156 2.012 2.102 2.129 2.122 2.053 2.722
0.231 0.172 0.203 0.209 0.205 0.181 0.752

8 3 5 13 20 4
200 100 1.0 5.0 0.316 0.143 0.353 2.200 2.049 2.117 2.185 2.151 2.078 2.511

0.274 0.213 0.230 0.259 0.240 0.227 0.542
10 3 5 15 20 4

200 50 3.0 1.0 0.539 0.057 0.297 2.184 2.070 2.113 2.165 2.238 2.102 2.842
0.276 0.240 0.247 0.259 0.309 0.246 0.865

6 3 4 8 20 2
200 50 3.0 5.0 0.508 0.245 0.300 2.176 2.085 2.117 2.219 2.220 2.093 2.783

0.268 0.236 0.246 0.295 0.296 0.237 0.807
6 3 4 10 19 2

200 100 3.0 1.0 0.295 0.030 0.322 2.164 2.043 2.097 2.079 2.107 2.034 2.418
0.234 0.192 0.206 0.191 0.196 0.198 0.447
10 3 5 9 20 2

200 100 3.0 5.0 0.296 0.169 0.375 2.154 2.039 2.093 2.149 2.113 2.072 2.417
0.218 0.170 0.183 0.209 0.189 0.181 0.443
10 3 5 17 20 4

Note: T is the sample size and N is the number of observed valid instruments; σx2 and σz

are scale parameters for innovations to x2 and z; ρ is the correlation coefficient between the
regression error and the endogenous regressor x2, while R̄2

x2 measures the predictability of
x2. Furthermore, µk is the k-th largest eigenvalue of the z′z matrix. FIV uses estimated
factors as instruments while IV uses observed variables as instruments. The instruments
are selected by boosting (b), t test (t), and BIC (ic).
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Table 2: Finite Sample Properties of β̂2, GMM

T N Rx
x2 ρ µk+1

µk
R̂2

x2 FIVb FIVt FIVic IVb IVt IVic OLS
DGP 2: β0

2 = 1.0
200 50 0.900 0.157 0.941 0.899 1.010 1.010 1.010 1.012 1.012 1.012 1.050

0.029 0.032 0.028 0.030 0.030 0.028 0.054
11 8 17 14 13 20

200 50 0.750 0.249 0.941 0.750 1.028 1.029 1.028 1.035 1.035 1.034 1.125
0.055 0.060 0.054 0.057 0.061 0.054 0.129
11 7 14 14 12 19

200 50 0.500 0.351 0.941 0.495 1.076 1.074 1.075 1.090 1.090 1.089 1.249
0.111 0.126 0.115 0.117 0.124 0.119 0.253
11 5 9 14 8 12

200 100 0.900 0.157 0.952 0.899 1.017 1.017 1.019 1.015 1.020 1.020 1.050
0.033 0.038 0.034 0.032 0.037 0.035 0.055
20 8 20 20 15 19

200 100 0.750 0.248 0.954 0.748 1.049 1.050 1.055 1.044 1.055 1.054 1.124
0.066 0.078 0.071 0.063 0.075 0.072 0.129
20 7 20 20 12 16

200 100 0.500 0.352 0.953 0.497 1.128 1.117 1.131 1.119 1.139 1.137 1.249
0.145 0.156 0.151 0.138 0.166 0.160 0.253
20 5 14 20 8 10

DGP 3: β0
2 = 1.0

200 50 0.900 0.158 0.942 0.899 1.010 1.010 1.010 1.023 1.023 1.022 1.050
0.031 0.034 0.030 0.038 0.040 0.037 0.055
11 8 17 18 14 19

200 50 0.750 0.250 0.943 0.748 1.029 1.027 1.030 1.058 1.061 1.058 1.126
0.059 0.062 0.058 0.077 0.085 0.079 0.131
11 7 14 18 11 17

200 50 0.500 0.351 0.941 0.497 1.073 1.072 1.071 1.126 1.137 1.135 1.249
0.107 0.121 0.109 0.146 0.170 0.162 0.253
11 5 9 16 7 10

200 100 0.900 0.157 0.952 0.899 1.018 1.017 1.020 1.029 1.030 1.030 1.050
0.033 0.037 0.034 0.044 0.047 0.046 0.054
20 8 20 20 13 14

200 100 0.750 0.248 0.952 0.749 1.048 1.046 1.053 1.072 1.073 1.075 1.124
0.066 0.077 0.070 0.087 0.094 0.093 0.129
20 7 20 20 11 12

200 100 0.500 0.354 0.954 0.497 1.133 1.127 1.135 1.163 1.170 1.172 1.251
0.150 0.167 0.156 0.179 0.198 0.196 0.255
20 5 14 20 7 8
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Table 3: Finite Sample Properties of β̂2, GMM

T N Rx
x2 ρ µk+1

µk
R̂2

x2 FIVb FIVt FIVic IVb IVt IVic OLS
DGP 4: β0

2 = 1.0
200 50 2.500 0.130 0.941 0.284 1.031 1.036 1.033 1.035 1.034 1.035 1.070

0.081 0.116 0.100 0.074 0.104 0.094 0.080
9 3 5 13 5 6

200 50 1.500 0.157 0.941 0.401 1.035 1.038 1.037 1.044 1.045 1.045 1.099
0.085 0.112 0.094 0.085 0.103 0.094 0.109
11 4 7 14 6 8

200 50 0.500 0.201 0.941 0.663 1.040 1.038 1.039 1.046 1.049 1.046 1.165
0.095 0.105 0.094 0.093 0.099 0.092 0.175
11 6 12 14 10 17

200 100 2.500 0.134 0.952 0.282 1.049 1.042 1.046 1.046 1.048 1.049 1.072
0.082 0.126 0.103 0.080 0.116 0.107 0.082
16 3 7 20 5 6

200 100 1.500 0.156 0.954 0.397 1.060 1.057 1.059 1.055 1.056 1.058 1.099
0.090 0.126 0.101 0.088 0.116 0.109 0.108
20 4 10 20 6 8

200 100 0.500 0.202 0.953 0.664 1.070 1.068 1.077 1.065 1.081 1.080 1.165
0.104 0.123 0.108 0.100 0.124 0.116 0.175
20 6 20 20 11 14

DGP 5: β0
2 = 1.0

200 50 2.500 0.134 0.942 0.281 1.033 1.033 1.034 1.044 1.046 1.047 1.072
0.085 0.119 0.104 0.082 0.123 0.109 0.081

9 3 5 14 4 5
200 50 1.500 0.160 0.943 0.397 1.037 1.032 1.035 1.053 1.060 1.060 1.101

0.091 0.114 0.097 0.094 0.124 0.115 0.111
10 4 7 15 6 7

200 50 0.500 0.202 0.941 0.665 1.038 1.037 1.038 1.077 1.082 1.078 1.165
0.091 0.102 0.091 0.112 0.129 0.117 0.174
11 6 12 17 10 15

200 100 2.500 0.132 0.952 0.284 1.049 1.040 1.046 1.052 1.053 1.052 1.070
0.079 0.122 0.095 0.082 0.121 0.107 0.080
16 3 7 20 4 5

200 100 1.500 0.157 0.952 0.397 1.059 1.055 1.058 1.069 1.068 1.069 1.100
0.091 0.125 0.101 0.097 0.123 0.117 0.109
20 4 10 20 6 7

200 100 0.500 0.206 0.954 0.665 1.074 1.073 1.081 1.104 1.107 1.111 1.168
0.109 0.130 0.113 0.135 0.151 0.148 0.178
20 6 20 20 9 11
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Table 4a: Finite Sample Properties of β̂2, LIML

T Nσ x2 σz ρ µk+1
µk

R2
x2 FLMb FLMt FLMic LMb LMt LMic OLS

DGP 1: β0
2 = 2.0

200 50 1.0 1.0 0.253 0.053 0.527 2.025 2.017 2.027 2.029 2.011 2.030 2.389
0.153 0.154 0.153 0.153 0.158 0.161 0.420

5 4 5 9 20 4
200 50 1.0 5.0 0.633 0.325 0.241 2.174 2.123 2.136 2.272 2.113 2.276 3.178

0.342 0.320 0.331 0.382 0.322 0.418 1.202
6 3 4 10 16 2

200 100 1.0 1.0 0.429 0.042 0.527 2.077 2.002 2.050 2.054 1.997 2.039 2.722
0.185 0.174 0.180 0.178 0.177 0.178 0.752

8 3 5 13 20 4
200 100 1.0 5.0 0.316 0.143 0.353 2.154 2.039 2.090 2.122 2.041 2.066 2.511

0.248 0.211 0.219 0.230 0.218 0.224 0.542
10 3 5 15 20 4

200 50 3.0 1.0 0.539 0.057 0.297 2.103 2.053 2.072 2.085 2.014 2.099 2.842
0.236 0.234 0.231 0.231 0.236 0.241 0.865

6 3 4 8 20 2
200 50 3.0 5.0 0.508 0.245 0.300 2.104 2.068 2.080 2.129 2.035 2.087 2.783

0.233 0.227 0.229 0.244 0.230 0.232 0.807
6 3 4 10 19 2

200 100 3.0 1.0 0.295 0.030 0.322 2.125 2.034 2.075 2.041 1.999 2.035 2.418
0.215 0.192 0.199 0.187 0.201 0.196 0.447
10 3 5 9 20 2

200 100 3.0 5.0 0.296 0.169 0.375 2.119 2.032 2.072 2.094 2.025 2.063 2.417
0.199 0.170 0.176 0.184 0.178 0.179 0.443
10 3 5 17 20 4
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Table 4b: Finite Sample Properties of β̂2, Fuller

T Nσ x2 σz ρ µk+1
µk

R2
x2 FFUb FFUt FFUic FUb FUt FUic OLS

DGP 1: β0
2 = 2.0

200 50 1.0 1.0 0.253 0.053 0.527 2.022 2.013 2.023 2.026 2.007 2.026 2.389
0.153 0.154 0.154 0.153 0.159 0.162 0.420

5 4 5 9 20 4
200 50 1.0 5.0 0.633 0.325 0.241 2.149 2.090 2.106 2.252 2.085 2.245 3.178

0.339 0.322 0.331 0.373 0.323 0.407 1.202
6 3 4 10 16 2

200 100 1.0 1.0 0.429 0.042 0.527 2.071 1.995 2.044 2.048 1.991 2.032 2.722
0.183 0.175 0.180 0.178 0.179 0.178 0.752

8 3 5 13 20 4
200 100 1.0 5.0 0.316 0.143 0.353 2.149 2.031 2.084 2.118 2.034 2.058 2.511

0.246 0.212 0.219 0.228 0.219 0.225 0.542
10 3 5 15 20 4

200 50 3.0 1.0 0.539 0.057 0.297 2.090 2.037 2.057 2.072 1.999 2.084 2.842
0.234 0.237 0.233 0.231 0.242 0.241 0.865

6 3 4 8 20 2
200 50 3.0 5.0 0.508 0.245 0.300 2.091 2.053 2.066 2.118 2.021 2.071 2.783

0.231 0.228 0.229 0.241 0.234 0.232 0.807
6 3 4 10 19 2

200 100 3.0 1.0 0.295 0.030 0.322 2.122 2.027 2.069 2.036 1.992 2.028 2.418
0.214 0.194 0.199 0.188 0.205 0.198 0.447
10 3 5 9 20 2

200 100 3.0 5.0 0.296 0.169 0.375 2.116 2.026 2.068 2.091 2.020 2.058 2.417
0.197 0.171 0.175 0.183 0.180 0.179 0.443
10 3 5 17 20 4
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Table 5a: Finite Sample Properties of β̂2, LIML

T N Rx
x2 ρ µk+1

µk
R̂2

x2 FLMb FLMt FLMic LMb LMt LMic OLS
DGP 2: β0

2 = 1.0
200 50 0.900 0.157 0.941 0.899 1.006 1.007 1.005 1.008 1.008 1.007 1.050

0.029 0.032 0.028 0.029 0.030 0.028 0.054
11 8 17 14 13 20

200 50 0.750 0.249 0.941 0.750 1.019 1.023 1.017 1.025 1.026 1.021 1.125
0.053 0.059 0.051 0.053 0.058 0.050 0.129
11 7 14 14 12 19

200 50 0.500 0.351 0.941 0.495 1.052 1.064 1.057 1.065 1.075 1.068 1.249
0.102 0.124 0.108 0.104 0.117 0.108 0.253
11 5 9 14 8 12

200 100 0.900 0.157 0.952 0.899 1.012 1.014 1.014 1.010 1.016 1.015 1.050
0.032 0.039 0.032 0.031 0.037 0.035 0.055
20 8 20 20 15 19

200 100 0.750 0.248 0.954 0.748 1.034 1.044 1.042 1.029 1.046 1.043 1.124
0.060 0.077 0.064 0.057 0.072 0.067 0.129
20 7 20 20 12 16

200 100 0.500 0.352 0.953 0.497 1.099 1.107 1.110 1.089 1.126 1.122 1.249
0.125 0.153 0.138 0.118 0.160 0.152 0.253
20 5 14 20 8 10

DGP 3: β0
2 = 1.0

200 50 0.900 0.158 0.942 0.899 1.007 1.008 1.005 1.019 1.019 1.017 1.050
0.031 0.034 0.030 0.037 0.040 0.037 0.055
11 8 17 18 14 19

200 50 0.750 0.250 0.943 0.748 1.019 1.021 1.019 1.047 1.053 1.047 1.126
0.057 0.061 0.056 0.072 0.082 0.074 0.131
11 7 14 18 11 17

200 50 0.500 0.351 0.941 0.497 1.049 1.062 1.052 1.102 1.126 1.121 1.249
0.098 0.119 0.102 0.131 0.166 0.154 0.253
11 5 9 16 7 10

200 100 0.900 0.157 0.952 0.899 1.013 1.015 1.016 1.024 1.026 1.027 1.050
0.033 0.037 0.033 0.044 0.048 0.046 0.054
20 8 20 20 13 14

200 100 0.750 0.248 0.952 0.749 1.033 1.040 1.040 1.059 1.066 1.067 1.124
0.059 0.076 0.064 0.081 0.092 0.090 0.129
20 7 20 20 11 12

200 100 0.500 0.354 0.954 0.497 1.104 1.118 1.115 1.139 1.161 1.162 1.251
0.131 0.164 0.144 0.164 0.195 0.191 0.255
20 5 14 20 7 8
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Table 5b: Finite Sample Properties of β̂2, Fuller

T N Rx
x2 ρ µk+1

µk
R̂2

x2 FFUb FFUt FFUic FUb FUt FUic OLS
DGP 2: β0

2 = 1.0
200 50 0.900 0.157 0.941 0.899 1.006 1.007 1.004 1.008 1.008 1.007 1.050

0.029 0.032 0.028 0.029 0.030 0.028 0.054
11 8 17 14 13 20

200 50 0.750 0.249 0.941 0.750 1.018 1.021 1.016 1.024 1.025 1.020 1.125
0.053 0.059 0.051 0.053 0.058 0.049 0.129
11 7 14 14 12 19

200 50 0.500 0.351 0.941 0.495 1.049 1.059 1.054 1.063 1.072 1.066 1.249
0.101 0.124 0.108 0.103 0.116 0.107 0.253
11 5 9 14 8 12

200 100 0.900 0.157 0.952 0.899 1.011 1.014 1.014 1.009 1.016 1.015 1.050
0.032 0.039 0.032 0.031 0.037 0.035 0.055
20 8 20 20 15 19

200 100 0.750 0.248 0.954 0.748 1.034 1.043 1.042 1.028 1.045 1.043 1.124
0.060 0.077 0.064 0.057 0.072 0.066 0.129
20 7 20 20 12 16

200 100 0.500 0.352 0.953 0.497 1.097 1.104 1.109 1.087 1.124 1.120 1.249
0.124 0.152 0.137 0.118 0.159 0.151 0.253
20 5 14 20 8 10

DGP 3: β0
2 = 1.0

200 50 0.900 0.158 0.942 0.899 1.006 1.007 1.005 1.019 1.018 1.017 1.050
0.031 0.034 0.030 0.037 0.040 0.037 0.055
11 8 17 18 14 19

200 50 0.750 0.250 0.943 0.748 1.018 1.020 1.018 1.046 1.052 1.046 1.126
0.057 0.061 0.056 0.072 0.082 0.074 0.131
11 7 14 18 11 17

200 50 0.500 0.351 0.941 0.497 1.046 1.058 1.049 1.101 1.123 1.119 1.249
0.097 0.118 0.102 0.130 0.165 0.154 0.253
11 5 9 16 7 10

200 100 0.900 0.157 0.952 0.899 1.013 1.014 1.015 1.024 1.026 1.027 1.050
0.033 0.037 0.033 0.044 0.048 0.046 0.054
20 8 20 20 13 14

200 100 0.750 0.248 0.952 0.749 1.032 1.039 1.040 1.058 1.065 1.066 1.124
0.059 0.076 0.063 0.081 0.092 0.090 0.129
20 7 20 20 11 12

200 100 0.500 0.354 0.954 0.497 1.102 1.115 1.113 1.137 1.159 1.160 1.251
0.130 0.164 0.143 0.163 0.194 0.191 0.255
20 5 14 20 7 8
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Table 6a: Finite Sample Properties of β̂2, LIML

T N Rx
x2 ρ µk+1

µk
R̂2

x2 FLMb FLMt FLMic LMb LMt LMic OLS
DGP 4

200 50 2.500 0.130 0.941 0.284 1.025 1.035 1.030 1.028 1.032 1.032 1.070
0.088 0.114 0.102 0.080 0.105 0.097 0.080

9 3 5 13 5 6
200 50 1.500 0.157 0.941 0.401 1.025 1.035 1.031 1.034 1.040 1.038 1.099

0.090 0.114 0.097 0.088 0.105 0.097 0.109
11 4 7 14 6 8

200 50 0.500 0.201 0.941 0.663 1.027 1.031 1.025 1.032 1.037 1.029 1.165
0.095 0.107 0.094 0.090 0.097 0.089 0.175
11 6 12 14 10 17

200 100 2.500 0.134 0.952 0.282 1.043 1.042 1.043 1.038 1.046 1.047 1.072
0.089 0.124 0.108 0.088 0.117 0.110 0.082
16 3 7 20 5 6

200 100 1.500 0.156 0.954 0.397 1.051 1.055 1.054 1.043 1.053 1.053 1.099
0.092 0.128 0.104 0.091 0.121 0.113 0.108
20 4 10 20 6 8

200 100 0.500 0.202 0.953 0.664 1.051 1.061 1.061 1.044 1.071 1.067 1.165
0.098 0.124 0.103 0.095 0.124 0.113 0.175
20 6 20 20 11 14

DGP 5
200 50 2.500 0.134 0.942 0.281 1.027 1.033 1.032 1.038 1.044 1.045 1.072

0.093 0.118 0.106 0.089 0.122 0.112 0.081
9 3 5 14 4 5

200 50 1.500 0.160 0.943 0.397 1.027 1.028 1.029 1.043 1.057 1.055 1.101
0.096 0.116 0.101 0.098 0.128 0.118 0.111
10 4 7 15 6 7

200 50 0.500 0.202 0.941 0.665 1.024 1.030 1.024 1.061 1.072 1.064 1.165
0.092 0.103 0.091 0.108 0.130 0.115 0.174
11 6 12 17 10 15

200 100 2.500 0.132 0.952 0.284 1.043 1.039 1.042 1.046 1.052 1.051 1.070
0.084 0.121 0.100 0.090 0.124 0.111 0.080
16 3 7 20 4 5

200 100 1.500 0.157 0.952 0.397 1.049 1.053 1.052 1.060 1.065 1.066 1.100
0.095 0.127 0.106 0.102 0.127 0.120 0.109
20 4 10 20 6 7

200 100 0.500 0.206 0.954 0.665 1.054 1.066 1.065 1.087 1.100 1.103 1.168
0.103 0.132 0.107 0.132 0.152 0.148 0.178
20 6 20 20 9 11
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Table 6b: Finite Sample Properties of β̂2, Fuller

T N Rx
x2 ρ µk+1

µk
R̂2

x2 FFUb FFUt FFUic FUb FUt FUic OLS
DGP 4: β0

2 = 1.0
200 50 2.500 0.130 0.941 0.284 1.024 1.034 1.029 1.027 1.030 1.031 1.070

0.089 0.120 0.105 0.080 0.109 0.100 0.080
9 3 5 13 5 6

200 50 1.500 0.157 0.941 0.401 1.024 1.033 1.030 1.033 1.039 1.037 1.099
0.091 0.117 0.098 0.088 0.106 0.097 0.109
11 4 7 14 6 8

200 50 0.500 0.201 0.941 0.663 1.025 1.029 1.023 1.031 1.036 1.028 1.165
0.095 0.107 0.094 0.090 0.097 0.089 0.175
11 6 12 14 10 17

200 100 2.500 0.134 0.952 0.282 1.043 1.040 1.042 1.038 1.045 1.046 1.072
0.090 0.130 0.110 0.088 0.122 0.113 0.082
16 3 7 20 5 6

200 100 1.500 0.156 0.954 0.397 1.050 1.054 1.053 1.042 1.051 1.052 1.099
0.092 0.131 0.105 0.091 0.123 0.114 0.108
20 4 10 20 6 8

200 100 0.500 0.202 0.953 0.664 1.050 1.059 1.060 1.043 1.069 1.066 1.165
0.098 0.124 0.102 0.094 0.124 0.113 0.175
20 6 20 20 11 14

DGP 5: β0
2 = 1.0

200 50 2.500 0.134 0.942 0.281 1.026 1.031 1.031 1.038 1.043 1.044 1.072
0.095 0.124 0.111 0.090 0.128 0.115 0.081

9 3 5 14 4 5
200 50 1.500 0.160 0.943 0.397 1.026 1.026 1.027 1.042 1.055 1.054 1.101

0.097 0.119 0.103 0.098 0.131 0.120 0.111
10 4 7 15 6 7

200 50 0.500 0.202 0.941 0.665 1.022 1.028 1.022 1.060 1.071 1.063 1.165
0.092 0.104 0.091 0.108 0.130 0.115 0.174
11 6 12 17 10 15

200 100 2.500 0.132 0.952 0.284 1.043 1.037 1.042 1.046 1.051 1.050 1.070
0.085 0.127 0.102 0.090 0.129 0.114 0.080
16 3 7 20 4 5

200 100 1.500 0.157 0.952 0.397 1.049 1.051 1.051 1.060 1.064 1.065 1.100
0.095 0.130 0.107 0.102 0.130 0.122 0.109
20 4 10 20 6 7

200 100 0.500 0.206 0.954 0.665 1.053 1.064 1.064 1.086 1.098 1.101 1.168
0.103 0.132 0.107 0.132 0.153 0.148 0.178
20 6 20 20 9 11
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Table 7a: Estimates of 1/ψ

1̂/ψs.e. t N ∗ R2
x2

FIVb 0.470 0.245 1.918 11 0.361
FIVt 1.453 0.501 2.900 2 0.130
FIVic 0.769 0.346 2.225 5 0.223
IVb 0.150 0.222 0.675 14 0.375
IVt -0.271 0.274 -0.987 12 0.204
IVic -0.281 0.375 -0.750 2 0.200
IV 0.526 0.498 1.055 3 0.082
OLS 0.409 0.168 2.427 1 1.000

Table 7b: Estimates of ψ

ψ̂s.e. t N ∗ R2
x2

FIVb 0.089 0.056 1.589 13 0.515
FIVt 0.066 0.101 0.649 3 0.231
FIVic 0.109 0.058 1.895 9 0.458
IVb -0.004 0.059 -0.063 17 0.528
IVt 0.010 0.054 0.176 20 0.354
IVic -0.121 0.099 -1.221 5 0.288
IV 0.058 0.090 0.645 3 0.279
OLS 0.120 0.050 2.427 1 1.000
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Figure 1: Finite Sample Distribution of tbβ
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