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Abstract—Relative prices are nonstationary and standard root-T inference
is invalid for demand systems. But demand systems are nonlinear func-
tions of relative prices, and standard methods for dealing with nonstation-
arity in linear models cannot be used. Demand system residuals are also
frequently found to be highly persistent, further complicating estimation
and inference. We propose a variant of the translog demand system, the
NTLOG, and an associated estimator that can be applied in the presence
of nonstationary prices with possibly nonstationary errors. The errors in
the NTLOG can be interpreted as random utility parameters. The estimates
have classical root-T limiting distributions. We also propose an explana-
tion for the observed nonstationarity of aggregate demand errors, based on
aggregation of consumers with heterogeneous preferences in a slowly
changing population. Estimates using U.S. data are provided.

I. Introduction

IN most industrialized economies real per capita income
trends upward and inflation rates are positive. More

precisely, the tendency for prices and standards of living to
rise makes the time series of prices and real income non-
stationary. Less obviously, relative prices are also nonsta-
tionary (see, for example, Ng, 1995, and Lewbel, 1996b).
This is recognized informally in the observation that the
prices of some goods, such as higher education and medical
care, have been rising significantly faster than the average
rate of inflation for many years. More broadly, debates over
which price measure to use to index social security or to
assess monetary policy are based on the fact that different
measures diverge over time, which can only occur if there
are differences in growth rates of the prices of different
goods.

Almost every empirical demand system study suffers
from a severe econometric flaw, namely, failure to cope with
this nonstationarity of prices.1 The usual techniques for
handling nonstationary regressors, such as cointegration or
linear error correction models, cannot be applied to demand
system estimation, because any nontrivial demand system
that is consistent with utility maximization must be nonlin-
ear in relative prices (see section IV below). But very few
estimators exist for nonlinear structural models of any form
containing nonstationary data. The problem is further exac-
erbated by the facts that demands are multiple-equation
systems with nonlinear cross-equation restrictions mandated
by utility maximization, and that demand systems with
dimensions large enough to be empirically interesting in-
volve a large number of parameters relative to the number of
available time periods, T. These problems affect demand

systems estimated using individual-, household-, panel-,
cohort-, or aggregate-level data, because all depend upon
utility-maximizing agents facing nonstationary relative
prices.2

Because of these many difficulties, existing demand sys-
tem studies either ignore the problem entirely, or deal with
nonstationarity using linear model cointegration methods.3

Even if one could overcome the problems of nonlinearity
and high dimension, cointegration methods might still not
be appropriate because the errors in demand systems (par-
ticularly those estimated with aggregate data) tend to be
highly autocorrelated.4 As is well known, standard asymp-
totic theory provides a poor guide to finite-sample inference
when the errors are highly persistent. In cases when a unit
root in the residuals cannot be rejected, the regressions are
spurious and the parameter estimates are inconsistent.

In this paper, we provide a solution to the problem of
estimating utility-derived demand systems with nonstation-
ary prices. The methodology also takes care of possible
nonstationarity of the errors. The key is a new functional
form that, by interacting budget shares with prices, produces
a model that is both consistent with utility maximization
and, when differenced, enables nonlinear estimation of the
demand parameters by instrumental variables. Classical
root-T consistency and asymptotic normality of the esti-
mates then follows from Hansen’s (1992) theory for the
generalized method of moments (GMM). The model, which
we call NTLOG (nonstationary translog), is a variant of
Jorgenson, Lau, and Stoker’s (1982) translog demand sys-
tem. Unlike the translog system in which the errors are
appended to budget shares, the error terms in the aggregate
NTLOG model equal the average values of utility-function
parameters that vary across consumers. Thus, persistence in
the error of the aggregate model can be attributed to pref-
erences in a slowly changing heterogeneous population.

Our NTLOG model and the associated estimator provide
a solution to the generic empirical problem of demand
system estimation with nonstationary relative prices and
possibly nonstationary errors. We apply the model to aggre-
gate data, and focus on T 3 � asymptotics. However, we
also also show how the NTLOG could be applied using data
at the level of individual households, which also suffer from
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1 See, for example, Stock (1994) and Watson (1994) for a review of
econometric issues relating to nonstationary variables.

2 Other issues, including the lack of variation in prices, arise with
estimation using cross-section data.

3 For example, Attfield (1997, 2004) applies linear cointegration tech-
niques to Deaton and Muellbauer’s (1980) almost ideal model, replacing
the true nonlinear (quadratic) price deflator terms with an approximate
linear index. Ogaki (1992) employs a two-good demand systems along
with a functional form that restricts cross price effects to obtain a linear
model for cointegration. Adda and Robin (1996) provide conditions for
unbiased multiple-cross-section demand system estimates with nonsta-
tionary prices, but they also assume a linear model.

4 See, e.g., Berndt and Savin (1995), Stoker (1986), Lewbel (1991,
1996a), and Pollak and Wales (1992).
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the same nonstationarity of relative prices. In addition, the
NTLOG model allows for individual-specific fixed effects
that are consistent with utility maximization and, if suffi-
cient cross-sectional price variation is present, can be used
to obtain consistent demand system estimates with fixed-T
panels and fixed effects.

The plan of this paper is as follows. In the next section,
we use U.S. demand data to provide additional evidence of
nonstationarity of demand system regressors. We also show
that nonstationarity in the residuals is not due simply to
missing variables. In section III we propose a possible
explanation for these nonstationary errors, by showing that
error persistence could arise as the result of aggregation
across utility-maximizing individuals with heterogeneous
preferences in a slowly changing population. We later pro-
vide empirical evidence that this explanation is at least
plausible, using household-level data on food demand from
the Michigan PSID surveys. Sections IV and V of the paper
give the derivation of the NTLOG functional form. Section
VI provides our estimator of this NTLOG model and the
associated empirical results, and section VII concludes.

II. Nonstationary Demands, Prices, and Incomes

We begin in this section with an exploratory empirical
analysis of quarterly, seasonally adjusted data for the United
States, documenting nonstationarity of regressors and a high
degree of persistence in demand model residuals. We also

provide evidence that residual nonstationarity is not due to
omitted variables. We use aggregate data because that is
where nonstationarity problems are most obvious and se-
vere, and because price effects can be accurately estimated
using long time series with a great deal of relative price
variation.

Let pit be the price of good or service (or group of goods
and services) i at time t, i � 1, . . . N, t � 1, . . . T. Let Mt

be per capita expenditures on nondurable goods and ser-
vices at time t, Wit be the fraction of Mt spent on group i at
time t, and rit � ln(pit/Mt). By homogeneity, demands are
functions of rt, the vector of elements rit. Figures 1 and 2
present graphs of log prices and rit for four groups of
nondurable goods and services: food (good 1), energy (good
2), clothing (good 3), and all other nondurable goods and
services (good 4). Even after taking logarithms, the graphs
clearly show the drifts and trends of nonstationary behavior.
Similar results are obtained when deflating by an overall
price index like the CPI instead of Mt. Figure 3 shows the
corresponding graph for aggregate budget shares Wit, indi-
cating that at least some of these shares may also appear
nonstationary. Budget shares must by construction lie be-
tween 0 and 1, and so cannot remain nonstationary forever,
but as long as the magnitudes of changes from year to year
are small (relative to the range 0 to 1), shares can closely
approximate a nonstationary process for decades, as may be
the case for some shares in these U.S. data.

Results of formal tests of nonstationarity using the
DFGLS test of Elliot, Rothenberg, and Stock (1996) and the

FIGURE 1.—LOG PRICES
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MZGLS test of Ng and Perron (2001) are summarized in
table 1.5 For a system of four goods, we consider log prices,

log normalized prices, total expenditure, budget shares, and
some cross terms for a total of 35 variables over the period

5 The DFGLS and the MZGLS tests estimate the trend parameters more
efficiently and are more powerful than the Dickey-Fuller (DF) test and the
modified Phillips-Perron MZ tests of Perron and Ng (1996). The MZ tests

have better size properties than the Phillips-Perron Z tests. Results are
reported for MZ� and MZGLS�, which are improved versions of Z�.

FIGURE 2.—LOG NORMALIZED PRICES (R)

FIGURE 3.—SHARES
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1954–1998. Neither test can reject the null hypothesis of a
unit root around a linear trend.6 However, when the first
difference of each series is tested for a unit root, the tests
reject nonstationarity in 33 of the 35 series being tested.
Prices rt are faced by all consumers, so estimates of demand
equations at any level of aggregation or disaggregation will
need to deal with nonstationarity of prices.

Though our later estimates will permit budget shares to
be stationary, we assume for now that budget shares and
logged scale prices are I (1), as indicated by the tests in table
1. In that case, demand equations linear in N,

Wit � a0i � alit � b�irt � eit, (1)

could be consistently estimated by standard least squares
methods if the errors eit in equation (1) were stationary.

Stationary errors for these equations would require that Wit

and rt be cointegrated for each commodity group i. To test
for cointegration, we include a deterministic time trend in
equation (1), for linear trends are found to be significant in,
for example, Banks, Blundell, and Lewbel (1997). Tests for
the null hypothesis of no cointegration in table 2 indicate
that these errors are not stationary (and remain nonstation-
ary even when a quadratic trend is included as a regressor).
We use two variants of the residuals-based cointegration test
developed in Phillips and Ouliaris (1991). The 5% critical
value with four regressors and a linear trend is �4.49 for the
Dickey-Fuller (DF) test, and �37.7 for the modified Phillips-
Perron test (MZ�). For three of the four consumption groups,
the evidence of no cointegration is overwhelming. In the
case of clothing, the DF test is �4.885 and rejects a unit
root in eit, but the MZ� test is �31.804 and does not reject
the null hypothesis of no cointegration.

We might not expect cointegration in equation (1), be-
cause utility maximization, and in particular Slutsky sym-

6 The lag lengths of the augmented autoregressions are selected by the
MAIC developed in Ng and Perron (2001). The BIC (not reported) leads
to the same conclusion that the levels of the series are not stationary.

TABLE 1.—TESTS FOR NONSTATIONARITY OF PRICES AND TOTAL EXPENDITURE

Series

Levels First Differences

DFGLS� MZGLS�� Lags DFGLS� MZGLS�� Lags

logp1 �1.541 �5.506 3 �3.153 �17.191 2
logp2 �1.268 �4.901 3 �3.813 �25.618 2
logp3 �1.107 �5.574 4 �2.613 �11.675 4
logp4 �1.442 �4.650 3 �2.044 �8.031 2

log�1 �2.384 �11.371 1 �2.509 �11.856 3
log�2 �1.842 �9.818 4 �4.525 �32.102 2
log�3 �0.975 �2.408 2 �1.568 �5.173 4
log�4 �0.924 �2.141 2 �4.580 �33.948 2

log(p1/p2) �1.624 �7.065 4 �5.813 �56.045 2
log(p1/p3) �1.370 �4.183 2 �4.620 �36.045 3
log(p1/p4) �1.200 �3.713 3 �3.944 �25.392 3
log(p2/p3) �1.182 �2.903 1 �3.757 �24.921 4
log(p2/p4) �0.732 �2.091 1 �6.030 �62.858 4
log(p3/p4) �0.773 �2.028 4 �3.594 �17.646 4

logM �1.284 �3.937 3 �1.958 �7.532 4
W1 �1.707 �5.887 1 �4.321 �30.873 4
W2 �0.953 �2.237 0 �6.644 �68.654 2
W3 �1.701 �6.441 0 �5.944 �58.423 3
W4 0.058 0.2149 0 �2.551 �8.446 4

w1logp1 �0.756 �5.204 3 �2.060 �8.524 2
w1logp2 �0.664 �3.189 3 �3.647 �26.940 4
w1logp3 0.179 �.085 2 �2.339 �10.237 4
w1logp4 �0.878 �5.478 3 �3.726 �21.141 2
w2logp1 �0.858 �1.662 1 �4.522 �33.241 3
w2logp2 �1.168 �4.446 3 �2.804 �12.830 3
w2logp3 �0.994 �4.832 4 �3.158 �12.997 4
w2logp4 �0.739 �1.057 1 �2.258 �7.651 4
w3logp1 �0.458 �1.236 1 �4.564 �28.905 3
w3logp2 �0.7751 �2.652 2 �4.172 �29.847 2
w3logp3 �0.169 �.813 2 �4.752 �35.906 3
w3logp4 �0.880 �2.968 2 �4.012 �19.959 3
w4logp1 �0.946 �2.344 3 �2.441 �9.365 3
w4logp2 �1.042 �2.278 3 �2.927 �15.130 4
w4logp3 �1.046 �3.110 3 �2.743 �10.189 4
w4logp4 �1.175 �3.110 4 �0.947 �1.518 4

The 5% critical values for DFGLST and MZGLS�� (which include a constant and a linear time trend) are �2.9 and �19.1, respectively. The critical values for DFGLS� and MZGLS�� (which include a constant)
are �1.9 and �8.1, respectively.

THE REVIEW OF ECONOMICS AND STATISTICS482



metry, would impose implausibly strong cross-equation re-
strictions on the coefficients (see section IV below). A much
more reasonable class of demand equations is

Wit � a0i � alit � b�irt � cig� xt	 � eit, (2)

where g(xt) is some function that is common to all of the
demand equations, and xt is a vector of observed or unob-
served variables (which could include t and rt) that affect
demand. In particular, one of the most frequently employed
demand systems in empirical work, Deaton and Muellbau-
er’s (1980) almost ideal demand system (AIDS), is a special
case of equation (2) in which g is a constrained quadratic in
t and rt. We tested for cointegration in the approximate
AIDS model, which uses Stone’s price index (P*) to deflate
total expenditure, as is common practice in this literature
(see, for example, Deaton & Muellbauer, 1980). This
amounts to using g�xt	 � �¥j�1

N wjtrjt in equation (2). The
results are given in the second panel of table 2. The critical

values for the two tests with five regressors are �4.74 and
�42.5 respectively. Once again, there is strong evidence for
noncointegration in three of the four cases, with clothing
being the possible exception.

Having equation (2) hold for every group i implies that
for i 
 1,

Wit � ãi � ã1it � b̃�irt � c̃iW1t � ẽit , (3)

where ẽit � eit � cie1t/c1, and the other tilde parameters
are similarly defined. Therefore, if the errors eit in equation
(2) were stationary, then the errors ẽit in equation (3) would
also be stationary. This means that a necessary condition for
the AIDS model, or for any other demand equation in the
form of equation (2), to have well-behaved (that is, station-
ary) errors is that Wit, rt, and Wjt must be cointegrated for
each group i 
 j. However, the test statistics in table 3
indicate that Wit, rt, and Wjt (for any j 
 i) are not cointe-
grated, and hence any model in the form of equation (2),
including the exact AIDS model, will yield inconsistent
parameter estimates.

More generally, the test results based on equation (3)
show that failure of cointegration is not due to any single
missing variable or regressor. This is because utility maxi-
mization would require that any omitted variable appear in
the demand equations for all goods i. Cointegration of
equation (2) with any variable or function g(xt) would imply
cointegration of equation (3), which is rejected.

An even more general class of demand systems is

Wit � a0i � a1it � b�irt � c1ig�xt	 � c2ig2�xt	 � eit (4)

for arbitrary functions g(xt) and g2(xt). Examples are the
approximate quadratic AIDS (QUAIDS) model of Blundell,
Pashardes, and Weber (1993) and the exact, integrable
QUAIDS model of Banks, Blundell, and Lewbel (1997).
The third panel of table 2 reports cointegration tests for
equation (4), taking g to be log deflated income, and
g2 � g2, corresponding to the approximate QUAIDS
model.7 In all cases, MZa is less than the approximate
critical value of �47.5. The approximate critical value for
the DF is �5.05. Again, clothing is the only good for which
there is some support for cointegration.

Similar to equation (3), having equation (4) hold for
every group i implies that for i 
 1 and 2,

Wit � ãi � ã1it � b̃�irt � c̃1iW1t � c̃2iW2t � ẽit, (5)

where ẽit is linear in eit, e1t, and e2t. Therefore, if the errors
eit in equation (4) were stationary, then the errors ẽit in
equation (5) would also be stationary, so a necessary con-
dition for any demand equation in the form of equation (5)
to have stationary errors is that Wit, rt, Wjt, and Wkt are

7 Exact critical values have not been tabulated for systems of such high
dimensions. Ng (1993) finds that an approximate guide is to raise the
critical value of the DF by 0.35, and of MZ� by 5, for each added regressor.

TABLE 2.—TESTS FOR THE NULL HYPOTHESIS OF NO COINTEGRATION

Equation (1): Wit � a0i � a1it � �
j�1

N bijrjt � eit

Good DF M Z� Lags

1 �2.835 �11.512 0
2 �2.446 �13.545 1
3 �4.885 �31.804 0
4 �2.665 �10.673 0

CV �4.49 �37.7

Equation (2): Wit � a0i � a1it � b�irt � cilog�Mt/P*t 	 � eit

Good DF M Z� Lags

1 �3.139 �18.098 0
2 �3.226 �20.042 1
3 �5.210 �30.300 0
4 �3.732 �14.835 0

CV �4.74 �42.5

Equation (4): Wit � a0i � a1i t � b�irt

� �c1ilog�Mt/P*t 	 � c2ilog�Mt/P*t 	�2

� eit

Good DF M Z� Lags

1 �3.568 �22.125 0
2 �2.608 �13.831 1
3 �5.426 �43.275 0
4 �2.242 �9.785 0

CV �5.04 �47.5

Equation (14): Wit � a0it � a1i t � �
j�1
N bijrjt

� �
j�1
N cjzijt � eit

Good DF M Z� Lags

1 �4.356 �28.923 0
2 �4.430 �35.425 1
3 �6.029 �50.875 0
4 �4.344 �32.421 0

CV �6.5 �67.5
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cointegrated for each group i 
 j, k. As with all the other
models tested, the test statistics in the second panel of table
3 indicate that Wit, rt, Wjt and Wkt (for any ordering of the
goods) are not cointegrated.

Analogously to the discussion regarding equation (3),
failure of cointegration of equation (5) implies that nonsta-
tionarity of the demand system errors could not be due to
any two missing regressors. Other evidence of nonstation-
arity is provided by Ng (1995), Lewbel (1996a), and Attfield
(1997). We will later give one more example of demands
that are linear in variables, based on the translog system,
and show that it too appears to have nonstationary errors.

The test statistics used in this section are based on
asymptotic theory assuming that T is extremely large, and
also that T is large relative to the number of regressors,
which is not the case here. The small-sample distortions in
some of these tests could therefore be substantial. Never-
theless, the evidence of trends or drifts in relative prices,
aggregate total expenditures, and aggregate demand system
errors seems strong, even if exact p-values for many of these
tests might be in doubt.

III. Aggregation and Nonstationary Errors

In this section, we propose one possible explanation for
the empirically observed high autocorrelation and possible
nonstationarity of aggregate demand system errors. We
show that this persistence could be caused by aggregation
across a slowly changing population of consumers with
heterogeneous preferences. Our NTLOG model does not
depend on the validity of this explanation, and in fact can be
applied to deal with nonstationary prices even if the demand
system errors are stationary, but it is useful to understand
why demand errors could be persistent.

Blundell, Pashardes, and Weber (1993) suggest that ag-
gregation over consumers with time-varying individual-
specific effects can lead to omitted variations in the aggre-
gate demand system. Here, we show that even if the
individuals have specific effects that are time-invariant,
aggregating over an evolving population with heteroge-
neous preferences will induce omitted variations (that is,
aggregate errors). Moreover, because the population evolves
slowly over time, these omitted effects are likely to be
highly persistent.

To see how aggregation across consumers could cause
persistence in aggregate demand system errors, let ahi be a
fixed effect of consumer h for good i. This fixed effect can
be interpreted as a taste parameter, that is, a parameter in
consumer h’s utility function. Let �t be the set of all consumers
in the economy in time t, and Ht � h��t 1 be the enumer-
ation of �t. Note that �t � �t�1 � � t

� � � t�1
� , where �t

� is
the set of consumers who enter the economy in period t, and
� t�1

� is the set of consumers that leave the economy in period
t � 1. Then ait � (1/Ht)¥h��t

ahi is the simple average of ahi

across the consumers. We can write

ait �
Ht�1

Ht
ai t�1 �

�h��t
�ahi � �h��t�1

� ahi

Ht

� �tai t�1 � �it,

where �t is the relative size of the population between the
two periods, and �it is the average difference between the
preferences of the consumers that dropped out and those
that were added in time t. The dynamic properties of ait thus
depend on �t and �it. Consider first the latter. Taste param-
eters ahi depend in part on age, family size, and other
demographic characteristics. All these variables change
slowly over time. Also, to the extent that taste parameters
vary across households and cohorts, the average taste pa-
rameter of those who drop out will generally differ from the
average taste parameter of those who enter the sample in
any given period. Both considerations suggest that �it

should exhibit random variations.
Now �t depends on the number of consumers in two

consecutive periods and does not depend on i. Because the
set of consumers in an economy changes slowly over time,
the large majority of consumers in �t are also in �t�1. If �it

TABLE 3.—TESTS FOR THE NULL HYPOTHESIS OF NO COINTEGRATION

Equation (3): Wit � ã0i � ã1i � b̃�irt � c̃iWjt � ẽit, j � i

Good i Good j DF M Z� Lags

2 1 �2.450 �13.525 1
3 1 �4.883 �32.419 0
4 1 �2.317 �9.802 0

1 2 �2.881 �11.895 0
3 2 �5.456 �37.449 0
4 2 �4.180 �20.909 0

1 3 �2.825 �12.175 0
2 3 �3.012 �17.663 1
4 3 �3.524 �23.658 0

1 4 �2.487 �10.667 0
2 4 �3.724 �21.577 1
3 4 �5.479 �42.895 0

CV �4.74 �42.5

Equation (5): Wit � ã0i � ã1i � b̃�irt � c̃ijWjt � c̃ikWkt � ẽit, j, k � i

Good i Goods j, k DFGLS MZGLS Lags

1 2,3 �2.851 �12.200 0
2,4 �2.411 �10.487 0
3,4 �2.127 �7.509 1

2 1,3 �2.997 �17.252 1
1,4 �3.722 �22.032 1
3,4 �3.558 �22.159 1

3 1,4 �5.404 �41.440 0
1,2 �5.438 �37.798 0
2,4 �5.050 �38.951 0

4 1,2 �3.825 �19.744 0
1,3 �2.889 �18.44 1
2,3 �3.660 �21.983 0

CV �5.04 �47.5
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is uncorrelated with ai, t�1, then this implies that ait is a
highly persistent, near-unit-root process. More generally, �it

can be correlated with ai, t�1, which could increase or
decrease the persistence in ait. In postwar quarterly data, �t

ranged from a low of 0.9921 to a high of 0.9982 with a
standard deviation of 0.0009, so empirically �t is very close
(but not exactly equal) to 1.

Whether ait is a near-unit-root process or not depends on
both the evolution of the population �t�1 and the distribu-
tion of the demand system errors ahi in each time period.
These are not directly observed, but we will later provide
empirical evidence that substantial persistence in ait is at
least plausible, based on an analysis of food demand at the
household level using PSID data.

The above argument for persistence in the average fixed
effect assumes that each household receives the same
weight of 1/Ht, but the argument also holds when ait is
defined as an unequally weighted average. Let �ht be the
weight applied to household h at time t. Then for ait �
¥h��t �ihtaiht, it can be shown that

ait � �tai t�1 � �it � � �
h��t

��ht �
1

Ht
�ahi�

� �t� �
h��t�1

��h t�1 �
1

Ht�1
�ahi� .

In addition to heterogeneous preferences, time variations in
weights (the last two terms) will also introduce randomness
into ait. If the weights �ht are budget shares, then the
changes in the income distribution between periods will be
the additional source of randomness. In consequence, one
would still expect ait to be an autoregressive process with a
root very close to unity.

More generally, a fixed effect can be the sum of an
aggregate component which is unaffected by aggregation
over households (for example, common trends in tastes) and
a household-specific component. Then the aggregate fixed
effect, �it, is

�it � ai0 � ai1t � ait. (6)

The implications of a slowly increasing but heterogeneous
population for the aggregate fixed effect are threefold. First,
a model which approximates �it by a deterministic trend
function ai0 � ai1t will have omitted the random variations
ait. Second, given the size of �t in the data, the aggregate
fixed effect is likely to be well approximated by a random
walk with drift. The magnitude of �t also implies that even
if we were to observe �it, unit root tests would have very
low power in rejecting the null hypothesis of nonstationar-
ity. Third, when demand system errors have autoregressive
roots so close to the unit circle, the distribution of the
estimated parameters will not be well approximated by the
normal distribution even asymptotically, and hence standard
inference will be inaccurate (this is in addition to the

problems stemming from nonstationary prices). Persistence
arising from time aggregation of fixed effects is consistent
with the empirical evidence of nonstationarity and non-
cointegration documented in the previous section, and with
the high degree of serial correlation found in the errors of
estimated demand systems cited in the introduction. We will
later present evidence from the PSID to show that persis-
tence can indeed arise from aggregation.

IV. A Linear Form for Translog Demands

In the time series literature, nonstationarity is readily
handled in the context of linear models. The difficulty for
demand systems is that in linear models the Slutsky sym-
metry implied by utility maximization results in extremely
restrictive and implausible constraints on cross-price elas-
ticities. Linear models are also resoundingly rejected em-
pirically.

To illustrate the problem, suppose the demands of an
individual household were given by the general linear
model �it � ai � ¥j�1

N bij ln pjt � ci ln mt for goods i � 1,
. . . , N, where mt is the consumer’s total expenditures on
goods and services in time t, and wit is the fraction of mt

spent on good i in time t. To be consistent with utility
maximization, this demand model must satisfy homogeneity
and Slutsky symmetry. Homogeneity requires ci � �¥j�1

N bij

for i � 1, . . . , N, which is not overly restrictive. However,
it can be directly verified that Slutsky symmetry requires
either that ci � 0 for all goods i, implying homothetic
demands (budget shares independent of the total expendi-
ture level), or that ai � 0 and bij � �i�j for some scalars
�1, . . ., �N, so that all cross price elasticities are forced to be
proportional to own price elasticities. Virtually all empirical
demand studies reject these restrictions. Of course, results
of empirical tests of symmetry and homogeneity will de-
pend in part on the precision with which the associated
parameters are estimated. Estimates of Slutsky matrix terms
are often very imprecise.

Similar restrictions arise in linear models expressed in
terms of quantities rather than budget shares, as observed by
Deaton (1975), who raised these objections in the context of
the Stone-Geary linear expenditure system. Phlips (1974)
describes similar restrictions regarding the Rotterdam
model (see Barten, 1967, and Theil, 1971), which is a linear
demand system based on time differencing of quantities and
prices. Deaton and Muellbauer (1980) provide further dis-
cussion of these points (they attribute the Rotterdam model
objection to unpublished results by McFadden).

To see how we construct a model that is linear in
variables while overcoming these constraints, consider the
translog indirect utility function of Christensen, Jorgenson,
and Lau (1975),

U� pt,mt	 � �
i�1

N ��i �
1

2
�
j�1

N

bij ln
pjt

mt
� ln

pit

mt
. (7)
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The function U here is the indirect utility function for the
household. Without loss of generality, assume ¥i�1

N �i � 1
and bij � bji. Define ci � ¥j�1

N bij with ¥i�1
N ci � 0 to make

the translog exactly aggregable; see Muellbauer (1975),
Jorgenson, Lau, and Stoker (1982), and Lewbel (1987). By
Roy’s identity, the resulting translog budget shares are

wit �

�i � �
j�1

N

bij ln pjt � ci ln mt

1 � �
j�1

N

cj ln pjt

(8)

Unlike the severe restrictions on elasticities implied by
linear models, equation (8) satisfies Slutsky symmetry and
homogeneity without constraints on own price, cross price,
or total expenditure elasticities at a point. This feature of
unrestricted elasticities at a point is known as Diewert
(1974) flexibility, and was one of the motivations for the
derivation of both the popular translog and the almost ideal
demand model. Diewert and Wales (1987) show that im-
posing negative definiteness on the translog does limit its
flexibility at some points (see also Moschini, 1999), but the
resulting constraints on elasticities are minimal compared to
the above-described constraints required of linear models.

Now observe that equation (8) can be rewritten as

wit � �i � �
j�1

N

bij ln �pjt/mt	 � �
j�1

N

cjwit ln pjt. (9)

Equation (9) is a model for a single household, but can be
readily extended to a panel of households by adding appro-
priate household subscripts h. The relevant point for esti-
mation is that equation (9) is linear in the variables ln(pjt /mt)
and wit ln pjt for j � 1, . . . , N. Hence, if some or all of these
variables (in particular, log prices) are nonstationary, the
model is at least in principle amenable to estimation using
time series methods, which we will make precise in section
VI. Furthermore, �i could be random, implying that if we
were to estimate equation (9) in the cross section, the errors
could be interpreted as random utility function parameters.
The next section provides details for our particular estima-
tion method in the context of an aggregate version of this
model.

V. The Nonstationary Translog Demand System

A convenient implication of the linearity of equation (9)
is that it facilitates aggregation across households (for
estimation with household-level data, the aggregation step
below can be ignored). Let mht be consumer (or household)
h’s total expenditures on goods and services in time t, whit be
the fraction of mht spent on goods i in time t, and rhit � ln
(pit /mht). Also, for each good i let �hi denote the value of the

parameter �i for household h, so the vector of utility
function parameters (�h1, . . . , �hN) embody preference het-
erogeneity. The household level translog budget shares from
equation (8) are

whit �

�hi � �
j�1

N

bij ln pjt � ci ln mht

1 � �
j�1

N

cj ln pjt

(10)

Let Mt � 1/Ht ¥h��t mht, Wit � ¥h��twhit mht /¥h��t mht, and
�t � ¥h��t mht ln mht¥h��t � ln Mt. Then

ãit �
�h��t�hi mht

�h��t mht

� ci�t, � �it � ci�t. (11)

Notice that �it is the average fixed effect for good i using
expenditure shares as weights. It then follows that the
aggregate budget shares are given by

Wit �

ãit � �
j�1

N

bij ln pjt � ci ln Mt

1 � �
j�1

N

cj ln pjt

,

�

ãit � �
j�1

N

bijrjt

1 � �
j�1

N

cj ln pjt

, (12)

because rit � ln �pit/Mt	. Models like this aggregate translog
would usually be estimated as in Jorgenson, Lau, and Stoker
(1982), that is, by replacing ãit with a linear combination of
trend or demographic variables, and appending an additive
error to equation (12).

We propose to estimate the aggregate analog of equation
(9) instead. Define

zijt � Wit ln pjt, (13)

and let eit � ait � ci�t. Substituting equations (6) and (13)
into (12) then gives

Wit � ai0 � ai1t � �
j�1

N

bijrjt � �
j�1

N

cjzijt � eit. (14)

Separate from any considerations of nonstationarity or ag-
gregation, one advantage of defining the model this way is
that the errors eit are by definition equal to ait � ci�t and so
can be directly interpreted as preference heterogeneity
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(taste) parameters, as in McElroy (1987) and Brown and
Walker (1989). More importantly, equation (14) is linear in
rt and zit. Nonstationarity in the variables and the errors can
now be dealt with, as described in the next section.

We call the system of equations (14) for all goods i the
nonstationary translog demand system (NTLOG), for it is
based on demands derived from translog utility functions,
and some or all of its component variables may be nonsta-
tionary. If the system (14) were cointegrated for every good
i, then the demand equations could be estimated using an
error correction model. This would require that eit be sta-
tionary. Lewbel (1991) found, using both U.K. and U.S.
data, that �t varies very little over time, with little or no
trend or drift. Thus eit is stationary if ait is stationary.
However, the analysis in section III suggests that eit is likely
to be nonstationary (or nearly so), because there are likely
random variations in preferences and in the income distri-
bution over time. Therefore, tests of equation (14) should
find no cointegration. In addition, even in our small system
with few goods, 10 regressors in each of the equations now
have to be tested for cointegration, and the power of
cointegration tests is known to decrease with increasing
number of regressors. Based on approximate critical values
of �6.5 and �67.5, the fourth panel of table 2 shows that
the variables in the system (14) do not appear to be cointe-
grated.

Thus, both theory and empirical tests are consistent with
eit being an integrated or nearly integrated process. In the
time series literature, it is recognized that imposing a unit
root on nearly integrated processes can be desirable when
the limiting distributions of estimators and test statistics are
not well approximated by the normal distribution. In the
present context, the unit root restriction can be justified
given both the test results and the magnitude of vt. Consis-
tent with unit roots, the first differences of Wit, rjt, and zijt for
all goods i and j all appear to be I(0), and thus standard tools
for inference can be applied.

The above NTLOG model is designed for estimation with
aggregate data, but it or some similar variant of equation (9)
could be applied to cohort- or household-level data. At
disaggregate levels, errors and income may well be station-
ary. But relative prices, which are faced by all households,
will still be nonstationary, so the NTLOG will be useful
with disaggregate data also.8

A key feature of equation (13) is that it is linear in
variables. These variables include zijt, which is the product
of the nonstationary log prices, and budget shares. Although
the budget shares appear nonstationary in the data, they are
bounded between 0 and 1. The nonstationarity in the cross-
product term can thus be expected to be weaker. Evidently,
the variables zijt all appear stationary when differenced.9 In
contrast, Deaton and Muellbauer’s (1980) almost ideal de-
mand model was designed to be nearly linear, but misses
that ideal because of the presence of a quadratic price
deflator, which includes terms like rjt

2. First differences of rjt
2

terms are not close to stationary. Thus, even in first-
differenced form, the correct limiting distribution for the
AIDS model may still be nonstandard. Recognizing prob-
lems of high autocorrelation in levels, Deaton and Muell-
bauer reported estimates from differencing the AIDS model,
but assumed a standard limiting distribution for the result.

It is also of some interest to compare the nonstationary
translog with the Rotterdam model (see, for example, Bar-
ten, 1967, and Theil, 1971). The Rotterdam model consisted
of regressing differenced quantities on differenced prices
and income. The Rotterdam model has the virtue of making
the regressors stationary. Its shortcoming is that it is not
consistent with utility maximization without imposing ex-
treme restrictions on its coefficients, as described in the
previous section. Unlike the Rotterdam model, the NTLOG
is derived from a utility function that has flexible demands.
Furthermore, the error terms of the Rotterdam model, like
the errors in the ordinary aggregate Translog and AIDS
models, are appended to demands with no economic inter-
pretation. In contrast, the error terms of the NTLOG are
directly derived from heterogeneity in taste parameters and
variations in the income distribution.

VI. Estimation and Results

Equation (14) manages full linearity, but at the cost of
having some of the regressors (the zijt) depend on Wit, and
hence those regressors could be correlated with the errors
eit. This issue must be dealt with upon estimation. Assume
we have a vector of stationary instrumental variables st that
are uncorrelated with the stationary difference �eit � eit �
eit�1. Then

E �st��Wit � ai1 � �
j�1

N

bij �rjt � �
j�1

N

cj �zijt	� � 0. (15)
8 A limitation on using NTLOG for disaggregate data is that the translog

is a rank-two demand system, with budget shares linear in log income,
whereas empirical evidence on household-level data suggests demands are
quadratic and of rank three. See Howe, Pollak, and Wales (1979), Gorman
(1981), Lewbel (1991), Blundell, Pashardes, and Weber (1993), and
Banks, Blundell, and Lewbel (1997). Although demands for individual
households appear to be of rank three, there is evidence that aggregate
demands may be adequately modeled as rank two. Lewbel (1991) shows
that rank-three curvature arises primarily from households at the extremes
of the income distribution, and that excluding a small percentage of
households in these tails results in demands that are empirically of rank
two. If the contribution of these few extreme households to the aggregate
is small, then the aggregate will appear to be of rank two. Also, the range

of observed aggregate (per capita) income is small relative to the range of
incomes that exists across households. The effect of these rank-three
households in the aggregate is therefore small. In our empirical applica-
tion later we find that the rank-two NTLOG is satisfactory for aggregate
data. Nonetheless, rank-three extensions of the NTLOG could be con-
structed, and might be desirable for future applications using disaggregate
data.

9 Ogaki and Reinhart (1998) encountered a similar problem and also
argued that first-differencing is likely to make nonstationarity in a ratio
term empirically unimportant.
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The set of equations (15) for all goods i can be stacked to
yield a collection of moment conditions for the parameters,
which can be estimated using the standard GMM. The
instruments and the differenced variables in the equations
(15) are all stationary, so the coefficients in this GMM will
have the standard root-T normal limiting distribution. Be-
cause these are demand equations, and the errors arise from
preference heterogeneity, suitable instruments will be vari-
ables that affect the supply side of the economy.

To check sensitivity to the choice of instruments, we
consider two sets of instruments. The first simply uses differ-
ences in the lags of the variables in the system: �Wi t �2, i �
1, . . . , N � 1; � ln pi t�2, i � 1, . . . , N; � ln Mt�2, �zi j t�2,
j � 1, 2; the lag of the differenced log population; a
constant; and a time trend. These instruments deal with the
dependence of z on endogenous budget shares, but fail to
control for classical simultaneity of demand with supply

The second set of instruments, which should be suitable
for both these problems, consist of supply variables, like
those used, for example, by Jorgenson, Lau, and Stoker
(1982). These instruments are the deflator for civilian com-
pensation of government employees, government purchases
and its deflator, imports of goods and services, wages and
salaries, unit labor costs and participation rate, government
transfers to individuals, unemployment, and population.
These are also differenced to stationarity. Also included are
a constant and a time trend. The first set of instruments has
13 variables and the second has 14, yielding a total of 39
and 42 moment conditions, respectively. It is not feasible to
use both sets of instruments simultaneously, because doing
so will result in too many moment conditions relative to the
sample size.

A nonstandard feature of our application of GMM is the
following. The adding-up constraint means that the condi-
tion ¥i�1

N eit � 0 must be satisfied. This imposes strong
cross-equation restrictions on the dynamic structure of the
errors if the �eit terms are serially correlated. See, for
example, Berndt and Savin (1975) and Moschini and Moro
(1994). We first estimate the parameters with the White-
Huber correction for heteroskedasticity, and then test for
serial correlation in the residuals. First differencing appears
to be sufficient to render êit approximately white noise, and
the Box-Ljung statistic with six lags cannot reject the null
hypothesis of no serial correlation at the 5% level for
equations (1) and (2), or at the 10% level for equation (3).
We also tried quasi-differencing the first-differenced data to
estimate a common AR(1) parameter for the differenced
residuals, corresponding to Berndt and Savin’s (1975) error
specification after differencing. The autocorrelation param-
eter estimate is numerically small and insignificant, so those
results are not reported.10

For a system of N consumption groups, only N � 1
equations need to be estimated given the adding-up con-
straint. After imposing the symmetry condition bij � bji, the
homogeneity condition ci � ¥j�1

N bij, and the exact aggrega-
tion condition ¥i�1

N ci � 0, we still have 12 parameters in a
model with four goods. We first obtain unrestricted esti-
mates of all parameters, and then restrict those bij, i 
 j, that
are statistically insignificant to 0 to improve precision of the
estimates. These results are reported in table 4. Overall, the
�2 test for overidentifying restrictions cannot reject the
orthogonality conditions.

A. Testing the Model

We consider two additional tests of the empirical ade-
quacy of the NTLOG model. The first is a test for stability
of the coefficients (that are not statistically different from 0
in the full sample). For both sets of instruments, the sup LM
test of Andrews (1993) is maximized at � � 0.2, where �T
is the breakpoint for a sample of size T. The test statistic is
16.38 and 11.43 for the two sets of instruments, respec-
tively, and the 5% critical value for seven parameters is
21.07. Thus, we cannot reject the null hypothesis of param-
eter constancy.

The second is a general test for any omitted factors,
analogous to our earlier use of equation (3) to test for the
existence of any function g in equation (2). Suppose the

10 If we had seen stronger evidence of serial correlation, then a more
flexible treatment of autocorrelation could have been used, as in Moschini
and Moro (1994).

TABLE 4.—RESTRICTED AND UNRESTRICTED ESTIMATES OF THE

PARAMETERS BY GMM

INST1 INST2

Unrestricted Restricted Unrestricted Restricted

b11 0.1186 0.0838 0.1665 0.0988
S.e. 0.1077 0.0886 0.1086 0.0883

b12 0.0020 — �0.0062 —
S.e. 0.0563 — 0.0482 —

b13 0.0484 — �0.0602 —
S.e. 0.0403 — 0.0483 —

b22 0.1661 0.1206 0.1408 0.1048
S.e. 0.0487 0.0410 0.0509 0.0390

b23 �0.0373 — �0.0438 —
S.e. 0.0287 — 0.0310 —

b24 �0.1672 �0.1835 �0.1474 �0.1768
S.e. 0.0623 0.0532 0.0621 0.0466

b33 �0.0617 �0.0715 �0.1121 �0.1387
S.e. 0.0361 0.0392 0.0407 0.0415

b34 �0.0191 — �0.0181 —
S.e. 0.0427 — 0.0533 —

b44 0.4851 0.3153 0.5064 0.4075
S.e. 0.1214 0.1230 0.1475 0.1350

a11 �0.0009 �0.0008 �0.0008 �0.0007
S.e. 0.0003 0.0002 0.0003 0.0002

a12 0.0001 — �0.0001 —
S.e. 0.0002 — 0.0002 —

a13 �0.0007 �0.0005 �0.0010 �0.0008
S.e. 0.0002 0.0002 0.0002 0.0002

�2 25.095 32.360 25.924 30.323
D.f. 27 32 30 35
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nonstationary translog omits some variable, or some func-
tion of variables, gt, which could be price-related because of
flexible regularity, income related due to rank consider-
ations, or some other source of misspecification such as
omitted dynamic or demographic effects. Then

Wit � digt � ai0 � ai1t � �
j�1

N

bijrjt � �
j�1

N

cjzijt � eit. (16)

For example, digt could be a component of �it, or equation
(16) could arise from the aggregation of demands of a
potentially rank-three utility function.

Analogously to how equation (2) implies equation (3), we
have that if equation (16) holds for any gt, then

Wit � diWkt � ãi0 � ãi1t

� �
j�1

N

b̃ijrjt � �
j�1

N

cj�zijt � dizkjt	 � ẽit. (17)

Each equation (17) for i � 2, . . . , N � 1 is linear in the
observables, and so can be estimated by differencing and
GMM, again using our instruments st. We may thereby
indirectly test for the existence of any omitted factor gt by
testing whether the coefficients di are statistically signifi-
cant. We may similarly test for two omitted variables by
including two different budget shares as regressors in place
of just Wkt in equation (17), analogously to using equation
(5) to test for the structure of equation (4). A total of 27
variations of the model exist, depending on which budget
shares are modeled and which are used as regressors. To
conserve space, table 5 only reports results for 12 configu-
rations. When good 4 (others) is added to the food equation,
the t-statistic is sometimes significant at the two-tailed 5%
level, suggesting some (though not overwhelming) evidence
of omitted variables. But for both sets of instruments, the
t-statistics on other di are generally insignificant. The J-test
for overidentifying restrictions is reported in the last column
of table 5. Compared with the J test in table 4 (25.095 and
25.924), the difference never exceeds 7.814, the critical
value from the �2 distribution with three degrees of free-
dom. Thus, we cannot reject that the di are jointly 0.

B. Elasticities

Aggregate quantities are given by Qit � MtWit/pit. One
can verify from equation (12) that the corresponding aggre-
gate price and income elasticities are given by

� ln Qit

� ln pjt
�

�bij/Wit	 � cj

1 � �
k�1

N

ck ln pkt

� 1ij, (18)

� ln Qit

� ln Mt
�

� ci/Wit

1 � �
k�1

N

ck ln pkt

� 1, (19)

where 1ij is the Kronecker delta, which equals 1 if i � j, and
0 otherwise. The constants a0i are not identified when
differencing as in equation (15). The elasticity formulas
given in equations (18) and (19) do not make use of a0i, and

TABLE 5.—SPECIFICATION TESTS

(A) With INST1
(i,j,k) ti tj tk �24

2

(2,1,1) �0.6336 �0.3359 �0.3005 26.0097
(3,1,1) �0.7389 �0.1753 �0.2321 25.8998
(4,1,1) �2.2732 �0.4706 0.3154 23.2479
(2,3,4) �0.3955 �1.9064 �0.3559 26.5953
(3,1,4) �0.6823 �0.1775 �0.5276 25.8385
(4,1,4) �2.1087 �0.4602 �0.0459 23.2554
(3,4,1) �0.6355 �0.7701 �0.0733 26.9111
(3,4,2) �0.6164 �0.7175 �0.1656 26.8183
(3,4,4) �0.5854 �0.6251 �0.3532 26.7020
(4,3,1) �2.2817 �1.7406 0.3635 24.2229
(4,3,2) �2.2068 �1.7463 0.2535 24.2755
(4,3,4) �2.1489 �1.8058 0.0476 24.2617

(B) With INST2
(i,j,k) ti tj tk �27

2

(2,1,1) �0.9181 0.5734 0.8393 21.2570
(3,1,1) �1.4878 0.6800 0.9548 21.2513
(4,1,1) �1.9244 0.1801 0.9574 20.2703
(2,3,4) �1.2099 0.2463 0.3557 22.6511
(3,1,4) �1.4857 0.6412 0.6393 21.8971
(4,1,4) �1.8274 0.1964 0.6944 20.2437
(3,4,1) �1.0192 �2.2839 0.6290 24.8406
(3,4,2) �1.0342 �2.1522 0.4570 25.0925
(3,4,4) �0.9126 �2.2949 0.3867 25.3738
(4,3,1) �2.0192 �0.1576 0.7604 20.9346
(4,3,2) �2.0149 �0.1076 0.7502 20.9106
(4,3,4) �1.9207 �0.1403 0.5289 21.1045

The first column shows the variables being added to the equation for goods 1, 2, and 3, respectively.
The next three columns are the t-statistic on the variable being added.

TABLE 6.—ESTIMATES OF PRICE AND INCOME ELASTICITIES FOR NTLOG

Good

Price

Income1 2 3 4

(A) Using INST1

1 (food) �0.6808 0.0638 0.0724 �0.2682 0.8128
S.e. 0.3847 0.0734 0.0722 0.2995 0.6090
2 (energy) �0.0438 �0.1661 0.0724 �1.2644 1.4019
S.e. 0.1424 0.9802 0.0722 1.2932 0.4626
3 (clothing) �0.0438 0.0638 �1.8580 �0.0924 1.9305
S.e. 0.1424 0.0734 0.8553 0.0901 0.9275
4 (others) �0.1326 �0.3379 0.0724 �0.4024 0.8004
S.e. 0.1361 0.3798 0.0722 0.3885 0.1946

(B) Using INST2

1 (food) �0.6068 0.0739 0.1423 �0.4368 0.8274
S.e. 0.3803 0.0646 0.0987 0.2507 0.4359
2 (energy) �0.0404 �0.2482 0.1423 �1.3193 1.4655
S.e. 0.1019 0.6554 0.0987 0.9694 0.4069
3 (clothing) �0.0404 0.0739 �2.6858 �0.1759 2.8282
S.e. 0.1019 0.0646 1.1687 0.1211 1.2674
4 (others) �0.1722 �0.3180 0.1423 �0.2724 0.6202
S.e. 0.1486 0.2576 0.0987 0.3949 0.2615
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so are identified. We present estimates of price and income
elasticities (evaluated at the mean) in table 6. The standard
errors are calculated using the delta method.

We find that spending on energy and other goods is not
price-sensitive. The income elasticities for energy and for
clothing are above 1, whereas food and other goods are
income-inelastic. Also, according to the NTLOG estimates,
a 1% increase in the price of food reduces expenditure on
food by 0.68%, and a 1% increase in the price of clothing
reduces expenditure on clothing by around 2%. These elas-
ticities are statistically significant and are larger than most
others based on time series data in the literature, which are
generally estimated over a shorter sample. See, for example,
Denton, Mountain, and Spencer (1999) for a survey of
estimates. Using the standard translog model, Jorgenson,
Lau, and Stoker (1982) found a very large price elasticity
for a combined food and clothing group. In results not
reported, we find that estimation of the standard translog
model with our data set over the same time period yields a
positive own price elasticity for food, and income elastici-
ties for food and clothing that are approximately double
those based on the NTLOG. One cannot make inference
about the statistical significance of the standard translog
estimates, because the standard translog model is expressed
in terms of nonstationary variables. The asymptotic normal-
ity of the NTLOG estimates, on the other hand, allows for
standard inference.

The elasticities evaluated at the sample means reported
in table 6 have reasonable magnitudes and signs. An
interesting implication of nonstationarity of prices is that

elasticities may drift over time. This is illustrated in
figure 4, with estimates taken from INST2. The price
elasticity for energy appears to change little over time
and has historically been quite small. The price elasticity
for food has fallen somewhat during the course of the
past forty years, but the variations around the mean
elasticity of �0.6 are rather small. The price elasticity for
clothing has increased in recent years. The price elasticity
for other goods seems to have increased since the mid-
sixties, when these goods became a much larger share of
total spending (see figure 1). The time series of income
elasticities are presented in figure 5. A notable feature is
that not only has clothing become more price-sensitive
over time, but its income elasticity has also gone up.
These time variations in price and income elasticities
may reflect substantial changes in the composition of
these categories over time.

C. Aggregate Fixed-Effect Estimates

Our empirical analyses provide evidence that aggregate
demand system errors are nonstationary. We have suggested
that nonstationarity of errors could be due to aggregation of
consumers’ fixed effects across a slowly evolving popula-
tion of consumers with heterogeneous preferences. We now
provide some empirical evidence to suggest that this expla-
nation is at least plausible. The ideal data for this exercise
would be consumer-level information over a long span, but
detailed information on consumption by households (such
as the CEX) is generally available only in the form of short

FIGURE 4.—OWN PRICE ELASTICITIES
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panels or rotating panels that do not track the same house-
holds, neither of which are suited for the estimation of
individual specific effects. The best available data for our
purpose appear to be the PSID, which tracks households’
food consumption and income since 1968.

We begin by estimating the food demand equation

wht � ah � �fht � �t � �t log mht � εht, (20)

where fht is age and family size to control for observed
sources of heterogeneity, and ah is the fixed effect for each
household h. The regression includes year dummies both
additively and interacted with log income to obtain the
time-varying coefficients �t and �t. This is equivalent to
estimating a separate Engel curve for each time period, so
this analysis does not require measuring prices or specifying
how prices affect food demands at the household level.

We only consider male-headed households with at least
10 observations over our estimation sample of 1974 to 1992,
and whose heads are between ages 25 and 55.11 By per-
forming fixed effect estimation, we can obtain âh for 1308
households.

Given a sample, we cannot observe households entering
or leaving the true population of households �t, so we
proxy changes in the population by changes in subpopula-
tions, defined by age. As a first check, we aggregate the
estimated fixed effect corresponding to the 147 households

that are in the sample all 17 years. In this first example there
is, by construction, no change over time in the composition
of this subpopulation of households, so the aggregate is
constant over time (see table 7). This first example corre-
sponds to the extreme case of vt � 1 and �it � 0 in section
III. We then construct three estimated aggregate fixed ef-
fects, based on different subpopulations. The first averages
the fixed effect across those households whose heads are
between ages 30 and 50 in each time period, the second
between ages 30 and 40, and the third between ages 40 and

11 Food is the sum of food consumed at home plus food consumed
outside of home. Food data were not collected in 1973, 1987, and 1988.
The SEO sample was excluded from the analysis. Households who
reported zero income and/or consumption are dropped.

FIGURE 5.—INCOME ELASTICITIES

TABLE 7.—ESTIMATED AGGREGATE FIXED EFFECT

Year
Balanced

Panel
Age

30–50
Age

30–40
Age

40–50

74 .0757 .1915 .1176 .3239
75 .0757 .1755 .1019 .2938
76 .0757 .1510 .0731 .2775
77 .0757 .1286 .0505 .2566
78 .0757 .1083 .0265 .2487
79 .0757 .0806 .0010 .2243
80 .0757 .0555 �.0189 .2029
81 .0757 .0364 �.0301 .1729
82 .0757 .0171 �.0444 .1489
83 .0757 �.0082 �.0690 .1312
84 .0757 �.0301 �.0874 .1003
85 .0757 �.0478 �.1092 .0892
86 .0757 �.0607 �.1270 .0699
87 .0757 �.0699 �.1427 .0473
90 .0757 �.0914 �.1894 �.0192
91 .0757 �.0955 �.1999 �.0335
92 .0757 �.1011 �.2180 �.0526
AR(1) .9545 .9945 1.015

The first column gives the fixed effect aggregated over a fixed set of households. The remaining
columns are based on aggregation over household heads in each year that are between ages 30 and 50,
30 and 40, and 40 and 50, respectively. The estimated individual fixed effects are from estimates of the
household-level food demand equation (20) using the fixed-effect estimator as implemented in Stata.
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50. In all three cases, the sample size changes over time
both as the size of the subpopulation changes and as house-
holds drop in and out of the interviews. The average
numbers of observations used in the aggregations are 803,
505, and 337, respectively, with standard deviations of 147,
243, and 146, respectively.

The estimates reported in table 7 suggest strong trends in
the resulting aggregate fixed effects, consistent with our
conjecture that these series can be highly persistent. The
first-order autoregressive parameter is estimated to be near
unity in every case.12

This simple exercise is subject to many caveats due to
data limitations. For example, there is likely to be more
period-to-period change in the survey respondents than in
the population at large. Nonetheless, the results suggest that
aggregation of demand equation fixed effects over a slowly
evolving heterogeneous population could be a plausible
cause of apparent nonstationarity of errors in aggregate
demand systems.

VII. Household-Level Data

We implemented NTLOG with aggregate rather than
household-level data, because that is the context in which
the nonstationarity problem is most obvious and severe. In
this section we briefly describe how the estimator could be
applied at the household level. Assume household h has the
time t indirect utility function

Uht� pt,mt,	

� �
i�1

N ��hi � d�i fht � ehit �
1

2
�
j�1

N

bij ln
phjt

mht
� ln

phit

mht
,

where fht is a vector of observed characteristics of household
h that can affect utility and change over time; �hi is a
constant preference parameter for each household h and
good i; ehit embodies time-varying unobserved preference
heterogeneity; ¥ i�1

N di � 0, ¥ i�1
N ehit � 0, and ¥i�1

N �hi � 1;
and we drop the law-of-one-price assumption and allow
prices to vary across households. If the utility function is
over nondurables and services, then fht could include stocks
of durables, yielding conditional demand functions. Uht will
then be a conditional rank-two utility function, which is
equivalent to an unconditional rank-three model (see Lew-
bel, 2002).

Let zhijt � whit ln phjt and rhit � ln �phit/mht	, and follow
the same steps used to derive equation (9), to obtain

whit � �hi � d�i fht � �
j�1

N

bijrhjt � �
j�1

N

cjzhijt � ehit.

Instead of (or in addition to) appearing in the utility func-
tion, the error term ehit can embody measurement error in
whit or optimization error on the part of household h. The
preference parameter �hi is a household specific fixed effect
for good i. Assuming that each household is observed in at
least two time periods, estimation is then GMM based on
the moment conditions

E�sht��whit � d�i �fht � �
j�1

N

bij �rhjt � �
j�1

N

cj �zhijt�� � 0.

The instruments sht can be lags of � ln phit, � ln mht, and
possibly �fht, which are assumed to be uncorrelated with
�ehit This specification incorporates observed and unob-
served constant sources of heterogeneity in preferences
across households into the fixed-effect parameters �hi.
These fixed effects are differenced out, so the incidental-
parameters problem does not arise even when each house-
hold is only observed for a small number of time periods.
Consistency requires that either the number of households
or the number of time periods go to infinity.

Although this model gives consistent estimates with few
time periods when the number of households goes to infin-
ity, it should be noted that in industrialized economies,
factors including price competition and antidiscrimination
laws result in limited variation in the prices faced by
different households for identical goods in the same time
period. Therefore, in short panel data sets (where nonsta-
tionarity might not be a problem), the available price vari-
ation will generally be very limited, and hence price effects
will be estimated very imprecisely. For example, when
prices only vary by time and region (so phit is the same for
all households h in a region), vastly increasing the number
of households in each region provides no increase in ob-
served relative price variation. At least for some goods, long
time series, such as are available with aggregate data, are
needed to observe substantial relative price variation.

If observed prices vary by region as well as time, then our
aggregate model could be applied, by adding a region
subscript and using region-specific aggregates W and M.
These aggregates could be constructed from panel or from
repeated cross-section data. The time trends and aggregate
errors can now be due to aggregation of fht in addition to
trends in the (regional) population means of �hi.

VIII. Conclusions

Price and income elasticities are important statistics
which characterize consumers’ behavior and are fundamen-
tal to the evaluation of tax policies and welfare programs.
Demand systems provide a conceptually coherent frame-
work for estimating these elasticities. Utility maximization
requires any reasonable specification of demand systems to
be nonlinear in relative prices, and relative prices them-
selves are nonstationary.

12 Formal tests of nonstationarity or unit roots in the data in table 7 are
not practical, because the number of time periods is very short, no data are
available in some years, and ordinary tests would fail to allow for
estimation errors in the generation of these data.
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Very few techniques exist for estimation of structural
nonlinear models with nonstationary data. The vast majority
of existing empirical demand system studies, with either
household- or more aggregate-level data, simply ignore this
problem, treating the data as if they were stationary. The few
empirical studies that do consider price nonstationarity
assume linearity by, for example, estimating an almost ideal
model while ignoring its nonlinear component, which is a
quadratic price index.

To deal with price nonstationarity, we propose a refor-
mulation of the utility-derived translog model that can be
written in a linear form (albeit with endogeneity in the
regressors caused by interacting prices with budget shares),
thereby avoiding the severe constraints of ordinary utility-
derived linear demand models, while preserving sufficient
linear structure to deal with nonstationarity. Our NTLOG
model provides a solution to the empirical problem, which
exists at both the household and the aggregate level, of
demand system estimation with nonstationary relative
prices. At the household data level, the NTLOG also permits
consistent estimation in the presence of preference hetero-
geneity that takes the form of utility-derived household and
good-specific fixed effects.

In addition to handling nonstationarity of relative prices,
our NTLOG model can also cope with possible nonstation-
arity of demand system errors, a feature commonly found in
models using aggregate data. We show theoretically that
nonstationarity of demand system errors could arise from
aggregation across heterogeneous consumers in a slowly
changing population, and we provide some empirical evi-
dence for this effect based on a panel of household demands
for food. Other possible sources of nonstationarity are
omitted variables, omitted dynamics, and aggregation
across goods as in Lewbel (1996a). We provide some
empirical evidence against the omitted variables explana-
tion.

We estimate this NTLOG model using aggregate U.S.
data over the sample 1954–1998. The model is subjected to
and passes a variety of specification tests. Estimates of the
model parameters and elasticities are also reported, and are
found to be economically plausible. Unlike other demand
system estimates in the literature, given nonstationary data
and nonstationary errors, these NTLOG estimates have
root-T asymptotically normal distributions and so allow for
standard inference.

An open problem in all time series estimation of demand
systems is to reconcile the apparent nonstationary behavior
of budget shares with the fact that budget shares are
bounded between 0 and 1. In this paper, we first-difference
the model, because the resulting GMM estimator has stan-
dard root-T limiting distribution. However, as discussed in
Davidson and Terasvirta (2002), fractional instead of first
differencing could be an appealing alternative when the
variables displaying strong persistence are strictly bounded.
It remains to be seen whether fractional cointegration esti-

mation, as in Davidson (2002), can be applied to the
NTLOG and the estimates remain root-T consistent and
asymptotically normal. Alternatively, one might construct
models where budget share behavior changes from nonsta-
tionary to stationary in the neighborhood of boundaries.
Persistent movements in budget shares could be a result of
changes in demographics, tastes, and the composition of
goods. A further decomposition of these effects might pro-
vide a better understanding of the sources of apparent
nonstationarity.
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APPENDIX

Data Sources

The data are from the U.S. National Income and Product Accounts,
obtained via Citibase.

The sample period is 1954Q1–1998Q4. In Citibase mnemonics, M �
GC � GCD. Nominal expenditures on the four groups are:

1. GCFO (food),
2. GCNF � GCNG � GCST � GCSHO (energy),
3. GCNC (clothing),
4. Others � M � food � energy � clothing.

Price indices are obtained by dividing nominal by real expenditures in
these groups. Following many other authors (such as Campbell & Man-
kiw, 1990), data from before the mid-1950s are excluded to avoid the
effects of both the Korean war and measurement errors in the first few
years of data collection.

In Citibase, the second set of instruments are GGE, GDGE, GGCGE,
GIMQ, GW, GMPT, GPOP, LBLCPU, LHUR, and LHP16. We take logs of
the first six of these variables before first-differencing them.

For table 7, household-level data from 1974 to 1992 are taken from the
Panel Study of Income Dynamics, excluding the SEO sample. We use
observations with male household heads who are between age 25 and 55,
and have no missing data on age, sex, marital status, number of children,
or income. Income is defined as the sum of earned and transfer income of
the husband, wife, and other family members. Food is defined as food
consumed at home and outside the home. Consumption data are not
available for 1973, 1987, and 1988. A total of 17,568 observations over 17
years were used in the fixed-effect estimation.
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