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Abstract—This paper provides evidence that the two leading principal
components in a panel of 23 commodity convenience yields have statisti-
cally and quantitatively important predictive power for inflation even after
controlling for unemployment gap and oil prices. The results hold up in
out-of-sample forecasts, across forecast horizons, and across G7 countries.
The convenience yields also explain commodity prices and can be seen as
informational variables about future economic conditions as conveyed by
the futures markets. A bootstrap procedure for conducting inference when
the principal components are used as regressors is also proposed.

I. Introduction

MONETARY authorities seem to hold a long-standing
view that commodity prices have inflationary conse-

quences, and thus the ability to predict future commodity
price movements can be important for the time path of
economic policies. As the Federal Reserve chairman, Ben
Bernanke, remarked,

Rapidly rising prices for globally traded commodities
have been the major source of the relatively high rates
of inflation we have experienced in recent years, under-
scoring the importance for policy of both forecasting
commodity price changes and understanding the factors
that drive those changes (2008).

In spite of the general view that commodity price move-
ments have inflation implications, the formal link between
inflation and commodity prices is not thoroughly understood.
Some argue that commodity prices are leading indicators of
inflation because they respond quickly to general economic
conditions. Others believe that idiosyncratic movements in
commodity prices work through the distribution channel and
subsequently affect prices in general. While both explana-
tions are plausible, the magnitude of the commodity price
effect on inflation must necessarily depend on what trig-
gers changes in commodity prices. In particular, commodity
prices can change as a result of transactions, speculative
demand, or precautionary demand, and each of these demand
components can have a different impact on inflation.

At the empirical level, the prices of oil and various aggre-
gate commodity price indices have been found to improve
inflation forecasts on a simple autoregressive (AR) bench-
mark for certain countries and periods. However, the evidence
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is far from robust. Hooker (2002) finds a statistically sig-
nificant impact of oil prices on core U.S. inflation over the
period 1962 to 1980 but not for the post–1981 period. Several
other studies also report an improved ability of commodity
prices for forecasting inflation until the mid-1980s but a sub-
stantial deterioration in the predictive power of commodity
prices from 1985 onward.1 Stock and Watson (2003) show
that these forecasting improvements are sporadic and unsta-
ble. The problem is partly that commodity prices tend to be
volatile and are themselves difficult to forecast.

This paper develops a framework for analyzing commodity
prices and inflation. We use data on commodity price futures
in the form of convenience yields. Although the evidence
on the predictive power of futures prices for commodity and
general price movements is somewhat mixed, there is a per-
ception that commodity futures prices contain, “substantial
amount of information about the supply and demand con-
ditions that are aggregated by futures markets” (Bernanke,
2008). Our empirical approach is unique in that we extract
information from a convenience yields panel using princi-
pal components. These principal components in convenience
yields have strong and systematic predictive power for com-
modity price changes and inflation rates of the United States
and other G7 countries. The results hold up even when
interest rate, trade-weighted exchange rate, demand pressure
variables (such as unemployment gap), and oil price are con-
trolled for. In contrast, the IMF aggregate commodity index
has little predictive power for inflation. We attribute this find-
ing to the ability of the principal components in convenience
yields to isolate variations in commodity prices that have
inflationary consequences.

The rest of the paper proceeds as follows. Section II
establishes a relationship between commodity prices and con-
venience yields from which a relation between inflation and
convenience yields is obtained. The data and the construction
of principal components are discussed in section III. Section
IV presents a bootstrap procedure to assess the sampling error
from using principal components as regressors. Predictive
regressions and out-of-sample forecasts of inflation for the
United States and the other G7 countries are presented in
section V. The relation of convenience yields with individ-
ual commodity prices and the IMF commodity price index is
studied in section VI. Supplementary results are provided in
an online appendix.

II. The Determination of Commodity Prices and Inflation

Commodities share similar characteristics with money in
that they can be held for everyday use, can be stored, and can
be used as an asset. It is thus useful to think of the demand

1 See Blomberg and Harris (1995) and Furlong and Ingenito (1996),
among others.
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for commodities as arising from one of three sources: (a)
a component tied to current consumption and production,
(b) a precautionary demand component that reflects future
needs, and (c) an asset demand component that depends on
its risk over the holding period relative to its potential for cap-
ital gains. As Deaton and Laroque (1992) noted, the market
clearing price for commodities is a function of the availability
(new production plus inventories) relative to expected total
demand (current plus precautionary plus asset demand).

A. A Model for Commodity Prices and Inflation

Let Sjt and Fjt,n denote the spot and futures price of com-
modity j for delivery at time t+n. Also, let it,n be the nominal
interest earned between period t and t + n. Define the basis
to be the difference between the futures and the spot price,
Fjt,n − Sjt . In the speculative storage model of commodities,
inventories are held only if the expected returns are positive.
Thus, Sjt and Fjt,n are both functions of the level of inventories.
Kaldor (1939) posits that negative basis Fjt,n − Sjt consists of
two components: (a) an opportunity cost of forgone interest
from having to borrow and buy the commodity and (b) a (net
of insurance and storage costs) convenience yield CYjt,n. With
the convention that CYjt,0 = 0, Fama and French (1987) for-
malize the relation between convenience yields and the basis
as

Fjt,n − Sjt = Sjtit,n − CYjt,n. (1)

Kaldor (1939) uses the convenience yield to reflect the
benefit from using the stored commodity whenever desired.
However, in Pindyck’s (1993) model of rational commod-
ity pricing, convenience yields play the role of dividends that
anticipate future changes in spot commodity prices. When the
timing or the level of consumption is stochastic, holding com-
modity inventories acts as an insurance against unexpected
price movements or demand shifts.2 Thus, the convenience
yield CYjt,n is a forward-looking variable that contains infor-
mation not exclusive to future demands. The negative of CYjt,n

is also referred to in the finance literature as interest-adjusted
basis (Fama & French, 1988). Although CYjt,n is unobserved,
it can be computed from the observed spot price, futures price,
and interest rate using equation (1). If the spot price is approx-
imated by the price of the nearest futures contract, the basis
has the form of a futures price spread.

An alternative view of the basis is provided by the the-
ory of normal backwardation according to which risk-averse
investors earn a risk premium for the fluctuations in the
future spot price. The basis then comprises a risk premium

2 Gorton, Hayashi, and Rouwenhorst (forthcoming) provide empirical
evidence that convenience yields are a decreasing and possibly nonlinear
function of inventories. Alquist and Kilian (2010) show that shifts in uncer-
tainty about future excess demand are reflected in the fluctuations of oil,
which are in turn correlated with fluctuations in the precautionary demand
component of the real spot price of oil.

component Ψjt,n ≡ EtSjt+n − Fjt,n and an expected price
change component EtSjt+n − Sjt so that

Fjt,n − Sjt = EtSjt+n − Sjt − Ψjt,n. (2)

When Ψjt,n is positive, futures price is backwardated (at a dis-
count). In the storage model, low inventory leads to low basis
and, subsequently, low returns on owning the commodity.

Whereas equation (1) implicitly defines the convenience
yield, equation (2) implicitly defines the risk premium.
Together, equations (1) and (2) imply

EtSjt+n − Sjt = Sjtit − CYjt,n + Ψjt,n.

Let cyjt,n = CYjt,n/Sjt , ψjt,n = Ψjt,n/Sjt , and EtΔ
nsjt+n =

(EtSjt+n − Sjt)/Sjt . Then,

EtΔ
nsjt+n = it,n + ψjt,n − cyjt,n. (3)

According to equation (3), the expected percentage change
in commodity prices has three components: (a) a compo-
nent it,n related to the opportunity cost of buying and holding
inventories, (b) a risk premium component ψjt,n, and (c) an
expected marginal convenience yield component cyjt,n. The
intuition for the inverse relationship between the expected
commodity price changes and convenience yield is provided
by Fama and French (1988), who suggest that a permanent
increase in the current and future commodity demand has
a differential impact on current and expected spot prices.
In particular, current spot prices should increase more than
expected spot prices, especially at low inventory levels,
because the demand and supply responses of consumers and
producers tend to partially offset the effect of the shock on
expected prices. As a consequence, higher convenience yields
and lower inventory levels are associated with lower expected
spot prices.

The three components in equation (3) are not mutu-
ally uncorrelated as equations (1) and (2) are alternative
decompositions of the basis. It is useful to define

εjt,n = ψjt,n − Proj(ψjt,n|it,n, cyjt,n)

to be the component of ψjt,n that is orthogonal to the inter-
est rate and the convenience yield. Equation (3) can be
represented as

EtΔ
nsjt+n = αj1cyjt,n + αj2it,n + εjt,n. (4)

Because αj1 and αj2 are now “reduced-form” coefficients,
they are not constrained to the parameter values implied by
equation (3).

To link the determinants of commodity prices to infla-
tion, let Pt denote the economy’s general price index. Let
qjt = q̃jt − q∗

jt be the real price of commodity j defined in
the currency of country k relative to its equilibrium, where
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q̃jt = Sjt/Pt and q∗
jt is the equilibrium value of q̃jt . Assuming

that real commodity prices are mean-reverting as in Frankel
(2006), we can write the n-period expected inflation rate
EtΔ

npt+n = (EtPt+n − Pt)/Pt as

EtΔ
npt+n = θjqjt + EtΔ

nsjt+n

for some θj < 0. Substituting the expression for EtΔ
nsjt+n in

equation (4) yields the inflation equation

EtΔ
npt+n = θjqjt + αj1cyjt,n + αj2it,n + εjt,n. (5)

If αj1 = −αj2 = −1, rearranging terms would imply that
the disequilibrium in real commodity price qjt is inversely
proportional to the real carrying cost, which equals the real
interest rate minus the net convenience yield.

For open economies, Frankel (2006) suggests that a mon-
etary expansion in country k will lead to a lower interest rate,
causing commodity prices in local currencies to rise until
an expected depreciation restores equilibrium. Chen, Rogoff,
and Rossi (2010) find that exchange rates forecast commodity
prices. This motivates the open economy analog of equation
(4):

EtΔ
nsjt+n = αj1cyjt,n + αj2ijt,n + αj3Δ

nxk
t + εjt,n, (6)

where xk
t denotes the nominal exchange rate between the

United States and country k. The corresponding inflation
equation is then given by

EtΔ
npt+n = θjqjt + αj1cyjt,n + αj2it,n + αj3Δ

nxk
t + εjt,n.

(7)

In this model for inflation, cyjt,n is commodity specific by
definition, and there is an exchange rate with every trading
partner. Because of the heterogeneous nature of the com-
modities, one can expect the effects of an aggregate measure
of commodity prices on inflation to be different from those
of the individual commodity prices. Indeed, Mishkin (1990)
notes that individual convenience yields (or basis) are too
noisy to be useful predictors.

Let cyt denote an aggregate measure of convenience yields
and q̄t be an aggregate measure of disequilibrium real com-
modity price. Also, let xt be a (trade-weighted) average of
exchange rates. The aggregate analog of equation (7) is

EtΔ
npt+n = θq̄t + α1cyt + α2it,n + α3Δ

nxt + εt,n. (8)

This open-economy, commodity-based inflation model posits
that the expected n-period-ahead inflation is a function of the
aggregate disequilibrium in real commodity prices, aggre-
gate convenience yield, interest, and exchange rates. Note
that the use of aggregate convenience yield for predicting
inflation is new and has not been previously explored in
the literature. In the analysis that follows, we view conve-

nience yields as an informational variable that reflects future
economic conditions as perceived by the commodity market
participants. However, we are agnostic about the structural
sources of variations in convenience yields, which could
be due to production, hedging, and speculative demand for
commodities.

III. Data

This section discusses the data used in the empirical work.
The daily commodity price data are obtained from the Com-
modity Research Bureau and are available at daily frequency
for March 1983 to July 2008. The data set contains spot
and futures prices of 23 commodities from six commodity
groups: energy (crude oil, heating oil), foodstuffs (cocoa, cof-
fee, orange juice, sugar), grains and oilseeds (canola, corn,
oats, soybeans, soybean oil, wheat), industrials (cotton, lum-
ber), livestock and meats (cattle feeder, cattle live, hogs lean,
pork bellies), and metals (copper, gold, palladium, platinum,
silver). This particular choice of a cross-section of commod-
ity prices and time period is dictated by data availability. The
spot price is approximated by the price of the nearest futures
contract, and the futures price is the price of the next-to-the-
nearest futures contract. The time separating the nearest and
next-to-the-nearest futures contracts typically differs across
commodities and may not be equally spaced over the course
of the year. As a result, we do not exactly match the con-
tract maturities with the forecast horizon. Longer contracts
are not used due to lack of continuous and liquid record of
the corresponding maturity futures prices over our sampling
period.

As consumer price data are observed at no higher than
monthly frequency, monthly commodity price series are con-
structed from daily data by averaging the daily prices in
the corresponding month. The real commodity prices qjt are
obtained by deflating the spot prices by the U.S. CPI (sea-
sonally adjusted) index obtained from the Bureau of Labor
Statistics (BLS). The three-month U.S. T-bill rate and the
exchange rate data (U.S. dollar trade-weighted index against
major currencies) are from the Federal Reserve Economic
Database (FRED). We use the IMF commodity nonfuel price
index to approximate the aggregate behavior of commod-
ity spot prices.3 The detrended real commodity price qjt is
obtained as deviations from the Hodrick-Prescott (HP) trend
estimate. The smoothing parameter for the HP filter is set to
its default value for monthly data of 14,400. Results based
on data detrended by a one-sided exponentially weighted
moving average filter are similar.

As noted earlier, convenience yield is a forward-looking
variable. We proxy this forward-looking information using

3 The data for CPI, interest and exchange rates, and commodity price
index can be downloaded from http://research.stlouisfed.org/fred2/ and
http://www.imf.org/external/np/res/commod/index.asp.
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data on commodity price futures. Specifically, the percentage
net convenience yield for commodity j is computed as

cyjt,n = (1 + it,n)Sjt − Fjt,n

Sjt
, (9)

using the three-month U.S. Treasury bill as it,n, adjusted for
the time that separates the two futures contracts. Note that
while commodity spot and futures prices may be volatile and
subject to occasional spikes, the convenience yield (being
the difference between the two series) should be less noisy.
Furthermore, the data for spot and future prices tend to be
highly persistent and possibly nonstationary, while conve-
nience yields exhibit milder persistence. Using convenience
yields in the empirical work also sidesteps inference issues
that may arise when regressors are nonstationary.

To conserve space, we highlight only a few key features of
the data.4 The convenience yields are persistent, with most
of the first-order autocorrelation coefficients around 0.8, the
largest being 0.936 for coffee. The detrended real commodity
prices qjt are also persistent with autocorrelation coefficients
between 0.743 and 0.912. Surprisingly, the qjt series in the
food group are more volatile than the real prices of crude and
heating oil. The convenience yields of precious metals such as
gold and silver have variances that are orders of magnitude
smaller than those for the other commodities. The conve-
nience yields of sugar, oats, hogs, pork bellies, and industrials
appear to be most volatile. Fama and French (1987) sug-
gest that the differences in the variability of convenience
yields could arise from seasonal variations and adjustments
to demand and supply shocks. The summary statistics in the
online appendix also reveal that grains and oilseeds are typ-
ically in contango, with prob(cyjt,n > 0) < 0.5. In contrast,
livestock and meats and metals (except for silver) are most
of the time in backwardation, with prob(cyjt,n > 0) ≥ 0.5.

A. Constructing cyt and q̄t by Principal Components

Our basic premise is that convenience yields contain
information about commodity prices, and commodity prices
anticipate inflation. The inflation model presented in section
II uses aggregate measures of commodity prices and conve-
nience yields as predictors but leaves open the question as to
how the aggregate measures are to be constructed. Boughton
and Branson (1991) suggest that an aggregate measure of
commodity prices would not predict inflation if idiosyncratic
supply shocks are not accommodated by the monetary author-
ities. They conjecture that future inflation may be better
predicted by commodity prices, which are driven primarily
by demand shocks. Kilian (2009) suggests that the macroe-
conomic effects of oil price shocks depend on the source
of the shock. However, isolating the variations in commodity
prices that have pure inflationary consequences is not a trivial
exercise.

4 We refer readers to the online appendix for full details.

Hong and Yogo (2009) find that a simple average of the
individual convenience yields helps to predict commodity
prices, although it is uncorrelated with future stock and bond
returns, as well as short-term interest rate, yields spread, and
dividend yield. They attribute the predictive power of the
aggregate convenience yield across commodity groups to its
ability to pick up different types of shocks. To some extent,
we share this view, though our focus here is inflation, not
commodity price forecasts.

We extract principal components from our panel of 23
convenience yields. Similarly, principal components are
extracted from 23 detrended real commodity prices. We
denote these by pccyt and pcqt , respectively. Prior to the com-
putation of the principal components, the variables cyjt,n and
qjt are standardized. In brief, the first r principal components
of the convenience yields are the eigenvectors corresponding
to the largest eigenvalues of the N ×N matrix (NT)−1cy′

ncyn,
where cyn is a T × N matrix of convenience yields, with
N = 23. By construction, these principal components are
mutually orthogonal but are unique only up to a column sign
change.5

The principal components are linear combinations of the
individual series constructed to best explain the total variation
in the data. We use them as a statistical tool to extract the most
important information in convenience yields without insist-
ing on the presence of a factor structure. If convenience yields
are indeed driven by latent common factors, then the princi-
pal components consistently estimate the space spanned by
the common factors as the number of commodities tends to
infinity. Pindyck and Rotemberg (1990) find excess comove-
ment in commodity prices, while Tang and Xiong (2009)
show that commodity prices have been increasingly exposed
to macroeconomic shocks; a factor representation of com-
modity prices is defensible, though this is not crucial to the
analysis.

The first two principal components pccyt = ( pccy(1)
t ,

pccy(2)
t )′ explain 23% of the variance in convenience yields,

computed as a ratio of the sum of the first two eigenvalues
to the sum of all eigenvalues. There is little evidence that
additional principal components are needed in the predictive
regressions considered. Both pccy(1)

t and pccy(2)
t are persis-

tent, with first-order autocorrelation coefficients of 0.93 and
0.81, respectively. The two principal components for disequi-
librium commodity prices pcqt = ( pcq(1)

t , pcq(2)
t )′ explain

about 31% of the variance in the panel of data on qjt . The
first-order autocorrelation coefficients for the two principal
components are 0.90 and 0.88, respectively.

In results presented in the online appendix, we find that the
first element of pccyt loads heavily on corn, coffee, cotton,
wheat, and crude oil, while the second principal component
is highly correlated with some metals (silver, copper), as
well as soybeans, cocoa, and heating oil. The first element

5 While the signs of the principal components can be set to be consistent
with a microfounded model of commodity prices and inflation, equations
(4) and (5) are reduced-form models.
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of pcqt is closely associated with the commodity group of
grains and oilseeds, while its second element captures the
price variation of the metals group. These principal compo-
nents have dynamics that are distinct from those of the energy
commodities.

IV. Bootstrap Inference with Principal Components as
Regressors

This section proposes a bootstrap method that can account
for the fact that the principal components are generated
regressors, as well as small sample distortions that may arise
from time series estimation of predictive regressions. Several
bootstrap procedures for factor models have been suggested
(without proof of their asymptotic validity) for idiosyncratic
errors that are identical and independently distributed (i.i.d.)
across units and over time, which is too restrictive for the
data being analyzed. As well, we want to allow for but do
not want to impose a factor structure on the data. In other
words, we want to leave open the possibility that the principal
components are simply weighted averages of the individual
convenience yields, which are meaningful predictors in their
own right. Given these considerations, a bootstrap proce-
dure for estimation using principal components as predictors
seems more appropriate.

Let x be a generic N×T data matrix, where xit (i = 1, ..., N ,
t = 1, ..., T ) denotes the ith observed series at time t, N is
the total number of variables (convenience yields, detrended
real commodity prices), and T is the number of time series
observations. The first r principal components of matrix x,
denoted by pcxt , are the eigenvectors corresponding to the
largest eigenvalues of the N × N matrix (NT)−1xx′.

Our interest lies in conducting statistical inference in the
predictive regression

yt+h = β′pcxt + γ′wt + εt+h,

where wt denotes a p×1 vector of other observable predictors
(interest rate, exchange rate, real oil price), as well as deter-
ministic terms and lag values of yt , and the errors εt+h are
possibly autocorrelated and heteroskedastic. The predictive
regression is estimated by OLS, and the inference proce-
dure on the estimated parameters should potentially take into
account that pcxt are “generated” regressors.

Under suitable regularity conditions (Bai & Ng, 2006), the
OLS estimator (β̂′, γ̂′)′ is root-T consistent and asymptoti-
cally normal. Furthermore, the presence of generated predic-
tors pcxt does not require any adjustments to the standard
errors of the parameter estimates provided that

√
T/N → 0.

Unfortunately, in our analysis, the cross-sectional dimension
N is relatively small, and the regularity conditions of Bai and
Ng (2006) may not hold. As a result, we resort to bootstrap
methods for inference that account for uncertainty associated
with the estimation of principal components. Our proposed
bootstrap algorithm is based on a moving-block resampling
of the original data.

More specifically, we stack the data from both stages,
x1t , .., xNt , yt+h and wjt , j = 1, ..., p (after truncating the last h
observations of xit), into the matrix

Z =

⎡
⎢⎢⎢⎢⎢⎢⎣

x11 ... xN1 yh+1 w11 ... wp1

x12 ... xN2 yh+2 w12 ... wp2

... ... ... ... ... ... ...

... ... ... ... ... ... ...

x1(T−h) ... xN(T−h) yT w1(T−h) ... wp(T−h)

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The bootstrap samples (x∗
1t , ..., x∗

Nt , y∗
t+h, w∗

1t , ..., w∗
pt) for t =

1, ..., T − h are then obtained by drawing with replacement
blocks of m = mT ∈ N (1 ≤ m < T) observations
from matrix Z . This ensures that the bootstrap samples
preserve possible model misspecification, serial correlation,
heteroskedasticity, and cross-sectional dependence in the
data. The block size m is allowed to grow, but at a slower
rate, with the time series dimension T .

Let zt be the tth row of the data matrix Z above. Also, let
Bt,m = (zt , zt+1, ..., zt+m−1) denote a block of m consecutive
observations of zt , k = [T/m], where [a] signifies the largest
integer that is less than or equal to a, and T = km. We resam-
ple with replacement k blocks from (B1,m, B2,m, ..., BT−m+1,m)

by drawing k i.i.d. uniform random variables [u1], ..., [uk] on
(1, k + 1). Then the bootstrap sample is given by Z∗ = [(z∗

1,
z∗

2, ..., z∗
m), (z∗

m+1, z∗
m+2, ..., z∗

2m), ..., (z∗
T−m

, z∗
T−m+1

, ..., z∗
T
)] =

(B[u1],m, B[u2],m, ..., B[uk ],m).
For each bootstrap sample {x∗

it} (i = 1, ..., N , t = 1, ..., T ),
the r principal components (denoted by pcx∗

t ) are reestimated
as the largest eigenvalues of the N × N matrix (NT)−1x∗x∗′.
These are plugged into the predictive regression for the
bootstrap data,

y∗
t+h = β̂∗′pcx∗

t + γ̂∗′w∗
t + ε̂∗

t+h,

where β̂∗ and γ̂∗ are OLS estimates.
Let β̂l (l = 1, ..., r) denote the estimated coefficient on

the lth principal component from the observed sample and
β̂∗

l, j be the estimated coefficient from the jth bootstrap sam-
ple with corresponding standard errors s.e.(β̂l) and s.e.(β̂∗

l, j)

computed using a heteroskedasticity and autocorrelation con-
sistent (HAC) estimator. Due to the sign indeterminacy of the
principal components, we set the sign of pcx∗

t to be consistent
with the dynamics of pcxt estimated from the original sample.
We then construct the sequence t∗αl, j

= (β̂∗
l, j − β̂l)/s.e.(β̂∗

l, j),
sort it in ascending order, and let v∗

α and v∗
(1−α) denote the

αth and (1 − α)th elements of the sorted sequence for a
prespecified nominal level α. The 100(1 − α)% equal-tailed
percentile-t bootstrap confidence interval for βl is obtained
as [β̂l −s.e.(β̂l)v∗

(1−α/2), β̂l −s.e.(β̂l)v∗
α/2]. In addition to better

approximating the small-sample distribution of β̂l, these boot-
strap confidence intervals take into account the estimation
uncertainty for the generated regressors (principal compo-
nents). Confidence intervals for the remaining coefficients
are obtained in a similar manner. Note that this bootstrap
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procedure allows for possible asymmetry in the finite-sample
distribution of the parameter of interest. In the empirical anal-
ysis, we set m = 4 although the results are similar for other
values of m in the range m ∈ [4, 24]. The number of bootstrap
replications B is 4,999.

Since this inference procedure is used for both the aggre-
gate commodity price and inflation equations, in the empirical
analysis, we stack the two dependent variables, 
hst+h and

hpt+h, along with all regressors in the matrix Z , which is
resampled as described above. We then select the appropriate
columns of the bootstrap matrix Z∗ to conduct the principal
component analysis and estimate the corresponding predic-
tive regressions. Some Monte Carlo simulation results on the
coverage rates of the proposed bootstrap confidence intervals
are presented in the online appendix.

V. Convenience Yields as Predictors of Inflation

This section analyzes the predictive ability of convenience
yields for the inflation rates in the United States and the other
G7 countries. We also report out-of-sample forecast results.

A. Results for the United States

Inflation is a notoriously challenging series to forecast, and
it is not easy to find predictors that have systematic predic-
tive power when augmented to an univariate autoregression.
Stock and Watson (2007) find that an unobserved compo-
nents model is often better at forecasting quarterly inflation
as measured by the GDP deflator than models that explicitly
use observed predictors. The unobserved components model
implies that Δpt+1 − Δpt has a negative moving average
component. However, Stock and Watson (2007) also report
that the unobserved components model is less appropriate
for quarterly inflation as measured by the (all items) CPI.
Given that the commodity price data are daily, our empirical
exercise focuses on forecasting monthly CPI inflation. We
consider six measures of inflation based on (a) CPI all items,
(b) CPI less food and energy, (c) CPI less food, (d) CPI less
energy, (e) CPI food only, and (f) CPI energy only. The CPI
series, taken from the BLS, are seasonally adjusted. Since it is
widely documented that U.S. inflation is persistent, we start
with an AR model for inflation and ask what variables have
additional predictive power beyond lags of inflation. We also
vary the prediction horizon, denoted by h, which may differ
from the futures contract maturity n.

According to the model given in section II, inflation should
be predicted by disequilibrium in commodity prices and
convenience yields. Our predictive equation for h-period
inflation Δhpt+h = (Pt+h − Pt)/Pt is


hpt+h = b + β0(L) 
 pt + β1(L)′pccyt + β2(L)′pcqt

+ β3(L)zt + vt+h. (10)

In the base case, zt is empty. The Akaike information criterion
(AIC) suggests that β1(L) = β1, β2(L) = β2, and β0(L) is a

second-order polynomial in the lag operator. This lag order
is used for all in-sample inflation models and all forecast
horizons. Any remaining serial correlation, such as serial
correlation induced by overlapping data, is accounted for by
computing HAC standard errors.6 The optimal lag length will
likely vary across models and forecast horizons. However,
the goal of these regressions is to assess which predictors
are relevant, and imposing a common lag length simplifies
the presentation of results. Optimal lags will be used in the
subsequent out-of-sample forecasting analysis.

Table 1 presents the parameter estimates from model (10)
with h = 1, 3, 6, and 12, along with their corresponding 90%
bootstrap confidence intervals. The statistically significant
coefficients at the 10% level are in bold. The second prin-
cipal components of convenience yields pccy(2)

t , and real
commodity prices pcq(2)

t tend to be strongly significant at
short horizons. Furthermore, pccy(2)

t , remains significant at
longer horizons. We attribute the significance of pccy(2)

t to
the fact that the principal components isolate those varia-
tions, common across individual convenience yields and real
commodity prices, that are relevant for predicting inflation.
Further investigation reported in the online appendix reveals
that of the 23 convenience yields cyjt,n, the estimated coef-
ficients of cocoa, orange juice, and copper are significantly
positive, while the estimated coefficients of oats, soybeans,
and silver are significantly negative. The effects of the other
cyjt,n on inflation are not statistically significant.

In the more general specifications, we let zt be the
detrended real price of crude oil and other determinants (inter-
est rate it and the log change of the trade-weighted USD
exchange rate index Δxt) of commodity price movements.
As in the baseline specification, pccy(2)

t appears to contain
important information for predicting inflation at all fore-
casting horizons. The real oil price possesses incremental
explanatory power and captures some sharp movements in
the inflation rate for all goods and services. While the inter-
est rate is insignificant in a model with only autoregressive
dynamics, it is significant in the augmented predictive regres-
sion. However, exchange rate is not significant at all horizons.
Table 2 reports results using other measures of inflation. As
expected, the detrended real oil price has predictive power
for the inflation of CPI energy. It also helps predict the infla-
tion of CPI less food. However, pccyt continues to predict
other inflation measures, especially those based on the CPI
less food and energy and the CPI less energy.

Recall that the purpose of our new bootstrap procedure
is to control for sampling uncertainty associated with the
estimated principal components and to better approximate
the finite-sample distribution of the t test. The equal-tailed
percentile-t bootstrap method also accounts for the skew-
ness and miscentering in the finite-sample distribution of the
parameter that arise from possible estimation bias. Bootstrap
test statistics tend to be more conservative than asymptotic

6 We use Newey-West HAC standard errors with an automatic bandwidth
selection.
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Table 1.—Estimation Results for U.S. Inflation (CPI All Items)

Δhpt+h = b +
1∑

k=0
β0kΔpt−k +

2∑
k=1

β1kpccy(k)
t +

2∑
k=1

β2kpcq(k)
t + z′

tβ3 + vt+h

h = 1 h = 3 h = 6 h = 12

(1) (2) (1) (2) (1) (2) (1) (2)

pccy(1)
t −0.010 0.085 −0.064 0.150 −0.177 0.149 −0.337 0.163

[−0.11, 0.09] [0.02, 0.24] [−0.49, 0.24] [−0.11, 0.54] [−1.20, 0.42] [−0.50, 0.77] [−2.54, 0.95] [−1.36, 1.46]
pccy(2)

t −0.074 −0.087 −0.262 −0.285 −0.538 −0.556 −1.153 −1.143
[−0.19, −0.00] [−0.20, −0.02] [−0.83, −0.00] [−0.76, −0.07] [−1.76, −0.09] [−1.83, −0.10] [−2.90, −0.59] [−2.59, −0.67]

pcq(1)
t −0.009 −0.050 −0.089 −0.108 −0.204 −0.105 −0.228 0.128

[−0.06, 0.03] [−0.11, −0.01] [−0.30, 0.07] [−0.32, 0.07] [−0.66, 0.07] [−0.38, 0.15] [−0.90, 0.40] [−0.38, 0.79]
pcq(2)

t 0.071 0.039 0.178 0.143 0.125 0.167 0.084 0.336
[0.03, 0.14] [−0.03, 0.13] [0.09, 0.32] [−0.02, 0.33] [−0.16, 0.43] [−0.16, 0.50] [−0.68, 0.75] [−0.24, 0.95]


pt 0.372 0.177 0.165 −0.180 0.261 0.033 0.695 0.603
[0.28, 0.59] [0.12, 0.34] [−0.08, 0.49] [−0.37, 0.06] [−0.01, 0.61] [−0.19, 0.36] [0.32, 1.11] [0.29, 0.98]


pt−1 −0.217
[−0.37, −0.08]

−0.138
[−0.31, −0.01]

−0.176
[−0.45, 0.07]

0.004
[−0.27, 0.26]

0.060
[−0.23, 0.38]

0.288
[−0.11, 0.75]

−0.029
[−0.55, 0.55]

0.426
[−0.11, 1.10]

zt

qoil,t – 1.184
[0.88, 1.67]

– 1.853
[1.03, 3.39]

– 1.047
[−0.05, 2.83]

– 0.094
[−1.34, 1.82]

qoil,t−1 – −1.095
[−1.45, −0.80]

– −2.204
[−3.39, −1.55]

– −2.374
[−4.09, −1.43]

– −3.540
[−5.60, −2.39]

it – 0.021
[0.01, 0.03]

– 0.053
[0.02, 0.09]

– 0.090
[−0.01, 0.16]

– 0.148
[0.03, 0.26]

Δxt – 0.008
[−0.01, 0.02]

– 0.008
[−0.02, 0.04]

– 0.028
[−0.01, 0.08]

– 0.031
[−0.03, 0.09]

ut − u∗ – −0.010
[−0.05, 0.12]

– −0.153
[−0.49, 0.11]

– −0.225
[−0.90, 0.37]

– −0.265
[−1.01, 0.35]

R̄2 0.160 0.302 0.066 0.220 0.114 0.282 0.175 0.409

Figures in bold are statistically significant at the 10% level. The 90% bootstrap confidence intervals are reported in brackets below the parameter estimates. R̄2 denotes the adjusted R2.

Table 2.—Estimates and Bootstrap Confidence Intervals for U.S. Inflation (Other Measures)

Δhpt+h = b +
1∑

k=0
β0kΔpt−k +

2∑
k=1

β1kpccy(k)
t +

2∑
k=1

β2kpcq(k)
t +

1∑
k=0

β3kqoil,t−k + vt+h

Less Food and Energy Less Food Less Energy Food Energy

h = 1
pccy(1)

t −0.079
[−0.196, −0.034]

0.011
[−0.083, 0.129]

−0.070
[−0.183, −0.025]

−0.041
[−0.182, 0.095]

1.141
[0.861, 2.224]

pccy(2)
t −0.053

[−0.161, 0.010]
−0.087

[−0.197, −0.021]
−0.058

[−0.157, −0.001]
−0.101

[−0.236, −0.027]
0.021

[−0.761, 0.790]
pcq(1)

t 0.022
[−0.008, 0.054]

−0.037
[−0.112, 0.008]

0.019
[−0.017, 0.050]

−0.011
[−0.151, 0.091]

−0.646
[−1.241, −0.331]

pcq(2)
t 0.004

[−0.031, 0.035]
0.025

[−0.037, 0.093]
0.022

[−0.007, 0.062]
0.149

[0.094, 0.270]
0.228

[−0.586, 1.014]
qoil,t −0.068

[−0.173, 0.067]
1.451

[1.106, 1.939]
−0.065

[−0.170, 0.081]
−0.016

[−0.523, 0.472]
14.750

[11.956, 18.417]
qoil,t−1 0.080

[−0.047, 0.199]
−1.282

[−1.638, −0.951]
0.040

[−0.079, 0.147]
−0.196

[−0.524, 0.173]
−12.941

[−15.972, −10.024]

pt 0.211

[0.137, 0.332]
0.139

[0.069, 0.273]
0.258

[0.181, 0.380]
0.127

[0.030, 0.260]
0.156

[0.057, 0.294]

pt−1 0.222

[0.118, 0.346]
−0.099

[−0.301, 0.040]
0.145

[0.043, 0.277]
−0.063

[−0.145, 0.083]
−0.198

[−0.364, −0.054]
R̄2 0.300 0.273 0.289 0.071 0.366

h = 3
pccy(1)

t −0.213
[−0.545, −0.097]

−0.034
[−0.482, 0.369]

−0.213
[−0.544, −0.094]

−0.176
[−0.660, 0.149]

2.978
[1.659, 6.783]

pccy(2)
t −0.155

[−0.470, 0.016]
−0.259

[−0.748, 0.009]
−0.181

[−0.504, −0.034]
−0.347

[−0.753, −0.186]
0.144

[−2.780, 3.133]
pcq(1)

t 0.064
[−0.021, 0.169]

−0.066
[−0.321, 0.148]

0.052
[−0.043, 0.163]

−0.029
[−0.366, 0.286]

−1.663
[−3.528, −0.608]

pcq(2)
t 0.022

[−0.077, 0.128]
0.149

[−0.023, 0.364]
0.065

[−0.044, 0.198]
0.398

[0.200, 0.798]
1.169

[−0.667, 3.205]
qoil,t −0.036

[−0.423, 0.327]
2.160

[1.202, 3.873]
−0.105

[−0.457, 0.239]
−0.262

[−1.059, 0.505]
23.948

[18.772, 32.798]
qoil,t−1 0.036

[−0.302, 0.389]
−2.409

[−3.740, −1.652]
−0.009

[−0.295, 0.277]
−0.574

[−1.166, 0.095]
−25.608

[−33.793, −18.417]

pt 0.692

[0.495, 0.944]
−0.145

[−0.336, 0.113]
0.612

[0.417, 0.875]
0.030

[−0.152, 0.242]
−0.287

[−0.414, −0.137]

pt−1 0.734

[0.514, 0.982]
0.122

[−0.227, 0.463]
0.599

[0.390, 0.837]
−0.108

[−0.321, 0.100]
0.030

[−0.286, 0.317]
R̄2 0.526 0.143 0.481 0.153 0.206

Numbers in bold are statistically significant at the 10% level. The 90% bootstrap confidence intervals are in brackets below the parameter estimates. R̄2 denotes the adjusted R2.
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Table 3.—Estimates and Bootstrap Confidence Intervals

for U.S. inflation (CPI All Items)

Δhpt+h = b +
1∑

k=0
β0kΔpt−k +

2∑
k=1

β1kpccy(k)
t

+
6∑

k=1
β2kcy(k)

t + β3ΔsIMF
t + vt+h

h = 1 h = 3 h = 6 h = 12

pccy(1)
t −0.210

[−0.509, −0.165]
−0.622

[−1.810, −0.412]
−0.891

[−3.598, −0.244]
−1.314

[−5.366, −0.050]
pccy(2)

t −0.089
[−0.211, −0.011]

−0.362
[−0.908, −0.091]

−0.763
[−2.210, −0.168]

−1.412
[−3.092, −0.691]

cy(1)
t (foodstuffs) −0.000

[−0.025, 0.008]
0.006

[−0.051, 0.034]
−0.009

[−0.115, 0.030]
−0.002

[−0.174, 0.080]
cy(2)

t (grains) −0.033
[−0.062, −0.018]

−0.085
[−0.176, −0.036]

−0.083
[−0.233, 0.014]

−0.165
[−0.365, −0.008]

cy(3)
t (industrials) −0.009

[−0.022, −0.006]
−0.019

[−0.055, −0.006]
−0.025

[−0.090, 0.003]
−0.010

[−0.112, 0.024]
cy(4)

t (meats) 0.002
[−0.008, 0.008]

−0.009
[−0.042, 0.016]

−0.013
[−0.069, 0.019]

0.009
[−0.071, 0.066]

cy(5)
t (metals) 0.006

[−0.021, 0.025]
0.039

[−0.059, 0.097]
0.123

[−0.111, 0.233]
0.170

[−0.163, 0.313]
cy(6)

t (energy) −0.010
[−0.032, −0.002]

−0.049
[−0.126, −0.027]

−0.094
[−0.247, −0.050]

−0.135
[−0.350, −0.072]

ΔsIMF
t 0.008

[−0.002, 0.018]
0.017

[−0.005, 0.042]
0.027

[−0.006, 0.081]
0.025

[−0.042, 0.090]

pt 0.351

[0.276, 0.562]
0.105

[−0.077, 0.354]
0.172

[−0.041, 0.502]
0.451

[0.143, 0.921]

pt−1 −0.239

[−0.392, −0.101]
−0.237

[−0.495, 0.005]
−0.027

[−0.301, 0.334]
−0.215

[−0.687, 0.409]
R̄2 (all variables) 0.170 0.111 0.174 0.253
R̄2 (ΔsIMF

t , 
pt ,

pt−1) 0.144 0.001 0.022 0.042

cy(k)
t is a simple average of cyjt,n , N−1

k

∑Nk
j=1 cyjt,n , for commodity group k. Numbers in bold are statis-

tically significant at the 10% level. The 90% bootstrap confidence intervals are reported in brackets below
the parameter estimates. R̄2 denotes the adjusted R2. The last line reports the R̄2 from a regression of
Δhpt+h on ΔsIMF

t , 
pt and 
pt−1 only.

inference, rendering the coefficients less significant or even
insignificant. In spite of these stringent hurdles, the estimates
on pccy(2)

t are still found to be statistically significant.
Given the popularity of the Phillips curve as a forecasting

equation for inflation, we include in our augmented model
of inflation the variable ut − u∗ proxied by the deviations
of the U.S. unemployment rate (produced by the BLS) from
its HP trend. The estimated coefficients on this variable are
insignificant at all forecast horizons. We note that ut − u∗
is significant in the simple version of the Phillips curve that
excludes pccyt . This suggests that pccyt captures information
about the economy that is typically reflected in the output gap.

Our analysis has so far focused on aggregate measures of
convenience yields constructed as principal components
of cyjt,n of all commodities. To investigate if alternative ways
of aggregating information are as effective, we compute
simple averages of convenience yields for each of the six com-
modity groups: food, grains, industrials, meats, metals, and
energy. These cy( j)

t for j = 1, ..., 6 are added as predictors in
the inflation model that contains two lags of inflation, change
in the IMF commodity index ΔsIMF

t , pccy(1)
t , and pccy(2)

t . The
results in table 3 show that the average convenience yields for
grains and especially for energy exhibit incremental predic-
tive ability but did not render pccyt irrelevant. On the other
hand, the changes in aggregate commodity prices are insignif-
icant at all horizons, in line with the weak forecasting power
in commodity prices for inflation found in the literature.

We also consider a regression of inflation on only ΔsIMF
t

and two lags of inflation. The last row of table 3 shows that the
adjusted R2 for this regression is low for h ≥ 3, with most of
the predictive power coming from lagged inflation. However,
replacing ΔsIMF

t by pccyt and cyt increases the adjusted R2

substantially, reinforcing our thesis that it is the aggregate
convenience yield component of commodity prices that has
strong predictive power for inflation.

B. Out-of-Sample Forecast Performance

The results indicate that the principal components in
convenience yields are statistically significant in-sample pre-
dictors. We now evaluate the pseudo out-of-sample predictive
power of convenience yields for U.S. inflation.

We consider a recursive out-of-sample forecasting exer-
cise by estimating the model using T1 observations (T1 =
T0, T0 + 1,..., T − h) and producing h-period-ahead forecasts
for h = 1, 3, 6, and 12. The principal components are com-
puted with information only up to time T1. We use a one-sided
two-year moving average filter with exponentially decreasing
weights φ(1 − φ)i for φ = 0.15 and i = 1, ..., 24 to detrend
real commodity prices. As a result, the initial sample uses
the first 24 observations (March 1983–February 1985) for
the one-sided moving average filter, while data from March
1985 to December 1997 (T0 = 154 observations) are used
for estimating the parameters and principal components. The
pseudo out-of-sample forecast exercise starts in January 1998
and continues through July 2008.

Four forecasting models are considered. The first three
models of pt+h − pt have predictors: (a) pccy(1)

t , pccy(2)
t , Δpt

and their lags (denoted by CY), (b) pcq(1)
t , pcq(2)

t , qoil,t , Δpt

and their lags (denoted by OIL), and (c) Δpt and its lags
(denoted by AR). The fourth model is an IMA(1,1) model
of Δpt+1 whose h-period forecasts are obtained by aggre-
gating the one-period forecast over h periods. The lags for
the first three models are selected by the AIC over each
recursive sample with the maximum lag set to 4 to avoid over-
parameterization. The AIC tends to select lags that are more
appropriate for forecasting. Stock and Watson (2007) present
evidence that an IMA(1,1) model often outperforms AR and
backward-looking Phillips curve models in out-of-sample
predictions.

Table 4 presents the root-mean-squared forecast errors
(RMSFEs) relative to that of the AR model. Numbers smaller
than 1 indicate that the corresponding model outperforms the
AR benchmark. Results are reported for forecast horizons of
up to one year for two measures of inflation (CPI all items and
CPI less food and energy). For the CPI (all items) inflation
rate, model CY, which incorporates pccyt , evidently domi-
nates in terms of RMSFE. The gains generated by model CY
increase with the forecast horizon and are as large as 9%
compared to the best-performing competitor at the one-year
horizon. For the core inflation, model CY continues to pro-
vide relatively large forecast improvements over the AR and
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Table 4.—Recursive Out-of-Sample Forecasts for U.S. Inflation Rate

(Relative RMSFEs)

All Items Less Food and Energy

CY OIL IMA CY OIL IMA

h = 1 1.004 0.951 1.049 1.037 1.076 0.935
h = 3 0.967 0.975 1.007 0.964 1.048 0.920
h = 6 0.939 1.077 1.037 0.911 1.019 0.916
h = 12 0.909 1.125 1.148 0.878 1.019 0.900

The period for pseudo-out-of-sample forecast evaluation starts in January 1998 and continues through
July 2008. CY is a model of pt+h − pt on pccy(1)

t , pccy(2)
t , Δpt and their lags; OIL is a model of pt+h − pt

on pcq(1)
t , pcq(2)

t , qoil,t , Δpt and their lags; the third model is an AR model of pt+h −pt on Δpt and its lags;
and IMA is an IMA(1,1) model of inflation Δpt+1 whose h-period forecast is obtained by aggregating the
one-step forecast over h periods. The lags for the first three models are selected using AIC. The reported
RMSFEs are relative to the RMSFE of the AR model.

OIL models. However, it is dominated at short horizons by
the IMA(1,1) model.

The good performance of the IMA(1,1) model for fore-
casting core inflation can be explained by the time series
properties of this inflation series. Specifically, the estimated
AR and MA parameters by fitting an ARMA(1,1) model to
core inflation over the whole sample are 0.990 and −0.905,
with standard errors of 0.007 and 0.027, respectively. In
contrast, the corresponding AR and MA estimates from an
ARMA(1,1) model for CPI (all items) inflation are −0.041
and 0.458, with standard errors 0.132 and 0.117, respectively.
As in Stock and Watson (2007), we also find that the IMA(1,1)
is not an appropriate model for CPI (all items). It is precisely
in this case that model CY dominates the IMA(1,1) model in
out-of-sample forecasts.

Together with results reported earlier, the predictive power
of pccyt seems robust both in- and out-of-sample. Figure 1
plots the actual and forecast values from model CY of twelve-
month-ahead (all items and core) inflation. When pccyt is
used as the predictor, the forecast tracks the local trends and
turning points in the actual inflation dynamics closely.

C. G7 Inflation Rates

In order to see if the predictability of inflation by the con-
venience yields and real commodity prices also holds for
other countries, we use data on CPI (all items), provided by
the OECD, to construct inflation rates for the rest of the G7
countries: Canada, Japan, Germany, France, Italy, and the
United Kingdom. Bilateral exchange rates are used to con-
vert the commodity prices into local currencies. Interest and
exchange rate data for these countries are also obtained from
the OECD database.

For each of these countries, we convert all commodity price
variables in domestic currency using the market exchange
rate. Each country’s interest rate is used in equation (9) to
construct the country-specific convenience yield. Similarly,
the real commodity prices are converted in local currency and
deflated by the corresponding CPI index. For each country,
we estimate a model that includes two principal components
of convenience yields and detrended real commodity prices,
as well as two lags of the detrended real oil price and the
dependent variable. Note that the conversion of convenience

yields into local currency may change the ordering and inter-
pretation of the principal components computed above with
U.S. data.

The estimation results for each country at horizons h = 1
and 12 are presented in table 5. At the one-month horizon,
pccy(1)

t and pcq(1)
t , as well as the real oil price, appear to be

statistically significant for almost all countries. For exam-
ple, pccy(1)

t is significant at the 10% level for all countries
even after accounting for estimation uncertainty using boot-
strap confidence intervals. The predictive power of pccy(1)

t
remains significant for all countries at h = 12, but the effects
of the other determinants (real commodity and oil prices)
are substantially diminished. The in-sample predictive power
of pccy(1)

t is robust across countries in spite of the volatile
dynamics of some of these monthly inflation series.

To see if the predictive ability of the aggregate convenience
yields continues to hold out-of-sample for the G7 countries,
table 6 presents relative RMSFEs from the same four forecast-
ing models considered in table 4. The CY model consistently
dominates the competing models for Canada, Japan, France,
and the United Kingdom with forecasting gains of more than
19% for Japan and the United Kingdom at longer horizons.
On the other hand, the IMA(1,1) model outperforms the CY
model for Germany and Italy. We attribute this finding to the
negative MA component in the inflation data for Germany
and Italy. For example, when an ARMA(1,1) model is fit-
ted to Italy’s inflation, the AR and MA estimates are 0.973
and −0.850 with standard errors of 0.010 and 0.036, respec-
tively.7 These results reinforce our earlier observation that the
CY model yields systematic forecast improvements when the
negative moving average component in the inflation series is
not strong.

VI. Commodity Prices and Convenience Yields

Convenience yields appear in our inflation model because
they are related to commodity prices. This section provides
evidence in support of this link. The dynamics of commod-
ity price movements are of interest in their own right for
a variety of reasons. For developing countries that depend
heavily on exports of commodities for revenue, fluctuations
in commodity prices are the main cause of income volatility.
In other countries, commodity price movements are often tied
to real exchange rate appreciation and depreciation, depend-
ing on whether the country is an exporter or an importer of
commodities. For small open economies like Canada, New
Zealand, and Australia, fluctuations in commodity prices are
sufficiently important for the design of economic policies
that these central banks produce their own commodity price
indices to appropriately reflect the commodities they produce.

Identifying robust predictors of commodity prices turns
out to be a challenging problem since these prices tend to

7 Ng and Perron (2001) document that a large autoregressive root and a
large negative moving average component are a characteristic of the inflation
series (GDP deflators) of many G7 countries.
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Figure 1.—Actual and Forecast Values of Twelve-Month Inflation: All items (top) Less Food and Energy (bottom)
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The forecast values are obtained recursively from model CY with pccy(1)
t , pccy(2)

t , Δpt , and their lags as predictors.
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Table 5.—Estimates and Bootstrap Confidence Intervals for G7 Inflation Rates

Δhpt+h = b +
1∑

k=0
β0kΔpt−k +

2∑
k=1

β1kpccy(k)
t +

2∑
k=1

β2kpcq(k)
t +

1∑
k=0

β3kqoil,t−k + vt+h

Canada Japan France Germany Italy United Kingdom

h = 1
pccy(1)

t −0.136
[−0.272, −0.001]

−0.157
[−0.255, −0.058]

−0.143
[−0.229, −0.056]

0.123
[0.019, 0.318]

−0.116
[−0.157, −0.042]

−0.234
[−0.391, −0.086]

pccy(2)
t −0.057

[−0.307, 0.155]
0.001

[−0.201, 0.208]
0.064

[−0.114, 0.373]
−0.000

[−0.220, 0.200]
0.052

[−0.083, 0.221]
0.091

[−0.188, 0.438]
pcq(1)

t −0.078
[−0.212, −0.005]

−0.109
[−0.175, −0.047]

−0.058
[−0.099, −0.017]

−0.078
[−0.135, −0.009]

−0.013
[−0.046, 0.034]

−0.158
[−0.250, −0.076]

pcq(2)
t 0.117

[0.012, 0.247]
−0.027

[−0.124, 0.112]
−0.046

[−0.146, 0.049]
0.007

[−0.099, 0.162]
−0.019

[−0.097, 0.066]
−0.090

[−0.061, 0.228]
qoil,t 0.855

[0.360, 1.395]
0.564

[0.081, 1.153]
0.518

[0.132, 0.836]
0.465

[0.132, 0.872]
0.270

[0.076, 0.509]
0.626

[0.076, 1.200]
qoil,t−1 −0.687

[−1.267, 0.059]
−0.344

[−0.779, 0.062]
−0.756

[−1.048, −0.430]
−0.526

[−0.839, −0.187]
−0.249

[−0.444, −0.079]
−0.968

[−1.548, −0.400]

pt 0.004

[−0.110, 0.152]
0.091

[−0.030, 0.227]
0.187

[0.120, 0.346]
−0.052

[−0.162, 0.097]
0.316

[0.248, 0.461]
0.065

[0.031, 0.179]

pt−1 0.053

[−0.025, 0.168]
−0.308

[−0.382, −0.191]
−0.061

[−0.162, 0.109]
0.054

[−0.016, 0.173]
0.194

[0.104, 0.358]
−0.054

[−0.115, 0.026]
R̄2 0.084 0.143 0.188 0.031 0.410 0.101

h = 12
pccy(1)

t −1.851
[−2.459, −1.142]

−1.725
[−2.644, −0.925]

−1.013
[−1.571, −0.138]

1.176
[0.326, 3.125]

−1.470
[−2.027, −0.585]

−2.602
[−3.812, −1.332]

pccy(2)
t −0.232

[−1.317, 0.920]
−0.253

[−2.374, 1.458]
0.596

[−0.510, 3.045]
0.817

[−0.685, 3.496]
−0.597

[−3.287, 1.062]
0.794

[−2.028, 5.101]
pcq(1)

t −0.167
[−0.967, 0.306]

−0.570
[−1.119, −0.241]

−0.058
[−0.363, 0.330]

−0.037
[−0.478, 0.521]

−0.392
[−0.901, −0.062]

−0.560
[−1.126, 0.210]

pcq(2)
t 0.197

[−0.532, 0.827]
0.089

[−0.627, 0.954]
−0.543

[−1.453, 0.095]
−0.105

[−0.844, 0.685]
−0.390

[−1.194, 0.702]
−0.880

[−1.894, 0.059]
qoil,t 1.198

[−0.635, 3.379]
1.450

[−0.195, 4.247]
−2.219

[−4.207, −0.567]
0.632

[−1.594, 3.717]
−0.439

[−2.331, 1.610]
−1.877

[−4.035, 0.396]
qoil,t−1 −2.365

[−4.422, −0.967]
−1.333

[−4.214, 0.040]
−0.169

[−1.590, 1.185]
−0.665

[−3.442, 1.570]
−1.773

[−3.395, −0.694]
0.197

[−2.203, 2.153]

pt 0.242

[−0.265, 0.793]
0.084

[0.061, 0.391]
1.408

[0.823, 2.347]
0.633

[0.267, 1.118]
2.699

[2.382, 3.546]
0.598

[0.304, 1.126]

pt−1 0.252

[−0.195, 0.753]
0.218

[0.095, 0.516]
1.572

[0.967, 3.071]
0.607

[0.188, 1.103]
2.640

[2.124, 3.792]
0.557

[0.242, 1.213]
R̄2 0.326 0.374 0.422 0.234 0.688 0.450

Numbers in bold are statistically significant at the 10% level. The 90% bootstrap confidence intervals are reported in brackets below the parameter estimates. R̄2 denotes the adjusted R2.

Table 6.—Recursive Out-of-Sample Forecasts for G7 Inflation Rates (Relative RMSFEs)

Canada Japan France

CY OIL IMA CY OIL IMA CY OIL IMA

h = 1 0.996 1.003 1.007 0.884 1.065 1.015 0.966 0.950 1.027
h = 3 0.958 1.049 1.009 0.850 1.110 1.048 0.923 1.010 1.050
h = 6 0.973 1.036 1.013 0.805 1.155 1.049 0.862 0.992 1.030
h = 12 0.972 1.004 0.989 0.813 1.289 1.029 0.871 1.070 1.033

Germany Italy United Kingdom

CY OIL IMA CY OIL IMA CY OIL IMA

h = 1 0.979 0.994 0.967 1.013 1.109 0.933 0.849 1.001 1.006
h = 3 0.945 1.000 0.961 0.977 1.124 0.853 0.865 1.056 1.120
h = 6 1.114 1.058 0.938 0.954 1.142 0.744 0.811 1.099 1.135
h = 12 1.217 1.199 0.876 1.017 1.089 0.683 0.879 1.168 1.290

The period for pseudo-out-of-sample forecast evaluation starts in January 1998 and continues through July 2008. CY is a model of pt+h − pt on pccy(1)
t , pccy(2)

t , Δpt and their lags; OIL is a model of pt+h − pt on
pcq(1)

t , pcq(2)
t , qoil,t , Δpt and their lags; the third model is an AR model of pt+h − pt on Δpt and its lags; and IMA is an IMA(1,1) model of inflation Δpt+1 whose h-period forecast is obtained by aggregating the

one-step forecast over h periods. The lags for the first three models are selected using AIC. The reported RMSFEs are relative to the RMSFE of the AR model.

be extremely volatile and have proven difficult to forecast
(Chen et al. 2010). The ability of convenience yields to predict
inflation raises the question of whether the convenience yields
can also forecast commodity prices. We begin with predictive
regressions for the individual commodity price changes:

Δsjt+1 = a + αj0(L)Δsjt + αj1(L)cyjt,n + αj2(L)it
+ αj3(L)Δxt + ejt+1.

For most commodities, the AIC selects αj1(L) = αj1,
αj2(L) = αj2, αj2(L) = αj3, and αj0(L) is a second-order
polynomial in the lag operator. We adopt the same lag order
for all commodities and analyze the predictive ability of cyjt,n,
it , and Δxt , conditional on the presence of the remaining two
determinants. Table 7 shows that the convenience yields have
highly statistically significant predictive power for most com-
modity prices, but the interest and exchange rates do not. The
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Table 7.—Estimates and Standard Errors

Δsjt+1 = a +
1∑

k=0
αj0kΔsjt−k + αj1cyjt,n + αj2it + αj3Δxt + ejt+1

j α̂j1 α̂j2 α̂j3 R̄2

Foodstuffs
Cocoa −0.297 (0.169) −0.084 (0.181) −0.143 (0.222) 0.033
Coffee −0.117 (0.143) −0.194 (0.190) −0.043 (0.347) 0.035
Orange juice −0.445 (0.146) 0.272 (0.189) −0.132 (0.174) 0.098
Sugar −0.495 (0.109) −0.476 (0.233) −0.243 (0.295) 0.125

Grains
Canola −0.533 (0.233) −0.003 (0.164) 0.266 (0.158) 0.169
Corn −0.634 (0.118) 0.216 (0.144) 0.063 (0.158) 0.210
Oats −0.339 (0.098) −0.359 (0.215) 0.226 (0.172) 0.060
Soybeans −0.958 (0.249) −0.260 (0.129) 0.166 (0.138) 0.187
Soybean oil −0.433 (0.235) −0.111 (0.194) 0.200 (0.188) 0.138
Wheat −0.393 (0.092) 0.071 (0.140) 0.023 (0.189) 0.067

Industrials
Cotton −0.642 (0.111) 0.362 (0.158) −0.071 (0.201) 0.289
Lumber −0.422 (0.103) −0.273 (0.187) −0.021 (0.258) 0.090

Meats
Cattle, feeder −0.506 (0.124) −0.026 (0.085) 0.081 (0.108) 0.154
Cattle, live −0.484 (0.055) 0.061 (0.104) 0.027 (0.119) 0.242
Hogs −0.530 (0.041) 0.240 (0.133) 0.056 (0.196) 0.326
Pork bellies −0.914 (0.106) −0.046 (0.204) 0.061 (0.244) 0.226

Metals
Copper −0.100 (0.158) −0.250 (0.127) 0.017 (0.176) 0.054
Gold 0.867 (0.869) −0.284 (0.069) −0.118 (0.127) 0.040
Palladium −0.361 (0.176) 0.062 (0.243) 0.422 (0.248) 0.030
Platinum 0.281 (0.237) −0.252 (0.118) −0.357 (0.152) 0.031
Silver 0.186 (0.916) −0.593 (0.152) 0.167 (0.185) 0.052

Energy
Crude oil −0.512 (0.303) −0.144 (0.216) 0.043 (0.277) 0.076
Heating oil −0.788 (0.171) −0.023 (0.184) 0.023 (0.244) 0.123

Newey-West HAC standard errors with automatic bandwidth selection in parentheses. Numbers in bold
are statistically significant at the 10% level. R̄2 denotes the adjusted R2.

Table 8.—Estimates and Bootstrap Confidence Intervals

ΔhsIMF
t+h = a +

1∑
k=0

α10ΔsIMF
t−k + α11pccy(1)

t + α12pccy(2)
t

+α2it + α3Δxt + et+h

h = 1 h = 3 h = 6 h = 12

pccy(1)
t 0.874

[0.079, 2.332]
3.218

[0.748, 8.184]
6.318

[1.372, 17.225]
5.795

[−3.127, 23.340]
pccy(2)

t −1.259
[−3.035, −0.761]

−3.155
[−9.664, −0.679]

−3.660
[−15.855, 3.103]

−3.946
[−16.917, 5.351]

it −0.069
[−0.187, 0.040]

−0.237
[−0.573, 0.112]

−0.568
[−1.316, 0.259]

−1.770
[−2.699, −0.424]

Δxt 0.017
[−0.150, 0.177]

−0.181
[−0.451, 0.070]

−0.435
[−0.924, −0.019]

−0.585
[−1.375, −0.039]

ΔsIMF
t 0.205

[0.088, 0.323]
0.270

[0.046, 0.492]
0.163

[−0.197, 0.593]
0.192

[−0.327, 0.699]
ΔsIMF

t−1 0.034
[−0.032, 0.092]

−0.012
[−0.200, 0.190]

−0.047
[−0.361, 0.268]

0.119
[−0.333, 0.707]

R̄2 0.147 0.219 0.259 0.304

Numbers in bold are statistically significant at the 10% level. The 90% bootstrap confidence intervals
are reported in brackets below the parameter estimates. R̄2 denotes the adjusted R2.

exceptions are the commodities in the metals group (precious
metals).

The h-period predictive regression for IMF commodity
price index is given by

ΔhsIMF
t+h = a + α0(L)ΔsIMF

t + α′
1pccyt

+ α2it + α3Δxt + et+h. (11)

Table 8 presents results for h = 1, 3, 6, 12. The variable
pccy(1)

t is statistically significant (at the 10% level) for all

Table 9.—Recursive Out-of-Sample Forecasts of Commodity Price

Changes (Relative RMSFEs)

CY ER/IR RW

h = 1 0.955 1.013 1.180
h = 3 0.915 0.986 1.207
h = 6 0.893 0.946 1.266
h = 12 0.903 0.850 1.035

The period for pseudo out-of-sample forecast evaluation starts in January 1998 and continues through
July 2008. CY is a model of sIMF

t+h − sIMF
t on pccy(1)

t , pccy(2)
t , ΔsIMF

t and their lags; ER/IR is a model of
sIMF

t+h − sIMF
t on it , Δxt , ΔsIMF

t and their lags; the third model is an AR model of sIMF
t+h − sIMF

t on ΔsIMF
t and

its lags; and RW is a no-change model, that is, E(sIMF
t+h − sIMF

t ) = sIMF
t − sIMF

t−h . The lags for the first three
models are selected using AIC. The reported RMSFEs are relative to the RMSFE of the AR model.

horizons except for h = 12. The second principal component
is significant at one- and three-month horizons but is insignifi-
cant at longer horizons. Chen et al. (2010) suggest that foreign
exchange values of commodity currencies can help predict
the prices of commodities they export. While the change of
the U.S. trade-weighted exchange index is not significant at
short horizons (one and three months), it becomes signifi-
cant at six- and twelve-month horizons. A similar pattern is
observed for the interest rate so that the exchange and inter-
est rates are the only statistically significant predictors at the
one-year horizon.

To assess the out-of-sample predictive power of pccyt for
ΔsIMF

t+h , we consider four models: CY is a model of sIMF
t+h −sIMF

t

on pccy(1)
t , pccy(2)

t , ΔsIMF
t and their lags; ER/IR is a model of

sIMF
t+h − sIMF

t on it , Δxt , ΔsIMF
t and their lags; the third model

is an AR model of sIMF
t+h − sIMF

t on ΔsIMF
t and its lags; and

the last model (RW) is a no-change model, E(sIMF
t+h − sIMF

t ) =
sIMF

t −sIMF
t−h . The lags for the first three models are selected by

AIC with the maximum lag set to 4. Table 9 reports relative
RMSFEs with the AR model being the benchmark model.
The results show that the largest forecasting gains of the CY
model occur for one- to six-month forecast horizons, likely
because the convenience yields are constructed using futures
prices with one to five months to maturity. The interest and
exchange rates also possess some out-of-sample forecast abil-
ity, especially at six- and twelve-month horizons, in line with
our in-sample results.

Many explanations have been advanced for the surge in
commodity prices between 2006 and 2007. Specifically, the
IMF commodity price index rose by 30% between 2006 and
2007 and by another 10% in 2007. Given that pccyt predicts
commodity prices, it is of interest to ask whether commodity
price increases can be explained by the aggregate conve-
nience yields. To this end, we use the baseline model of ΔsIMF

t+1
(see table 8) to ask what would have been the level of the IMF
commodity price index if the convenience yields from Jan-
uary 2007 onward were held at the level of December 2006
but with it and Δxt at their actual levels. This yields the coun-
terfactual commodity price denoted by ŝIMF

t+1|pccy. Similarly, it
and Δxt are held at the level of December 2006 one at a time
to yield ŝIMF

t+1|i and ŝIMF
t+1|Δx, respectively. A final exercise holds

all three variables fixed at their December 2006 level, giving
ŝIMF

t+1|pccy,i,Δx.
Figure 2 shows that the hypothetical prices ŝIMF

t+1|pccy and
ŝIMF

t+1|pccy,i,Δx, constructed by holding pccy fixed, closely follow
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Figure 2.—Actual and Counterfactual Values of the IMF Commodity Price Index, January 2007–July 2008
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counterfactual: all fixed

The counterfactuals hold the two principal components of convenience yields, interest rate, changes of USD trade-weighted index, and all of these variables fixed at their December 2006 values, respectively.

the trend of the actual index, while ŝIMF
t+1|i and ŝIMF

t+1|Δx exhibit
much slower growth. This suggests that some of the increases
in 2007 and 2008 appear to be driven by interest rate and
exchange rate changes, as Hamilton (2008) and Frankel
(2006, 2008) suggested. However, there is no evidence that
expectations about future economic conditions, as reflected
in the convenience yields, were behind the substantial com-
modity price increases in 2007 and 2008.8

VII. Conclusion

We find that the principal components of individual con-
venience yields incorporate information useful for predicting
of both inflation and commodity prices. The fact that pccyt

explains both inflation and the IMF commodity price index
but that the latter has only weak predictive power for inflation
underscores the point that commodity prices have multi-
ple sources of variation and not every one has inflationary
consequences.

In spite of the predictability of pccyt for inflation and
commodity prices, a formal economic interpretation of why
the coefficients are significant is beyond what our reduced-
form analysis can offer because predictive regressions are
not structural equations. Nonetheless, the convenience yields
of cocoa, orange juice, and copper have a positive effect on

8 A similar counterfactual analysis for U.S. inflation reveals that keeping
the pccyt unchanged for the last nineteen months of the sample underpredicts
the actual price level, but incorporating the rise in commodity prices over
this period brings the predicted CPI closer to its actual level.

one-period-ahead inflation, while those of soybeans, oats, and
silver have a negative effect; the coefficients on other conve-
nience yields are not statistically significant. Accordingly,
we form two new measures of aggregate convenience yields
by averaging the convenience yields of (a) copper, orange
juice, and copper and (b) soybeans, oats, and silver. We find
that both variables have predictive of inflation for all forecast
horizons and all inflation measures similar to the two princi-
pal components. The two principal components seem to be
picking up information about inflation and commodity prices
in these two groups of commodities.
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