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Are there important cyclical fluctuations in bond market premiums and, if so, with what
macroeconomic aggregates do these premiums vary? We use the methodology of dynamic
factor analysis for large datasets to investigate possible empirical linkages between fore-
castable variation in excess bond returns and macroeconomic fundamentals. We find that
“real” and “inflation” factors have important forecasting power for future excess returns on
U.S. government bonds, above and beyond the predictive power contained in forward rates
and yield spreads. This behavior is ruled out by commonly employed affine term structure
models where the forecastability of bond returns and bond yields is completely summarized
by the cross-section of yields or forward rates. An important implication of these findings
is that the cyclical behavior of estimated risk premia in both returns and long-term yields
depends importantly on whether the information in macroeconomic factors is included in
forecasts of excess bond returns. Without the macro factors, risk premia appear virtually
acyclical, whereas with the estimated factors risk premia have a marked countercyclical
component, consistent with theories that imply investors must be compensated for risks
associated with macroeconomic activity. ( JEL E0, E4, G10, G12)

1. Introduction

Recent empirical research in financial economics has uncovered significant
forecastable variation in the excess returns of U.S. government bonds, a viola-
tion of the expectations hypothesis. Fama and Bliss (1987) report that n-year
excess bond returns are forecastable by the spread between the n-year for-
ward rate and the one-year yield. Campbell and Shiller (1991) find that excess
bond returns are forecastable by Treasury yield spreads. Cochrane and Piazzesi
(2005) find that a linear combination of five forward spreads explains between
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30% and 35% of the variation in next year’s excess returns on bonds with ma-
turities ranging from two to five years. These findings imply that risk premia in
bond returns and bond yields vary over time and are a quantitatively important
source of fluctuations in the bond market.

This article addresses two empirical questions. First, do the movements in
bond market risk premia bear any direct relation to cyclical macroeconomic ac-
tivity? And second, if so, do macroeconomic fundamentals contain information
about risk premia that is not already embedded in bond market data?

The first question is central to whether models with rational, utility-
maximizing investors can explain the predictable variation in financial market
returns that we observe in the data. Such economic theories almost always imply
that investors must be compensated with risks associated with recessions, and
macroeconomic activity more generally. For example, Campbell and Cochrane
(1999) theorize that risk premia vary with the difference between consumption
and a slow-moving habit, where this difference is driven by shocks to aggre-
gate consumption. In this model, financial market risk premia rise when the
economy is growing slowly or contracting.1 The second question is important
for understanding the types of restrictions such models would require to ensure
that the equilibrium return on bonds varies over time in a manner consistent
with both macroeconomic and financial market data.

Yet, despite the growing body of theoretical work rationalizing asset market
risk premia, there is little direct evidence of a link between business cycle
activity in macroeconomic variables and risk premia in bond markets. The
empirical evidence cited above finds that excess bond returns are forecastable,
not by macroeconomic variables such as aggregate consumption or inflation,
but rather by pure financial indicators such as forward spreads and yield spreads.

There are several possible reasons why it may be difficult to uncover a direct
link between macroeconomic activity and bond market risk premia. First, some
macroeconomic driving variables may be latent and impossible to summarize
with a few observable series. The Campbell-Cochrane habit may fall into this
category. Second, macro variables are more likely than financial series to be
imperfectly measured and less likely to correspond to the precise economic con-
cepts provided by theoretical models. As one example, aggregate consumption
is often measured as nondurables and services expenditure, but this measure
omits an important component of theoretical consumption—namely, the service
flow from the stock of durables. Third, the models themselves are imperfect
descriptions of reality and may restrict attention to a small set of variables that
fail to span the information sets of financial market participants.

1 Campbell and Cochrane focus on equity risk premia. Wachter (2006) adapts the Campbell-Cochrane habit model
to examine the nominal term structure of interest rates and shows that bond risk premia (as well as equity
premiums) should vary with the same macroeconomic shocks that drive the Campbell-Cochrane model. Brandt
and Wang (2003) argue that risk premia are driven by shocks to inflation, as well as shocks to aggregate consump-
tion. Other models of rational, utility-maximizing investors imply that risk premia fluctuate with countercyclical
movements in macroeconomic uncertainty (e.g., Bansal and Yaron 2004; Bansal, Khatchatrian, and Yaron 2005).
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This article considers one way around these difficulties using the methodol-
ogy of dynamic factor analysis for large datasets. Recent research on dynamic
factor analysis finds that the information in a large number of economic time
series can be effectively summarized by a relatively small number of estimated
factors, affording the opportunity to exploit a much richer information base
than what has been possible in prior empirical study of bond risk premia. In
this methodology, a “large number” can mean hundreds or, perhaps, even more
than one thousand economic time series. By summarizing the information from
a large number of series in a few estimated factors, we eliminate the arbitrary
reliance on a small number of imperfectly measured indicators to proxy for
macroeconomic fundamentals and make feasible the use of a vast set of eco-
nomic variables that are more likely to span the unobservable information sets
of financial market participants.

We use dynamic factor analysis to revisit the question of whether there are
important macro factors in bond risk premia by estimating common factors
from a monthly panel of 132 measures of economic activity. We begin with
a comprehensive analysis of whether excess bond returns are predictable by
macroeconomic fundamentals, and then move on to investigate whether risk
premia in long-term bond yields vary with macroeconomic fundamentals.

Our results indicate that excess bond returns are indeed forecastable by
macroeconomic fundamentals, and we find marked countercyclical variation in
bond risk premia. The magnitude of the forecastability that we find associated
with macroeconomic activity is not only statistically significant, but it also is
economically significant. The estimated factors have their strongest predictive
power for two-year bonds, explaining 26% of the one-year-ahead variation in
their excess returns. But they also display strong forecasting power for excess
returns on three-, four-, and five-year government bonds. Although this is
slightly less than that found by Cochrane and Piazzesi (their single forward-
rate factor, which we denote by CPt , explains 31% of next year’s variation in the
two-year bond), it is typically more than that found by Fama and Bliss (1987)
and Campbell and Shiller (1991). We also find that our estimated factors have
strong out-of-sample forecasting power for excess bond returns that is stable
over time and statistically significant. The factors continue to exhibit significant
predictive power for excess bond returns when the small-sample properties of
the data are taken into account.

Perhaps more significantly, the estimated factors contain substantial in-
formation about future bond returns that is not contained in CPt , a variable
that Cochrane and Piazzesi show subsumes the predictive content of forward
spreads, yield spreads, and yield factors estimated as the principal compo-
nents of the yield covariance matrix. For example, when both CPt and a linear
combination of our estimated macro factors are included together as predictor
variables, each variable is strongly marginally statistically significant, and the
regression model can explain as much as 44% of next year’s two-year excess
bond return, an improvement of 13% over what is possible using CPt alone.
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Of all the estimated factors we study, the single most important in the linear
combinations we form is a “real” factor, highly correlated with measures of
real output and employment but not highly correlated with prices or finan-
cial variables. “Inflation” factors, those highly correlated with measures of
the aggregate price-level, also have predictive power for excess bond returns.
(We discuss the interpretation of the factors further below.) Moreover, the pre-
dictable dynamics we find reveal significant countercyclical variation in bond
risk premia: excess bond returns are forecast to be high in recessions, when
economic growth is slow or negative, and are forecast to be low in expansions,
when the economy is growing quickly.

We emphasize two aspects of these results. First, in contrast to the existing
empirical literature (which has focused on predictive regressions using financial
indicators), we find strong predictable variation in excess bond returns that is
associated with macroeconomic activity. Second, the estimated factors that
load heavily on macroeconomic variables have substantial predictive power
for excess bond returns above and beyond that contained in the yield curve.
This behavior is ruled out by the unrestricted (and commonly employed) no-
arbitrage affine term structure models, where the forecastability of bond returns
and bond yields is completely summarized by the cross-section of yields or
forward rates. This behavior is not, however, ruled out by restricted affine term
structure models (e.g., Duffee 2008). We discuss this further below.

Our results can be used to decompose long-term bond yields into an expec-
tations component and a (yield) risk-premium component. We show that the
cyclical behavior of the risk-premium component, both in yields and in re-
turns, depends importantly on whether the predictive information contained in
the estimated factors is included when forecasting excess bond returns. When
the information in macro factors is ignored, both return and yield risk premia
are virtually acyclical, exhibiting a correlation with real industrial production
growth that is close to zero. This is true even if CPt is used as a predictor
variable for returns. By contrast, when the information in the estimated fac-
tors is included, bond risk premia have a marked countercyclical component
and are found to be substantially higher in recessions. These findings under-
score the importance of using information beyond that contained in the yield
curve to uncover business-cycle variation in risk premia associated with real
macroeconomic activity.

By tying time-varying risk premia directly to macroeconomic fundamentals,
the findings presented here are, to the best of our knowledge, the first of their
kind for bond market data that are consistent (in a particular way) with rational,
utility-maximizing models, which almost always imply that investors must be
compensated for risks associated with recessions, and macroeconomic activity
more generally. The findings also demonstrate the importance of including the
information in macro factors in accounting properly for risk premia, especially
in recessions. When this information is ignored, too much of the business cycle
variation in long-term yields is attributed to expectations of future nominal
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interest rates, and too little is attributed to changes in the compensation for
bearing risk.

The rest of this article is organized as follows. In the next section, we briefly
review the related literature not discussed above. We begin with the inves-
tigation of risk premia in bond returns. Section 3 lays out the econometric
framework and discusses the use of principal components analysis to estimate
common factors. Here we present the results of one-year-ahead predictive re-
gressions for excess bond returns. We also discuss an out-of-sample forecasting
analysis and a bootstrap analysis for small-sample inference. Next we explore
the potential implications of our findings for risk premia in bond yields implied
by our bond return forecasts. This analysis is conducted in Section 4. Section
5 concludes. Additional results, extended to more maturities and an updated
sample, will be available in Ludvigson and Ng (2009).

2. Related Literature

Our use of dynamic factor analysis is an application of statistical procedures
developed elsewhere for the case where both the number of economic time
series used to construct common factors, N , and the number of time periods,
T , are large and converge to infinity (Stock and Watson 2002a, 2002b; Bai
and Ng 2002, 2006). Dynamic factor analysis with large N and large T is
preceded by a literature studying classical factor analysis for the case where
N is relatively small and fixed but T → ∞. See, for example, Sargent and
Sims (1977); Sargent (1989); and Stock and Watson (1989, 1991). By contrast,
Connor and Korajczyk (1986, 1988) pioneered techniques for undertaking
dynamic factor analysis when T is fixed and N → ∞.

The presumption of the dynamic factor model is that the covariation among
economic time series is captured by a few unobserved common factors. Stock
and Watson (2002b) show that consistent estimates of the space spanned by
the common factors may be constructed by principal components analysis. A
large and growing body of literature has applied dynamic factor analysis in
a variety of empirical settings. Stock and Watson (2002b and 2004) find that
predictions of real economic activity and inflation are greatly improved relative
to low-dimensional forecasting regressions when the forecasts are based on
the estimated factors of large datasets. An added benefit of this approach is
that the use of common factors can provide robustness against the structural
instability that plagues low-dimensional forecasting regressions (Stock and
Watson 2002a). The reason is that such instabilities may “average out” in the
construction of common factors if the instability is sufficiently dissimilar from
one series to the next. Several authors have combined dynamic factor analysis
with a vector autoregressive (VAR) framework to study the macroeconomic
effects of policy interventions, patterns of comovement in economic activity,
or term structure dynamics (Bernanke and Boivin 2003; Bernanke, Boivin, and
Eliasz 2005; Giannone, Reichlin, and Sala 2002, 2005; Stock and Watson 2005;
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Mönch 2007). Boivin and Giannoni (2005) use dynamic factor analysis of large
datasets to form empirical inputs into dynamic stochastic general equilibrium
models. Ludvigson and Ng (2007) use dynamic factor analysis to model the
conditional mean and conditional volatility of excess stock market returns.

Our work is also related to research in asset pricing that looks for connec-
tions between bond prices and macroeconomic fundamentals. In data spanning
the period 1988–2003, Piazzesi and Swanson (2004) find that the growth of
nonfarm payroll employment is a strong predictor of excess returns on fed-
eral funds futures contracts. Ang and Piazzesi (2003) investigate the possible
empirical linkages between macroeconomic variables and bond prices in a
no-arbitrage factor model of the term structure of interest rates. Building on
earlier work by Duffee (2002) and Dai and Singleton (2002), Ang and Piazzesi
present a multifactor affine bond pricing model that allows for time-varying
risk premia, but they allow the pricing kernel to be driven by shocks to both
observed macro variables and unobserved yield factors. They find empirical
support for this model.2 The investigation of this article differs because we
form factors from a large dataset of 132 macroeconomic indicators to conduct
a model-free empirical investigation of reduced-form forecasting relations suit-
able for assessing more generally whether bond premiums are forecastable by
macroeconomic fundamentals. We view our investigation as complementary to
that of Ang and Piazzesi. Finally, in a very recent work, Duffee (2008) presents
evidence of a latent bond market factor that, like our constructed factors, pre-
dicts future yields and future returns but is not revealed by the cross-section of
bond yields or forward rates. As in our investigation, he finds that the factor is
related to fluctuations in real economic activity.

3. Econometric Framework: Bond Returns

In this section we describe our econometric framework, which involves esti-
mating common factors from a large dataset of economic activity. Such es-
timation is carried out using principal components analysis, a procedure that
has been described and implemented elsewhere for forecasting measures of
macroeconomic activity and inflation (e.g., Stock and Watson 2002a, 2002b,
2004). Our notation for excess bond returns and yields closely follows that in
Cochrane (2005). We refer the reader to those articles for a detailed description
of this procedure; here we only outline how the implementation relates to our
application.

Although any predictability in excess bond returns is a violation of the ex-
pectations hypothesis (where risk premia are presumed constant), the objective
of this article is to assess whether there is palpable forecastable variation in

2 A closely related approach is taken in a recent work by Bikbov and Chernov (2005) in which the joint dynamics
of yield factors, real activity, and inflation are explicitly modeled as part of an affine term structure model. Others,
such as Kozicki and Tinsley (2001, 2005), use affine models to link the term structure to perceptions of monetary
policy.
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excess bond returns specifically related to macroeconomic fundamentals. In
addition, we ask whether macroeconomic variables have predictive power for
excess bond returns above and beyond that contained in the forward spreads,
yield spreads, or yield factors estimated as the principal components of the
yield covariance matrix. To examine this latter issue, we use the Cochrane
and Piazzesi (2005) forward rate factor as a forecasting benchmark. Cochrane
and Piazzesi have already shown that, in our sample, the predictive power of
forward spreads, yield spreads, and yield factors is subsumed by their single
forward-spread factor.

For t = 1, . . . T , let r x (n)
t+1 denote the continuously compounded (log) excess

return on an n-year discount bond in period t + 1. Excess returns are defined
as r x (n)

t+1 ≡ r (n)
t+1 − y(1)

t , where r (n)
t+1 is the log holding period return from buying

an n-year bond at time t and selling it as an n − 1 year bond at time t + 1, and
y(1)

t is the log yield on the one-year bond.3

A standard approach to assessing whether excess bond returns are predictable
is to select a set of K predetermined conditioning variables at time t , given by
the K × 1 vector Zt , and then estimate

r x (n)
t+1 = β′ Zt + εt+1 (1)

by least squares. For example, Zt could include the individual forward rates
studied in Fama and Bliss (1987), the single forward factor studied in Cochrane
and Piazzesi (2005) (a linear combination of y(1)

t and four forward rates), or
other predictor variables based on a few macroeconomic series. For reasons
discussed above, such a procedure may be restrictive, especially when inves-
tigating potential links between bond premiums and macroeconomic funda-
mentals. In particular, suppose we observe a T × N panel of macroeconomic
data with elements xit, i = 1, . . . N , t = 1, . . . , T , where the cross-sectional
dimension N is large, and possibly larger than the number of time periods,
T . With standard econometric tools, it is not obvious how a researcher could
use the information contained in the panel because, unless we have a way of
ordering the importance of the N series in forming conditional expectations
(as in an autoregression), there are potentially 2N combinations to consider.
Furthermore, letting xt denote the N × 1 vector of panel observations at time
t , estimates from the regression

r x (n)
t+1 = γ′xt + β′ Zt + εt+1 (2)

quickly run into degrees-of-freedom problems as the dimension of xt increases,
and estimation is not even feasible when N + K > T .

3 Let p(n)
t = log price of n-year discount bond at time t . Then the log yield is y(n)

t ≡ − (1/n) p(n)
t , and the log

holding period return is r (n)t
t+1 ≡ p(n−1)

t+1 − p(n)
t . The log forward rate at time t for loans between t + n − 1 and

t + n is g(n)
t ≡ p(n−1)

t − p(n)
t .
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The approach we consider is to posit that xit has a factor structure taking the
form

xit = λ′
i ft + eit, (3)

where ft is an r × 1 vector of latent common factors, λi is a corresponding
r × 1 vector of latent factor loadings, and eit is a vector of idiosyncratic errors.4

The crucial point here is that r ( N , so that substantial dimension reduction
can be achieved by considering the regression

r x (n)
t+1 = α′Ft + β′ Zt + εt+1, (4)

where Ft ⊂ ft . Equation (1) is nested within the factor-augmented regression,
making Equation (4) a convenient framework to assess the importance of xit

via Ft , even in the presence of Zt . But the distinction between Ft and ft is
important, because factors that are pervasive for the panel of data xit need not
be important for predicting r x (n)

t+1.
As common factors are not observed, we replace ft by f̂t , estimates that,

when N , T → ∞, span the same space as ft . (Since ft and λi cannot be sep-
arately identified, the factors are identifiable only up to an r × r matrix.) In
practice, ft are estimated by principal components analysis (PCA).5 Let the !

be the N × r matrix defined as ! ≡ (λ′
1, . . . ,λ

′
N )′. Intuitively, the estimated

time t factors f̂t are linear combinations of each element of the N × 1 vector
xt = (x1t , . . . , xNt )′, where the linear combination is chosen optimally to min-
imize the sum of squared residuals xt − ! ft . Throughout the article, we use
“hats” to denote estimated values.

To determine the composition of F̂t , we form different subsets of f̂t , and/or
functions of f̂t (such as f̂ 2

1t ). For each candidate set of factors, F̂t , we regress
r x (n)

t+1 on F̂t and Zt and evaluate the corresponding Bayesian information
criterion (BIC) and R̄2. Following Stock and Watson (2002b), minimizing
the BIC yields the preferred set of factors F̂t , but we explicitly limit the
number of specifications we search over.6 The vector Zt contains additional

4 We consider an approximate dynamic factor structure, in which the idiosyncratic errors eit are permitted to have
a limited amount of cross-sectional correlation. The approximate factor specification limits the contribution of
the idiosyncratic covariances to the total variance of x as N gets large:

N−1
N∑

i=1

N∑

j=1

|E(eite jt )| ≤ M,

where M is a constant.

5 To be precise, the T × r matrix f̂ is
√

T times the r eigenvectors corresponding to the r largest eigenvalues of
the T × T matrix xx ′/(T N ) in decreasing order. Let ! be the N × r matrix of factor loadings (λ′

1, . . . , λ
′
N )′. !

and f are not separately identifiable, so the normalization f ′ f/T = Ir is imposed, where Ir is the r -dimensional
identity matrix. With this normalization, we can additionally obtain !̂ = x ′ f̂ /T , and χ̂it = λ̂′

i f̂t denotes the
estimated common component in series i at time t . The number of common factors, r , is determined by the panel
information criteria developed in Bai and Ng (2002).

6 We first evaluate r univariate regressions of returns on each of the r factors. Then, for only those factors that
contribute significantly to minimizing the BIC criterion of the r univariate regressions, we evaluate whether
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(nonfactor) regressors that are thought to be related to future bond returns. The
final regression model for excess returns is based on Zt plus this optimal F̂t .
That is,

r x (n)
t+1 = α′ F̂t + β′ Zt + εt+1. (5)

Although we have written Equation (5) so that F̂t and Zt enter as separate
regressors, there is no theoretical reason why factors that load heavily on
macro variables should contain information that is entirely orthogonal to that
in financial indicators. For this reason, we are also interested in whether macro
factors F̂t have unconditional predictive power for future returns. This amounts
to asking whether the coefficients α from a restricted version of Equation (5)
given by

r x (n)
t+1 = α′ F̂t + εt+1 (6)

are different from zero. At the same time, an interesting empirical question is
whether the information contained in the estimated factors F̂t overlaps sub-
stantially with that contained in financial predictor variables. Therefore, we
also evaluate multiple regressions of the form (5), in which Zt includes the
Cochrane-Piazzesi factor CPt as a benchmark. As discussed above, we use
this variable as a single summary statistic because it subsumes the information
contained in a large number of popular financial indicators known to forecast
excess bond returns. Such multiple regressions allow us to assess whether F̂t has
predictive power for excess bond returns, conditional on the information in Zt .

In each case, the null hypothesis is that excess bond returns are unpredictable.
Under the assumption that N , T → ∞ with

√
T /N → 0, Bai and Ng (2006)

showed that (α̂, β̂) obtained from least squares estimation of Equation (5) are√
T consistent and asymptotically normal, and the asymptotic variance is such

that the inference can proceed as though ft is observed (i.e., that pre-estimation
of the factors does not affect the consistency of the second-stage parameter
estimates or the regression standard errors). The importance of a large N must
be stressed, however, as without it, the factor space cannot be consistently
estimated however large T becomes.

Although our estimates of the predictable dynamics in excess bond returns
will clearly depend on the extracted factors and conditioning variables we
use, the combination of dynamic factor analysis applied to very large datasets,
along with a statistical criterion for choosing parsimonious models of relevant
factors, makes our analysis less dependent than previous applications on a
handful of predetermined conditioning variables. The use of dynamic factor
analysis allows us to entertain a much larger set of predictor variables than
what has been entertained previously, while the BIC criterion provides a means

squared and cubed terms help reduce the BIC criterion further. We do not consider other polynomial terms, or
polynomial terms of factors not important in the regressions on linear terms.
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of choosing among summary factors by indicating whether these variables have
important additional forecasting power for excess bond returns.

3.1 Empirical implementation and data
A detailed description of the data and our sources is given in the Data Appendix.
We study monthly data spanning the period 1964:1–2003:12, the same sample
that was studied by Cochrane and Piazzesi (2005).

The bond return data are taken from the Fama-Bliss dataset available from the
Center for Research in Securities Prices (CRSP) and contain observations on
one- through five-year zero-coupon U.S. Treasury bond prices. These are used
to construct data on excess bond returns, yields, and forward rates, as described
above. Annual returns are constructed by continuously compounding monthly
return observations.

We estimate factors from a balanced panel of 132 monthly economic series,
each spanning the period 1964:1–2003:12. The economic series are provided
by James Stock and Mark Watson and used in Stock and Watson (2002b, 2004,
2005). The series were selected to represent broad categories of macroeco-
nomic time series: real output and income, employment and hours, real retail,
manufacturing and sales data, international trade, consumer spending, housing
starts, inventories and inventory sales ratios, orders and unfilled orders, com-
pensation and labor costs, capacity utilization measures, price indexes, interest
rates and interest rate spreads, stock market indicators, and foreign exchange
measures. The complete list of series is given in the Appendix, where a coding
system indicates how the data were transformed so as to ensure stationarity.
All of the raw data in xt are standardized prior to estimation.

Notice that the estimated factors we study will not be pure macro variables,
since the panel of economic indicators from which they are estimated contain
financial variables as well as macro variables. This is important because busi-
ness cycle fluctuations in the aggregate economy—the sort of cyclical variation
we are interested in—consist of substantial co-movement in financial and real
variables. Presumably, such fluctuations are driven by a small number of primi-
tive shocks that affect both financial markets and aggregate quantities. Because
these common movements are likely to be among the most important sources of
variation in cyclical macro variables, one would not want to remove variables
classified as “financial” from the dataset. As we argue below, the important
findings are not what variables we have included in our large dataset but rather,
first, that the estimated factors are highly correlated with real macroeconomic
activity (and not highly correlated with financial indicators) and, second, that
they contain business cycle information about future excess bond returns that
is not in the bond market data previously found to have substantial forecasting
power for bond returns.

For the specifications in which we include additional predictor variables in
Zt , we report results in which Zt contains the single variable CPt . We do so
because the Cochrane-Piazzesi factor summarizes virtually all the information
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Table 1
Summary statistics for f̂it

i AR1( f̂it) R2
i

1 0.767 0.177
2 0.764 0.249
3 −0.172 0.304
4 0.289 0.359
5 0.341 0.403
6 −0.0132 0.439
7 0.320 0.471
8 0.233 0.497

For i = 1, . . . 8, f̂it is estimated by the method of principal components using
a panel of data with 132 indicators of economic activity from t = 1964:1–
2003:12 (480 time-series observations). The data are transformed (taking logs
and differenced where appropriate) and standardized prior to estimation. AR1( f̂it)
is the first-order autocorrelation coefficients for factor i . The relative importance
of the common component, R2

i , is calculated as the fraction of total variance in
the data explained by factors 1 to i .

in individual yield spreads and forward spreads that had been the focus of prior
work on predictability in bond returns. We also experimented with including
the dividend yield on the Standard and Poor composite stock market index in
Zt , since Fama and French (1989) find that this variable has modest forecasting
power for bond returns. We do not report those results, however, since the
dividend yield has little forecasting power for future bond returns in our sample
and has even less once the estimated factors F̂t or the Cochrane and Piazzesi
factor is included in the forecasting regression.

In estimating the time-t common factors, we face a decision over how much
of the time-series dimension of the panel to use. We take two approaches. First,
we run in-sample regressions in which the full sample of time-series information
is used to estimate the common factors at each date t . This approach can be
thought of as providing smoothed estimates of the latent factors, ft . Smoothed
estimates of the latent factors are the most efficient means of summarizing the
covariation in the data x because the estimates do not discard information in
the sample. Second, we conduct an out-of-sample forecasting investigation in
which the predictor factors are reestimated recursively each period using data
only up to time t . A description of this procedure is given below.

3.2 Empirical results
Table 1 presents summary statistics for our estimated factors f̂t . The num-
ber of factors, r , is determined by the information criteria developed in Bai
and Ng (2002). The criteria indicate that the factor structure is well described
by eight common factors. The first factor explains the largest fraction of the
total variation in the panel of data x , where total variation is measured as
the sum of the variances of the individual xit. The second factor explains
the largest fraction of variation in x , controlling for the first factor, and so
on. The estimated factors are mutually orthogonal by construction. Table 1
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reports the fraction of variation in the data explained by factors 1 to i .7

Table 1 shows that a small number of factors account for a large fraction
of the variance in the panel dataset we explore. The first five common factors of
the macro dataset account for about 40% of the variation in the macroeconomic
series.

To get an idea of the persistence of the estimated factors, Table 1 also
displays the first-order autoregressive, AR(1), coefficient for each factor. None
of the factors has a persistence greater than 0.77, but there is considerable
heterogeneity across estimated factors, with coefficients ranging from −0.17
to 0.77.

As mentioned, we formally choose among a range of possible specifications
for the forecasting regressions of excess bond returns based on the estimated
common factors (and possibly nonlinear functions of those factors such as f̂ 3

1t )
using the BIC criterion (though we restrict our specification search as described
above). We report results only for the specifications analyzed that have the
lowest BIC criterion.8 Results not reported indicate that, when the Cochrane-
Piazzesi factor is excluded as a predictor, the six-factor subset Ft ⊂ ft given by
Ft = −→

F6t = (F̂1t , F̂3
1t , F̂2t , F̂3t , F̂4t , F̂8t )′ minimizes the BIC criterion across a

range of possible specifications based on the first eight common factors of
our panel dataset, as well as nonlinear functions of these factors. F̂3

1t , above,
denotes the cubic function in the first estimated factor. The estimated factors
F̂5t and F̂6t exhibit little forecasting power for excess bond returns. When
CPt is included, by contrast, the five-factor subset Ft ⊂ ft given by Ft =
−→
F5t = (F̂1t , F̂3

1t , F̂3t , F̂4t , F̂8t )′ minimizes the BIC criterion. As we shall see,
the second estimated factor F̂2t is highly correlated with interest rates spreads.
As a result, the information it contains about future bond premiums is subsumed
in CPt .

The subsets Ft contain five or six factors. To assess whether a single linear
combination of these factors forecasts excess bond returns at all maturities, we
follow Cochrane and Piazzesi (2005) and form single predictor factors as the
fitted values from a regression of average (across maturity) excess returns on
the set of six and five factors, respectively. We denote these single factors by
F6t and F5t , respectively:

1
4

5∑

n=2

r x (n)
t+1 = γ0 + γ1 F̂1t + γ2 F̂3

1t + γ3 F̂2t + γ4 F̂3t + γ5 F̂4t + γ6 F̂8t + ut+1,

F6t ≡ γ̂′−→F6t , (7)

7 This is given as the sum of the first i largest eigenvalues of the matrix xx ′ divided by the sum of all eigenvalues.

8 Specifications that include lagged values of the factors beyond the first were also examined, but additional lags
were found to contain little information for future returns that was not already contained in the one-period lag
specifications.
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1
4

5∑

n=2

r x (n)
t+1 = δ0 + δ1 F̂1t + δ2 F̂3

1t + δ3 F̂3t + δ4 F̂4t + δ5 F̂8t + vt+1,

F5t ≡ δ̂′−→F5t , (8)

where γ̂ and δ̂ denote the 6 × 1 and 5 × 1 vectors of estimated coefficients
from Equations (7) and (8), respectively. With these factors in hand, we now
turn to an empirical investigation of their forecasting properties for excess bond
returns.

3.2.1 In-sample analysis. Table 2 presents results from in-sample forecast-
ing regressions of the general form (5), for two-, three-, four-, and five-year
log excess bond returns.9 In this section, we investigate the two hypotheses
discussed above. First, we ask whether the estimated factors have uncondi-
tional predictive power for excess bond returns; this amounts to estimating the
restricted version of Equation (5) given in Equation (6), where β′ is restricted
to zero. Next, we ask whether the estimated factors have predictive power for
excess bond returns conditional on Zt . This amounts to estimating the unre-
stricted regression (5) with β′ freely estimated. The statistical significance of
the factors is assessed using asymptotic standard errors. A subsection below
investigates the finite sample properties of the data.

For each regression, the regression coefficients, heteroskedasticity and serial-
correlation robust t-statistics, and adjusted R2 statistic are reported. The asymp-
totic standard errors use the Newey and West (1987) correction for serial
correlation with 18 lags. The correction is needed because the continuously
compounded annual return has an MA(12) error structure under the null hy-
pothesis that one-period returns are unpredictable. Because the Newey-West
correction down-weights higher-order autocorrelations, we follow Cochrane
and Piazzesi (2005) and use an 18-lag correction to better ensure that the
procedure fully corrects for the MA(12) error structure.

First, consider the top panel of Table 2, which shows the results of predictive
regressions for excess returns on the two-year bond r x (2)

t+1. As a benchmark,
row a reports the results from a specification that includes only the Cochrane-
Piazzesi factor CPt as a predictor variable. This variable, a linear combination of
y(1)

t and four forward rates, g(2)
t , g(3)

t , . . . , g(5)
t , is strongly statistically significant

and explains 31% of next year’s two-year excess bond return. By comparison,
row b shows that the six factors contained in the vector

−→
F6t are also strong

predictors of the two-year excess return, with t-statistics in excess of five for the
first estimated factor F̂1t , but with all factors marginally statistically significant
at the 5% or better level. Together, these factors are statistically significant
predictors of bond returns and explain 26% of the variation one year ahead in
the two-year return. Although the second factor, F̂2t , is strongly statistically

9 The results reported below for log returns are nearly identical for raw excess returns.
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Table 2
Regression of monthly excess bond returns on lagged cactors

Model: r x (n)
t+1 = β0 + β′

1 F̂t + β2CPt + εt+1,

F̂1t F̂3
1t F̂2t F̂3t F̂4t F̂8t CPt F5t F6t R̄2

(a) 0.45 0.31
( 8.90)

(b) −0.93 0.06 −0.40 0.18 −0.33 0.35 0.26
(−5.19) (2.78) (−3.10) (2.24) (−2.94) (4.35)

(c) −0.74 0.05 0.08 0.24 −0.24 0.24 0.41 0.45
(−4.48) (2.70) (0.71) (3.84) (−2.51) (2.70) (5.22)

r x (2)
t+1 (d) −0.93 0.06 0.18 −0.33 0.35 0.22

(−4.96) (2.87) (1.87) (−2.65) (3.83)
(e) −0.75 0.05 0.24 −0.25 0.24 0.40 0.45

(−4.71) (2.71) (3.85) (−2.61) (2.89) (5.89)
( f ) 0.54 0.22

(5.52)
(g) 0.50 0.26

(6.78)
(h) 0.39 0.43 0.44

(6.0) (5.78)

(a) 0.85 0.34
(8.52)

(b) −1.59 0.11 0.19 −0.53 0.64 0.18
(−4.68) (3.12) (1.05) (−2.23) (3.73)

(c) −1.22 0.10 0.30 −0.36 0.44 0.76 0.44
(−4.39) (2.96) (2.78) (−2.12) (2.74) (6.13)

r x (3)
t+1 (d) 0.91 0.19

(5.28)
(e) 0.89 0.24

(6.57)
( f ) 0.75 0.69 0.44

(6.16) (5.55)

(a) 1.24 0.37
(8.58)

(b) −2.05 0.16 0.18 −0.63 0.95 0.16
(−4.49) (3.20) (0.68) (−1.77) (3.75)

(c) −1.51 0.14 0.35 −0.37 0.64 1.13 0.45
(−4.20) (3.08) (2.22) (−1.50) (2.83) (6.40)

r x (4)
t+1 (d) 1.19 0.17

(5.08)
(e) 1.20 0.23

(6.57)
( f ) 1.11 0.87 0.45

(6.30) (5.39)

(a) 1.46 0.34
(7.90)

(b) −2.27 0.18 0.18 −0.78 1.13 0.14
(−4.10) (3.06) (0.55) (−1.80) (3.68)

(c) −1.63 0.15 0.38 −0.48 0.76 1.34 0.41
(−3.86) (2.95) (1.92) (−1.54) (2.76) (6.00)

r x (5)
t+1 (d) 1.36 0.14

(4.80)
(e) 1.41 0.21

(6.47)
( f ) 1.32 0.98 0.42

(5.87) (5.08)

Notes: The table reports estimates from OLS regressions of excess bond returns on the lagged variables named
in column 1. The dependent variable r x (n)

t+1 is the excess log return on the n-year Treasury bond. F̂t denotes
a set of regressors including F5t , F6t , and F̂it. These denote factors estimated by the method of principal
components using a panel of data with 132 individual series over the period 1964:1–2003:12. F5t is the single
factor constructed as a linear combination of the five estimated factors F̂1t , F̂3

1t , F̂3t , F̂4t , and F̂8t .F6t , is the
single factor constructed as a linear combination of the six estimated factors F̂1t , F̂2t , F̂3

1t , F̂3t F̂4t , and F̂8t .CPt
is the Cochrane and Piazzesi (2005) factor that is a linear combination of five forward spreads. Newey and
West (1987) corrected t-statistics have lag order 18 months and are reported in parentheses. Coefficients that
are statistically significant at the 5% or better level are highlighted in bold. A constant is always included in the
regression even though its estimate is not reported in the table. The sample spans the period 1964:1–2003:12.
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significant in row b, row c shows that, once CPt is included in the regression, it
loses its marginal predictive power and the adjusted R2 statistic rises from 26%
to 45%. Thus, the information contained in F̂2t is more than captured by CPt .
Because we find similar results for the excess returns on bonds of all maturities,
we hereafter omit output from multivariate regressions using F̂2t and CPt as
separate predictors.

The estimated factors have statistically and economically significant predic-
tive power beyond that contained in the forward-rate factor CPt . This is evident
in rows d through h, which display estimates of the marginal predictive power
of the estimated factors in

−→
F5t and the single predictor factors F5t and F6t .

Notice that when F5t is included in the regression with CPt , both variables have
strongly statistically significant predictive power, with asymptotic t-statistics
of around 6 for each variable. These results demonstrate that the estimated fac-
tors contain information about future returns that is not contained in yields or
forward spreads subsumed in CPt . The 45% R̄2 from this regression indicates
an economically large degree of predictability of future bond returns. About the
same degree of predictability is found when the single factor F5t is included
with CPt (R̄2 = 44%).

Notice also that the single predictor factors (linear combinations of the
individual factors in

−→
F5t and

−→
F6t ) explain virtually the same fraction of future

excess returns as do the unrestricted specifications that include each factor as
separate predictor variables. For example, both

−→
F6t and F6t explain 26% of

next year’s excess bond return; both
−→
F5t and F5t explain 22%.

The results in the remaining panels of Table 2 are for excess returns on
three-, four-, and five-year bonds. They are broadly similar to those reported
in the top panel for two-year bonds. In particular, (i) the single factors F5t

and F6t predict future bond returns just as well as the unrestricted regressions
that include each factor as separate predictor variables, (ii) the first estimated
factor continues to display strongly statistically significant predictive power
for bonds of all maturities, and (iii) the specifications explain an economically
large fraction of the variation in future returns.

There are, however, a few notable differences from the results in the top panel.
The coefficients on the third and fourth common factors are more imprecisely
estimated in unrestricted regressions of r x (3)

t+1, r x (5)
t+1, and r x (5)

t+1 on
−→
F5t , as

evident from the lower t-statistics. But notice that, in every case, the third factor
retains the strong predictive power it exhibited for r x (2)

t+1 once CPt is included
as an additional predictor (row c of the last three panels). Moreover, the single
factors F5t and F6t remain strongly statistically significant predictors of excess
returns on bonds of all maturities regardless of whether the forward factor CPt

is included, and continue to deliver high R̄2. F6t alone explains 24%, 23%,
and 21% of next year’s excess return on the three-, four-, and five-year bonds,
respectively; F5t explains 19%, 17%, and 14% of next year’s excess returns
on these bonds, and F5t and CPt together explain 44%, 45%, and 42% of next
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Figure 1
Marginal R-squares for F1
Note: Chart shows the R-square from regressing the series number given on the x-axis onto F1. See the Appendix
for a description of the numbered series. The factors are estimated using data from 1964:1 to 2003:12.

year’s excess returns. When the information in CPt and F̂t is combined, the
magnitude of forecastability exhibited by excess bond returns is remarkable.

Economic interpretation of the factors. What economic interpretation can
we give to the predictor factors? Because the factors are identifiable only up
to an r × r matrix, a detailed interpretation of the individual factors would be
inappropriate. Moreover, we caution that any labeling of the factors is imperfect,
because each is influenced to some degree by all the variables in our large
dataset and the orthogonalization means that no one of them will correspond
exactly to a precise economic concept like output or unemployment, which are
naturally correlated. Nonetheless, it is useful to show that the factors capture
relevant macroeconomic information. We do so here by briefly characterizing
the factors as they relate to the underlying variables in our panel dataset.

Figures 1–5 show the marginal R2 for our estimates of F1t , F2t , F3t , F4t ,
and F8t . The marginal R2 is the R2 statistic from regressions of each of the
132 individual series in our panel dataset onto each estimated factor, one at a
time, using the full sample of data. The figures display the R2 statistics as bar
charts, with one figure for each factor. The individual series that make up the
panel dataset are grouped by a broad category and labeled using the numbered
ordering given in the Data Appendix.

Figure 1 shows that the first factor loads heavily on measures of employment
and production (employees on nonfarm payrolls and manufacturing output, for
example), but also on measures of capacity utilization and new manufacturing
orders. It displays little correlation with prices or financial variables. We call
this factor a real factor. The second factor, which has a correlation with CPt
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Figure 2
Marginal R-squares for F2
Note: See Figure 1.
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Figure 3
Marginal R-squares for F3
Note: See Figure 1.

of −45%, loads heavily on several interest rate spreads (Figure 2), explaining
almost 70% of the variation in the Baa-Fed funds rate spread. The third and
fourth factors load most heavily on measures of inflation and price pressure
but display little relation to employment and output. Figures 3 and 4 show that
they are highly correlated with both commodity prices and consumer prices,
while F̂4t is also highly correlated with the level of nominal interest rates (for
example, by the five-year government bond yield). Nominal interest rates may
contain information about inflationary expectations that is not contained in
measures of the price level. We call both F̂3t and F̂4t inflation factors.
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Figure 4
Marginal R-squares for F4
Note: See Figure 1.
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Figure 5
Marginal R-squares for F8
Note: See Figure 1.

Finally, Figure 5 shows that the eighth estimated factor, F̂8t , loads heavily
on measures of the aggregate stock market. It is highly correlated with the
log difference in both the composite and industrial Standard and Poor’s Index
and the Standard and Poor’s dividend yield but bears little relation to other
variables. We call this factor a stock market factor. It should be noted, however,
that this factor is not merely proxying for the stock market dividend yield,
shown elsewhere to have predictive power for excess bond returns (e.g., Fama
and French 1989). The factor’s correlation with the dividend yield is less
than 60% in our sample (Figure 5). Moreover, results not reported indicate
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that—conditional on the dividend yield—the stock market factor we estimate
displays strong marginal predictive power for future excess returns.

Since the factors are orthogonal by construction, we can characterize their
relative importance in F5t and F6t by investigating the absolute value of the
coefficients on each factor in the regressions (7) and (8). (Since the factors
are identifiable up to an r × r matrix, the signs of the coefficients have no
particular interpretation.) Because the factors are orthogonal, it is sufficient for
this characterization to investigate just the coefficients from the regression on
all six factors contained in

−→
F6t , as in Equation (7).10 Using data from 1964:1 to

2003:12, we find the following regression results (t-statistics in parentheses):

1
4

5∑

n=2

r x (n)
t+1 = 1.03

(2.96)
− 1.72

(−5.12)
· F̂1t + 0.13

(2.97)
· F̂3

1t − 1.01
(−3.90)

· F̂2t + 0.18
(1.18)

· F̂3t

− 0.56
(−2.40)

· F̂4t + 0.78
(4.56)

· F̂8t + ut+1, R̄2 = 0.224.

The real factor, F̂1t , has the largest coefficient in absolute value, implying that
it is the single most important factor in the linear combinations we form. The
interest rate factor F̂2t is second most important, and the stock market factor
F̂8t third most. The inflation factors F̂3t and F̂4t are relatively less important
but still contribute more than the cubic in the real factor. (F̂3t is not marginally
significant in these regressions because its coefficient is imprecisely estimated
in forecasts of three-, four-, and five-year excess bond returns when only factors
are included as predictors. The variable is nonetheless an important predictor
of future bond returns because it is strongly statistically significant once CPt

is included as an additional regressor.) It is also worth noting that F̂1t and F̂3
1t

account for half of the adjusted R-squared statistic reported above.

Are bond risk premia countercyclical? The findings presented so far in-
dicate that excess bond returns are forecastable by macroeconomic aggre-
gates, but they do not tell us whether there is a countercyclical component
in risk premia, as predicted by economic theory. To address this question,
Figure 6 plots the 12-month moving average of F̂1t and I Pt over time (panel
A), and the vector F5t and IP growth over time (panel B). Shaded bars indicate
dates designated by the National Bureau of Economic Research (NBER) as
recession periods. The figure shows that the real factor, F̂1t , captures marked
cyclical variation in real activity. The correlation between the moving averages
of the two series plotted is 92%. Both F̂1t and IP growth reach peaks in the
mid-to-late stages of economic expansions, and take on their lowest values
at the end of recessions. Thus recessions are characterized by low (typically
negative) IP growth and low values for F̂1t , while expansions are characterized
by strong positive IP growth and high values for F̂1t . The linear combination

10 Strictly speaking, F̂3
1t is not orthogonal, but in practice is found to be nearly so.
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Figure 6
A: First factor and IP growth. B: F5 and IP growth
Note: Standardized units are reported. Shadings denote months designated as recessions by the National Bureau
of Economic Research. “First factor” denotes the first estimated factor, F1t . F5 denotes the linear combination
of five factors, written in the text as F5t .

of five factors, F5t , also displays marked cyclical variation but has a negative
correlation with IP growth: the correlation between the moving averages of IP
growth and F5t is −71%.

Connecting these findings back to the forecasts of excess bond returns, we
see that excess return forecasts are high when F̂1t is low and when F5t is
high (Table 2). Since F̂1t is strongly positively correlated with IP growth, and
F5t strongly negatively correlated, these findings imply that return forecasts
have a strong countercyclical component—much stronger than what would
be implied ignoring the factors—consistent with economic theories in which
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investors must be compensated for bearing risks related to recessions. For
example, Campbell and Cochrane (1999) and Wachter (2006) study models in
which risk aversion varies over the business cycle and is low in good times
when the economy is growing quickly. In these models, risk premia (excess
return forecasts) are low in booms but high in recessions, consistent with what
we find.

Implications for affine models. The results reported in Table 2 indicate
that good forecasts of excess bond returns can be made with only a few esti-
mated factors, and that the best forecasts are based on combinations of factors
that summarize information from a large panel of economic activity and the
Cochrane-Piazzesi factor CPt . It is reassuring that some of the estimated factors
(F̂2t in particular, and to a lesser extent F̂3t ) are found to contain information
that is common to that of the Cochrane-Piazzesi factor, suggesting that CPt

summarizes a large body of information about economic and financial activity.
The main finding, however, is that measures of real activity and inflation

in the aggregate economy captured by estimated factors contain economically
meaningful information about future bond returns that is not contained in
CPt , and therefore not contained in contemporaneous forward spreads, yield
spreads, or even yield factors estimated as the principal components of the yield
covariance matrix. (The first three principal components of the yield covariance
matrix are the “level,” “slope,” and “curvature” yield factors studied in term
structure models in finance.) Indeed, since the factors contain information about
future excess returns that is not contained in CPt our findings imply that the
predictive information contained in the factors is not in the yield curve.

These findings are ruled out by unrestricted (and commonly employed) affine
term structure models, where the forecastability of bond returns and bond yields
is completely summarized by the cross-section of yields or forward rates. In
such models, the continuously compounded yields on zero-coupon bonds are
linear functions of K state variables. Thus, assuming the matrix that multiplies
the state vector in the affine function for log bond yields is invertible, we can
express the vector of K state variables as an affine function of K bond yields.
It follows that bond yields themselves can serve as state variables and will
contain any forecasting information that is in the state variables, regardless
of whether those state variables are observable macro variables or treated as
latent factors (see Cochrane 2005, chap. 19; Singleton 2006, chap. 12). Since
bond returns, forward rates, and yields are all linear functions of one another,
unrestricted affine models imply that any of these variables should contain
all the forecastable information about future bond returns and yields; other
variables should have no marginal predictive power. The findings reported
above suggest that commonly employed affine models may conflict with an
important aspect of bond data.

There are a number of potential resolutions to this conflict that are worthy
of exploration in future work. First, the affine models themselves could be
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amended. For example, in affine term structure models, where the forecastabil-
ity of bond returns and bond yields is completely summarized by yields, it is
implicitly assumed that if there are K state variables, then there exist exactly
K bond yields that are measured without error (while the other yields have
nonzero measurement error). In this way, the matrix that multiplies the state
vector in the affine function for the K log bond yields measured without error
is invertible, and we can express the vector of K state variables as an affine
function of K bond yields. As an alternative, Ang, Piazzesi, and Dong (2007)
suggest modeling all yields as measured with error, in which case the inver-
sion just described can’t be implemented, so that the K state variables are no
longer a linear function of K bond yields. It remains an open question as to
whether a plausibly calibrated model of measurement error can account for the
quantitative findings reported here.

More recently, Duffee (2008) addressed the question of whether factors that
are orthogonal to the yield curve can still have important forecasting power for
future yields and future returns in affine models. He shows that they can, as
long as certain restrictions are placed on the model. Specifically, restrictions
must be placed on the dynamics of the state vector to ensure that risk premia
rise when expected future short rates fall. Consistent with these restrictions,
Duffee finds evidence using Kalman filtering estimation of a factor that has
an imperceptible effect on yields but nevertheless has substantial forecasting
power for future yields and returns. As in this article, the factor he uncovers is
related to short-term fluctuations in economic activity.

A second possible way to reconcile the findings here with theory is by con-
sidering term structure models characterized by unspanned stochastic volatility
(e.g., Collin-Dufresne and Goldstein 2002). Additional work would be required,
however, to develop a model of unspanned stochastic volatility that would gen-
erate the results above because we don’t know the source of the volatility risk
that cannot be perfectly hedged by only taking positions in bonds, or how that
risk is related (if at all) to the real and inflation factors studied here.

Finally, nonlinear pricing kernels may in principle be capable of generating
the results documented here, since in such models there is no implication that
yields are linear functions of the state variables. We leave these interesting
theoretical investigations to future research.

3.2.2 Out-of-sample analysis and small sample inference. We have
formed the factors and conducted the regression analysis using the full sam-
ple of data. In this section we report results on the out-of-sample forecasting
performance of the regression models studied in the previous section.11 This
procedure involves fully recursive factor estimation and parameter estimation
using data only through time t for forecasting at time t + 1. We conduct two

11 Lettau and Ludvigson (2009) provide a review of the literature on in-sample versus out-of-sample forecasting of
asset returns.
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model comparisons. First, we compare the out-of-sample forecasting perfor-
mance of the five-factor model that includes the estimated factors in

−→
F5t to a

constant expected returns benchmark where, apart from an MA(12) error term,
excess returns are unforecastable as in the expectations hypothesis. Second,
we compare the out-of-sample forecasting performance of a specification that
includes the same five macro factors plus the Cochrane-Piazzesi factor, CPt ,
to a benchmark model that includes just the Cochrane-Piazzesi factor, CPt ,
and a constant. This second specification allows us to assess the incremental
predictive power of the macro factors above and beyond the predictive power
in CPt .

The purpose of this analysis is to assess the out-of-sample predictive power
of the particular combination of estimated factors

−→
F5t for which we have found

statistically significant in-sample predictive power. Notice that this question can
only be addressed by holding the factors fixed throughout the out-of-sample
forecasting exercise. A distinct question concerns whether different factors
display out-of-sample forecasting power when the set of factors used to forecast
returns is chosen in every out-of-sample recursion using only information
available at the time of the forecast. We address this question below, where
we combine an out-of-sample analysis using recursively chosen factors with a
bootstrap procedure to assess the small-sample distribution of the out-of-sample
test statistics. First we turn to the out-of-sample forecasting performance of the
specific combination of factors

−→
F5t .

Out-of-sample forecasts using
−→
F5t . Table 3 reports results from one-

year-ahead out-of-sample forecast comparisons of log excess bond returns,
r x (n)

t+1, n = 2, . . . , 5. For each forecast, MSEu denotes the mean-squared fore-
casting error of the unrestricted model including predictor factors

−→
F5t or

−→
F5t

and CPt ; MSEr denotes the mean-squared forecasting error of the restricted
benchmark (null) model that excludes additional forecasting variables. In the
column labeled “MSEu/MSEr ,” a number less than one indicates that the model
with the predictor factors

−→
F5t or

−→
F5t and CPt has lower forecast error than the

benchmark model that excludes additional predictor variables.
Results for two forecast samples are reported: 1985:1–2003:2; 1995:1–

2003:2. The results for the first forecast sample are reported in Rows 1, 3,
5, and 7 for r x (2)

t+1, . . . , r x (5)
t+1, respectively. Here the parameters and factors

were estimated recursively, with the initial estimation period using only data
available from 1964:12 through 1984:12. Next, the forecasting regressions were
run over the period t = 1964:12, . . . , 1984:12 (dependent variable from t =
1965:1, . . . , 1984:12, independent variables from t = 1964:1, . . . , 1983:12)
and the estimated parameters and values of the regressors at t = 1984:12 were
used to forecast annual compound returns for 1985:12.12 All parameters and

12 Note that the regressors must be lagged 12 months to account for the 12-period overlap induced from continuously
compounding monthly returns to obtain annual returns.
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Table 3
Out-of-sample predictive power of macro factors

Row Forecast sample Comparison MSEu/MSEr Test statistic 95% Asympt. CV

r x (2)
t+1

1 1985:1–2003:12
−→
F5t vs. const 0.794 50.07∗ 3.28

2 1995:1–2003:12
−→
F5t vs. const 0.838 21.83∗ 2.01

3 1985:1–2003:12
−→
F5t + CP vs. const + CP 0.810 45.77∗ 3.28

4 1995:1–2003:12
−→
F5t + CP vs. const + CP 0.884 14.04∗ 2.01

r x (3)
t+1

5 1985:1–2003:2
−→
F5t vs. const 0.839 35.17∗ 3.28

6 1995:1–2003:2
−→
F5t vs. const 0.858 16.75∗ 2.01

7 1985:1–2003:2
−→
F5t + CP vs. const + CP 0.858 29.77∗ 3.28

8 1995:1–2003:2
−→
F5t + CP vs. const + CP 0.894 10.70∗ 2.01

r x (4)
t+1

9 1985:1–2003:12
−→
F5t vs. const 0.874 26.28∗ 3.28

10 1995:1–2003:12
−→
F5t vs. const 0.888 14.05∗ 2.01

11 1985:1–2003:12
−→
F5t + CP vs. const + CP 0.891 21.86∗ 3.28

12 1995:1–2003:12
−→
F5t + CP vs. const + CP 0.913 9.00∗ 2.01

r x (5)
t+1

13 1985:1–2003:12
−→
F5t vs. const 0.905 20.20∗ 3.28

14 1995:1–2003:12
−→
F5t vs. const 0.925 10.30∗ 2.01

15 1985:1–2003:12
−→
F5t + CP vs. const + CP 0.926 15.18∗ 3.28

16 1995:1–2003:12
−→
F5t + CP vs. const + CP 0.941 6.39∗ 2.01

∗Significant at the 1% or better level.
Note: See next page.
Note: The table reports results from one-year-ahead out-of-sample forecast comparisons of n-period log excess
bond returns, r x (n)

t+1.
−→
F5t denotes the vector of factors (F̂1t , F̂3

1t , F̂3t , F̂4t , F̂8t )′. Rows that have “
−→
F5t vs. const”

report forecast comparisons of an unrestricted model, which includes the variables in
−→
F5t as predictors, with

a restricted, constant expected returns benchmark (const). Rows denoted “
−→
F5t + CP vs. const + CP” report

forecast comparisons of an unrestricted model, which includes the variables in
−→
F5t and CP as predictors,

with a restricted benchmark model that includes a constant and CP. MSEu is the mean-squared forecasting
error of the unrestricted model; MSEr is the mean-squared forecasting error of the restricted benchmark model
that excludes additional forecasting variables. In the column labeled “MSEu/MSEr ,” a number less than one
indicates that the unrestricted model has lower forecast error than the restricted benchmark model. The first row
of each panel displays results in which the parameters and factors were estimated recursively, using an initial
sample of data from 1964:1 through 1984:12. The forecasting regressions are run for t = 1964:1, . . . , 1984:12
(dependent variables from 1964:1–1983:12, independent variable from 1965:1–1984:12), and the values of the
regressors at t = 1984:12 are used to forecast annual returns for 1975:1–1975:12. All parameters and factors
are then reestimated from 1964:1 through 1985:1, and forecasts are recomputed for returns in 1985:2–1986:1,
and so on, until the final out-of-sample forecast is made for returns in 2003:12. The same procedure is used
to compute results reported in the second row, where the initial estimation period is t = 1964:1, . . . , 1994:12.
The column labeled “Test Statistic” reports the ENC-NEW test statistic of Clark and McCracken (2001) for
the null hypothesis that the benchmark model encompasses the unrestricted model with additional predictors.
The alternative is that the unrestricted model contains information that could be used to improve the benchmark
model’s forecast. “95% Asympt. CV” gives the 95th percentile of the asymptotic distribution of the test statistic.

factors are then reestimated from 1964:1 through 1985:1, and forecasts were
recomputed for excess returns in 1986:1, and so on, until the final out-of-
sample forecast is made for returns in 2003:12. The same procedure is used to
compute results reported in the other rows, where the initial estimation period
is t = 1964:1, . . . , 1995:1. The column labeled “Test Statistic” in Table 3 re-
ports the ENC-NEW test statistic of Clark and McCracken (2001) for the null
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hypothesis that the benchmark model encompasses the unrestricted model with
additional predictors. The alternative is that the unrestricted model contains
information that could be used to improve the benchmark model’s forecast.
“95% Asympt. CV” gives the 95th percentile of the asymptotic distribution of
the ENC-NEW test statistic.

The results show that the model including the five factors in
−→
F5t improves

substantially over the constant expected returns benchmark, for excess bond re-
turns of every maturity. The models have a mean-squared error that is anywhere
from 79% to 93% of the constant expected returns benchmark mean-squared
error, depending on the excess return being forecast and the forecast period.
For the period 1995:1–2003:12 the model has a forecast error variance that is
only 84%, 86%, 89%, and 93% of the constant expected returns benchmark for
r x (2)

t+1, . . . , r x (5)
t+1, respectively. The ENC-NEW test statistic always indicates

that the improvement in forecast power is strongly statistically significant, at
the 1% or better level. Moreover, the reduction in mean-squared error over the
benchmark is about the same regardless of which forecast period is analyzed.

The results also show that the model including the five factors in
−→
F5t and

CPt improves substantially over a benchmark that includes a constant and CPt .
This reinforces the conclusion from the in-sample analysis, namely, that the
estimated factors contain information about future returns that is not contained
in the CP factor. The models that include the five factors in addition to the CP
factor have a mean-squared error that is anywhere from 81% to 94% of that
of the benchmark that includes only CP and a constant. The ENC-NEW test
statistic always indicates that the improvement in forecast power is strongly
statistically significant, at the 1% or better level.

Small sample inference and out-of-sample forecasts using recursively cho-
sen factors. To guard against inadequacy of the asymptotic approximation
in finite samples, a Technical Appendix available on the authors’ Web sites
reports the results of a comprehensive bootstrap inference for specifications
using four regression models. We first assess the finite sample behavior of
our in-sample forecasting statistics. The bootstrap procedure takes into ac-
count the sampling variation attributable to the estimation of factors, as well
as to the estimation of the forecasting relation. The results are contained in
the Technical Appendix, and the bootstrap procedure is discussed in detail
there. The results show that the magnitude of predictability found in histori-
cal data is too large to be accounted for by sampling error in samples of the
size we currently have. The statistical relation of the factors to future returns
is evident, even accounting for the small sample distribution of standard test
statistics.

We also conduct a different out-of-sample investigation in which the factors
are chosen optimally (using the BIC criterion, as in the in-sample exercise
above) in each out-of-sample recursion, using only information available at
the time of the forecast. The purpose of this exercise is to account for the
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sampling variation in finite samples that is attributable to the fact that different
factors (identity and number) may be picked in different samples. We also
guard here against the inadequacy of the asymptotic approximation of our
test statistics in finite samples by using a bootstrap procedure to assess the
finite-sample distribution of the out-of-sample test statistic used to gauge the
improvement in out-of-sample predictability afforded by the recursively chosen
factors.

The details of this procedure are provided in the Technical Appendix, with
results contained in Table A5. Here we provide only a summary of the proce-
dure and results. The results in Table A5 of the Technical Appendix show that
the forecasting specifications using recursively chosen factors improve substan-
tially over the constant expected returns benchmark, for excess bond returns
of every maturity. The models have a mean-squared error that is anywhere
from 85% to 95% of the constant expected returns benchmark mean-squared
error, depending on the excess return being forecast and the forecast period.
The test statistic (described in the Technical Appendix) indicates that the im-
provement in forecast power is statistically significant at the 5% or better level
in every case but one (when forecasting the five-year excess bond return),
where in this case it is statistically significant at the 10% level. These results
show that even when we account for the sampling variation attributable to
the fact that different factors may be chosen in different samples, it would be
very unlikely that we would observe test statistics as large as those observed
in the data if the null hypothesis were true and expected excess returns were
constant.

4. A Decomposition of Yield Spreads

In this section we examine the quantitative importance of the factors by investi-
gating the cyclical behavior of risk premia in both returns and yields implied by
our excess bond return forecasts. The cyclical behavior of bond risk premia is
of interest for at least two reasons. First, many economic models that rationalize
time-varying risk premia imply that investors must be compensated for risks
associated with the business cycle. In particular, they imply that risk premia
should be higher in recessions than in expansions. We can use our results from
the previous section to investigate the extent to which this is true in the data.

A second reason this issue is important is that the cyclicality of bond market
risk premia is a matter of special concern to Federal Reserve policy makers,
who routinely worry about the extent that fluctuations in long rates reflect
investor expectations of future short-term rates versus changing risk premia.
For example, in a speech given in July of 2005, Federal Reserve Governor
Donald Kohn emphasized the importance of distinguishing between move-
ments in long-term yields attributable to expectations of future short-term
rates, and those attributable to movements in risk premia: “To what extent are
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long-term interest rates low because investors expect short-term rates to be
low in the future . . . and to what extent do low long rates reflect narrow term
premiums?”13

Federal Reserve Chairman Ben Bernanke argued similarly that the implica-
tions for monetary policy could be quite different depending on the extent to
which the behavior of long-term yields reflects movements in the expectations
of future short-term rates versus the term premium component.14

Notice that the n-period yield can be written as the average of expected
future nominal short-rates plus an additional term κ(n)

t , which we refer to
interchangeably as a yield risk premium or term premium:

y(n)
t = 1

n
Et

(
y(1)

t + y(1)
t+1 + · · · + y(1)

t+n−1

)

︸ ︷︷ ︸
expectations component

+ κ(n)
t︸︷︷︸

yield risk premium

. (9)

The term premium κ(n)
t should not be confused with the term spread itself,

which is simply the difference in yields between the n-period bond and the
one-period bond. Under the expectations hypothesis, the yield risk premium,
κ(n)

t , is assumed constant.
It is straightforward to show that the yield risk premium is identically equal

to the average of expected future return risk premia of declining maturity:

κ(n)
t = 1

n

[
Et

(
r x (n)

t+1

)
+ Et

(
r x (n−1)

t+2

)
+ · · · + Et

(
r x (2)

t+n−1

)]
. (10)

Notice that each of the conditional expectation terms on the right-hand side
of Equation (10) are forecasts of excess bond returns, multiple steps ahead.
Thus, Equation (10) shows that the excess bond return forecasts presented
previously have direct implications for risk premia in yields, as well as risk
premia in returns.

Denote estimated variables with “hats.” To form an estimate of the risk-
premium component in yields, κ(n)

t , we must form estimates of the multistep-
ahead forecasts that appear on the right-hand side of Equation (10), i.e.,

κ̂(n)
t = 1

n

[
Êt

(
r x (n)

t+1

)
+ Êt

(
r x (n−1)

t+2

)
+ · · · + Êt

(
r x (2)

t+n−1

)]
, (11)

13 Remarks by Governor Donald Kohn at the Financial Market Risk Premiums Conference, Federal Reserve Board,
Washington, DC, July 21, 2005.

14 In remarks made before the Economic Club of New York, March 20, 2006, Chairman Bernanke argued: “What
does the historically unusual behavior of long-term yields imply for the conduct of monetary policy? The answer,
it turns out, depends critically on the source of that behavior. To the extent that the decline in forward rates can
be traced to a decline in the term premium . . . the effect is stimulative and argues for greater monetary policy
restraint . . . However, if the behavior of long-term yields reflects current or prospective economic conditions,
the implications for policy may be quite different—indeed, quite the opposite.”
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where Êt (·) denotes an estimate of the conditional expectation Et (·) formed by
a linear projection. Thus, estimates of the conditional expectations are simply
linear forecasts of excess returns, multiple steps ahead.

To generate multistep-ahead forecasts we estimate a monthly pth-order vec-
tor autoregression (VAR). The idea behind the VAR is that multistep-ahead
forecasts may be obtained by iterating one-step-ahead linear projections from
the VAR.

In our most general specification, the VAR vector contains observations on
excess returns, the Cochrane-Piazzesi factor, CPt , and the five estimated factors
in the vector

−→
F5t :

Zt ≡
[
r x (5)

t , r x (4)
t , . . . , r x (2)

t , CPt ,
−→
F5t

]′
,

a (10 × 1) vector. For comparison, we will also form bond forecasts with a
restricted VAR that excludes the estimated factors but still includes CPt as a
predictor variable:

Zt ≡
[
r x (5)

t , r x (4)
t , . . . , r x (2)

t , CPt
]′
.

We use a monthly VAR with p = 12 lags, where, for notational convenience,
we write the VAR in terms of mean deviations:15

Zt+1/12 − µ = !1(Zt − µ) + !2(Zt−1/12 − µ)

+ · · · + !p(Zt−11/12 − µ) + εt+1/12. (12)

Let k denote the number of variables in Zt . The VAR (12) can be stacked in
the first-order companion form to become a VAR (1):

ξt+1/12 = Aξt + vt+1/12, (13)

15 This is only for notational convenience. The estimation will include the means.
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where

ξt+1/12
(kp×1)

≡





Zt − µ
Zt−1/12 − µ

·
·
·

Zt−11/12 − µ




,

A
(kp×kp)

=





!1 !2 !3 · · !p−1 !p

In 0 0 · · 0 0
0 In 0 · · 0 0
· · · · · · ·
· · · · · · ·
· · · · · · ·
0 0 0 · · In 0





,

vt
(kp×1)

≡





εt+1/12

0
·
·
·
0




.

Multistep-ahead forecasts are straightforward to compute using the first-order
VAR:

Etξt+ j/12 = A jξt .

When j = 12, the monthly VAR produces forecasts of one-year-ahead vari-
ables, Etξt+1 = A12ξt ; when j = 24, it computes two-year-ahead forecasts;
and so on.

As a final piece of notation, we define a vector e1 that picks out the first
element of ξt , i.e., e1′ξt ≡ r x (5)

t . Analogously, define vectors e2 through e4 that
pick out the second through fourth elements of ξt , e.g., e2′ξt ≡ r x (4)

t . In the
notation above, we have e1(kp×1) = [1, 0, 0, . . . 0]′, e2(kp×1) = [0, 1, 0, . . . 0]′,
analogously for e3 and e4. Thus, given estimates of the VAR parameters A, we
may form estimates of the conditional expectations on the right-hand side of
Equation (11) from the VAR forecasts of return risk premia. For example, the
estimate of the expectation of the five-year bond, one year ahead, is given by
Êt (r x (5)

t+1) = e1′A12ξt ; the estimate of the expectation of the four-year bond,
two years ahead, is given by Êt (r x (4)

t+2) = e2′A24ξt ; and so on.
With these estimates in hand, we construct Figures 7–10, which illustrate the

cyclical properties of term premiums and return risk premia implied by the bond
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Figure 7
A: Yield risk premium including factors and IP growth. B: Yield risk premium excluding factors and IP
growth (standardized).
Note: Standardized units are reported. Shadings denote months designated as recessions by the National Bureau
of Economic Research.

return forecasts explored in this article. Two general aspects of all figures are
noteworthy. First, both yield risk premia and return risk premia have a marked
countercyclical component and reach greater values in recessions when factors
are included in the estimation as compared with when they are omitted. Indeed,
when they are omitted, risk premia appear almost acyclical. This is true even
though, in the estimation where factors are omitted, CPt is still included as a
predictor variable. Second, yield risk premia and return risk premia are more
volatile when factors are included in the estimation as compared with when
they are omitted.
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Figure 8
Yield risk premium including and excluding factors: 5-year bond
Note: Units in percent per annum are reported. Shadings denote months designated as recessions by the National
Bureau of Economic Research. The red line denotes the mean risk premium of 0.72% per annum, including
factors.

Figure 7 shows the 12-month moving average of the estimated yield risk
premium over time for the five-year bond, κ̂(5)

t , along with the 12-month
moving average of industrial production growth. Panel A of the figure displays
the estimate when factors

−→
F5t are included in the VAR; panel B shows the same

estimate when those factors are excluded, implying that only CPt and lagged
excess returns are used as predictors of future excess returns in the construction
of κ̂(5)

t . In both panels, the yield risk premium tends to rise over the course of
a recession when IP growth is falling. However, when factors are included in
the estimation (panel A), the yield risk premium has a distinct countercyclical
component: it has a correlation with IP growth of −40%. By contrast, the yield
risk premium is almost acyclical (correlation −0.05) when factors are excluded
(panel B). While the means of the two yield risk premium measures are roughly
the same in each panel (3.7% per annum in panel A, and 3.9% per annum in
panel B), as suggested by the greater countercyclicality of the measure with
factors, the term premium is more volatile when factors are included than when
they are omitted (standard deviation equal to 1.02% in panel A and 0.93% in
panel B).

Moreover, in most recessions, the estimated yield risk premium is signif-
icantly higher when information contained in the factors is included in the
estimation than when it is omitted. Figure 8 plots the two estimates of the yield
risk premium over time, with the maximum difference in risk premia with and
without factors given in each recession. In the 1982–1983 recession, for ex-
ample, the term premium including factors reached a level 1.33% per annum
higher than the estimated term premium ignoring this information, a difference
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Figure 9
A: Return risk premium with factors and IP growth. B: Return risk premium without factors and IP
growth
Note: Standardized units are reported. Shadings denote months designated as recessions by the National Bureau
of Economic Research.

that is substantially greater than a one-standard-deviation movement in either
risk premium measure. In the 1990–1991 recession, this difference was 1.10%,
and it was 0.83% in the 2001 recession.

Figure 9 exhibits a similar pattern for return risk premia, again for the five-
year bond. In panel A, where estimates include the information in factors,
the return risk premium has a correlation with IP growth of −27%, while in
panel B, this same correlation is close to zero (−0.03) when we exclude the
information in factors. The return risk premium including factors is also more
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Figure 10
Five-year yield decomposition with factors
Note: Shadings denote months designated as recessions by the National Bureau of Economic Research. The line
labeled “Yield” is the yield on the 5-year government bond. The lines labeled “Risk Premium” and “Expectations”
are the estimated risk premium and expectations components of the 5-year yield.

volatile than the estimate obtained when the information on factors is ignored
(standard deviation 3.1% per annum versus 2.7% per annum).

Finally, Figure 10 shows the five-year bond yield over time, decomposed
into the term premium component and the expectations component, where the
latter is measured as the residual y(5)

t − κ̂(5)
t . In this figure, estimates of the term

premium take into account the information in factors. The figure shows that
recessions are periods during which risk premia account for the largest portion
of the long-term yield. For example, risk premia were particularly high in the
1982–1983 recession, and almost as high during or shortly after the 1991 and
2001 recessions. Moreover, at the end of the sample, as the economy rebounded
from recession in 2002 and 2003, risk premia declined significantly even as the
expectations component rose.

When the economy is contracting, this marked countercyclicality of risk
premia uncovered using macro factors contributes to a steepening of the yield
curve even in periods when expectations of future short-term rates may be
falling. Conversely, when the economy is growing, the countercyclicality of
risk premia contributes to a flattening of the yield curve even in periods when
expectations of future short-term rates may be rising. These results underscore
the importance of the information in macro factors in accounting properly for
risk premia, especially in recessions. When this information is ignored, too
much of the variation in long-term yields is attributed to expectations of future
nominal interest rates (and therefore expectations of future inflation and real
rates), while too little is attributed to changes in the compensation for bearing
risk. As one example, in the 2001 recession, the yield risk premium on the
five-year bond was estimated to be 83 basis points higher using the information
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in factors than excluding that information. Since the expectations component is
simply the difference between the long-term yield and the yield risk premium,
this says that expectations of future economic conditions were actually much
weaker in 2001 than what would be implied by a statistical model ignoring the
information in the estimated factors.

5. Conclusion

We contribute to the literature on bond return forecastability by showing that
macroeconomic fundamentals have important predictive power for excess re-
turns on U.S. government bonds. To do so, we use dynamic factor analysis to
summarize the information from a large number of macroeconomic series. The
approach allows us to eliminate the arbitrary reliance on a small number of im-
perfectly measured indicators to proxy for macroeconomic fundamentals and
makes feasible the use of a vast set of economic variables that are more likely
to span the unobservable information sets of financial market participants.

We emphasize two aspects of our findings. First, in contrast to the exist-
ing empirical literature, we find strong predictable variation in excess bond
returns that is associated with macroeconomic activity. Second, specifications
using pure financial variables omit pertinent information about future bond
returns associated with macroeconomic fundamentals. The factors we esti-
mate have substantial predictive power independent of that in the Cochrane-
Piazzesi forward factor, and therefore independent of that in the forward rates,
yields, and yield factors of bonds with maturities from one to five years.
When the information contained in our estimated factors is combined with that
in the Cochrane-Piazzesi forward factor, we find remarkably large violations of
the expectations hypothesis. These findings suggest that unrestricted affine term
structure models—which imply that bond yields or their linear transformations
should summarize the predictive content in bond returns and yields—may be
missing a quantitatively important aspect of bond data.

The predictive power of the estimated factors is not just statistically signif-
icant but also economically important, with factors explaining between 21%
and 26% of one-year-ahead excess bond returns. The factors also exhibit sta-
ble and strongly statistically significant out-of-sample forecasting power for
future returns. The main predictor variables are factors based on real activity
that are highly correlated with measures of output and employment, but two
inflation factors and a stock market factor also contain information about future
bond returns. The results suggest that investors must be compensated for risks
associated with recessions. Indeed, risk premia are found to be substantially
higher in recessions when the macroeconomic factors are added to the infor-
mation already contained in current bond market data. Moreover, without the
macro factors, risk premia appear virtually acyclical, even when the informa-
tion contained in current yields or the Cochrane-Piazzesi factor is included in
the analysis.
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An important aspect of these findings is that there is strong business cycle
variation in expected excess bond returns that is not revealed in the yield curve.
The other side of this coin is that the predictive factors we uncover are unlikely
to help explain the yield curve, despite their predictive power for future excess
returns. This is because the preponderance of information contained in the
factors is not in bond yields, consistent with the observation of Kim (2008),
who notes that macro factors such as those constructed here are less persistent
and vary more at business cycle frequencies than do bond yields and bond
returns, both of which are highly persistent variables. The findings underscore
the importance of using information beyond that contained in the yield curve
for uncovering countercyclical, business cycle-frequency variation in bond risk
premia.

Data Appendix

Table A1 lists the short name of each series, its mnemonic (the series label used in the source
database), the transformation applied to the series, and a brief data description. All series are
from the Global Insights Basic Economics Database, unless the source is listed (in parentheses) as
TCB (The Conference Board’s Indicators Database) or AC (author’s calculation based on Global
Insights or TCB data). In the transformation column, ln denotes logarithm, "ln and "2 ln denote
the first and second difference of the logarithm, lv denotes the level of the series, and "lv denotes
the first difference of the series.
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Table A1
Data sources, transformations, and definitions

Series Number Short name Mnemonic Tran Description

1 PI a0m052 "ln Personal Income (AR, Bil. Chain 2000 $) (TCB)
2 PI less transfers a0m051 "ln Personal Income Less Transfer Payments (AR, Bil. Chain 2000 $) (TCB)
3 Consumption a0m224 r "ln Real Consumption (AC) a0m224/gmdc (a0m224 is from TCB)
4 M&T sales a0m057 "ln Manufacturing and Trade Sales (Mil. Chain 1996 $) (TCB)
5 Retail sales a0m059 "ln Sales of Retail Stores (Mil. Chain 2000 $) (TCB)
6 IP: total ips10 "ln Industrial Production Index - Total Index
7 IP: products ips11 "ln Industrial Production Index - Products, Total
8 IP: final prod ips299 "ln Industrial Production Index - Final Products
9 IP: cons gds ips12 "ln Industrial Production Index - Consumer Goods

10 IP: cons dble ips13 "ln Industrial Production Index - Durable Consumer Goods
11 IP: cons nondble ips18 "ln Industrial Production Index - Nondurable Consumer Goods
12 IP: bus eqpt ips25 "ln Industrial Production Index - Business Equipment
13 IP: matls ips32 "ln Industrial Production Index - Materials
14 IP: dble matls ips34 "ln Industrial Production Index - Durable Goods Materials
15 IP: nondble matls ips38 "ln Industrial Production Index - Nondurable Goods Materials
16 IP: mfg ips43 "ln Industrial Production Index - Manufacturing (Sic)
17 IP: res util ips307 "ln Industrial Production Index - Residential Utilities
18 IP: fuels ips306 "ln Industrial Production Index - Fuels
19 NAPM prodn pmp lv Napm Production Index (Percent)
20 Cap util a0m082 "lv Capacity Utilization (Mfg.) (TCB)
21 Help wanted indx lhel "lv Index of Help-Wanted Advertising in Newspapers (1967=100;Sa)
22 Help wanted/emp lhelx "lv Employment: Ratio; Help-Wanted Ads:No. Unemployed Clf
23 Emp CPS total lhem "ln Civilian Labor Force: Employed, Total (Thous.,Sa)
24 Emp CPS nonag lhnag "ln Civilian Labor Force: Employed, Nonagric. Industries (Thous.,Sa)
25 U: all lhur "lv Unemployment Rate: All Workers, 16 Years & Over (%,Sa)
26 U: mean duration lhu680 "lv Unemploy. By Duration: Average (Mean) Duration in Weeks (Sa)
27 U < 5 wks lhu5 "ln Unemploy. By Duration: Persons Unempl.Less than 5 Wks (Thous.,Sa)
28 U 5–14 wks lhu14 "ln Unemploy. By Duration: Persons Unempl. 5 to 14 Wks (Thous.,Sa)
29 U 15+ wks lhu15 "ln Unemploy. By Duration: Persons Unempl. 15 Wks + (Thous.,Sa)
30 U 15–26 wks lhu26 "ln Unemploy. By Duration: Persons Unempl. 15 to 26 Wks (Thous.,Sa)
31 U 27+ wks lhu27 "ln Unemploy. By Duration: Persons Unempl. 27 Wks + (Thous,Sa)
32 UI claims a0m005 "ln Average Weekly Initial Claims, Unemploy. Insurance (Thous.) (TCB)
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33 Emp: total ces002 "ln Employees on Nonfarm Payrolls: Total Private
34 Emp: gds prod ces003 "ln Employees on Nonfarm Payrolls - Goods-Producing
35 Emp: mining ces006 "ln Employees on Nonfarm Payrolls – Mining
36 Emp: const ces011 "ln Employees on Nonfarm Payrolls - Construction
37 Emp: mfg ces015 "ln Employees on Nonfarm Payrolls - Manufacturing
38 Emp: dble gds ces017 "ln Employees on Nonfarm Payrolls - Durable Goods
39 Emp: nondbles ces033 "ln Employees on Nonfarm Payrolls - Nondurable Goods
40 Emp: services ces046 "ln Employees on Nonfarm Payrolls - Service-Providing
41 Emp: TTU ces048 "ln Employees on Nonfarm Payrolls - Trade, Transportation, and Utilities
42 Emp: wholesale ces049 "ln Employees on Nonfarm Payrolls - Wholesale Trade
43 Emp: retail ces053 "ln Employees on Nonfarm Payrolls - Retail Trade
44 Emp: FIRE ces088 "ln Employees on Nonfarm Payrolls - Financial Activities
45 Emp: Govt ces140 "ln Employees on Nonfarm Payrolls - Government
46 Emp-hrs nonag a0m048 "ln Employee Hours in Nonag. Establishments (AR, Bil. Hours) (TCB)
47 Avg hrs ces151 lv Avg Weekly Hrs of Prod or Nonsup Workers on Private Nonfarm Payrolls - Goods-Producing
48 Overtime: mfg ces155 "lv Avg Weekly Hrs of Prod or Nonsup Workers on Private Nonfarm Payrolls - Mfg Overtime Hours
49 Avg hrs: mfg aom001 lv Average Weekly Hours, Mfg. (Hours) (TCB)
50 NAPM empl pmemp lv Napm Employment Index (Percent)
51 Starts: nonfarm hsfr ln Housing Starts:Nonfarm(1947-58);Total Farm&Nonfarm(1959-) (Thous.,Saar)
52 Starts: NE hsne ln Housing Starts:Northeast (Thous.U.)S.A.
53 Starts: MW hsmw ln Housing Starts:Midwest(Thous.U.)S.A.
54 Starts: South hssou ln Housing Starts:South (Thous.U.)S.A.
55 Starts: West hswst ln Housing Starts:West (Thous.U.)S.A.
56 BP: total hsbr ln Housing Authorized: Total New Priv Housing Units (Thous.,Saar)
57 BP: NE hsbne* ln Houses Authorized by Build. Permits:Northeast (Thou.U.)S.A
58 BP: MW hsbmw* ln Houses Authorized by Build. Permits:Midwest (Thou.U.)S.A.
59 BP: South hsbsou* ln Houses Authorized by Build. Permits:South (Thou.U.)S.A.
60 BP: West hsbwst* ln Houses Authorized by Build. Permits:West (Thou.U.)S.A.
61 PMI pmi lv Purchasing Managers’ Index (Sa)
62 NAPM new ordrs pmno lv Napm New Orders Index (Percent)
63 NAPM vendor del pmdel lv Napm Vendor Deliveries Index (Percent)
64 NAPM Invent pmnv lv Napm Inventories Index (Percent)
65 Orders: cons gds a0m008 "ln Mfrs’ New Orders, Consumer Goods and Materials (Bil. Chain 1982 $) (TCB)
66 Orders: dble gds a0m007 "ln Mfrs’ New Orders, Durable Goods Industries (Bil. Chain 2000 $) (TCB)

(continued overleaf )
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Table A1
(Continued)

Series Number Short name Mnemonic Tran Description

67 Orders: cap gds a0m027 "ln Mfrs’ New Orders, Nondefense Capital Goods (Mil. Chain 1982 $) (TCB)
68 Unf orders: dble a1m092 "ln Mfrs’ Unfilled Orders, Durable Goods Indus. (Bil. Chain 2000 $) (TCB)
69 M&T invent a0m070 "ln Manufacturing and Trade Inventories (Bil. Chain 2000 $) (TCB)
70 M&T invent/sales a0m077 "lv Ratio, Mfg. and Trade Inventories to Sales (Based on Chain 2000 $) (TCB)
71 M1 fm1 "2ln Money Stock: M1(Curr,Trav.Cks,Dem Dep,Other Ck’able Dep) (Bil$,Sa)
72 M2 fm2 "2ln Money Stock:M2(M1+O’nite Rps,Euro$,G/P&B/D Mmmfs&Sav&Sm Time Dep(Bil$,Sa)
73 M3 fm3 "2ln Money Stock: M3(M2+Lg Time Dep,Term Rp’s&Inst Only Mmmfs) (Bil$,Sa)
74 M2 (real) fm2dq "ln Money Supply - M2 in 1996 Dollars (Bci)
75 MB fmfba "2ln Monetary Base, Adj. tor Reserve Requirement Changes (Mil$,Sa)
76 Reserves tot fmrra "2ln Depository Inst Reserves:Total, Adj. tor Reserve Req Chgs (Mil$,Sa)
77 Reserves nonbor fmrnba "2ln Depository Inst Reserves:Nonborrowed,Adj. Res Req Chgs (Mil$,Sa)
78 C&I loans fclnq "2ln Commercial & Industrial Loans Oustanding in 1996 Dollars (Bci)
79 "C&I loans fclbmc lv Wkly Rp Lg Com’l Banks:Net Change Com’l & Indus Loans (Bil$,Saar)
80 Cons credit ccinrv "2ln Consumer Credit Outstanding – Nonrevolving (G19)
81 Inst cred/PI a0m095 "lv Ratio, Consumer Installment Credit to Personal Income (Pct.) (TCB)
82 S&P 500 fspcom "ln S&P’s Common Stock Price Index: Composite (1941-43=10)
83 S&P: indust fspin "ln S&P’s Common Stock Price Index: Industrials (1941-43=10)
84 S&P div yield fsdxp "lv S&P’s Composite Common Stock: Dividend Yield (% per Annum)
85 S&P PE ratio fspxe "ln S&P’s Composite Common Stock: Price-Earnings Ratio (%,Nsa)
86 Fed Funds fyff "lv Interest Rate: Federal Funds (Effective) (% per Annum,Nsa)
87 Comm paper cp90 "lv Cmmercial Paper Rate (AC)
88 3 mo T-bill fygm3 "lv Interest Rate: U.S.Treasury Bills, Sec Mkt, 3-Mo. (% per Ann,Nsa)
89 6 mo T-bill fygm6 "lv Interest Rate: U.S.Treasury Bills, Sec Mkt, 6-Mo. (% per Ann,Nsa)
90 1 yr T-bond fygt1 "lv Interest Rate: U.S.Treasury Const Maturities, 1-Yr. (% per Ann,Nsa)
91 5 yr T-bond fygt5 "lv Interest Rate: U.S.Treasury Const Maturities, 5-Yr. (% per Ann,Nsa)
92 10 yr T-bond fygt10 "lv Interest Rate: U.S.Treasury Const Maturities, 10-Yr. (% per Ann,Nsa)
93 Aaa bond fyaaac "lv Bond Yield: Moody’s Aaa Corporate (% per Annum)
94 Baa bond fybaac "lv Bond Yield: Moody’s Baa Corporate (% per Annum)
95 CP-FF spread scp90 lv cp90-fyff (AC)
96 3 mo-FF spread sfygm3 lv fygm3-fyff (AC)
97 6 mo-FF spread sfygm6 lv fygm6-fyff (AC)
98 1 yr-FF spread sfygt1 lv fygt1-fyff (AC)
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99 5 yr-FF spread sfygt5 lv fygt5-fyff (AC)
100 10 yr-FF spread sfygt10 lv fygt10-fyff (AC)
101 Aaa-FF spread sfyaaac lv fyaaac-fyff (AC)
102 Baa-FF spread sfybaac lv fybaac-fyff (AC)
103 Ex rate: avg exrus "ln United States;Effective Exchange Rate (Merm) (Index No.)
104 Ex rate: Switz exrsw "ln Foreign Exchange Rate: Switzerland (Swiss Franc per U.S.$)
105 Ex rate: Japan exrjan "ln Foreign Exchange Rate: Japan (Yen per U.S.$)
106 Ex rate: UK exruk "ln Foreign Exchange Rate: United Kingdom (Cents per Pound)
107 EX rate: Canada exrcan "ln Foreign Exchange Rate: Canada (Canadian $ per U.S.$)
108 PPI: fin gds pwfsa "2ln Producer Price Index: Finished Goods (82=100,Sa)
109 PPI: cons gds pwfcsa "2ln Producer Price Index: Finished Consumer Goods (82=100,Sa)
110 PPI: int mat’ls pwimsa "2ln Producer Price Index: Intermed Mat.Supplies & Components (82=100,Sa)
111 PPI: crude mat’ls pwcmsa "2ln Producer Price Index: Crude Materials (82=100,Sa)
112 Spot market price psccom "2ln Spot market price index: bls & crb: all commodities (1967=100)
113 Sens mat’ls price psm99q "2ln Index Of Sensitive Materials Prices (1990=100) (Bci-99a)
114 NAPM com price pmcp lv Napm Commodity Prices Index (Percent)
115 CPI-U: all punew "2ln Cpi-U: All Items (82-84=100,Sa)
116 CPI-U: apparel pu83 "2ln Cpi-U: Apparel & Upkeep (82-84=100,Sa)
117 CPI-U: transp pu84 "2ln Cpi-U: Transportation (82-84=100,Sa)
118 CPI-U: medical pu85 "2ln Cpi-U: Medical Care (82-84=100,Sa)
119 CPI-U: comm. puc "2ln Cpi-U: Commodities (82-84=100,Sa)
120 CPI-U: dbles pucd "2ln Cpi-U: Durables (82-84=100,Sa)
121 CPI-U: services pus "2ln Cpi-U: Services (82-84=100,Sa)
122 CPI-U: ex food puxf "2ln Cpi-U: All Items Less Food (82-84=100,Sa)
123 CPI-U: ex shelter puxhs "2ln Cpi-U: All Items Less Shelter (82-84=100,Sa)
124 CPI-U: ex med puxm "2ln Cpi-U: All Items Less Medical Care (82-84=100,Sa)
125 PCE defl gmdc "2ln Pce, Impl Pr Defl:Pce (1987=100)
126 PCE defl: dlbes gmdcd "2ln Pce, Impl Pr Defl:Pce; Durables (1987=100)
127 PCE defl: nondble gmdcn "2ln Pce, Impl Pr Defl:Pce; Nondurables (1996=100)
128 PCE defl: service gmdcs "2ln Pce, Impl Pr Defl:Pce; Services (1987=100)
129 AHE: goods ces275 "2ln Avg Hourly Earnings of Prod or Nonsup Workers on Private Nonfarm Payrolls - Goods-Producing
130 AHE: const ces277 "2ln Avg Hourly Earnings of Prod or Nonsup Workers on Private Nonfarm Payrolls – Construction
131 AHE: mfg ces278 "2ln Avg Hourly Earnings of Prod or Nonsup Workers on Private Nonfarm Payrolls - Manufacturing
132 Consumer expect hhsntn "lv U. of Mich. Index of Consumer Expectations (Bcd-83)
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