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Abstract. Although the uncovered set has occupied a prominent role in social
choice theory, its exact shape has never been determined in a general setting.
This paper calculates the uncovered set when actors have pork barrel, or
purely distributive, preferences, and shows that in this setting nearly the entire
Pareto set is uncovered. The result casts doubt on the usefulness of the
uncovered set as a general solution concept and suggests that to predict the
distribution of political benefits one must explicitly model the institutions that
structure collective choice.

1. Introduction

Since its introduction, the uncovered set has played a prominent role in social
choice theory. However, its exact shape has proven notoriously difficult to
determine except in a few special cases. This essay calculates the uncovered set
for a large class of games characteristic of distributive politics, such as the
well-known divide-the-dollar, pork barrel allocation, and tax-and-spend
games. We show that in these settings the uncovered set comprises nearly the
entire Pareto set. Further, a closely related solution concept, the ‘‘strongly
uncovered set’’ is exactly equal to the Pareto set. These findings have two
important implications. First, the uncovered set may not be as useful a solu-
tion concept as previously assumed. And second, purely preference-based
analysis has little to say about distributive politics, implying that the political
institutions which structure the decision-making process will be all that more
important in determining final policy outcomes.

This paper has benefited from the comments of Norman Schofield, Keith Krehbiel,
Jeffrey Banks, and Sharyn O’Halloran, as well as seminar participants at the Univer-
sity of Texas at Austin, and the Stanford Business School.



The remainder of the paper is organized as follows. The next section
provides an overview of the uncovered set and its place in social choice theory.
Section 3 presents the basic model and then defines the strongly uncovered set.
Section 4 provides some basic descriptions of the strongly uncovered set, and
then describes both the uncovered and strongly uncovered sets in a distri-
butive politics setting. Section 5 summarizes the findings and concludes. An
appendix provides proofs of all propositions.

2. The uncovered set in social choice theory

Two broad research traditions have arisen to meet the challenge of equilib-
rium identification in positive political theory: institutional analysis and social
choice theory. While the former seeks equilibria in the formalized description
of political processes, the latter seeks to restrict plausible outcomes on the
basis of more abstract analysis of preferences and their aggregation through
voting systems.

One of the earliest successes in the social choice literature was Black’s [6]
median voter theorem, which stated that in a unidimensional voting space, the
ideal point of the median voter was an equilibrium. However, hopes that this
result could be extended were dashed when Plott [17] proved that only if
voter ideal points met stringent symmetry conditions would an equilibrium
exist in more than one dimension. Even worse, McKelvey [12] proved that in
a setting without a core1, and assuming Euclidean preferences, sincere voting
in a multidimensional setting could produce outcomes outside of the Pareto
set. And Schofield [19] proved that the core was generically empty. Thus not
only was there no equilibrium in more than one dimension under majority
rule, but any alternative could result, leading to a complete inability to
generate meaningful predictions.

However, one could argue that voters need not vote myopically at each
opportunity, and Plott and McKelvey had assumed; rather, they may vote in
a farsighted, or sophisticated, manner. In his classic exposition on the subject,
Farquharson [8] showed that if the entire agenda is known before voting
starts, the behavior of actors who look ahead and vote strategically may differ
from those who vote sincerely, considering only their preferences over the
alternatives offered at each stage. By wedding game theory and social choice
theory, sophisticated voting offered the possibility of significantly narrowing
the scope of outcomes that may result from majority-rule voting, thus ap-
proaching equilibrium predictions.

Miller [15] showed that, indeed, results under sophisticated voting are
constrained to lie inside the ‘‘uncovered set,’’ which he proved to be a subset of
the Pareto set. Furthermore, in contrast to the lengthy agendas involved in the
proof of McKelvey’s chaos theorem, any alternative that can be reached from
a given starting point under sophisticated voting can be reached in an agenda
that contains no more than two steps. Miller’s theorem considered only finite
choice sets, but he speculated that in a spatial setting, the uncovered set would

1 A point is in the core if no other point defeats it head-to-head.
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be ‘‘a relatively small subset of [the Pareto optimal set], centrally located in
the distribution of ideal points. (p. 84)’’

Since Miller’s original insight, Banks [1] has provided a method to
identify all possible sophisticated winners from a finite choice set (Miller had
shown that being uncovered was a necessary but not sufficient condition for
an alternative to be an equilibrium outcome under sophisticated voting).
Further, Shepsle and Weingast [23] extended Miller’s work to a spatial
setting with finite agendas. They proved that no policy could be a sophisti-
cated winner in a finite amendment agenda if an alternative that covers it is
also included in the agenda. They were, however, unable to confirm Miller’s
conjecture about the size of the uncovered set relative to the Pareto set.

Some progress was made on the size of the uncovered set when McKelvey
[13] showed that it must lie in an area of radius no more than four times the
size of the ‘‘yolk’’, the ball of minimum radius which intersects every median
hyperplane. To date, however, the uncovered set has been calculated only for
limited numbers of players with specific preference configurations (Feld [9];
Hartley and Kilgour [10]). The purpose of this paper is to calculate the size of
the uncovered set in a general setting of particular interest to political
scientists, distributive politics. Its main result is that in purely distributive
games, the uncovered set is essentially equal to the Pareto set.

3. Definitions and model

Consider a compact, convex subset X of Rk, with elements x3X considered to
be the feasible alternatives. There is a set N"M1, 2 , nN of individuals, with
n'4. Each of the individuals i has a preference correspondence P

i
: XPX,

where for x3X, P
i
(x) is an open, convex set of outcomes strictly preferred to

x. Assume that P
i
can be represented by a strictly quasi-concave and continu-

ous utility function u
i
:XPR which attains its unique maximum at an ideal

point x
i
. Individual utility functions summarize individual preference rela-

tions over pairs of alternatives, and these preference relations are aggregated
to form social preference relations according to majority rule.

Definition 1. Individual i’s preference ordering z
i

and social preferences
z over alternatives x, y3X are given by:

xz
i
y8u

i
(x)'u

i
(y);

xzy8 DMiDxz
i
yND5

n#1

2
;

y)x8xz/ y.

Thus social decisions are made by majority rule. Individual preferences are
used to define the Pareto set:

Definition 2. Given two alternatives x, y3X, x is Pareto superior to y if xz
i
y

for all i3N. The set of all x3X for which there is no y3X such that y is
Pareto superior to x is called the Pareto set of X, P(X).
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One object is said to dominate another if it is at least as good in every
respect and better in at least one respect. Pareto superiority is an example of
a dominance relation, and the Pareto set is defined as the set of undominated
elements. The requirement that alternatives be undominated according to
some relevant criterion is often used in economics to place limits on plausible
outcomes without specifying a selection process. In the present context, to
require that final allocations be in the Pareto set means that no utility is
wasted in the sense that someone could be made better off without making
anyone else worse off.

Social preferences are used to define the covering relation and the un-
covered set. Two equivalent definitions are offered; the first emphasizes that
covering is another example of a dominance relation, and the second defines
covering in a manner that makes the upcoming definition of the strongly
uncovered set more easily understood.

Definition 3
1. Given two alternatives x, y3X, y covers x (yCx) iff (a) yzx and

(b) zzyNzzx. The set of all x3X for which there is no y3X such that
y covers x is called the uncovered set of X, º(X).

2. Equivalently, an alternative x is uncovered iff for every yzx there exists
an alternative z3X such that zzy and x)z .

Thus alternative y covers x if it not only defeats x heat-to-head, but also
any alternative that is majority preferred to y is also preferred to x. Part 2 of
Definition 3 states that for any uncovered alternative x and any alternative
y that beats it, there must exist a third alternative z such that x, y, and
z constitute a three-element majority-rule cycle. This observation forms the
basis of Miller’s ‘‘two-step’’ theorem mentioned above that from any starting
point, an uncovered alternative can be reached in an amendment agenda of no
longer than two stages.

Part 1 of Definition 3 is phrased so as to make obvious the parallels
between the uncovered set and the Pareto set as undominated alternatives.
Whereas Pareto superiority is based on individual preferences in the direct
comparison of two alternatives, covering is based on social preferences and
the indirect comparison of two alternatives against various third alternatives.
Consider, for instance, a two-candidate election where each candidate simul-
taneously adopts a platform in X. Then a platform x would never be chosen if
there exists another platform y which covers it, for any other platform which
defeats y would also defeat x. Thus the uncovered set comprises the set of
undominated candidate platforms.

Figures 1 and 2 illustrate the covering relation. If y covers x, then the set of
points preferred to it is a subset of those preferred to x. So if y is preferred to
x but does not cover it, there must be some point z@ inside the set of zzy but
outside the set of zzx. This implies, as shown in Fig. 3, that x, y, and z@ form
a classic Condorcet majority rule voting cycle. From these preferences we can
construct a two-stage amendment agenda that begins at y and has x as its
sophisticated winner (the arrows in the voting tree indicate the direction
sophisticated voters will go at each node). Thus any uncovered point can be
reached from any other point in no more than two steps of sophisticated
voting.
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Fig. 1.

Fig. 2.
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We next introduce the strongly uncovered set, which slightly strengthens
the necessary conditions for an alternative y to cover another alternative x. In
contrast to Part 1 of Definition 3, the new definition requires that not only
must every point z that is majority-preferred to y also beat x, but it must also
be possible to specify some arbitrarily small region surrounding x such that
z beats all points in this region. In terms of sophisticated voting, the strongly
uncovered set will contain all points which can be approximated arbitrarily
closely by sophisticated voting over an amendment agenda.

The new requirement that any alternative z preferred to y also be preferred
to all alternatives in some small neighborhood of x makes covering more
difficult. Thus the new relation will be referred to as strong covering. To
formalize its definition, an e-neighborhood (denoted ºe) of any point x for
a small positive value e is defined as the set of points Mxe3X for which d (x, xe)
(eN, where d(·, ·) is the usual Euclidean distance metric.

Definition 4
1. Given two points x, y3X, we say that y strongly covers x (ySCx) iff

yzx and there exists some e-neighborhood ºe of x such that zzyNzzx@ for
all x@3ºe . The set of all x3X for which there is no y3X such that y strongly
covers x is called the strongly uncovered set of X, Sº (X).

2. Equivalently, a point x is strongly uncovered iff for every yzx there
exists a point z such that zzy and for every e-neighborhood ºe of x there
exists x@3ºe such that x@)z .

Miller showed that the uncovered set is nonempty for any well-defined set
of preferences and is equal to the core of a game when one exists. It follows
from the definitions of covering and strong covering that any point that is
uncovered is also strongly uncovered ( just take e"0), and therefore
º(X)-Sº(X). Combined with the result that the uncovered set is always
nonempty, this implies that the strongly uncovered set is also nonempty.
Furthermore, the existence of a core implies that there exists a point which is
socially preferred to all the other points in the space. If we denote the core by
x
C
, then it is clear that since there is no point z such that zzx

C
, the definitions

of covering and strong covering are equivalent in games with a core. So the
strongly uncovered set also converges to the core if one exists2.

4. Results

The foundation has now been laid to investigate the shapes of the sets º (X)
and Sº (X) in a distributive politics setting. The strategy will be the following:
first, all points not in the Pareto set will be shown to be strongly covered,
which implies that they are also covered. Then we shall see that if a point is
strongly covered, it is strongly covered by a point in the Pareto set, which will
allow us to concentrate our analysis solely on the Pareto set. Finally, it will be
shown that for a certain class of games, including pork-barrel politics, the
entire Pareto set is strongly uncovered. We begin with some basic properties
of the strongly uncovered set.

2 One could use the logic presented in Cox [7] to prove that this convergence to the
core is continuous.
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Theorem 1. 1. If ySCx and zSCy, then zSCx.
2. Sº (X)-P (X).
3. If ySCx then there exists an e-neighborhood ºe of x such that ySCx@ for all
x@3ºe .4. ¹he set Sº(X) is closed3.

Proof. All proofs are provided in the appendix.
These results show that the strong covering relation, like the covering

relation, is transitive. And the strongly uncovered set, like the uncovered set,
lies within the Pareto set. Finally, the last two results establish the important
proposition that the strongly uncovered set is closed, unlike the covered set,
which in general is neither open nor closed (see the discussion below).

Note that, in combination with results in the previous section, we have
established that the strongly uncovered set contains the uncovered set, yet lies
within the Pareto set (see Fig. 3). The possibility still remains, of course, that
the strongly uncovered set is in fact equal to the uncovered set, in which case
adding the e perturbations makes no difference. On the other hand, Sº (X)
might be as large as the Pareto set, in which case any Pareto optimal point can
be approximated arbitrarily closely via sophisticated voting.

The proof of Theorem 1 gives rise to the observation that if all individuals
unanimously prefer an alternative y to another alternative x, then the points
that are majority-preferred to y are also majority-preferred to x. This in turn
provides the intuition for the following corollary:

Corollary 1. If ySCx and there exists a point z such that for all individuals,
zz

i
y, then zSCx.

Corollary 1 states that given a point y which strongly covers x and another
point z which is closer to the Pareto frontier in the sense of being unanimously
preferred to y, then z also strongly covers x. The following lemmas states
that this process can be continued all the way to the Pareto frontier, so that a
point which is strongly covered must be strongly covered by a point in the
Pareto set.

Lemma 1. If any point x3X is strongly covered by some point y not in P(X),
then x is also strongly covered by a point in P (X).

It has thus been shown that any point which is not on the Pareto surface is
strongly covered by a point on the Pareto surface. Furthermore, if a point on
the Pareto surface is strongly covered, then it is strongly covered by another
point on the Pareto surface. So future candidates for strongly uncovered
points as well as alternatives that strongly cover a given point can now be
restricted to only those alternatives in the Pareto set.

So far, the results obtained in this paper have been extensions to strong
covering of results known previously (Miller [15]; Shepsle and Weingast [23])
in the context of the covering relation. Whereas these previous authors were
unable to give a general description of the uncovered set in finite agenda

3 These results may be extended past majority rule to any q-rule, requiring a fraction
q (5n/2) of voters to pass a policy. See McKelvey and Schofield [14], Banks [2] and
Saari [18] for treatments of q-cores.
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Fig. 3.

(Miller) or spatial (Shepsle and Weingast) settings, we are now in a position to
define a class of alternative spaces in which both the uncovered and strongly
uncovered sets can be precisely described.

Definition 5. A pair (X, Mu
i
N) of alternatives and utility functions is Pareto

constant if and only if for every point x3P (X), +n
i/1

u
i
(x)"¸ for some

constant ¸. Given Pareto constant (X, Mu
i
N), let u0

i
be the minimum utility

individual i receives at any point in P (X).

Social choice theory has various examples of Pareto constant settings.
For instance, in the divide-the-dollar game, X"Mx3Rn +n

i/1
x
i
41 and

x
i
50, i"12nN, and u

i
(x)"x

i
. Here, the Pareto set includes all allocations

in which the entire dollar is divided, and each player’s minimum utility
is 04. The tax-and-spend game uses the same alternative set X, but has
u
i
(x)"x

i
!(1/n) +n

j/1
x
j
, in which case u0

i
"!1/n for all i3N. This is a

zero-sum game, and the Pareto set in this case equals the entire feasible set X.
We are now in a position to state our main result.

Theorem 2. If (X, Mu
i
N) is Pareto constant, then P(X)-Sº (X). Combined with

the result of ¹heorem 1 above, this implies that in Pareto constant settings,
Sº(X)"P (X). In addition, in Pareto constant settings the uncovered set º (X)

4 Note that in general, since P(X) is closed, each player’s minimum utility is obtained at
some point within the set.
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is the set of all Pareto allocations that give over half the voters more than their
minimum utility.

Theorem 2 describes the uncovered set in Pareto constant games; that is,
those games characterized by distributive politics. It states that the strongly
uncovered set is equal to the Pareto set (Sº(X)"P (X)), and the uncovered set
is equal to those allocations that leave at least half the voters with greater than
their minimum utility. For instance, in a nine-player tax-and-spend game, the
uncovered set is all policies that give at least five districts positive net benefits.
Thus the uncovered set is equal to the entire Pareto set, minus some of the
boundary points; to put it another way, the difference between the Pareto set
and the uncovered set is a set of measure zero.

This suggests an interesting relation between the uncovered and
strongly uncovered sets. For any set A, the closure of A, denoted AM , is defined
as A plus its boundary points. In a three-player divide-the-dollar game, the
uncovered set consists of the Pareto triangle minus the three corner points,
a set which is neither open nor closed, while the strongly uncovered set is the
entire Pareto triangle, which is closed. In general, for distributive political
games, the strongly uncovered set is the closure of the uncovered set;
Sº(X)"º(X).

5. Discussion

Theorem 2 implies that any alternative in the Pareto set can be approximated
arbitrarily closed in an amendment agenda, even with sophisticated voting.
Equivalently, the only positive prediction made by social choice theory in
a distributive politics setting is that no funds will be wasted. Though not quite
so bad as the standard chaos results, this state of affairs is still far from an
equilibrium that significantly circumscribes the set of possible outcomes.

This result has important implications for both the study of the uncovered
set and for the study of distributive politics. First, ever since its introduction
by Miller, the uncovered set has been viewed as a useful generalization of the
core. McKelvey [13], for instance, examines several institutional settings
(two-candidate competition, cooperative behavior in small committees, and
sophisticated voting over endogenously-determined agendas) and proves that
in each case outcomes fall within the uncovered set. He then suggests that the
uncovered set may serve as a general restriction on voting outcomes which is
‘‘institution-free’’ in the sense of being based solely on the geometry of the
choice set and the logic of sophisticated voting.

However, McKelvey and others have been unable to show exactly how
large the uncovered set is relative to the Pareto set. McKelvey does show that
the uncovered set converges smoothly to the core when one exists, so it is
‘‘small’’ whenever preferences come ‘‘close’’ to satisfying the Plott conditions
(see also Cox [7]). But this says little about the size of the uncovered set when
preferences are not so neatly arranged; it may stay relatively small, or it may
quickly expand to fill the Pareto set. The one general statement about the size
of the uncovered set to date is provided in Theorem 2, which shows that in
distributive politics, restricting outcomes to the uncovered set is not very
powerful. Thus restrictions on the size of the uncovered set have yet to be

Uncovering some subtleties of the uncovered set 89



demonstrated when preferences are not close to having a core5. These results
suggest that social choice theory could benefit from a more restrictive,
easily-calculated substitute for the uncovered set, such as the ‘‘heart’’ (Scho-
field [20, 21]).

As for the study of distributive politics, Pareto constant games have the
common property that preferences are maximally opposed, in that one
player’s gain is necessarily another player’s loss. The result in Theorem 2
implies that in these settings, social choice theory is unable to place meaning-
ful restrictions on equilibrium outcomes. Consequently, the political institu-
tions which shape policy, such as committees, bicameralism, and the rules
governing floor debate, play a correspondingly more significant role in these
issue areas. That is, the rules which dictate the play of the game are especially
important in distributive politics. This essay thus argues for the importance of
institution-based studies such as Baron and Ferejohn [5] and Baron [3, 4], as
crucial to understanding the broad division of political benefits. That is, as
politics becomes more distributive in nature, institutional features become
more important in determining final policy outcomes.

Appendix

Proof of ¹heorem 1. (1) Assume that ySCx and zSCy. First, by the transitivity
of the covering relation (as shown in Miller [15]), z covers x. So any alterna-
tive preferred to z is also strictly preferred to x. Then by the continuity of the
functions u

i
, these alternatives are also preferred to any point in an e-neigh-

borhood of x. So z strongly covers x.
(2) Given a point x not in P (X), by the definition of Pareto superiority

there exists a point x@ such that xi@z
i
x for some individual i. We now prove

that x@ strongly covers x. Since for all i, x@z
i
x, it is certainly true that x@zx.

What remains to be shown is that for any point x@@ socially preferred to x@
there exists an e such that x@@ is also preferred to all points within an
e neighborhood of x. Let d"min

i|N
u
i
(x@)!u

i
(x), so that all voters have

a utility differential of at least d when comparing x@ and x. Now select an
e such that for all xe in an e-neighborhood of x and all i, u

i
(xe)!u

i
(x)(d.

Any point x@@zx@ must satisfy u
i
(x@@)'u

i
(x@) for at least (n#1)/2 indi-

viduals; denote these individuals C
x{{
-N. The e-neighborhood was construc-

ted to ensure that u
i
(x@)'u

i
(xe) for all i3N, so, in particular, this inequality

holds for all i3C
x{{

. By transitivity, we have shown that u
i
(x@@)'u

i
(xe) for all

i3C
x{{

. Thus a strict majority of individuals prefer x@@ to any xe in the
e-neighborhood of x defined above, and so x@ strongly covers x.

5 Note that other results also call into question the usefulness of the uncovered set in
analyzing voting outcomes. Kramer and McKelvey [11] show that the minmax set is
not necessarily included in the uncovered set. Ordeshook and Schwartz [16] prove
that sophisticated voting with non-amendment agendas, such as those actually used
in Congress, can yield outcomes outside the uncovered set. And procedures which
produce Pareto-dominated outcomes, such as Shepsle’s [22] institution-induced equi-
librium, also fall outside the ambit of the uncovered set. Thus there are other reasons to
suspect that political outcomes may not coincide with the uncovered set.
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(3) Since yzx, and given that P
i
(x) is open, there is some neighborhood

º
y
for which x@3º

y
Nyzx@. Similarly, we know from the definition of strong

covering that there is a neighborhood ºe such that zzyNzzx@ for all
x@3º

y
. Since these neighborhoods are open sets, for all x@@3º

y
Wºe , ySCx@@.

(4) This follows directly from point (3). Take any sequence x
1
, x

2
, x

3
, 2

converging to the pointx*. Assume that x
i
3Sº(X) for all i, but x*NSº(X). Then

x* is strongly covered by some point y, which implies that some point x
N

is also
strongly covered by y for large enough N, contradicting our original assumption.

Proof of Corollary 1. Suppose ySCx and zz
i
y for all i3N. Then zz

i
yz

i
x

for all i in some winning coalition A; hence zzx. Suppose that wzz. Then
wz

i
zz

i
y for all i in some winning coalition B; hence wzy. By the definition

of strong covering, there exists a neighborhood ºe of x such that wzx@ for all
x@3ºe . Thus zSCx.

Proof of ¸emma 1. Given the transitivity of the strong covering relation, the
lemma follows immediately from Corollary 1 by letting z by any point which
is Pareto superior to y. Since y is not in the Pareto set, we know that such
a point z exists. Now z strongly covers y. Then the fact that y strongly covers
x implies that z also strongly covers x.

Proof of ¹heorem 2. The proof is by construction; that is, given any point in
the Pareto set x, any point y in the Pareto set that defeats it, and any e'0,
a method is given to construct points z and xe such that zzy, xe)z, and xe, is
within an e-neighborhood of x. Thus no point in the Pareto set is strongly
covered by another point in the Pareto set, which, given Lemma 2 above,
implies that no point in the Pareto set is strongly covered at all. The size of the
uncovered set º(X) will also be calculated during the course of the proof.

Given the convexity of X and the continuity of the u
i
’s, we know that given

two feasible alternatives and their associated utilities, there is a point in which
any convex combination of those utilities is attained. So in the remainder of
the proof when we speak in terms of assigning individuals certain utility level,
this should be understood as shorthand for finding the point within the Pareto
set at which those utility levels are achieved.

For all points in the Pareto set, the sum of the players’ utilities is a
constant. Let ¸"sumN

i/1
u
i
(x) be this total level of utility of all x3P (X). Also,

let u0
i

be the minimum utility individual i receives at any point in P (X). For
convenience, recalibrate utilities so that u

i
(x)50 for all i3N and x3P (X).

It is useful to order the players such that if K individuals receive u
i
(x)'ui0

in the initial allocation, they are positioned as individuals 1 through K. We
claim that for at least one of these K individuals, u

i
(y)(u

i
(x). To see this, note

first that yzxNu
i
(y)'u

i
(x) for at least (n#1)/2 voters. Since the sum of the

utilities is constant within the Pareto set, this means that for at least one voter
u
i
(y)(u

i
(x). But, by assumption, voters K#1 through N are already at their

minimum utility. Thus at least one voter in M1, 2, KN receives lower utility
from y than from x.

Further note that for at least one of the individuals6 i3M2, 2 , (n#1)/2N,
u
i
(y)'u0

i
. This can be seen by observing that for at least (n#1)/2

6 The proof as presented assumes that N is odd. For the case of N even, substitute
n/2#1 for (n#1)/2 in the following formulas.
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individuals yz
i
x, and by definition individual 1 receives less from y than from

x, so there must be some individual in the range (2, 2, (n#1)/2) for whom
u
i
(y)'u

i
(x)5u0

i
. For easier reference, let A"+(n`1)@2

i/2
[u

i
(y)!u0

i
], so

0(A4¸.
The next step is to construct a point z such that zzy and for any

e'0 there exists some xe in ºe such that xe)z. Let u
i
(z)"u0

i
for

i3 (2, 2 , (n#1)/2). This frees up utility A to distribute to the other indi-
viduals. By assumption, u

1
(y)(u

1
(x). Set u

1
(z) so that u

1
(y)(u

1
(z)(u

1
(x)

and also u
1
(y)(u

1
(z) (u

1
(y)#A. This leaves A![u

1
(z)!u

1
(y)] units of

utility left; distribute this equally to voters ((n#3)/2, 2, n). Then the
(n#1)/2 individuals in the set (1, (n#3)/2, (n#5)/2, 2, n) all prefer z to y,
thus assuring that zzy.

Finally, two cases must be considered depending on the size of K, the
number of voters for whom u

i
(x)'u0

i
. First, assume that K5(n#1)/2. Then

we claim that the point z constructed above satisfies zzx. In particular,
voter 1 has u

1
(z)(u

1
(x) by construction. And for all i3 (2, 2, (n#1)/2),

u
i
(z)"u0

i
(u

i
(x). So for the cases in which K5(n#1)/2, xzz, completing

a majority-rule cycle. Thus for any given yzx we have constructed a point
z such that zzy and x)z, proving that x is uncovered. And since x can be any
point where more than half the players receive a non-minimal allocation, we
conclude that these are exactly the points belonging to º(X).

For the case where K((n#1)/2, the task is now to construct a point
xe within an e-neighborhood of x for any given e satisfying xezz. Recall that
for voters 2 through K, u

i
(z)"u0

i
(u

i
(x), so they will strictly prefer x to z. For

these voters, let u
i
(xe)"u

i
(x), so that they will strictly prefer xe to z.

By construction, u
1
(z)(u

1
(x), so voter 1 strictly prefers x to z. Also,

u
i
(z)"u0

i
"u

i
(x) for all i3 (K#1, 2, (n#1)/2), so these voters are indiffer-

ent between x and z. We now construct xe so that voter 1 still prefers xe to
z, and voters K#1 through (n#1)/2 also strictly prefer xe to z. Set
u
1
(xe)"u

1
(x)!l'u

1
(z) and divide the remaining l of utility equally among

voters (K#1, 2 , (n#1)/2). Now l can be decreased until the resulting
allocation is within the required e-neighborhood of x. Then, as required, all
individuals (1, 2 , (n#1)/2) strictly prefer xe to z, and by constructing xe is
within an e-neighborhood of x. Thus xe)z, so x is not strongly covered by y.
Since the original point x was chosen arbitrarily, the entire Pareto set is
strongly uncovered.
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