ecture 2

Linear Regression:

A Model for the Mean
Sharyn O’Halloran




Closer Look at:

m Linear Regression Model

Least squares procedure
Inferential tools
Confidence and Prediction Intervals

Assumptions
Robustness
Model checking

Log transformation (of Y, X, or
both)
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Linear Regression: Introduction

m Data: (Y, X)) fori=1,...,n

m Interest is in the probability
distribution of Y as a function of X

m Linear Regression model:

Mean of Y is a straight line function of X,
plus an error term or residual

Goal 1s to find the best fit line that
minimizes the sum of the error terms

U611 Spring 2005



"
Estimated regression line

Steer example (see Display 7.3, p. 177)
Equation for estimated regression line:

Intercept=6.98 ™ '_: A
73
= o . .
| Fitted line
& 1 ¢=6.98-.73X
([ )
[ )
Error term
g 7] o
o
0 1' 2

Itime

Fitted values @ PH
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EH S TEB & O Itime=log(time)

M Sta
inzheet using "C:ADocuments and Settingshmartaby Docurl PR T L I e O P P T . tah
gen ltime=log(time] {2 vars, '

reqg ph ltime !
graph twoway [fit ph ltime || scatter ph ltime, mcolornaswy gk
edit

Regression analysis

%l

reag nh Ttime

i af MS 1.1 of 10

I L 444 .31

3.00646588 1 3.00646588 Prob > F = 0.0000

054133305 g8 006766663 = 0.7823
——————t————-———\——— Adj wared = 0.9801
I: 3.06059919 ? 340066576 = 08226

M Yariables
Target: Command “windsgfa

# Conf. Intervall

ltime - . 7256576 -0344263 —-21.08 - .8050449 -.6462703
_cons 6.783626 -048532 143.90 6871711 ?.095541

. graph twoway 1fit ph ltime (! scatter ph ltime. mcolorinavy) wytitle{"PH"> xlal
> held 0132, gridd)

=t

W | Preserve || Restore | [ Sott | [ s> |[ Hide | [ Delete.. |
. time[1] =
I time rh ltime .
i 7.0z o
= 2 1 6.93 0
= 3| 2] 6.42 | .6931472 |
o 4 2 | 6.51 | .6931472 |
5 4 6.07 | 1.386294
6 | 4 5.99 | 1.286294 |
@ ] 7 | 6 | 5.59 | 1.791759 |
, 8 6 5.8 1.791759
p Hime 2 9 8 5.51 | 2.079442 |
' 10 8 |

Fitted wvalues = PH L.36 2079442 _ &
Uvo11 opring £Uuo O




"
Regression Terminology

Regression: the mean of a response variable as a
function of one or more explanatory variables:

Y | X;

Regression model: an ideal formula to approximate
the regression

Simple linear regression model:

pY | Xy = fot fiX

Unknown
parameter

U611 Spring 2005 6

/

“mean of Y given X or
“regression of Y on X”




"
Regression Terminology

Y X
Dependent variable Independent variable
Explained variable Explanatory variable

Response variable Control variable

Y’s probability distribution is to be
explained by X

b, and b, are the regression coefficients

(See Display 7.5, p. 180)

Note: Y = b, + b; X is NOT simple regression
U611 Spring 2005



" J
Regression Terminology: Estimated coefficients

o
- Ca
n
-F'"-FF
d-ﬂ-”'-f
2 — - &
K
D = g
o A o
. = B E =}
— o ]
[
[ u ]
L °
B — a D
Ty
__,.r'"f’ 4]
[
L | | | L
1 2 3 4 g

Choose 180 and 181 to make the residuals small

U611 Spring 2005 8



N
Regression Terminology

m Fitted value for obs. i is its estimated
M Y= fit, = Y | Xy = po+ B X

m Residual for obs. i:

A

res. =Y, -fit. > e =Y -Y

m | east Squares statistical estimation
method finds those estimates that
minimize the sum of squared residuals.

i(yi _(IBO +/lei))2 — i(yi _J;)z

Solution (from calculus) on p. 182 of Sleuth
U611 Spring 2005



A
Least Squares Procedure

The Least-squares procedure obtains estimates of the linear
equation coefficients 3, and B,, in the model

j>i :ﬂo +:81xi

by minimizing the sum of the squared residuals or errors (e;
SSE =) ¢ =2 (i =3.)
This results in a procedure stated as
SSE=) ¢/ =) (y;=(By+Bx))

Choose B, and 3, so that the quantity is minimized.

U9611

Spring 2005
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JE—
Least Squares Procedure

m The slope coefficient estimator is
n CORRELATION

X, — A)? o Y BETWEEN X AND Y
 XE-DHo-D

n _ OF Y OVER THE
Z ( X, — X) 2 \ STANDARD DEVIATION
i OF X
=1

[, = i<l =7, l\ STANDARD DEVIATION
Sx

m And the constant or intercept indicator is

U611 Spring 2005 11



Least Squares Procedure(cont.)

m Note that the regression line always goes through

the mean X, Y.

m Think of this
regression line as
the expected value
of Y for a given
value of X.

U9611

100

Yield (Bushel/Acre)

Relation Between Yield and Fertilizer

.

— |

0

100 200 300 400 500 600 700 800
Fertilizer (Ib/Acre)
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" JE
Tests and Confidence Intervals for B,, B,

m Degrees of freedom:
1(n-2) = sample size - number of coefficients

m Variance {Y|X}
no?= (sum of squared residuals)/(n-2)
m Standard errors (p. 184)

m Ideal normal model:

Othe sampling distributions of B, and 3, have the
shape of a t-distribution on (n-2) d.f.

= Do t-tests and ClIs as usual (df=n-2)

U611 Spring 2005 13



B Stata Graph W ey :.:3‘

inzheet uzing "C:ADocurments .
[t * L L reg distance welocity

araph twaoway [fit ph lime || sce
graph bwowean it ph ltime || zce

graph bwoway lfit diztance wel

wr | %gmphtwuway"hdmmncevek
] x|
E Target: Command % indos
£ velocity
Ol distance

1000

P values
for H,=0

WELOZITY

Fitted walues + DISTANCE

-

W DI LP P L AFEN LFET =l B MUY 7 L%y 1 OlivLravocu v uosya

. insheet uwsing ""C:“Documents and Bettingsmarta“My Documepis“STATA SD“casze =t
(> es“case txt~CASEO?OLl.txt'". tab
<2 vars. 24 ohs

. reg distance velocity

G Confidence

36.29 i
Son-2d intervals

Source 88 i B Mumber of ohs
Fe ‘1. 22>
Model L.9708B7352 L.97087352 Proh > F

Residual 3.61978908 .164535867 R-sguared
Adjy R-sguared
Total 2.5206626 416985331 Root HMSE

0.6226
0.6054
-40563

distance C 3 B [?5% Conf. Intervall

velocity 0013724 0002278 -000R299 0018449
_cons -3991704 1186662 1530719 645267

14
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JE
Inference Tools

Hypothesis Test and Confidence Interval for mean
of Y at some X:

Estimate the mean of Y at X=X, by
la{Y|Xo} :/B0+181X0

Standard Error of ,30

SE[pi{Y [ X}]=0 L% _)?22
n (n—1)s;

Conduct t-test and confidence interval in the usual
way (df = n-2)

uo611 Spring 2005 15



" JE
Confidence bands for conditional means

~

confidence bands

INn simple regression
have an hourglass shape,
narrowest at the mean of X

| Confidence bands for conditional means (stdp)

18"

.645269 |
j distance

Distance

the Ifitci command
; > & automatically
-500 0 500 AR calculate and graph

VELOCITY

! the confidence bands

895% Cl Fitted values

° DISTAMCE

. graph twoway 1fit distance velocity i! scatter distance velocity, mcolor{na
vy) . ytitle{"Distance">

graph twoway 1fitci distance velocity, stdp i1 scatter distance velocity, m
color{navy) , ytitle("Distance'") title("Confidence bands for conditional mea

ns tstdp>")




W
Prediction

m Prediction of a future Y at X=X,
Pred(Y | Xo) =Y | X}

m Standard error of prediction:
SE[Pred(Y | X,)] =+/6” + (SE[{(Y | X,)])’

Variability of Y Uncertainty in
about its mean the estimated mean

"95% prediction interval:
Pred(Y | X)) £, (.975)* SE[Pred(Y | X )]

U611 Spring 2005 17




" S
Residuals vs. predicted values plot

'-reg diztance *-.-'ein:u:i-t_;,.l

=] . Lesiplot utin=l0]
” --'_Fariahles
R - - T arget: Command “indow
£ 2 - welocity o~
@ ., diztance 3
5 : "
- = After any regression analysis
= we can automatically draw a
residual-versus-fitted plot
e - o s just by typing
Fitted walues

Mumber»r of obhs
F< | g 220
Praob > F
RB—sguared

2 s
36 .29

O L OO

O.6226

d £ MS

S5.927087352 €t
2.61978208 22

S.92708B7352
-164535867

rufplot.

2.5906626

Coef _

001 3724
-3991704

plinetd s

23 -416985331

Std. Emxr».

0002278
-1186662

Ad; R—sgylared
Root HM5E&
L?5x Conf .

0008y
1530719

O_.6054
-40563

Intervall

0018149
-645267




* S
Predicted values (yhat

27

~——

After any regression,

the predict command can create

a new variable yhat
containing predicted Y values
about its mean

—

J .

Fesiduals
0

1
Fitted values

. label variable vhat "Predicted mean Distance'

. predict e, resid

reg distance velocity
s (Amhl

|

L= =3

pre::lin::i what

label wariable vhat “'Predicted mean Distance”

predict &, rezid
label wanable e "Rezidual'

VAl 1anles

Target: Cormmand YWindow

welocity WELOCITY
diztance ElIST.-i'«N CE
yhat Predicted mean Distance

L=

— = 1
1A ar




" I
Residuals (e)

- B

req distance velocity .
- wfpl-_:ut, yline(0] =
the resid command can create L —— — .
label variable yhat "'Predicted mean Distagce
- e |
a new Varlable e label variable & "Fesidual &
containing the residuals
p -+
— % £ v L
‘ h
' ‘ L} T
D . QOO
i 0
). bl
* - 4] n
*
0 7 E 1.5 2 e
Fitted values
: ) valab
Target: Cormmand Windo
velocity YVELOCITY
dizt DISTAMCE
- label variabhle yhat ""Predicted mean Distance UE;ME Predi Diisf
. predict e, resid & Fesidual

U611 Spring 2005 20




The residual-versus-predicted-values plot could be

f drawn “by hand” using these commands
- %]

. reg distance velocity

Source i df MS Humher of ohs
‘ Fi 1. 222

24
36.29
0. 0000
0.6226
0.6054
-40563

Model
Residual

5.97087352 1 5.97087352 Froh > F
3.61978908 22 164535867 B-squared

Adj R-squared
Total 2.5206626 23 416985331 Root MSE

distance Std. Err. [925% Conf. Intervall

velocity 0013724 0002278 6.02 0008999 0018449

1530719 645269
predict yhat
option xbh assumed; fitted values?»
label variable vhat "Predicted mean Distance"

predict e, resid

labhel variahle e "Residual®

e = i
= *

- . E = - - ] =

label vanable phat '"Predicted mean Distance' & b * *

predict e, resid o - @

label variable & "Residual *,

graph bwoway scatter e yhat, yine(0) b .
= u'_" -
B Variables ' . ”
Target: Cammand “wfindow *
velocity WELOCITY ~
diztance DISTAMCE : : i
vhat Predicted mean Distance ' ; : :

; 1] 5 : 1 - ke

e Residual 3 - Predicted mean Distance




Second type of confidence interval for regression

prediction: “prediction band™
= %]

Confidence bands for individual case predictions {stdf)

predict SE, ztdp
| predict SEvhat, stdf

] I'-mphlwnwa_mm[msmncevﬂnﬂw,ﬂ
| Vs e “mmmmmmmmm“jyﬁ
i N T arget: Command Window
) welocity
§ diztance
w0 SE
] SEwhat
This express our uncertainty
o . - In estimating
-A00 a00
WELOCITY the unknown value of Y
95% Cl Fitted values for an individual observation
@ DISTAMCE .
with known X value y

colorinavyr . ytitle(“histanced) title< 'Confidence bants
ns <(stdp)'’>

. predict SE,. stdp

. predict SEvhat, stdf
Command:

. graph twoway 1fiteci distance uelucity,ll zcatter distance velocity, mcolor( . .
navy? . ytitle("Distance"?» title("Confidence bands for individual case prediction IftC“ VV|th

> Cstdf>") .
- stdf option




Additional note: Predict can generate two kinds of standard errors
for the predicted y value, which have two different applications.

\
1

\. label variable yhat "Predicted mean _ e ;
predict g, rezid . A
vedict e, resid | label variable e "Residual®
R R araph twaway scatter & yhat, pline(0]
label variable e “"Residual" Ell;ir-iji-r
QI Dnaay JNEct dis
saph tuou P — U ET e Sl Fedict SEphat, stdf _
Jropl SOy STorT T UTOR. Yame : graph bwoway lfitci distance velocity, stdf || sc. v

Target: Command Ywindow

welocity YELOCITY

diztance DISTAMCE

| uhat Predicted mean Distance
e R ezidual

SE 5.E. of the prediction

SEyhat S.E afthef t
predict 5E,. stdp | 5Evha of the forecast |

graph twoway 1fitci distance velocity, stdp |1 scatter distance velocity., mcolorinavy) ytitled"Di
stance") title{"Confidence bands for conditional means <stdp>'>

predict SEvhat, stdf

graph twoway 1fitci distance velocity, stdf ! scatter distance velocity, mcolorCnavy) ytitled("Di
stance") title{"Confidence bands for individual-case predictionz C(stdf)''>

Confidence bands for conditional means (stdp) Confidence bands for individual-case predictions (stdf)

Distance
Distance

o -

T T
500 1000

T
500
VELOCITY

VELOCITY



Confidence bands for conditional means (stdp)

9596 confidence interval

for n{Y|1000}

Distance
®

confidence band:
a set of
B confidence intervals

for u{Y[Xo}

T T
-500 0 500 1000
VELOCITY

9596 prediction interval &

for Y at X=1000

Distance
1
1

Calibration interval:
values of X for which Y,is in a
prediction interval

T T T
-500 0 500 1000
VELOCITY




Notes about confidence and prediction bands

m Both are narrowest at the mean of X
m Beware of extrapolation

Y | i

X

m The width of the Confidence Interval is zero if n is
large ellwough; this is not true of the Prediction
Interval.

U611 Spring 2005 25



" Jd
Review of simple linear regression

1. Model with WY | X} = fo+ f1.X

constant variance. 5
var{Y | X} =0

2. Least squares: A L — — —.

choose estimators IBIZZ(Xi_X)(Yi_Y)/Z(Xi_X) -
Bo and B, i=1 =1

to minimize the sum of —

squared residuals. Po=Y _/BlX

res; =1, _ﬁo _BlXi(i =L,..,n)

S

AD . 2 .
3. Properties o = res; /(n 2)
of estimators. i=1

SE(f3)=6/+/(n=1)s’
SE(B,) =611/ n)+ X /(n—1)s




JE
Assumptions of Linear Regression

m A linear regression model assumes:
Linearity:
s P AY[XF =B + BiX
Constant Variance:
s var{Y|X} = 0?2
Normality
m Dist. of Y's at any X is normal

Independence
s Given X's, the Y;'s are independent

U611 Spring 2005 27



S
Examples of Violations

m Non-Linearity

The true relation between the independent and
dependent variables may not be linear.

m For example, consider campaign fundraising and the
probability of winning an election.

P(w)

$50,000 Spending
U611 Spring 2005

28



"
Consequences of violation of linearity

m If “linearity” is violated, misleading conclusions
may occur (however, the degree of the problem
depends on the degree of non-linearity)

U611 Spring 2005 29



"
Examples of Violations: Constant Variance

m Constant Variance or Homoskedasticity

The Homoskedasticity assumption implies that, on
average, we do not expect to get larger errors in
some cases than in others.

m Of course, due to the luck of the draw, some errors will turn
out to be larger then others.

s But homoskedasticity is violated only when this happens in
a predictable manner.
Example: income and spending on certain goods.

m People with higher incomes have more choices about what
to buy.

m We would expect that there consumption of certain goods
is more variable than for families with lower incomes.

U611 Spring 2005 30



» I
Violation of constant variance

%, Relation between Income
and Spending violates

Spending homoskedasticity
X6 g
€6
- &= (K (atbX)y))
X &7
x , As Income Increases so
¢ 0 X 7R do l-he e/-rors (Vert/'c\a/
X ................................................... d/:snl-ance flfom l‘he
[ 5 it

income
U611 Spring 2005 31



" A
Consequences of non-constant variance

m If “constant variance” is violated, LS estimates
are still unbiased but SEs, tests, Confidence
Intervals, and Prediction Intervals are incorrect

~— ]

m However,
the degree
depends...

U611 Spring 2005 32



Violation of Normality

m Non-Normality

Nicotine use Is characterized
by a large number of people
not smoking at all and
another large number of 10
people who smoke every
aay.

U9611

NIC

Spring 2005

Frequency of
Nicotine use

Std. Dev = 252
Memn= 28
N = 50.00
0o 10 20 30 40 50 6D
NIC An example of a bimodal distribution

33



" A
Consequence of non-Normality

m If "normality” is violated,
LS estimates are still unbiased
tests and CIs are quite robust

PIs are not

Of all the
assumptions, thisis | = _ 0
the one that we
need to be least -
worried about o
violating. o S

nﬁ y
Why? Q"’éf: -

0 y. 4 8 8 1

U611 Spring 2005 34



" I
Violation of Non-independence

Residuals of GNP and - Non-Independence

Consumption over Time m The independence assumption means
that errors terms of two variables will not
necessarily influence one another.

Technically, the RESIDUALS or error
terms are uncorrelated.

m [he most common violation occurs with
data that are collected over time or time
series analysis.

Example: high tariff rates in one period

are often associated with very high tariff
rates in the next period.

Example: Nominal GNP and
Consumption

U611 Spring 2005 35



= S
Consequence of non-independence

m If “independence” is violated:
- LS estimates are still unbiased
- everything else can be misleading

.
D =
Plotting T
code is S =
litter Note that mice |
(5 mice & - _otet at mice from
litters 4 and 5 have
from _eaCh o higher weight and
of 5 litters) height
5 1
2 A 0 | 2
U611 Spring 2005 36
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" A
Robustness of least squares

m The “constant variance” assumption is important.

m Normality is not too important for confidence intervals
and p-values, but is important for prediction intervals.

m Long-tailed distributions and/or outliers can heavily
influence the results.

m Non-independence problems: serial correlation (Ch. 15)
and cluster effects (we deal with this in Ch. 9-14).

Strategy for dealing with these potential problems

Plots; Residual plots; Consider outliers (more in Ch. 11)
Log Transformations (Display 8.6)

U611 Spring 2005 37




=
Tools for model checking

m Scatterplot of Y vs. X (see Display 8.6 p. 213)*

m Scatterplot of residuals vs. fitted values*

*Look for curvature, non-constant
variance, and outliers

m Normal probability plot (p.224)

It is sometimes useful—for checking if the
distribution is symmetric or normal (i.e. for PIs).

m Lack of fit F-test when there are replicates
(Section 8.5).

U611 Spring 2005 38




N
Scatterplot of Y vs. X

M Stata Graph EJ

Variables .
: Target: Command YWindow
Scatterplot of response (YY) vs explanatory variable (%) ITA SDhcase studies [l I VELOCITY
* * 4 * distance DISTAMCE

24
36.29
0. 0000
0.6226
0.6054
-40563

1.5

DISTAMCE
1
*

| log uzing "'C:\Documents and Settingshmartahbdy
= | inzheet uzing ""C:\Documents and Settings'martz

72 -001844% | reg distance velocity
L? -645267 | graph bwoway scatker distance velocity, msyrmbol|
I = - graph bwowial tter diztance welociby, maymbol
araph twoway scatter distance velocity, maymbaoll

1therry} titled"Sc

VELOCITY

- graph twoway scatter distance velocity, msymbol{Uh} mcolor{cranberry? title{"Sc

o L

graph twoway scatter distance wvelocity. msymbol<{D> mcolor{cranberryl title{"Sca
tterplot of response (¥) vws explanatory variahle (H>">

log an {kext)

X

Command: graph twoway
Case study: 7.01 page175
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" A
Scatterplot of residuals vs. fitted_ values

Target: Cornmand *Window

velocity WELOCITY
diztance DISTAMCE

Residuakversus-predicted-values plot
= 24

Py - 36.29
= 0.0000

0.6226

0.6054

.40563

79 0018449
L? 645267 —_— %

Residuals

. | insheet using "C:\Documents and Settingzhm A
iberryd title("Sc | reg distance velocity
| graph bwoway scatter distance velocity, mzym
| graph bwoway scatter distance velocity, msym
| graph bwoway scatter distance velocity, mapm
. “rvfplot, wiine(0] A
1berryl? titled"Sc rvfplat, yine(0] meymbol[D] mcolocranbermy] b

) 1
Fifted values berry? title{"Sca

rufplot, yline<(0» mzymbol<D? mcolorC{cranherry> title("Residual-verzus—predicted-
alues plot'>

log on (kext)

Command: rvfplot, yline(0)..
Case study: 7.01 page175

U611 Spring 2005 40



" A
N_ormal probability plot (p 224)

- Stata Graph

Quantile-normal plot or normal probability plot
-237.535 373125 983.785

Quantile normal plots compare
quantiles of a variable distribution
with quantiles of a normal distribution
having the same

mean and standard deviation.

VELOCITY
500

0

They allow visual inspection
for departures from normality
in every part of the distribution.

500

-500

Inverse Maormal
Grid lines are §, 10, 25, 50, 74, 90, and 95 percentiles

. pufplot, yline<0} msymhol<{D) mcoloricranherry’ title{ Hesidual-versus—predicted-uv
> alues plot")

fgnorm velocity, grid muymhul(D) mcolor<cranherry? title¢"Quantile-normal plot or

>l normal prohability plot'>

Command: gnorm variable, grid
Case study: 7.01, page 175
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S
Diagnostic plots of residuals

" Plot residuals versus fitted values almost always:

For simple reg. this is about the same as residuals vs. X

Look for outliers, curvature, increasing spread (funnel or
horn shape); then take appropriate action.

If data were collected over time, plot residuals
versus time

Check for time trend and

Serial correlation

IfI normality is important, use normal probability
plot.
A straight line is expected if distribution is normal

U611 Spring 2005 42



" A
Voltage Example (Case Study 8.1.2)

® Goal: to describe the distribution of
breakdown time of an insulating fluid as a
function of voltage applied to it.

" Y=Breakdown time
= X= Voltage

m Statistical illustrations

U9611

Recognizing the need for a log transformation of the
response from the scatterplot and the residual plot

Checking the simple linear regression fit with a lack-of-fit
F-test

Stata (follows)

Spring 2005 43



_ . .
rufplot. uwlinedO» Slmple reg reSSIOn

reg time voltage

26 The residuals vs

Source 88 df HS Mumber of ohs =
F¢ 1. 74> = 24.27 .
Model | 2150408.26 1 2150408.26 Prob > F = 0.0000 fitted values p|0t
Residual 6557345.28 74 88612 .774 R-squared = 0.2470
Adj R-squared = 0.2368 presents
Total | 8707953.53 95 116103.38 Root MSE = 9299_48 ] ]
increasing spread
Coef. Std. Ere. t  P>lt! [95% Conf. Intervall with
voltage | -53.95492 10.95264 -4.93  0.000  -75.77853 -32.13131 - .
1886.169  364.4812 5.17  0.000 1159.925  2612.414 INCreasing

fitted values
rufplot. yline(0> B Giaia Graph

2000

; Next step:
g?—' We try with
| log(Y) ~ log(time)

1]
-
-
-

-500
.

-200 1] 200 400 GO0
Fitted values 44




u—

3 vars, 7?6 ohsd

gen ltime=log<timeD

reg ltime voltage
Source 55

Model 120.1514%22
Residual 180.07484

Total 370.226332

ltime Coef.

voltage -.5073649
_cons 18.25546

df

M3

1 1920.1514922
74 2.43344378

/5 4.93635109

5td. Err.

057376
1.710019

rvfplot,. yline<0> M Stata Graph

=t

t

-8.84
.

Mumber o
F¢ 1.

Prob > F
R-=zquare
Adj R-=q
Root MSE

Priti [25x

0.000 -.6217
0. 000 15.14

Simple regression with Y loggedjg.

f obs
74>

d
wared

Conf. Intervall

289 -.323001
266 22.76125

Bl The residuals vs

el fitted values plot

0.5070

w2l does not present

any obvious
curvature

or trend in spread.

/

- g — -

* * : b
*
% : ] * *
= & ! t ]
i t ; : ’
a »
s : . 4 $ *
* . .
* . * »
T e ¢
$
*
»
= * *
0 fi
Fitted walues

45



Interpretation after log transformations

Model D\e/gcraiggleent Inc\i/eari;nb?eent Interpretation of [3,
Level-level Y X Ay=p,Ax
Level-log Y log(X) Ay=(B,/100)%Ax
Log-level log(Y) X %Ay=(100p,)Ax

Log-log log(Y) log(X) % Ay=(B4)%AXx

U9611

Spring 2005
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=
Dependent variable logged

m u{log(V)X} =By + BX isthe same as:

(if the distribution of log(Y), given X, is symmetric)
Median {Y || X} = e/ /¥

m As X increases by 1, what happens?

Median {Y | X = x_|_1} B eﬁo+ﬂ1(x+1)
Median {Y | X = x} 8,6’0+,81x

P

=€

Median{Y | X = x+1} = " Median{Y | X = x}



JE
Interpretation of Y logged

m "As X increases by 1, the median of Y

changes by the multiplicative factor of
B
e .

m Or, better:

If ,>0: “"As X mcreases by 1, the median of Y
increases by (e’ —1)*100% ”

m If f, < 0: “As X increases by 1, the median
of Y decreases by (1-e”)*100%  ~
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xample: pilog(time)voltage} = B, — B, voltage
1- e¢0°=4

M Stata Graph

Target: Command “Window

tirme TIME

voltage YWOLTAGE

group GROUF

Ikirre logarithm of breakdown time

[%]
log uzing "C:h\Documents and Settingstmartat by DocumentzhS TATA
inzheet uzing "C:\Documents and Settingzhrmartahy DocumentzhS5 T
req time woltage
gen ltime=log(time)
label variable e "logarithr of breakdown time"
req ltime voltage
araph bwoway [fit ltime valkage || scatter bime valtage, meymbollD] mcal

2 4 B

Log oftime until breakdown
0

- . .

gen ltime=log<{time?> 30 WOLTAGE 3

label variable ltime "logarithm of breakdown time" — Fitted values # logarithrm of Breakd own time

reg ltime voltage

76
78.14
0.0000
0.5136
0.5070
1.5599

Source 58 df ME Mumber of obs
F¢ 1. 74

Model 190.151492 1 190.151492 Prob > F

Residual 180_.07484 74 2_.43344378 R—sguared
Adj R-sguared

Total 370.226332 75 4.936351079 Root HMSE

ltime Coef . Std. Err. t P>iti [?5x Conf. Intervall
voltage -.5073649 057396 -8.84 0000 -.6217289 -.393001
_cons 18_95546 1.910019 Q.92 0_000 15.14966 22_7?6125

graph twoway 1fit ltime voltage 1! scatter ltime voltage, msymbol<D> mcolor<{cranh
erry? ytitle("Log of time uwuntil breakdouwn''>

log on (kext)



8
1

Log of time until breakdown

0
1

-2
1

6
1

4
1

2
1

wi{log(time)|voltage} = 18.96 - .507voltage
1- =4

It Is estimated that the median breakdown time decreases
by 40% with each 1kV increase in voltage

o
o |
b4 S
L 2
o
o |
—~O
» AN
(0]
E
Eg{ ¢
® A
£
c o
o |
8
©
X
S
53
w0
O -
T T T T T T T
25 30 35 A 25 30 35 40
VOLTAGE VOLTAGE

Fitted values & TIME

Fitted values @ logarithm of breakdown time
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=
If the explanatory variable (X) is logged

" If p{tllog(X); =B, + B,log(X) then:

“Associated with each two-fold increase
(i.e doubling) of X is a B;log(2) change
in the mean of Y.”

m An example will follow:
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=
Example with X logged (pispiay 7.3 - case 7.1):
Y = pH
X = time after slaughter (hrs.)
estimated model: p{Y|log(X)} = 6.98 - .73log(X).

-.73"log(2) = -.5 & It is estimated that for each

doubling of time after slaughter (between 0 and 8 hours) the
mean pH decreases by .5.”

~ -

*
*

6.5
6.5
1

*Q

pH
pH

5.5
5.5
1

Itime ' TIME

Fitted values @ PH g Fitted values & PH




JE
Both Y and X logged

m p{log(Y)llog(X)} =B, + B,log(X) is the same as:

m As X increases by 1, what happens?

If §,>0: “"As X increases by 1, the median of Y
increases by (% _1)*100% "

If §, < 0: “As X increases by 1, the median of Y
decreases by (1 _elog(2)ﬂ1)*100% "
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" A
Example with Y and X Iogged Display 8.1 page 207

Y: number of species on an island
X: island area

| uilog(Y)|log(X)} = fy—p; log(X)

| M Stata Results

species | Coef . Std. Err. : [95% Conf. Intervall

Area 0021112 -0004499 00092548 0032677
_CONS 24.04928 2.074024 - 7237545 47 .3748

. gen lspecies=log<{species’
- gen larea=logfarear
. reg lspecies larea

85 df HS Mumber of ohs
F{  1; L

| I's
Model ‘ 6.79612057% 1 6.7961%2057 Prob > F

425 .30
0. 0000
0.7884
0.7861
12826

Source

Rezidual 082249514 L .016449903 R-squared
- Adj RB-sguared
70784401 6 1.17974002 Root MEE

Total

lzpecies Coef . Std. Err. t E [95% Conf. Intervall

larea -2496799 0121069 20.52 -218558 -2808018
_COons 1.736508 -0881314 21.97 1.709959% 2.163057
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JE
Y and X logged

utlog(Y)|log(X)} = 1.94—.25 log(X)
Since e-20l08(2)=_]9

“Associated with each doubling of
island area is a 19% increase in the
median number of bird species”
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" A
In order to graph the Log-log plot

Exam ple " LOg'LOg we need to generate two new variables

(natural logarithms)

I Stata Graph E
Log-log plot

m -
un »
o
o
)
B
T +
o)
= 58 _2808018
= 159 2 163057
5 :
=
= W T arget: Command window
fa] .ad
=

[t -

1] 2 a 10
larea
Fitted values # |species

-l graph twoway 1fit lspeciez larea !! scatter lzpecies larea, msymbol{D} mcolor{cranher

lry) ytitlec"logarithm of number of species"? title<" Log-log plot'>
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