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Outline
Basics of Multiple Regression

Dummy Variables 
Interactive terms
Curvilinear models

Review Strategies for Data Analysis
Demonstrate the importance of inspecting, checking 
and verifying your data before accepting the results of 
your analysis. 
Suggest that regression analysis can be misleading 
without probing data, which could reveal relationships 
that a casual analysis could overlook.

Examples of Data Exploration
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Multiple Regression

Data:Data:

Linear regression models (Sect. 9.2.1)Linear regression models (Sect. 9.2.1)

1. Model with 2 X’s: µ(Y|X1,X2) = β0+ β1X1+ β2X2

2. Ex: Y: 1st year GPA, X1: Math SAT, X1:Verbal SAT

3. Ex: Y= log(tree volume), X1:log(height), X2: log(diameter)

…………

1.111591824

3.331-371534
X3X2X1Y
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Important notes about interpretation of Important notes about interpretation of ββ’’ss

Geometrically, β0+ β1X1+ β2X2 describes a 
plane: 

For a fixed value of X1 the mean of Y changes 
by β2 for each one-unit increase in X2

If Y is expressed in logs, then Y changes β2% 
for each one-unit increase in X2, etc.

The meaning of a coefficient depends on 
which explanatory variables are included! 

β1 in µ(Y|X1) = β0+ β1X1 is not the same as 

β1 in µ(Y|X1,X2) = β0+ β1X1+ β2X2
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Polynomial termsPolynomial terms, e.g. X2, for curvature (see Display 9.6)

Indicator variablesIndicator variables to model effects of categorical 
variables

One indicator variable (X=0,1) to distinguish 2 groups; 
Ex: X=1 for females, 0 for males

(K-1) indicator variables to distinguish K groups; 
Example: 

X2 = 1 if fertilizer B was used, 0 if A or C was used
X3 = 1 if fertilizer C was used, 0 if A or B was used

Product termsProduct terms for interaction

µ(Y|X1,X2) = β0+ β1X1+ β2X2+ β3(X1X2)

µ(Y|X1,X2=7)= (β0 + 7β2)+ (β1 + 7β3) X1

µ(Y|X1,X2=-9)= (β0 - 9β2)+ (β1 - 9β3) X1

“The effect of X1 on Y depends on the level of X2”

Specially constructed explanatory variablesSpecially constructed explanatory variables
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Sex discrimination?Sex discrimination?

Years 
Experience Salary

++

Gender
??

Observation: 
Disparity in salaries between males and females.

Theory:
Salary is related to years of experience

Hypothesis
If no discrimination, gender should not matter
Null Hypothesis H0 : β2=0

β2

β1
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Hypothetical sex discrimination exampleHypothetical sex discrimination example

Data: 
Yi = salary for teacher i, 
X1i = their years of experience,
X2i = 1 for male teachers, 0 if they were a female

0female17290003

1male7250004

0female30390002

1male4230001

X2Gender X1Yi
“Gender”:

Categorical factor

X2
Indicator variable
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Parallel lines model: µ(Y|X1,X2) = β0+ β1X1+ β2X2
for all females: µ(Y|X1,X2=0) = β0+ β1X1
for all males: µ(Y|X1,X2=1) = β0+ β1X1+β2

For the subpopulation of teachers at any particular 
years of experience, the mean salary for males is 
β2 more than that for females.

Slopes: β1
Intercepts:

•Males: β0+ β2
•Females: β0

β2

Model with Categorical VariablesModel with Categorical Variables
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Model with Interactions 
µ(Y|X1,X2) = β0+ β1X1 + β2X2 + β3(X1X2)
for all females: µ(Y|X1,X2=0) = β0+ β1X1
for all males: µ(Y|X1,X2=1) = β0+ β1X1+β2+ β3X1

The mean salary for inexperienced males (X1=0) is β2 (dollars) 
more than the mean salary for inexerienced females. 
The rate of increase in salary with increasing experience is β3
(dollars) more for males than for females.

Intercepts:
•Males: β1+ β3
•Females: β1

Slopes: 
•Males: β0+ β2
•Females: β0



Spring 2005 10U9611

• Modelling curvature, parallel quadratic curves: 

µ(Y|X1,X2=1) = β0+ β1X1+β2X2+ β3X1
2

• Modelling curvature, parallel quadratic curves: 

µ(salary|..) = β0+ β1exper+β2Gender+ β3exper2 

Model with curvilinear effects: 
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A t-test for H0 : β0=0 in the regression of Y on a 
single indicator variable IB, µ(Y|IB) = β0+ β2IB 
is the 2-sample (difference of means) t-test

Regression when all explanatory variables are 
categorical is “analysis of variance”.

Regression with categorical variables and one 
numerical X is often called “analysis of covariance”.

These terms are used more in the medical sciences 
than social science. 

We’ll just use the term “regression analysis” for all these 
variations.

Notes about indicator variablesNotes about indicator variables
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Causation and CorrelationCausation and Correlation

Causal conclusions can be made from 
randomized experiments

But not from observational studies

One way around this problem is to start 
with a model of your phenomenon

Then you test the implications of the model
These observations can disprove the 
model’s hypotheses

But they cannot prove these hypotheses 
correct; they merely fail to reject the null
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Models and Tests
A model is an underlying theory about how the world works

Assumptions
Key players
Strategic interactions
Outcome set 

Models can be qualitative, quantitative, formal, 
experimental, etc.

But everyone uses models of some sort in their research

Derive Hypotheses
E.g., as per capita GDP increases, countries become more democratic

Test Hypotheses
Collect Data

Outcome and key explanatory variables
Identify the appropriate functional form 
Apply the appropriate estimation procedures
Interpret the results
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Theory

Operational 
Hypothesis

Observation
Measurement

Statistical
Test

Empirical
Findings

The traditional scientific approach
Virtuous cycle of theory 
informing data analysis 
which informs theory 
building
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female education 
reduces childbearing

Women with higher education 
should have fewer children 

than those with less education

CBi = b0 + b1*educi + residi

Is b1 significant? Positive, 
negative? Magnitude?

Example of a scientific approach

Using Ghana data? Women 15-
49? Married or all women? 
How to measure education?
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Define the question of Interest
a) Specify theory 
b) Hypothesis to be tested 

Explore the Data

Formulate Inferential Model
Derived from theory
Check Model:
a) Model fit
b) Examine residuals
c) See if terms can be eliminated
Interpret results 
using appropriate tools

Review Study Design
assumptions,  logic, data 
availability, correct errors 

Confidence intervals, 
tests, prediction intervals

Check for non-
constant variance; 

assess outliers

State hypotheses in terms 
of model parameters 

Use graphical tools; consider 
transformation; fit a tentative 

model; check outliers

Strategies and Graphical ToolsStrategies and Graphical Tools

Presentation of results 
Tables, graphs, text

2

1

4

3
Model Model 
Not OKNot OK
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Data ExplorationData Exploration

Graphical tools for exploration and 
communication:

Matrix of scatterplots (9.5.1)
Coded scatterplot (9.5.2)

Different plotting codes for different categories

Jittered scatterplot (9.5.3)
Point identification

Consider transformations
Fit a tentative model

E.g., linear, quadratic, interaction terms, etc.

Check outliers
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Scatter plots

STATA command

brain weight data 
before log 
transformation.

Scatter plot matrices provide a compact display of the 
relationship between a number of variable pairs. 
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Scatter plots
Scatter plot matrices can also indicate outliers

brain weight data 
before log 
transformation.
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Scatterplot matrix for brain weight data 
after log transformation
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Notice: the outliers are now gone!
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Coded Scatter Plots

STATA 
command

Coded scatter plots are obtained by using different plotting codes for 
different categories. 
In this example, the variable time has two possible values (1,2). Such 

values are “coded” in the scatterplot using different symbols.
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Jittering
Provides a clearer view of overlapping points.

Un-jittered Jittered
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Point Identification

STATA 
command

How to label points with STATA.
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Transformations

STATA 
command

This variable is clearly skewed –
How should we correct it?
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Transformations
Stata “ladder” command shows normality test for various 
transformations
Select the transformation with the lowest chi2 statistic (this tests 
each distribution for normality)

. ladder enroll

Transformation         formula               chi2(2)       P(chi2)

------------------------------------------------------------------

cubic                  enroll^3                   .        0.000

square                 enroll^2                   .        0.000

raw                    enroll                     .        0.000

square-root            sqrt(enroll)           20.56        0.000

log                    log(enroll)             0.71        0.701

reciprocal root        1/sqrt(enroll)         23.33        0.000

reciprocal             1/enroll               73.47        0.000

reciprocal square      1/(enroll^2)               .        0.000

reciprocal cubic       1/(enroll^3)               .        0.000
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Transformations

. ladder enroll

Transformation         formula               chi2(2)       P(chi2)

------------------------------------------------------------------

cubic                  enroll^3                   .        0.000

square                 enroll^2                   .        0.000

raw                    enroll                     .        0.000

square-root            sqrt(enroll)           20.56        0.000

log                    log(enroll)             0.71        0.701

reciprocal root        1/sqrt(enroll)         23.33        0.000

reciprocal             1/enroll               73.47        0.000

reciprocal square      1/(enroll^2)               .        0.000

reciprocal cubic       1/(enroll^3)               .        0.000

Stata “ladder” command shows normality test for various 
transformations
Select the transformation with the lowest chi2 statistic (this tests 
each distribution for normality)
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Transformations
A graphical view of the different transformations using “gladder.”

STATA 
command
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Transformations
And yet another, using “qladder,” which gives a quantile-normal 
plot of each transformation

STATA 
command
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Fit a Tentative Model
This models GDP and democracy, using only a linear term

scatter lgdp polxnew if year==2000 & ~always10 || line plinear polxnew, 
sort legend(off) yti(Log GDP) STATA 

command

Log GDP= B0 + B1Polxnew 
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Fit a Tentative Model
The residuals from this regression are clearly U-shaped

STATA 
command
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Fit a Tentative Model
This models GDP and democracy, using a quadratic term as well

scatter lgdp polxnew if year==2000 & ~always10 || line predy polxnew, sort 
legend(off) yti(Log GDP)

STATA 
command

Log GDP= B0 + B1Polxnew + B1Polxnew2
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Fit a Tentative Model
Now the residuals look normally distributed
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Check for Outliers
This models GDP and democracy, using a quadratic term

scatter lgdp polxnew if year==2000 & ~always10 || line predy polxnew, sort 
legend(off) yti(Log GDP)

Potential
Outliers

STATA 
command



Spring 2005 35U9611

Identify outliers: Malawi and Iran

scatter lgdp polxnew if year==2000 & ~always10 & (sftgcode=="MAL" | sftgcode=="IRN"), 
mlab(sftgcode) mcolor(red) || scatter lgdp polxnew if year==2000 & ~always10 & (sftgcode!="MAL" & 
sftgcode!="IRN") || line predy polxnew, sort legend(off) yti(Log GDP)

Check for Outliers

STATA 
command
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Try analysis 
without the 
outliers; 
same results.

. reg lgdp polxnew polx2 if year==2000 & ~always10 

Source |       SS       df MS              Number of obs =      97
-------------+------------------------------ F(  2,    94) =   34.84

Model |  36.8897269     2  18.4448635           Prob > F      =  0.0000
Residual |  49.7683329    94   .52945035           R-squared     =  0.4257

-------------+------------------------------ Adj R-squared =  0.4135
Total |  86.6580598    96  .902688123           Root MSE =  .72763

------------------------------------------------------------------------------
lgdp |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
polxnew |  -.0138071   .0173811    -0.79   0.429    -.0483177    .0207035
polx2 |    .022208   .0032487     6.84   0.000     .0157575    .0286584
_cons |   7.191465   .1353228    53.14   0.000     6.922778    7.460152

------------------------------------------------------------------------------

. reg lgdp polxnew polx2 if year==2000 & ~always10 & (sftgcode!="MAL" & sftgcode!="IRN") 

Source |       SS       df MS              Number of obs =      95
-------------+------------------------------ F(  2,    92) =   42.67

Model |  40.9677226     2  20.4838613           Prob > F      =  0.0000
Residual |   44.164877    92  .480053011           R-squared     =  0.4812

-------------+------------------------------ Adj R-squared =  0.4699
Total |  85.1325996    94  .905665953           Root MSE =  .69286

------------------------------------------------------------------------------
lgdp |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
polxnew |  -.0209735   .0166859    -1.26   0.212    -.0541131    .0121661
polx2 |   .0244657   .0031649     7.73   0.000       .01818    .0307514
_cons |   7.082237   .1328515    53.31   0.000     6.818383    7.346092

------------------------------------------------------------------------------

So leave in 
model;

See Display 
3.6 for other 
strategies.

Check for Outliers
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EXAMPLE: Rainfall and Corn YieldEXAMPLE: Rainfall and Corn Yield
(Exercise: 9.15, page 261)

Dependent variable (Y): Yield
Explanatory variables (Xs):

• Rainfall
• Year

• Linear regression (scatterplot with linear regression line)

• Quadratic model (scatter plot with quadratic regression 
curve)

• Conditional scatter plots for yield vs. rainfall (selecting 
different years)

• Regression model with quadratic functions and 
interaction terms
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Model of Rainfall and Corn YieldModel of Rainfall and Corn Yield

Let's say that we collected data on corn 
yields from various farms.

Varying amounts of rainfall could affect yield. 
But this relation may change over time.

The causal model would then look like this:

Year
Yield++

RAIN

??
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Fitted values YIELD

Scatterplot of Corn Yield vs Rainfall

STATA 
command

reg yield rainfall

graph twoway lfit yield rainfall || scatter  yield rainfall, msymbol(D) 
mcolor(cranberry) ytitle("Corn yield") xtitle(“Rainfall”)
title("Scatterplot of Corn Yield vs Rainfall")

rvfplot, yline(0) xtitle("Fitted: Rainfall")

Initial scatterplot of yield vs rainfall, 
and residual plot from simple linear 
regression fit.

ScatterplotScatterplot
Yield=β0+ β1rainfall
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Quadratic fit: represents better the yield-trend
graph twoway qfit yield rainfall || scatter  yield rainfall, msymbol(D) 
mcolor(cranberry) ytitle("Corn Yield") xtitle("Rainfall") 
title("Quadratic regression curve")

gen rainfall2=rainfall^2

reg yield rainfall rainfall 2

rvfplot, yline(0) xtitle("Fitted: Rainfall+(Rainfall^2)")

-1
0

-5
0

5
10

R
es

id
ua

ls

26 28 30 32 34
Fitted: Rainfall+(Rainfall^2)

20
25

30
35

40
C

or
n 

Y
ie

ld

6 8 10 12 14 16
Rainfall

Fitted values YIELD

Quadratic regression curve

Yield=β0+ β1rainfall + β2rainfall2
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Quadratic fit: Residual plot vs time
Since data were collected over time we should check for time 
trend and serial correlation, by plotting residuals vs. time.

1. Run regression
2. Predict residuals
3. Graph scatterplot 

residuals vs. time

Yield=β0+ β1rainfall + β2rainfall2
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Graph: Scatterplot residuals vs. year

-1
0

-5
0

5
10

1890 1900 1910 1920 1930
YEAR

Fitted values Residual for model (rain+rain^2)

•There does appear to be a trend. 
•There is no obvious serial correlation. (more in Ch. 15)
•Note: YearYear is not an explanatory variable in the regression 
model.

Yield=β0+ β1rainfall + β2rainfall2
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Yield=β0+ β1rainfall + β2rainfall2+ β3Year

Include 
Year in the
regression 

model 

Adding time trend 

residual-versus-predictor 
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Partly because of the outliers and 
partly because we suspect that the

effect of rain might be changing over 
1890 to 1928 (because of improvements in
agricultural techniques, including irrigation), 

it seems appropriate to further investigate 
the  interactive effect 

of year and rainfall on yield.
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Conditional scatter plots: 

Note: The conditional scatterplots show the effect 
of rainfall on yield to be smaller in later time 

periods .

STATA commands
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1918-1927

Conditional scatter plots
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Fitted Model

Yield=β0+ β1rainfall+ β2rainfall2+ β3Year+ β3(Rainfall*Year) 

Final regression model with quadratic functions and interaction terms
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Quadratic regression lines for 1890, 1910 & 1927

Yield=β0+ β1rainfall+ β2rainfall2+ β3Year+ β3(Rainfall*Year) 

Pred1890=β0+ β1rainfall+ β2rainfall2+ β31890+ 
β3(Rainfall*1890) 

1. Run the regression
2. Use the regression estimates and substitute the corresponding year in the 
model to generate 3 new variables: 
The predicted yields for year=1890,1910,1927 

2.

1.



Spring 2005 49U9611

The predicted yield values generated for years:
1890, 1910 and 1927
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Yearly corn yield vs rainfall between 1890 and 1927 and quadratic 
regression lines for years 1890, 1910 and 1927
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Summary of Findings

•As evident in the scatterplot above, the mean yearly yield of 
corn in six Midwestern states from 1890 to 1927 increased with 
increasing rainfall up to a certain optimum rainfall, and then 
leveled off or decreased with rain in excess of that amount (the p-
value from a t-test for the quadratic effect of rainfall on mean 
corn yield is .014).

•There is strong evidence, however, that the effect of rainfall 
changed over this period of observation (p-value from a t-test for 
the interactive effect of year and rainfall is .002). 

•Representative quadratic fits to the regression of corn yield on
rainfall are shown in the plot—for 1890, 1910, and 1927. It is 
apparent that less rainfall was needed to produce the same mean 
yield as time progressed. 
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Example: 
Causes of Student Academic Performance

Randomly sampling 400 elementary 
schools from the California Department of 
Education's API 2000 dataset.
Data contains a measure of school 
academic performance as well as other 
attributes of the elementary schools, such 
as, class size, enrollment, poverty, etc. 
See Handout…


