Lecture 3: Multiple Regression

Prof. Sharyn O'Halloran Sustainable Development U9611 Econometrics II

Outline

Basics of Multiple Regression

- Dummy Variables
- Interactive terms
- Curvilinear models
- Review Strategies for Data Analysis
 - Demonstrate the importance of inspecting, checking and verifying your data before accepting the results of your analysis.
 - Suggest that regression analysis can be misleading without probing data, which could reveal relationships that a casual analysis could overlook.
- Examples of Data Exploration

Multiple Regression

D	2	÷	2	•
U	a	L	a	•

Y	X ₁	X ₂	X ₃
34	15	-37	3.331
24	18	59	1.111
		•••	

Linear regression models (Sect. 9.2.1)

- 1. Model with 2 X's: $\mu(Y|X_1, X_2) = \beta_0 + \beta_1 X_1 + \beta_2 X_2$
- 2. Ex: Y: 1st year GPA, X₁: Math SAT, X₁:Verbal SAT
- 3. Ex: Y = log(tree volume), X₁:log(height), X₂: log(diameter)

Important notes about interpretation of β 's

- Geometrically, $\beta_0 + \beta_1 X_1 + \beta_2 X_2$ describes a plane:
 - □ For a fixed value of X_1 the mean of Y changes by $β_2$ for each one-unit increase in X_2
 - □ If Y is expressed in logs, then Y changes β_2 % for each one-unit increase in X₂, etc.
- The meaning of a coefficient depends on which explanatory variables are included!
 □ β₁ in μ(Y|X₁) = β₀+ β₁X₁ is not the same as

$$\Box \beta_1 \text{ in } \mu(Y|X_1, X_2) = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$

Specially constructed explanatory variables

- Polynomial terms, e.g. X², for curvature (see Display 9.6)
- Indicator variables to model effects of categorical variables
 - \Box One indicator variable (X=0,1) to distinguish 2 groups;
 - Ex: X=1 for females, 0 for males
 - □ (K-1) indicator variables to distinguish K groups;
 - Example:
 - \square X₂ = 1 if fertilizer B was used, 0 if A or C was used
 - $\square X_3 = 1$ if fertilizer C was used, 0 if A or B was used
- Product terms for interaction

 $\mu(Y|X_1, X_2) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 (X_1 X_2)$

→ $\mu(Y|X_1, X_2=7) = (\beta_0 + 7\beta_2) + (\beta_1 + 7\beta_3) X_1$ $\mu(Y|X_1, X_2=-9) = (\beta_0 - 9\beta_2) + (\beta_1 - 9\beta_3) X_1$

"The effect of X_1 on Y depends on the level of X_2 "

Sex discrimination?

- Observation:
 - □ Disparity in salaries between males and females.
- Theory:
 - Salary is related to years of experience
- Hypothesis
 - If no discrimination, gender should not matter
 - □ Null Hypothesis H_0 : β_2 =0

Hypothetical sex discrimination example

Data:

- Y_i = salary for teacher i,
- X_{1i} = their years of experience,
- $X_{2i} = 1$ for male teachers, 0 if they were a female

"Gender":	X ₂	Gender	X ₁	Y	i
Categorical factor	1	male	4	23000	1
	0	female	30	39000	2
Xa	0	female	17	29000	3
Indicator variable	1	male	7	25000	4

Model with Categorical Variables

Parallel lines model: μ(Y|X₁,X₂) = β₀+ β₁X₁+ β₂X₂
 □ for all females: μ(Y|X₁,X₂=0) = β₀+ β₁X₁
 □ for all males: μ(Y|X₁,X₂=1) = β₀+ β₁X₁+β₂

 For the subpopulation of teachers at any particular years of experience, the mean salary for males is β₂ more than that for females.

Model with Interactions

$$\begin{split} & \mu(Y|X_1, X_2) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 (X_1 X_2) \\ & \text{for all females: } \mu(Y|X_1, X_2 = 0) = \beta_0 + \beta_1 X_1 \\ & \text{for all males: } \mu(Y|X_1, X_2 = 1) = \beta_0 + \beta_1 X_1 + \beta_2 + \beta_3 X_1 \end{split}$$

- The mean salary for inexperienced males (X₁=0) is β₂ (dollars) more than the mean salary for inexerienced females.
- The rate of increase in salary with increasing experience is β_3 (dollars) more for males than for females.

Model with curvilinear effects:

• Modelling curvature, parallel quadratic curves:

 $\mu(Y|X_1, X_2=1) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1^2$

Modelling curvature, parallel quadratic curves:

 $\mu(\text{salary}|..) = \beta_0 + \beta_1 \text{exper} + \beta_2 \text{Gender} + \beta_3 \text{exper}^2$

Notes about indicator variables

- A t-test for H₀ : β₀=0 in the regression of Y on a single indicator variable I_B, μ(Y|I_B) = β₀+ β₂I_B is the 2-sample (difference of means) t-test
- Regression when all explanatory variables are categorical is "analysis of variance".
- Regression with categorical variables and one numerical X is often called "analysis of covariance".
- These terms are used more in the medical sciences than social science.
 - We'll just use the term "regression analysis" for all these variations.

Causation and Correlation

- Causal conclusions can be made from randomized experiments
 - But not from observational studies
- One way around this problem is to start with a <u>model</u> of your phenomenon
 - Then you test the implications of the model
 - These observations can <u>disprove</u> the model's hypotheses
 - But they cannot prove these hypotheses correct; they merely fail to reject the null

Models and Tests

- A **model** is an underlying theory about how the world works
 - □ Assumptions
 - □ Key players
 - □ Strategic interactions
 - Outcome set
- Models can be qualitative, quantitative, formal, experimental, etc.

□ But <u>everyone</u> uses models of some sort in their research

Derive Hypotheses

□ E.g., as per capita GDP increases, countries become more democratic

Test Hypotheses

- Collect Data
 - Outcome and key explanatory variables
- □ Identify the appropriate functional form
- □ Apply the appropriate estimation procedures
- □ Interpret the results

The traditional scientific approach

Example of a scientific approach

female education reduces childbearing

Is b₁ significant? Positive, negative? Magnitude?

Women with higher education should have fewer children than those with less education

 $CB_i = b_0 + b_1 * educ_i + resid_i$

Using Ghana data? Women 15-49? Married or all women? How to measure education?

Strategies and Graphical Tools

Define the question of Interest

a) Specify theory
 b) Hypothesis to be tested
 Review Study Design
 assumptions, logic, data
 availability, correct errors

Explore the Data

- Formulate Inferential Model Derived from theory
- **3** Check Model:
- Model a) Model fit

U9611

- b) Examine residuals
 - c) See if terms can be eliminated

Interpret results

using appropriate tools

Presentation of results

Tables, graphs, text

Use graphical tools; consider transformation; fit a tentative model; check outliers

State hypotheses in terms of model parameters

Check for nonconstant variance; assess outliers

Confidence intervals, tests, prediction intervals

Data Exploration

- Graphical tools for exploration and communication:
 - Matrix of scatterplots (9.5.1)
 - Coded scatterplot (9.5.2)
 - Different plotting codes for different categories
 - □ Jittered scatterplot (9.5.3)
 - Point identification
- Consider transformations
- Fit a tentative model
 - E.g., linear, quadratic, interaction terms, etc.
- Check outliers

Scatter plots

Scatter plot matrices provide a compact display of the relationship between a number of variable pairs.

Scatter plots

Scatter plot matrices can also indicate outliers

Scatterplot matrix for brain weight data after log transformation

Notice: the outliers are now gone!

Coded Scatter Plots

Coded scatter plots are obtained by using different plotting codes for different categories.

In this example, the variable time has two possible values (1,2). Such values are "coded" in the scatterplot using different symbols.

Jittering

Provides a clearer view of overlapping points.

Jittered

Un-jittered

Point Identification

How to label points with STATA.

This variable is clearly skewed – How should we correct it?

Stata "ladder" command shows normality test for various transformations Select the transformation with the lowest chi² statistic (this tests each distribution for normality)

. ladder enroll

Transformation	formula	chi2(2)	P(chi2)
cubic	enroll^3		0.000
square	enroll^2		0.000
raw	enroll		0.000
square-root	sqrt(enroll)	20.56	0.000
log	log(enroll)	0.71	0.701
reciprocal root	1/sqrt(enroll)	23.33	0.000
reciprocal	1/enroll	73.47	0.000
reciprocal square	1/(enroll^2)		0.000
reciprocal cubic	1/(enroll^3)		0.000

Stata "ladder" command shows normality test for various transformations Select the transformation with the lowest chi² statistic (this tests each distribution for normality)

. ladder enroll

Transformation	formula	chi2(2)	P(chi2)
cubic	enroll^3	•	0.000
square	enroll^2		0.000
raw	enroll		0.000
square-root	sqrt(enroll)	20.56	0.000
log	log(enroll)	0.71	0.701
reciprocal root	l/sqrt(enroll)	23.33	0.000
reciprocal	1/enroll	73.47	0.000
reciprocal square	1/(enroll^2)		0.000
reciprocal cubic	1/(enroll^3)		0.000

A graphical view of the different transformations using "gladder."

And yet another, using "qladder," which gives a quantile-normal plot of each transformation

This models GDP and democracy, using only a linear term

scatter lgdp polxnew if year==2000 & ~always10 || line plinear polxnew, sort legend(off) yti(Log GDP)

U9611

STATA

command

The residuals from this regression are clearly U-shaped

U9611

This models GDP and democracy, using a quadratic term as well

Now the residuals look normally distributed

Check for Outliers

This models GDP and democracy, using a quadratic term

Check for Outliers

Identify outliers: Malawi and Iran

Check for Outliers

. reg lgdp polxnew polx2 if year==2000 & ~always10

SS	df	MS		Number of obs	= 97
+				F(2, 94)	= 34.84
36.8897269	2 18.44	448635		Prob > F	= 0.0000
49.7683329	94 .529	945035		R-squared	= 0.4257
+				Adj R-squared	= 0.4135
86.6580598	96 .9026	588123		Root MSE	= .72763
Coef.	Std. Err.	t	₽> t	[95% Conf.	Interval]
0120071	0172011	0 70	0 420	0/02177	0207025
0138071	.01/3011	-0.79	0.429	.0403177	.0207035
.022208	.0032487	6.84	0.000	.0157575	.0286584
7.191465	.1353228	53.14	0.000	6.922778	7.460152
	SS 36.8897269 49.7683329 86.6580598 Coef. 0138071 .022208 7.191465	SS df 36.8897269 2 18.44 49.7683329 94 .529 86.6580598 96 .9026 Coef. Std. Err. 0138071 .0173811 .022208 .0032487 7.191465 .1353228	SS df MS 36.8897269 2 18.4448635 49.7683329 94 .52945035 86.6580598 96 .902688123 Coef. Std. Err. t 0138071 .0173811 -0.79 .022208 .0032487 6.84 7.191465 .1353228 53.14	SS df MS 36.8897269 2 18.4448635 49.7683329 94 .52945035 86.6580598 96 .902688123 Coef. Std. Err. t P> t 0138071 .0173811 -0.79 0.429 .022208 .0032487 6.84 0.000 7.191465 .1353228 53.14 0.000	SSdfMSNumber of obs 36.8897269 2 18.4448635 Prob > F 49.7683329 94.52945035R-squared 49.7683329 94.52945035R-squared 86.6580598 96.902688123Root MSECoef.Std. Err.tP> t [95% Conf. 0138071 .0173811-0.790.429.0483177.022208.00324876.840.000.01575757.191465.135322853.140.0006.922778

Try analysis without the outliers; same results.

. reg lgdp polxnew polx2 if year==2000 & ~always10 & (sftgcode!="MAL" & sftgcode!="IRN") Number of obs = 95 Source SS df MS So leave in F(2, 92) = 42.67 40.9677226 2 20.4838613 Prob > F = 0.0000 Model model; Residual 44.164877 92 .480053011 R-squared = 0.4812 Adj R-squared = 0.4699 Total 85.1325996 94 .905665953 Root MSE = .69286 See Display lgdp Coef. Std. Err. t P>|t| [95% Conf. Interval] 3.6 for other _____ -1.26 0.212 <. 0209735 .0166859 >0541131 .0121661 polxnew strategies. .0244657 .0031649 7.73 0.000 .01818 .0307514 polx2 7.082237 53.31 0.000 6.818383 _cons .1328515 7.346092

EXAMPLE: Rainfall and Corn Yield

(Exercise: 9.15, page 261)

Dependent variable (Y): Yield Explanatory variables (Xs):

- Rainfall
- Year
- <u>Linear regression</u> (scatterplot with linear regression line)
- <u>Quadratic model</u> (scatter plot with quadratic regression curve)
- <u>Conditional scatter plots</u> for yield vs. rainfall (selecting different years)
- <u>Regression model with quadratic functions and</u> <u>interaction terms</u>

U9611

Model of Rainfall and Corn Yield

- Let's say that we collected data on corn yields from various farms.
 - Varying amounts of rainfall could affect yield.
 - But this relation may change over time.
- The causal model would then look like this:

Scatterplot

Initial scatterplot of yield vs rainfall, and residual plot from simple linear regression fit.

reg yield rainfall

Yield = $\beta_0 + \beta_1$ rainfall

graph twoway lfit yield rainfall || scatter yield rainfall, msymbol(D) mcolor(cranberry) ytitle("Corn yield") xtitle("Rainfall") title("Scatterplot of Corn Yield vs Rainfall")

STATA command

rvfplot, yline(0) xtitle("Fitted: Rainfall")

Quadratic fit: represents better the yield-trend

graph twoway qfit yield rainfall || scatter yield rainfall, msymbol(D) mcolor(cranberry) ytitle("Corn Yield") xtitle("Rainfall") title("Quadratic regression curve")

gen rainfall2=rainfall^2

reg yield rainfall rainfall 2

Yield = $\beta_0 + \beta_1$ rainfall + β_2 rainfall²

rvfplot, yline(0) xtitle("Fitted: Rainfall+(Rainfall^2)")

Quadratic fit: Residual plot vs time

Since data were collected over time we should check for time trend and serial correlation, by plotting residuals vs. time.

Yield=β ₀	+ β ₁ rainfa	all + $\beta_2 r$	ainfall	2	
opened on-	7 Uan 2005, U	1.57-15	Target: C	ommand Wir	ndow
<pre>. insheet using "C:\Documents and Setting > xt\EX0915.txt", tab (3 vars, 38 obs) . gen rainfall2=rainfall^2 gen rainvear=rainfall*vear</pre>			tin: year yield rainfall		YEAR YIELD BAINFALL
			rainfall2 rainyear e		Residual for model (rain upin^2)
. reg yield ra	infall rainfa	112			
Source	SS	df	MS		Number of obs = 38
Model Residual	209.021698 495.528887	2 104 35 14.	.510849 1579682		$ \begin{array}{l} Prob > F = 0.0021 \\ R-squared = 0.2967 \\ Old = 0.2967 \end{array} $
Total	704.550584	37 19.	0419077		Root MSE = 3.7627
yield	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
rainfall rainfall2 _cons	6.004282 2293639 -5.014659	2.03895 .088635 11.44158	2.94 -2.59 -0.44	0.006 0.014 0.664	1.864994 10.14357 40930250494252 -28.2423 18.21298
. predict e, r	esid				1. Run regression
. label variab	le e "Residua	l for mode	l (rain+ra	ain^2)"	2. Predict residuals
. graph twoway	lfit e year		3. Graph scatterplot		

Graph: Scatterplot residuals vs. year

•There does appear to be a trend.

•There is no obvious serial correlation. (more in Ch. 15)

•Note: **Year** is not an explanatory variable in the regression model.

Adding time trend

reg yield rainfall rainfall2 year

Partly because of the outliers and partly because we suspect that the effect of rain might be changing over 1890 to 1928 (because of improvements in agricultural techniques, including irrigation),

it seems appropriate to further investigate the interactive effect of year and rainfall on yield.

Conditional scatter plots:

STATA commands

		$+$ wain 9	
Variables	· · · · · · · · · · · · · · · · · · ·	Review	×
Target: Command Window	ear		
year	YEAR	graph twoway little year scatter e year graph twoway littly yield rainfall if year (1999 seatter yield rainfall	<u>^</u>
vield	YIELD	graph twoway integret aintaining years 1000 ji scatter yield raintail graph twoway lift, yield rainfall if year=<1898 ll scatter yield rainfall i	F I
rainfall	BAINFALL are	graph twoway life yield rainfall if year<=1898 scatter yield rainfall i	۲ ۲
rainfall2		graph twoway lfit yield rainfall if year>=1899 & year<=1908 scatte	a =
rainvear		graph twoway lfit yield rainfall if year>=1909 & year<=1917 scatte	
e	Residual for model (rain+rain^2	graph twoway lfit_yield rainfall if year>=1918 & year<=1927 scatte	ม 🕶 🛛
. graph twoway lfit y > , title<"1890-1898">	vield rainfall if year	(=1898 scatter yield rainfall if year	(1898
. graph twoway lfit y > if year>=1899 & yea	ield rainfall if year) r<=1908 , title("1899-	>=1899 & year<=1908 scatter yield rain -1908'')	ıfall
. graph twoway lfit y > if year>=1909 & yea	vield rainfall if year) r<=1917 , title("1909-	>=1909 & year<=1917 ¦¦ scatter yield rain -1917">	ıfall
. graph twoway lfit y > if year>=1918 & yea	vield rainfall if year) r<=1927 , title("1918-	>=1918 & year<=1927 ¦¦ scatter yield rain -1927'')	ıfall
-			

Note: The conditional scatterplots show the effect of rainfall on yield to be smaller in later time periods .

Conditional scatter plots

Fitted Model

Final regression model with quadratic functions and interaction terms

Yield = $\beta_0 + \beta_1$ rainfall + β_2 rainfall² + β_3 Year + β_3 (Rainfall * Year)

Source	SS	df		MS		Number of obs	=	38
Mode1	401.998133	4	100.	499533		F(4, 33) Prob > F	=	0.0000
Residual	302.552452	33	9.16	825611		R-squared	=	0.5706
Total	704.550584	37	19.0	419077		Adj R-squared Root MSE	=	0.5185
yield	Coef.	Std.	Err.	t	P>[t]	[95% Conf.	In	terval
rainfall	158.8422	44.56	787	3.56	0.001	68.16823	2	49.5162
rainfall2	1862451	.0719	764	-2.59	0.014	3326822		0398079
year	1.00119	.2554	477	3.92	0.000	.481478	1	.520903
rainyear	0806408	.0234	478	-3.44	0.002	1283457		0329359
_cons	-1909.478	486.2	419	-3.93	0.000	-2898.745	-9	20.211

Quadratic regression lines for 1890, 1910 & 1927

Yield = β_0 + β_1 rainfall + β_2 rainfall² + β_3 Year + β_3 (Rainfall*Year)

1. Run the regression

2. Use the regression estimates and substitute the corresponding year in the model to generate 3 new variables:

The predicted yields for year=1890,1910,1927

1.	reg yield ra	ainfall rainfa	112 year r	ainyear				Target: Con	
	Source	SS	df	MS		Number of obs	= 38	yieid rainfall rainfall2	
	Model Residual	401.998133 302.552452	4 100. 33 9.16	499533 825611		Prob > F R-squared	= 0.0000 = 0.5706	rainyear e	
	Total	704.550584	37 19.0	419077		Root MSE	= 0.5185 = 3.0279	yhat1 yhat2 uhat3	
	yield	Coef.	Std. Err.	t	P>[t]	[95% Conf.	Interval]	6k1990	
	rainfall rainfall2 year rainyear _cons	158.8422 1862451 1.00119 0806408 -1909.478	44.56787 .0719764 .2554477 .0234478 486.2419	3.56 -2.59 3.92 -3.44 -3.93	0.001 0.014 0.000 0.002 0.000	68.16823 3326822 .481478 1283457 -2898.745	249.5162 0398079 1.520903 0329359 -920.2117	pred1930 pred1910 pred1927	
2.	. generate pi > .0806408*rai	ved1890=(-1909 infall*1890>	.478 + 158.	8422*raiı	ıfall	186245*rainfal]	12 +1.00119	*1890 -	
> .0806408 * rainfall * 1890 >									

 $\beta_3(Rainfall*1890)$

The predicted yield values generated for years: 1890, 1910 and 1927

	🛾 Stata Results								🔲 Varial
	reg yield ra Source	ainfall rainfa <mark>SS</mark>	112 уе df	ar rai	nyear 18		Number of obs	= 38	Target: Con yield rainfall
	Model Residual Total	401.998133 302.552452 704.550584	4 33 37	100.49 9.1682 19.041	9533 25611 9077		F(4, 33) Prob > F R-squared Adj R-squared Root MSE	= 10.96 = 0.0000 = 0.5706 = 0.5185 = 3.0279	rainfall2 rainyear e yhat1 yhat2
F	yield	Coef.	Std.	Err.	t	P> t	E95% Conf.	Intervall	fit1890
	rainfall rainfall2 year rainyear _cons	158.8422 1862451 1.00119 0806408 -1909.478	44.56 .0719 .2554 .0234 486.2	787 764 1477 1478 1478	3.56 -2.59 3.92 -3.44 -3.93	0.001 0.014 0.000 0.002 0.000	68.16823 3326822 .481478 1283457 -2898.745	249.5162 0398079 1.520903 0329359 -920.2117	pred1910 pred1910 pred1927
••	generate p .0806408*rai	red1890=(-1909 infall*1890)	.478 +	158.84	l22*rair	ıfall	186245*rainfal	12 +1.00119	*1890 -
.>	generate p .0806408*rai	red1910=(-1909 infall*1910)	.478 +	158.84	22*rair	nfall	186245*rainfal:	12 +1.00119	*1910 -
	generate p 0806408*pat	red1927=(-1909	.478 +	158.84	122*rair	nfall	186245*rainfal	12 +1.00119	*1927 -

Yearly corn yield vs rainfall between 1890 and 1927 and quadratic regression lines for years 1890, 1910 and 1927

50

Summary of Findings

•As evident in the scatterplot above, the mean yearly yield of corn in six Midwestern states from 1890 to 1927 increased with increasing rainfall up to a certain optimum rainfall, and then leveled off or decreased with rain in excess of that amount (the pvalue from a t-test for the quadratic effect of rainfall on mean corn yield is .014).

•There is strong evidence, however, that the effect of rainfall changed over this period of observation (p-value from a t-test for the interactive effect of year and rainfall is .002).

•Representative quadratic fits to the regression of corn yield on rainfall are shown in the plot—for 1890, 1910, and 1927. It is apparent that less rainfall was needed to produce the same mean yield as time progressed.

Example: Causes of Student Academic Performance

- Randomly sampling 400 elementary schools from the California Department of Education's API 2000 dataset.
- Data contains a measure of school academic performance as well as other attributes of the elementary schools, such as, class size, enrollment, poverty, etc.

See Handout...