Lecture 1: Data and Models

Prof. Sharyn O'Halloran Sustainable Development U9611 Econometrics II

Why Statistics Matters: Harpers Index

- Example 1: Logical Inconsistencies!?
 - Number of U.S. <u>terrorism</u> trials brought before a jury since <u>September 11, 2001</u>: 1
 - Number of <u>terrorism</u> convictions resulting : 2
 - Number of them dismissed in June due to a "pattern of mistakes" by the prosecution : 2
- Example 2: Comparing Different Units
 - Average number of <u>clothing</u> items an adult American acquired in 2002 : 52
 - Estimated average amount of <u>textiles</u> thrown out by each U.S. household in 2001, in pounds : 66
- Lesson: Numbers <u>don't</u> speak for themselves.

General Approach: Data Visualization

- Standard econometric approach emphasizes:
 - Calculating the variance-covariance matrix
 Applying "fixes" to get the right answer
- Ease of statistical programs and increased computing power emphasis has shifted to a multifaceted view of data analysis
 - □ Graphical presentation
 - Question driven estimation
 - Interpretation and inference

General Approach: Question Driven

- Modeling complex social science phenomena become a series of choices:
 - What is the process by which the data will be generated?
 - Random
 - Experimental
 - Observational
 - □ What is the appropriate estimation techniques?
 - Linear
 - Probabilistic
 - □ What is the scope of inference?
 - How general are the findings?
 - Has a lot to do with the research design.

Game Plan

- Examine variables individually
 - Transform variables as needed
- Examine key relations
- Identify appropriate estimation techniques
 OLS, Probit, Logit, etc...
- Define model specification
 - □ Which variables to include in the analysis
 - Derived both from inspection of the data and theory
- Then run analysis
- Perform post-regression diagnostics
 - □ Tests for significance, graphical analysis, simulations
- Repeat!

- Question: Does economic growth promote transitions to democracy?
 - Traditional answer had been Yes.
 - Democracy is like a luxury good
 - This is one of the classic findings in political economy
 - Recent rejoinder (PACL) says money does <u>not</u> predict transitions to democracy, but can help you stay there once you're rich.
 - The focus here quickly turns to political institutions such as property rights and the rule of law. (Rodrik, Shleifer et. al.)
- The importance of getting this right is more than academic.
 - A fundamental policy question is whether to promote economic or political reform first.

How to address this debate?

- Collect data yearly, across all countries
 - Measure of economic growth
 - □ GDP per capita
 - Political institution types:
 - Democracy
 - Autocracy
 - Other covariates
 - Education
 - Total Population
- This is an example of the type of analysis that we will be doing in the course.
 - □ And for your final paper!

🔀 Mie	Microsoft Excel - transshort.csv									
:	<u>File E</u> dit <u>V</u>	iew In:	sert F <u>o</u> rm	at <u>T</u> o <mark>ol</mark> s [⊇ata <u>W</u> indow	<u>H</u> elp Ado <u>b</u> e PDF	=			
1	🗃 🖬 👌	3 3	🛕 🝼	(° - Σ	- 21 🏭 125	% • 📮 B /	Ū∣≣	≣≣ \$		
1	🛅 💼 🚵 🐼 🕼 🛛 🏷 🛛 🔁 🍓 📭 🐄 Reply with Changes End Review 🥊									
1182 - <i>f</i>										
	A	В	С	D	E	F	G	Н	Excel sheet	
1	sftgcode	year	sftgreg	polxnew	pwtrgdpc	gdpgrowth	Leduc	Lpop		
341	BEL	1979	ADV	10	15592.59	0.0201708	35.06	9.194922	of data	
342	BEL	1980	ADV	10	16326.52	0.0470686	33.08	9.195734	UT UALA	
343	BEL	1981	ADV	10	16179.3	-0.0090172	31.1	9.19614	_	
344	BEL	1982	ADV	10	16183.67	0.0002704	30.4	9.19614		
345	BEL	1983	ADV	10	16174.7	-0.0005542	29.7	9.195937		
346	BEL	1984	ADV	10	16628.28	0.0280424	29	9.195531		
347	BEL	1985	ADV	10	16941.67	0.0188468	28.3	9.195531		
348	BEL	1986	ADV	10	17233.55	0.0172282	27.6	9.196038	Observational Data	
349	BEL	1987	ADV	10	17742.78	0.029549	27.04	9.197255	Observational Data	
350	BEL	1988	ADV	10	18607.11	0.0487144	26.48	9.199078		
351	BEL	1989	ADV	10	19317.55	0.038181	25.92	9.201401		
352	BEL	1990	ADV	10	19876.88	0.0289544	25.36	9.204121		
353	BEL	1991	ADV	10	20094.61	0.0109542	24.8	9.207035		
354	BEL	1992	ADV	10	20320.44	0.0112382	24.56	9.21034		
355	BEL	1993	ADV	10	19915.8	-0.019913	24.32	9.213834		
356	BEL	1994	ADV	10	20402.48	0.0244373	24.08	9.217415		
357	BEL	1995	ADV	10	20915.2	0.0251302	23.84	9.220786		
358	BEL	1996	ADV	10	21101.19	0.0088923	23.6	9.223948		
H 4	(

🌌 transshort.csv - Notepad

File Edit Format H	elp
--------------------	-----

<pre>sftgcode,year,sftgreg,polxnew,pwtrgdpc,gdpgrowth,Leduc,Lpop</pre>
"AFĞ",1960, "AS", -10, , , ,
"AFG",1961, "AS", -10, , , 3, 9.215427
"AFG",1962,"AS",-10,,,.28,9.237761
"AFG",1963, "AS", -10, , .26, 9.260178
"AFG",1964, "AS", -7, , , 24, 9, 28294
"AFG",1965, "AS", -7, , , .22, 9.305923
"AFG",1966, "AS", -7, ,, .2, 9.329367
"AFG",1967, "AS", -7, , , .2, 9.352968
"AFG",1968, "AS", -7, , , 2, 9, 376702
"AFG",1969, "AS", -7, ,, .2, 9.400713
"AFG",1970, "AS", -7, ,, .2, 9.425451
"AFG",1971, "AS", -7, ,, .2, 9.45101
"AFG",1972,"AS",-7,,,.2,9.477157
"AFG",1973,"AS",-7,,,.2,9.503234
"AFG",1974,"AS",-7,,,.2,9.528503
"AFG",1975,"AS",-7,,,.2,9.552084
"AFG",1976,"AS",-7,,,.2,9.573107
["AFG",1977,"AS",-7,,,.18,9.592332
"AFG",1978,"AS",0,,,.16,9.609385
["AFG",1979,"AS",-7,,,.14,9.622052
["AFG",1980,"AS",-7,,,.12,9.627338
("AFG",1981, "AS", -7, ,, .1, 9. 623575
["AFG",1982,"AS",-7,,,.18,9.610123
("AFG",1983, "AS", -7, , , . 26, 9. 588434
["AFG",1984,"AS",-7,,,.34,9.561771
("AFG",1985,"AS",-7,,,.42,9.534957
"AFG",1986, "AS", -7, , , . 5, 9. 512443
"AFG",1987,"AS",-7,,,.52,9.494466
"AFG".1988."AS"754.9.481512

Comma separated text, as viewed in Notepad

Insheet data file into Stata Insheet using "fileName"

- Before running any analysis, check the distributions of all key variables.
- Easiest to work with if they are normal:
 - Comparing normal distributions involves only comparing means and standard deviations
 - Some statistical procedures assume variables are normally distributed
 - Other procedures work better with normality
- Other authors used straight GDP/capita...

GDP Growth = (GDP-GDPt-1)/GDPt-1

Polity Score = Ordinal ranking of how democratic a country is, on a -10 to 10 scale

Variable	Obs	Mean	Std. Dev.	Min	Max
polxnew	5671	-0.4456004	7.579176	-10	10

Distribution of Polity scores is bimodal.

This means that we might want to separate the data into two distinct categories.

Plus, number of partial democracies is growing...

Over the last 50 years, move to democracy.

Per Capita GDP = Total GDP/ Population

Box Plot

Symmetry Plot

Quantile-Normal Plot

Shows that the values at the high end of the distribution are farther from the median than those at the low end.

Relative to a normal distribution, there is more weight at the left tail and less in the middle.

Log of Per capita GDP = Log (Total GDP/ Population)

Symmetry Plot

Now this follows the 45 degree line almost exactly.

Quantile-Normal Plot

Much more similar to a normal distribution, except for the thin tails.

Inspecting Key Relationships

Inspecting Key Relationships

•Add a "lowess", or local regression line.

•A data summary technique.

•Shows a clear positive relation between the variables.

Inspecting Key Relationships

•But we should check to see if democratic and autocratic transitions act differently.

•Both show a clear impact of GDP on transition probabilities.

Estimation Techniques

- Say we decide to look at transitions:
 - \Box Autocracy \rightarrow Democracy
 - \Box Democracy \rightarrow Autocracy
- Then the dependent variable has only two values: Transition or No Transition
 - This type of "qualitative" dependent variable occurs often in social science:
 - Voting for a Republican or Democrat
 - Supreme Court Decisions overrule or uphold
 - Yea and Nay votes when passing legislation, etc...
- Appropriate estimation technique is "Probit".
 Estimates nonlinear probabilities

Comparing Model Specifications

PACL regress transitions on:

- GDP per capita
- GDP per capita squared
- GDP growth

Adjusting for previous regime type

anydem	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Lpdem Lgdp Lpdemgdp Lgdp2 Lpdemgdp2 Lgrowth Lpdemgrowth	+ 7.993817 -1.284701 -1.575778 .0909221 .1274521 4754997 -1.48283	7.57117 1.053302 1.951307 .0676323 .1248902 .6829151 1.18237	1.06 -1.22 -0.81 1.34 1.02 -0.70 -1.25	0.291 0.223 0.419 0.179 0.307 0.486 0.210	-6.845404 -3.349136 -5.400269 0416348 1173281 -1.813989 -3.800234	22.83304 .7797335 2.248714 .2234789 .3722323 .8629892 .8345726
_cons	2.670554	4.066588	0.66	0.511	-5.299812	10.64092

Comparing Model Specifications

PACL regress transitions on:

- GDP per capita
- GDP per capita squared
- GDP growth

Adjusting for previous regime type

anydem	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Lpdem Lgdp Lpdemgdp Lgdp2 Lpdemgdp2 Lgrowth	+ 7.993817 -1.284701 -1.575778 .0909221 .1274521 4754997 -1 48283	7.57117 1.053302 1.951307 .0676323 .1248902 .6829151 1 18237	1.06 -1.22 -0.81 1.34 1.02 -0.70 -1.25	0.291 0.223 0.419 0.179 0.307 0.486 0.210	-6.845404 -3.349136 -5.400269 0416348 1173281 -1.813989 -3.800234	22.83304 .7797335 2.248714 .2234789 .3722323 .8629892 8345726
_cons	2.670554	4.066588	0.66	0.511	-5.299812	10.64092

Comparing Model Specifications

- Why include GDP per capita and its square as independent variables?
 - You would do this to check if a variable has a curvilinear effect.
 - For example, higher levels of incomes have a negative impact on transitions.
 - But if the impact is not significant and there is no good <u>theoretical</u> reason to include it, it should be dropped from the regression.

Alternative Model Specification

So let us try the same analysis without the square term.

anydem	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
Lpdem Lqdp	0334039 .1283458	.7746361 .0646331	-0.04 1.99	0.966 0.047	 -1.551663 .0016672	1.484855
Lpdemgdp	.4573869	.0991983	4.61	0.000	.2629618	.651812
Lgrowth	4904828	.6819738	-0.72	0.472	-1.827127	.8461612
Lpdemgrowth	-1.515618	1.176133	-1.29	0.198	-3.820797	.789561
_cons	-2.756896	.4980252	-5.54	0.000	-3.733007	-1.780784

Alternative Model Specification

So let us try the same analysis without the square term.

anydem	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Lpdem	0334039	.7746361	-0.04	0.966	-1.551663	1.484855
Lgdp	.1283458	.0646331	1.99	0.047	.0016672	.2550243
Lpdemgdp	.4573869	.0991983	4.61	0.000	.2629618	.651812
Lgrowth	4904828	.6819738	-0.72	0.472	-1.827127	.8461612
Lpdemgrowth	-1.515618	1.176133	-1.29	0.198	-3.820797	.789561
_cons	-2.756896	.4980252	-5.54	0.000	-3.733007	-1.780784

It works!

 Significant results with other covariates added, as well (population, education, etc.)

Regression Diagnostics

- So GDP predicts democracy
 - But does this really have a substantive impact?

Raising GDP from its minimum to maximum value increases the probability of a democratic transition from 2% to 6.5%.

This decreases the expected life of an autocratic regime from 34 years to just 10 years.

Regression Diagnostics

So GDP predicts Democracy,

But does this really have a substantive impact?

Raising GDP from its minimum to maximum value decreases the probability of an autocratic transition from 23% to (essentially) 0%.

The End (Or the Beginning)

- What else could you do with this analysis?
 - Add more covariates
 - Education
 - Population
 - Resource Curse
 - □ Treat data differently
 - Use entire democracy-autocracy scale, rather than dividing it into discrete categories
 - Treat this as a survival problem

Others?

Class Organization

- Text: Statistical Sleuth
- Website: CourseWorks
- Grades:

Homework:	35%
Midterm:	25%
Final Paper and Presentation:	35%
Participation:	5%