Logit vs. Probit Review

- Use with a dichotomous dependent variable
- Need a link function $F(Y)$ going from the original Y to continuous Y'
 - Probit: $F(Y) = \Phi^{-1}(Y)$
 - Logit: $F(Y) = \log[Y/(1-Y)]$
- Do the regression and transform the findings back from Y' to Y, interpreted as a probability
 - Unlike linear regression, the impact of an independent variable X depends on its value
 - And the values of all other independent variables
Classical vs. Logistic Regression

- Data Structure: continuous vs. discrete
 - Logistic/Probit regression is used when the dependent variable is binary or dichotomous.

- Different assumptions between traditional regression and logistic regression
 - The population means of the dependent variables at each level of the independent variable are not on a straight line, i.e., no linearity.
 - The variance of the errors are not constant, i.e., no homogeneity of variance.
 - The errors are not normally distributed, i.e., no normality.
Logistic Regression Assumptions

1. The model is correctly specified, i.e.,
 - The true conditional probabilities are a logistic function of the independent variables;
 - No important variables are omitted;
 - No extraneous variables are included; and
 - The independent variables are measured without error.

2. The cases are independent.

3. The independent variables are not linear combinations of each other.
 - Perfect multicollinearity makes estimation impossible,
 - While strong multicollinearity makes estimates imprecise.
About Logistic Regression

- It uses a maximum likelihood estimation rather than the least squares estimation used in traditional multiple regression.
- The general form of the distribution is assumed.
- Starting values of the estimated parameters are used and the likelihood that the sample came from a population with those parameters is computed.
- The values of the estimated parameters are adjusted iteratively until the maximum likelihood value for the estimated parameters is obtained.
 - That is, maximum likelihood approaches try to find estimates of parameters that make the data actually observed "most likely."
Interpreting Logistic Coefficients

- Logistic slope coefficients can be interpreted as the effect of a unit of change in the X variable on the predicted logits with the other variables in the model held constant.
 - That is, how a one unit change in X effects the log of the odds when the other variables in the model held constant.
Interpreting Odds Ratios

- Odds ratios in logistic regression can be interpreted as the effect of a one unit of change in X in the predicted odds ratio with the other variables in the model held constant.

$$\frac{\text{odds(when variable is incremented by 1)}}{\text{odds(when variable is not incremented)}} = \frac{\frac{P(\text{event} \mid x + 1)}{1 - P(\text{event} \mid x + 1)}}{\frac{P(\text{event} \mid x)}{1 - P(\text{event} \mid x)}}$$
Interpreting Odds Ratios

- An important property of odds ratios is that they are constant.
 - It does not matter what values the other independent variables take on.

- For instance, say you estimate the following logistic regression model:
 - $-13.70837 + .1685 x_1 + .0039 x_2$
 - The effect of the odds of a 1-unit increase in x_1 is $\exp(.1685) = 1.18$
 - Meaning the odds increase by 18%

- Incrementing x_1 increases the odds by 18% regardless of the value of x_2 (0, 1000, etc.)
Example: Admissions Data

- 20 observations of admission into a graduate program
- Data collected includes whether admitted, gender (1 if male) and the student’s aptitude on a 10 point scale.
Admissions Example – Calculating the Odds Ratio

- Example: admissions to a graduate program
 - Assume 70% of the males and 30% of the females are admitted in a given year
 - Let P equal the probability a male is admitted.
 - Let Q equal the probability a female is admitted.
 - Odds males are admitted: \(\text{odds}(M) = \frac{P}{1-P} = \frac{.7}{.3} = 2.33 \)
 - Odds females are admitted: \(\text{odds}(F) = \frac{Q}{1-Q} = \frac{.3}{.7} = 0.43 \)
 - The odds ratio for male vs. female admits is then
 - \(\frac{\text{odds}(M)}{\text{odds}(F)} = \frac{2.33}{0.43} = 5.44 \)

- The odds of being admitted to the program are about 5.44 times greater for males than females.
Ex. 1: Categorical Independent Var.

```
. logit admit gender

Logit estimates

Number of obs = 20
LR chi2(1) = 3.29
Prob > chi2 = 0.0696
Log likelihood = -12.217286 Pseudo R2 = 0.1187

------------------------------------------------------------------------------
admit |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval]
---------+--------------------------------------------------------------------
gender |   1.694596   .9759001      1.736   0.082      -.2181333    3.607325
  _cons |  -.8472979   .6900656     -1.228   0.220      -2.199801    .5052058
------------------------------------------------------------------------------

`dis exp(_b[gender]+_b[_cons])/(1+exp(_b[gender]+_b[_cons]))` .7
`dis exp(_b[_cons])/(1+exp(_b[_cons]))` .3
```

Formula to back out Y from logit estimates:

\[Y = \frac{\exp(X\beta)}{1 + \exp(X\beta)} \]
Ex. 1: Categorical Independent Variable

To get the results in terms of odds ratios:

```
logit admit gender, or
```

| admit | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-------|------------|-----------|------|-------|---------------------|
| gender | 5.444444 | 5.313234 | 1.736| 0.082 | .8040183 36.86729 |

Translates original logit coefficients to odds ratio on gender
Same as the odds ratio we calculated by hand above
Ex. 1: Categorical Independent Variable

To get the results in terms of odds ratios:

logit admit gender, or

Logit estimates

Number of obs = 20
LR chi2(1) = 3.29
Prob > chi2 = 0.0696
Log likelihood = -12.217286

Pseudo R2 = 0.1187

| admit | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-------|-------------|-----------|-----|-----|----------------------|
| gender | 5.444444 | 5.313234 | 1.736 | 0.082 | .8040183 36.86729 |

So 5.4444 is the “exponentiated coefficient”
Don’t confuse this with the logit coefficient (1.6945)
Ex. 1: Categorical Independent Variable

To get the results in terms of odds ratios:

```
logit admit gender, or
```

Logit estimates

<table>
<thead>
<tr>
<th></th>
<th>Number of obs</th>
<th>LR chi2(1)</th>
<th>Prob > chi2</th>
<th>Pseudo R2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20</td>
<td>3.29</td>
<td>0.0696</td>
<td>0.1187</td>
</tr>
</tbody>
</table>

Log likelihood = -12.217286

| admit | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|--------|------------|-----------|-------|------|----------------------|
| gender | 5.444444 | 5.313234 | 1.736 | 0.082| .8040183 36.86729 |

That is, exp(1.694596) = 5.444444
Ex. 2: Continuous Independent Var.

logit admit apt

Iteration 0: log likelihood = -13.862944
Iteration 1: log likelihood = -9.6278718
Iteration 2: log likelihood = -9.3197603
Iteration 3: log likelihood = -9.3029734
Iteration 4: log likelihood = -9.3028914

Logit estimates

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|--------------|---------|-----------|------|-----|---------------------|
| apt | 0.9455112 | 0.422872 | 2.236| 0.025 | 0.1166974 – 1.774325 |
| _cons | -4.095248 | 1.83403 | -2.233| 0.026| -7.689881 – 0.5006154 |

Look at the probability of being admitted to graduate school given the candidate’s aptitude.
Ex. 2: Continuous Independent Var.

logit admit apt

Iteration 0: log likelihood = -13.862944
Iteration 1: log likelihood = -9.6278718
Iteration 2: log likelihood = -9.3197603
Iteration 3: log likelihood = -9.3029734
Iteration 4: log likelihood = -9.3028914

Logit estimates

Log likelihood = -9.3028914

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-------|-------|-----------|-------|------|----------------------|
| apt | 0.9455112 | 0.422872 | 2.236 | 0.025 | 0.1166974 1.774325 |
| _cons | -4.095248 | 1.83403 | -2.233 | 0.026 | -7.689881 -0.5006154 |

Look at the probability of being admitted to graduate school given the candidate’s aptitude:

Aptitude is positive and significantly related to being admitted into the graduate program.
Ex. 2: Continuous Independent Var.

logit admit apt, or

Logit estimates

Number of obs = 20
LR chi2(1) = 9.12
Prob > chi2 = 0.0025
Log likelihood = -9.3028914
Pseudo R2 = 0.3289

| admit | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-------|------------|-----------|-------|------|---------------------|
| apt | 2.574129 | 1.088527 | 2.236 | 0.025 | 1.123779 5.8963 |

This means:
\[
\frac{\Pr(\text{admit} | \text{apt} + 1)/1 - \Pr(\text{admit} | \text{apt} + 1)}{\Pr(\text{admit} | \text{apt})/1 - \Pr(\text{admit} | \text{apt})} = 2.57
\]
Ex. 2: Continuous Independent Var.

predict p
line p aptitude, sort
Ex. 2: Continuous Independent Var.

\[Pr(\text{admit}) \]

- \text{predict p}
- \text{line p aptitude, sort}

50% chance of being admitted
Example 3: Categorical & Continuous Independent Variables

logit admit gender apt

Logit estimates

Number of obs = 20
LR chi2(2) = 9.16
Prob > chi2 = 0.0102
Log likelihood = -9.2820991 Pseudo R2 = 0.3304

--
admit | Coef. Std. Err. z P>|z| [95% Conf. Interval]
---------+--
gender | .2671938 1.300899 0.205 0.837 -2.282521 2.816909
 apt | .8982803 .4713791 1.906 0.057 -.0256057 1.822166
 _cons | -4.028765 1.838354 -2.192 0.028 -7.631871 -.4256579
--

Gender is now insignificant! Once aptitude is taken into account gender plays no role.
Likelihood Ratio Test

- Log-likelihoods can be used to test hypotheses about nested models.

- Say we want to test the null hypothesis H_0 about one or more coefficients
 - For example, $H_0: x_1 = 0$, or $H_0: x_1 = x_2 = 0$

- Then the likelihood ratio is the ratio of the likelihood of imposing H_0 over the likelihood of the unrestricted model:
 - $\mathcal{L}(\text{model restricted by } H_0)/\mathcal{L}(\text{unrestricted model})$

- If H_0 is true, then this ratio should be near 1
Likelihood Ratio Test

- Under general assumptions,
 \[-2 \times (\text{log of the likelihood ratio}) \sim \chi^2(k)\]
 - Where the k degrees of freedom are the number of restrictions specified in \(H_0\)

- This is called a **likelihood ratio test**

- Call the restricted likelihood \(L_0\), and the unrestricted likelihood \(L\).

- Then we can rewrite the equation above as:
 \[-2\log(L_0 / L) = -2\log(L_0) - 2\log(L) \sim \chi^2(k)\]

- The difference of the log-likelihoods will be distributed as \(\chi^2\).
Likelihood Ratio Test

- In our admissions example, take
 - \(\text{Pr(} \text{admit}) = \beta_0 + \beta_1 \times \text{gender} + \beta_2 \times \text{aptitude} \)
 - The log-likelihood of this model was -9.282
Likelihood Ratio Test

In our admissions example, take

\[\Pr(\text{admit}) = \beta_0 + \beta_1 \times \text{gender} + \beta_2 \times \text{aptitude} \]

The log-likelihood of this model was -9.282

```
logit admit gender apt
Logit estimates                                   Number of obs =         20
LR chi2(2)    =       9.16
Prob > chi2     =     0.0102
Log likelihood = -9.2820991                       Pseudo R2       =     0.3304
------------------------------------------------------------------------------
admit |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval]
---------+--------------------------------------------------------------------
gender |   .2671938   1.300899      0.205   0.837      -2.282521    2.816909
apt |   .8982803   .4713791      1.906   0.057      -.0256057    1.822166
_cons |  -4.028765   1.838354     -2.192   0.028      -7.631871   -.4256579
------------------------------------------------------------------------------
```
Likelihood Ratio Test

In our admissions example, take

\[\text{Pr(\text{admit})} = \beta_0 + \beta_1 \times \text{gender} + \beta_2 \times \text{aptitude} \]

The log-likelihood of this model was \(-9.282\)

\[\logit \text{ admit gender apt} \]

Logit estimates

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|--------|---------|-----------|-------|-------|----------------------|
| gender | .2671938| 1.300899 | 0.205 | 0.837 | -2.282521 2.816909 |
| apt | .8982803| .4713791 | 1.906 | 0.057 | -.0256057 1.822166 |
| _cons | -4.028765| 1.838354 | -2.192| 0.028 | -7.631871 -.4256579 |

Log-likelihood with no restrictions

\[\log \text{ likelihood} = -9.2820991 \]

Number of obs = 20
LR chi2(2) = 9.16
Prob > chi2 = 0.0102
Pseudo R2 = 0.3304
Likelihood Ratio Test

- In our admissions example, take
 - \(\Pr(\text{admit}) = \beta_0 + \beta_1 \times \text{gender} + \beta_2 \times \text{aptitude} \)
 - The log-likelihood of this model was -9.282

- First look at \(H_0: \beta_2 = 0 \)

```
logit admit gender, or
Logit estimates
Number of obs = 20
LR chi2(1) = 3.29
Prob > chi2 = 0.0696
Log likelihood = -12.217286 Pseudo R2 = 0.1187

| admit | Odds Ratio | Std. Err. | z     | P>|z| | [95% Conf. Interval] |
|-------|------------|-----------|-------|-----|----------------------|
| gender | 5.444444   | 5.313234  | 1.736 | 0.082 | .8040183 36.86729 |
```
Likelihood Ratio Test

- In our admissions example, take
 - $\Pr(\text{admit}) = \beta_0 + \beta_1 \ast \text{gender} + \beta_2 \ast \text{aptitude}$
 - The log-likelihood of this model was -9.282

- First look at $H_0: \beta_2 = 0$

```
logit admit gender, or
Logit estimates
Number of obs = 20
LR chi2(1) = 3.29
Prob > chi2 = 0.0696
Log likelihood = -12.217286
Pseudo R2 = 0.1187

| admit | Odds Ratio | Std. Err. | z   | P>|z|   | [95% Conf. Interval] |
|-------|------------|-----------|-----|-------|---------------------|
| gender| 5.444444   | 5.313234  | 1.736| 0.082 | .8040183 36.86729   |
```
Likelihood Ratio Test

- In our admissions example, take
 - $\Pr(\text{admit}) = \beta_0 + \beta_1 \times \text{gender} + \beta_2 \times \text{aptitude}$
 - The log-likelihood of this model was -9.282

- First look at H_0: $\beta_2 = 0$
 - The likelihood of the regression with gender but not aptitude was -12.217

- Likelihood ratio test:
 - $[-2 \times (-12.217)] - [-2 \times (-9.282)] = 5.87$
 - From Stata
 - `dis 1- chi2(1, 5.87)`
 - `.01540105`

 Significant at 5% level. Therefore we can reject the null hypothesis that $\beta_2 = 0$.
Likelihood Ratio Test

In our admissions example, take

- $Pr(\text{admit}) = \beta_0 + \beta_1*\text{gender} + \beta_2*\text{aptitude}$
- The log-likelihood of this model was -9.282

Now look at $H_0: \beta_1 = 0$
Likelihood Ratio Test

- In our admissions example, take
 - Pr(admit) = \(\beta_0 + \beta_1 \cdot \text{gender} + \beta_2 \cdot \text{aptitude} \)
 - The log-likelihood of this model was -9.282

- Now look at \(H_0: \beta_1 = 0 \)

```
logit admit apt, or
Logit estimates
Number of obs = 20
LR chi2(1) = 9.12 Prob > chi2 = 0.0025
Log likelihood = -9.3028914 Pseudo R2 = 0.3289

------------------------------------------------------------------------------
admit | Odds Ratio   Std. Err.       z     P>|z|       [95% Conf. Interval]
---------+--------------------------------------------------------------------
apt |   2.574129   1.088527      2.236   0.025       1.123779      5.8963
------------------------------------------------------------------------------
```
Likelihood Ratio Test

- In our admissions example, take
 - \(Pr(\text{admit}) = \beta_0 + \beta_1 \times \text{gender} + \beta_2 \times \text{aptitude} \)
 - The log-likelihood of this model was -9.282
- Now look at \(H_0: \beta_1 = 0 \)

```
logit admit apt, or  
Logit estimates 

<table>
<thead>
<tr>
<th>Number of obs</th>
<th>LR chi2(1)</th>
<th>Prob &gt; chi2</th>
<th>Pseudo R2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9.12</td>
<td>0.0025</td>
<td>0.3289</td>
</tr>
</tbody>
</table>

Log likelihood = -9.3028914

| admit | Odds Ratio | Std. Err. | z   | P>|z| | [95% Conf. Interval] |
|-------|------------|-----------|-----|-----|----------------------|
| apt   | 2.574129   | 1.088527  | 2.236 | 0.025 | 1.123779 5.8963    |
```

Log-likelihood with gender=0
Likelihood Ratio Test

- In our admissions example, take
 - \(\Pr(\text{admit}) = \beta_0 + \beta_1 \cdot \text{gender} + \beta_2 \cdot \text{aptitude} \)
 - The log-likelihood of this model was -9.282

- Now look at \(H_0: \beta_1 = 0 \)
 - The likelihood of the regression with gender but not aptitude was -9.303

- Likelihood ratio test:
 - \([-2 \times (-9.303)] - [-2 \times (-9.282)] = 0.042\)
 - From Stata
 - \texttt{dis 1- chi2(1, .042)}
 - .83761977

Not significant at 5% level. Therefore we fail to reject the null hypothesis that \(\beta_1 = 0 \).
Example 4: Honors Composition using High School and Beyond Dataset

use http://www.gseis.ucla.edu/courses/data/hsb2

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>200</td>
<td>100.5</td>
<td>57.87918</td>
<td>1</td>
<td>200</td>
</tr>
<tr>
<td>female</td>
<td>200</td>
<td>.545</td>
<td>.4992205</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>race</td>
<td>200</td>
<td>3.43</td>
<td>1.039472</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>ses</td>
<td>200</td>
<td>2.055</td>
<td>.7242914</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>schtyp</td>
<td>200</td>
<td>1.16</td>
<td>.3675261</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>prog</td>
<td>200</td>
<td>2.025</td>
<td>.6904772</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>read</td>
<td>200</td>
<td>52.23</td>
<td>10.25294</td>
<td>28</td>
<td>76</td>
</tr>
<tr>
<td>write</td>
<td>200</td>
<td>52.775</td>
<td>9.478586</td>
<td>31</td>
<td>67</td>
</tr>
<tr>
<td>math</td>
<td>200</td>
<td>52.645</td>
<td>9.368448</td>
<td>33</td>
<td>75</td>
</tr>
<tr>
<td>science</td>
<td>200</td>
<td>51.85</td>
<td>9.900891</td>
<td>26</td>
<td>74</td>
</tr>
<tr>
<td>socst</td>
<td>200</td>
<td>52.405</td>
<td>10.73579</td>
<td>26</td>
<td>71</td>
</tr>
<tr>
<td>honors</td>
<td>200</td>
<td>.265</td>
<td>.4424407</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ses1</td>
<td>200</td>
<td>.235</td>
<td>.4250628</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ses2</td>
<td>200</td>
<td>.475</td>
<td>.5006277</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ses3</td>
<td>200</td>
<td>.29</td>
<td>.4549007</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Example 4: Categorical and continuous independent variables

```stata
generate honors = (write>=60)

/* create dummy coding for ses */
tabulate ses, generate(ses)

<table>
<thead>
<tr>
<th>ses</th>
<th>Freq.</th>
<th>Percent</th>
<th>Cum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>low</td>
<td>47</td>
<td>23.50</td>
<td>23.50</td>
</tr>
<tr>
<td>middle</td>
<td>95</td>
<td>47.50</td>
<td>71.00</td>
</tr>
<tr>
<td>high</td>
<td>58</td>
<td>29.00</td>
<td>100.00</td>
</tr>
<tr>
<td>Total</td>
<td>200</td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>

tabulate honors

<table>
<thead>
<tr>
<th>honors</th>
<th>Freq.</th>
<th>Percent</th>
<th>Cum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>147</td>
<td>73.50</td>
<td>73.50</td>
</tr>
<tr>
<td>1</td>
<td>53</td>
<td>26.50</td>
<td>100.00</td>
</tr>
<tr>
<td>Total</td>
<td>200</td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>
```
Example 4: Categorical and continuous independent variables

```plaintext
generate honors = (write>=60)

/* create dummy coding for ses */
tabulate ses, generate(ses)

<table>
<thead>
<tr>
<th>ses</th>
<th>Freq.</th>
<th>Percent</th>
<th>Cum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>low</td>
<td>47</td>
<td>23.50</td>
<td>23.50</td>
</tr>
<tr>
<td>middle</td>
<td>95</td>
<td>47.50</td>
<td>71.00</td>
</tr>
<tr>
<td>high</td>
<td>58</td>
<td>29.00</td>
<td>100.00</td>
</tr>
<tr>
<td>Total</td>
<td>200</td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>

tabulate honors

<table>
<thead>
<tr>
<th>honors</th>
<th>Freq.</th>
<th>Percent</th>
<th>Cum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>147</td>
<td>73.50</td>
<td>73.50</td>
</tr>
<tr>
<td>1</td>
<td>53</td>
<td>26.50</td>
<td>100.00</td>
</tr>
<tr>
<td>Total</td>
<td>200</td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>

(Creates new variables ses1, ses2, and ses3)
Example 4: Categorical and continuous independent var.

```plaintext
describe honors female ses1 ses2 read math

<table>
<thead>
<tr>
<th>variable name</th>
<th>storage</th>
<th>display</th>
<th>value</th>
<th>label</th>
<th>variable label</th>
</tr>
</thead>
<tbody>
<tr>
<td>honors</td>
<td>float</td>
<td>%9.0g</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>female</td>
<td>float</td>
<td>%9.0g</td>
<td>fl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ses1</td>
<td>byte</td>
<td>%8.0g</td>
<td></td>
<td>ses==low</td>
<td>ses==low</td>
</tr>
<tr>
<td>ses2</td>
<td>byte</td>
<td>%8.0g</td>
<td></td>
<td>ses==middle</td>
<td>ses==middle</td>
</tr>
<tr>
<td>read</td>
<td>float</td>
<td>%9.0g</td>
<td></td>
<td>reading score</td>
<td>reading score</td>
</tr>
<tr>
<td>math</td>
<td>float</td>
<td>%9.0g</td>
<td></td>
<td>math score</td>
<td>math score</td>
</tr>
</tbody>
</table>

`tab1 honors female ses1 ses2 read math`

-> tabulation of honors

<table>
<thead>
<tr>
<th>honors</th>
<th>Freq.</th>
<th>Percent</th>
<th>Cum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>147</td>
<td>73.50</td>
<td>73.50</td>
</tr>
<tr>
<td>1</td>
<td>53</td>
<td>26.50</td>
<td>100.00</td>
</tr>
<tr>
<td>Total</td>
<td>200</td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>

-> tabulation of female

<table>
<thead>
<tr>
<th>female</th>
<th>Freq.</th>
<th>Percent</th>
<th>Cum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>male</td>
<td>91</td>
<td>45.50</td>
<td>45.50</td>
</tr>
<tr>
<td>female</td>
<td>109</td>
<td>54.50</td>
<td>100.00</td>
</tr>
<tr>
<td>Total</td>
<td>200</td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>

-> tabulation of ses1

<table>
<thead>
<tr>
<th>ses==low</th>
<th>Freq.</th>
<th>Percent</th>
<th>Cum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>153</td>
<td>76.50</td>
<td>76.50</td>
</tr>
<tr>
<td>1</td>
<td>47</td>
<td>23.50</td>
<td>100.00</td>
</tr>
<tr>
<td>Total</td>
<td>200</td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>

-> tabulation of ses2

<table>
<thead>
<tr>
<th>ses==middle</th>
<th>Freq.</th>
<th>Percent</th>
<th>Cum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>105</td>
<td>52.50</td>
<td>52.50</td>
</tr>
<tr>
<td>1</td>
<td>95</td>
<td>47.50</td>
<td>100.00</td>
</tr>
<tr>
<td>Total</td>
<td>200</td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>
```
Example 4: Categorical and continuous independent var.

We would normally worry about this but....
Example 4: Categorical and continuous independent var.

The logit link function takes logs of the series.

We would normally worry about this but....
Example 4: Categorical and continuous independent variables

```
logit honors female ses1 ses2 read math

Logit estimates
Number of obs = 200
LR chi2(5) = 87.30
Prob > chi2 = 0.0000
Log likelihood = -71.994756
Pseudo R2 = 0.3774

honors | Coef. Std. Err. z P>|z| [95% Conf. Interval]
---------+---
female | 1.145726 0.451359 2.538 0.011 0.2610792 2.030374
ses1 | -0.0541296 0.5945439 -0.091 0.927 -1.219414 1.111155
ses2 | -1.094532 0.483396 -2.264 0.024 -2.041970 -0.1470932
read | 0.0687277 0.0287044 2.394 0.017 0.0124681 0.1249873
math | 0.1358904 0.0336874 4.034 0.000 0.0698642 0.2019166
_cons | -12.499190 1.926421 -6.488 0.000 -16.274910 -8.723475

test ses1 ses2
(1) ses1 = 0.0
(2) ses2 = 0.0

 chi2(2) = 6.13
Prob > chi2 = 0.0466
```

So the socioeconomic variables are significant as a group.
Example 4: Categorical and continuous independent variables

logistic honors female ses1 ses2 read math

Logit estimates

|                | Odds Ratio | Std. Err. | z     | P>|z| | [95% Conf. Interval] |
|----------------|------------|-----------|-------|-----|----------------------|
| honors         |            |           |       |     |                      |
| female         | 3.144725   | 1.4194    | 2.538 | 0.011 | 1.29833 7.616932     |
| ses1           | .9473093   | .563217   | -0.091 | 0.927 | .2954031 3.037865    |
| ses2           | .3346963   | .1617908  | -2.264 | 0.024 | .1297728 .8632135   |
| read           | 1.071145   | .0307466  | 2.394 | 0.017 | 1.012546 1.133134    |
| math           | 1.145556   | .0385909  | 4.034 | 0.000 | 1.072363 1.223746    |

Test ses1 ses2
(1) ses1 = 0.0
(2) ses2 = 0.0

chi2(2) = 6.13
Prob > chi2 = 0.0466

So the socioeconomic variables are significant as a group.
Graphing the Results

- Let’s say we want to see how the probability of honors changes with the reading score.
- Stata’s `postgr3` command will create a new variable giving the probability after a logit.

```
.postgr3 read, gen(avg)
.line avg read, sort
```
Graphing the Results

- Can do this separately for males & females

Impact of Reading Score on Probability of Honors

. postgr3 read, gen(male) x(female=0) nodraw
. postgr3 read, gen(fem) x(female=1) nodraw
. graph twoway (line avg read, sort) (line male read, sort) (line fem read, sort)
Graphing the Results

- Can do this separately for males & females

Impact of Reading Score on Probability of Honors

Marginal impact is higher for females than for males

```
. postgr3 read, gen(male) x(female=0) nodraw
. postgr3 read, gen(fem) x(female=1) nodraw
. graph twoway (line avg read, sort) (line male read, sort) (line fem read, sort)
```
Assessing Model Fit

- How good a job does the model do of predicting outcomes?
- General answer is “hits and misses”
  - What percent of the observations the model correctly predicts
- How to calculate:
  - Use model to generate the probability \( p \) that each observation will have \( Y=1 \)
    - If \( p \geq 0.5 \), predict \( Y=1 \)
    - If \( p < 0.5 \), predict \( Y=0 \)
  - Check predictions against the actual outcomes in the data
Assessing Model Fit

- Can do this by checking predictions
  - Events that happened that were predicted to happen
    - E.g., model correctly predicts honors
  - Events that didn’t happen that were predicted not to happen
    - E.g., model correctly predict no honors

- Or can go the other way around
  - The probability of a positive prediction given honors
    - This is the model’s sensitivity
  - The probability of a negative prediction given
Example 4: Categorical and continuous independent variables

lstat

Logistic model for honors

<table>
<thead>
<tr>
<th>Classified</th>
<th>D</th>
<th>~D</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>31</td>
<td>12</td>
<td>43</td>
</tr>
<tr>
<td>-</td>
<td>22</td>
<td>135</td>
<td>157</td>
</tr>
<tr>
<td>Total</td>
<td>53</td>
<td>147</td>
<td>200</td>
</tr>
</tbody>
</table>

Classified + if predicted Pr(D) >= .5

True D defined as honors ~= 0

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>Pr( +</td>
</tr>
<tr>
<td>Specificity</td>
<td>Pr( -</td>
</tr>
<tr>
<td>Positive predictive value</td>
<td>Pr( D</td>
</tr>
<tr>
<td>Negative predictive value</td>
<td>Pr(~D</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>False + rate for true ~D</td>
<td>Pr( +</td>
</tr>
<tr>
<td>False - rate for true D</td>
<td>Pr( -</td>
</tr>
<tr>
<td>False + rate for classified +</td>
<td>Pr(~D</td>
</tr>
<tr>
<td>False - rate for classified -</td>
<td>Pr( D</td>
</tr>
</tbody>
</table>

Correctly classified 83.00%

Definition of D as student getting honors
## Summary of correct predictions

### Logistic model for honors

<table>
<thead>
<tr>
<th>Classified</th>
<th>D</th>
<th>~D</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>31</td>
<td>12</td>
<td>43</td>
</tr>
<tr>
<td>-</td>
<td>22</td>
<td>135</td>
<td>157</td>
</tr>
<tr>
<td>Total</td>
<td>53</td>
<td>147</td>
<td>200</td>
</tr>
</tbody>
</table>

Classified + if predicted \( \Pr(D) \geq 0.5 \)

True D defined as honors \( \sim 0 \)

|                           | \( \Pr(+|D) \) | \( \Pr(-|\sim D) \) | \( \Pr(D|+) \) | \( \Pr(\sim D|-) \) |
|---------------------------|----------------|------------------|------------|----------------|
| Sensitivity               | 58.49%         | 91.84%           | 72.09%     | 85.99%         |
| Specificity               |                |                  |            |                |
| Positive predictive value |                |                  |            |                |
| Negative predictive value |                |                  |            |                |

False + rate for true ~D	\( \Pr(+	\sim D) \)	8.16%
False - rate for true D	\( \Pr(-	D) \)	41.51%
False + rate for classified +	\( \Pr(\sim D	+) \)	27.91%
False - rate for classified -	\( \Pr(D	-) \)	14.01%

Correctly classified 83.00%
Example 4: Categorical and continuous independent variables

lstat

Logistic model for honors

<table>
<thead>
<tr>
<th>Classified</th>
<th>D</th>
<th>~D</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>31</td>
<td>12</td>
<td>43</td>
</tr>
<tr>
<td>-</td>
<td>22</td>
<td>135</td>
<td>157</td>
</tr>
<tr>
<td>Total</td>
<td>53</td>
<td>147</td>
<td>200</td>
</tr>
</tbody>
</table>

Classified + if predicted Pr(D) >= .5
True D defined as honors ~= 0

---

Sensitivity       Pr( +| D)   58.49%
Specificity       Pr( -|~D)   91.84%
Positive predictive value Pr( D| +)   72.09%
Negative predictive value Pr(~D| -)   85.99%
---

False + rate for true ~D Pr( +|~D)   8.16%
False - rate for true D Pr( -| D)   41.51%
False + rate for classified + Pr(~D| +)   27.91%
False - rate for classified - Pr( D| -)   14.01%
---

Correctly classified 83.00%

Summary of correct predictions

Summary of incorrect predictions
Example 4: Categorical and continuous independent variables

<table>
<thead>
<tr>
<th>Classified</th>
<th>D</th>
<th>~D</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>31</td>
<td>12</td>
<td>43</td>
</tr>
<tr>
<td>-</td>
<td>22</td>
<td>135</td>
<td>157</td>
</tr>
<tr>
<td>Total</td>
<td>53</td>
<td>147</td>
<td>200</td>
</tr>
</tbody>
</table>

Classified + if predicted \( \Pr(D) \geq 0.5 \)

True D defined as honors \( \sim 0 \)

Overall success rate:

\[
\frac{31 + 135}{200} = 83.00\%
\]
Example 4: Categorical and continuous independent variables

```
1stat

Logistic model for honors

| Classified | D | ~D | Total |
|-----------+------+-----+-------|
| + | 31 | 12 | 43 |
| - | 22 | 135 | 157 |
| Total | 53 | 147 | 200 |

Classified + if predicted Pr(D) >= .5
True D defined as honors ~= 0

Sensitivity Pr(+| D) 58.49%
Specificity Pr(-|~D) 91.84%
Positive predictive value Pr(D| +) 72.09%
Negative predictive value Pr(~D| -) 85.99%

False + rate for true ~D Pr(+|~D) 8.16%
False - rate for true D Pr(-| D) 41.51%
False + rate for classified + Pr(~D| +) 27.91%
False - rate for classified - Pr(D| -) 14.01%

Correctly classified 83.00%

Overall success rate:
(31 + 135) / 200 = 83%
```
Assessing Model Fit

- This is all calculated using 50% as a cutoff point for positive predictions.
- But this isn’t set in stone; depending on your application, you might want to change it.
- You might want to avoid false positives:
  - For example, don’t convict innocent people.
  - Then you would set the cutoff higher than 50%.
- Or you might want to avoid false negatives:
  - For example, don’t report that someone who has a disease is actually healthy.
  - Then you would set the cutoff lower than 50%.
Assessing Model Fit

- We can imagine changing the cutoff point $\pi$ continuously from 0 to 1.

- Recall that
  - Sensitivity = $\text{Prob}(+ | D)$
  - Specificity = $\text{Prob}(- | \sim D)$

- At $\pi=0$, everything is predicted to be positive
  - That means you will misclassify all the negatives
  - So the sensitivity=1, specificity=0

- At $\pi=1$, everything is predicted to be negative
  - That means you will misclassify all the positives
  - So the sensitivity=0, specificity=1
Assessing Model Fit

- In between, you can vary the number of false positives and false negatives
  - If your model does a good job of predicting outcomes, these should be low for all $\pi$
- The ROC curve plots the sensitivity and $1$-specificity as $\pi$ goes from 0 to 1
  - The better the model does at predicting, the greater will be the area under the ROC curve
- Produce these with Stata command "lroc"
Example 4: Categorical and continuous independent variables

Area under the ROC curve is 0.8912

lroc
Logistic model for honors
number of observations = 200
area under ROC curve = 0.8912
Example 4: Categorical and continuous independent variables

Or, you can use the “lsens” function to directly plot the sensitivity and specificity as your cutoff changes from 0 to 1.

```
. lsens
```
Diagnostic Plots

- Can obtain predicted values in the usual way, with command “predict p”
- Two methods to calculate residuals
  - Pearson residuals: “predict x, dx2”
  - Deviance residuals: “predict z, ddeviance”
- Leverage: “predict b, dbeta”
- Draw the graphs:
  - Pearson residuals vs. predicted probabilities
  - Deviance residuals vs. predicted probabilities
  - Leverage residuals vs. predicted probabilities
Two distinct patterns of residuals

One for Y=1, the other for Y=0

As with all logits and probits, the residuals are definitely heteroskedastic

scatter x p, ti(Pearson Residuals vs. Predicted Probabilities)
Diagnostic Plots

Pearson Residuals vs. Predicted Probabilities

High residual points were predicted to be Y=0, but got honors anyway

scatter x p, ti(Pearson Residuals vs. Predicted Probabilities)
Diagnostic Plots

Same pattern as before.

Same two points as outliers

```
scatter x p, ti(Deviance Residuals vs. Predicted Probabilities)
```
Diagnostic Plots

Different points have large influence.

Could eliminate these and see if results change.

```
scatter b p, ti(Influence vs. Predicted Probabilities)
```
One way to show both residuals and influence on one graph is to weight each residual marker by the value of its influence.

scatter x p [weight=b], msymbol(oh) ylab(0 (5) 35)
Multinomial Data

- We now move on to study logits when there are more than 2 possible outcomes.
- There are two major categories of analysis: ordered and unordered outcomes.
- Examples of unordered outcomes:
  - Religion: Protestant, Catholic, or other
  - Mode of transportation: bus, car, subway, walking
- Examples of ordered outcomes:
  - Regime type: Autocracy, Partial Dem., Full Dem.
  - Socioeconomic status: High, Medium, Low
Unordered Outcomes

- Pick a base category and calculate the odds of the other possible outcomes relative to it.
  - For example, say a student can enter a general, vocational, or academic program.
  - Use academic as the base category.

Then we will use multinomial logit to estimate:
- \( \frac{\text{Prob}(\text{general})}{\text{Prob}(\text{academic})} \)
- \( \frac{\text{Prob}(\text{vocational})}{\text{Prob}(\text{academic})} \)

That is, the probability of choosing general or vocational relative to an academic program.
Unordered Outcomes

- Pick a base category and calculate the odds of the other possible outcomes relative to it.
  - For example, say a student can enter a general, vocational, or academic program.
  - Use academic as the base category.

- Then we will use multinomial logit to estimate:
  - \( \frac{\text{Prob(general)}}{\text{Prob(academic)}} \)
  - \( \frac{\text{Prob(vocational)}}{\text{Prob(academic)}} \)

- That is, the probability of choosing general or vocational relative to an academic program.
Unordered Outcomes

- Can interpret the results from a multinomial logit as **relative risk ratios** (RRR)

\[
RRR = \frac{P(y = 1 | x + 1) / P(y = \text{base category} | x + 1)}{P(y = 1 | x) / P(y = \text{base category} | x)}
\]

- Or they can be interpreted as **Conditional Odds Ratios**

\[
COR_1 = \frac{\text{odds}(y = 1 | x + 1 \text{ and } (y = 1 \text{ or } y = \text{base category}))}{\text{odds}(y = 1 | x \text{ and } (y = 1 \text{ or } y = \text{base category}))}
\]

\[
COR_2 = \frac{\text{odds}(y = 2 | x + 1 \text{ and } (y = 1 \text{ or } y = \text{base category}))}{\text{odds}(y = 1 | x \text{ and } (y = 1 \text{ or } y = \text{base category}))}
\]
Multinomial Logit Example

.mlogit prog female math socst

Multinomial logistic regression

Number of obs = 200
LR chi2(6) = 65.51
Prob > chi2 = 0.0000
Pseudo R2 = 0.1605

Log likelihood = -171.34162

------------------------------------------------------------------------------
|       Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
|-------------+----------------------------------------------------------------
|   general   |
|   female    |  -.0840263   .3806826    -0.22   0.825    -.8301505    .6620979
|   math      |  -.0739045   .0254512    -2.90   0.004    -.1237879   -.0240211
|   socst     |  -.0370939   .0217034    -1.71   0.087    -.0796319    .0054441
|    _cons    |   5.130723   1.392646     3.68   0.000     2.401188    7.860258
|-------------+----------------------------------------------------------------
|  vocation   |
|   female    |  -.0177488   .4085162    -0.04   0.965    -.8184258    .7829282
|   math      |  -.1127775   .0289322    -3.90   0.000    -.1694836   -.0560714
|   socst     |  -.079675    .0227946    -3.50   0.000    -.1243516   -.0349984
|    _cons    |   9.106635   1.545711     5.89   0.000     6.077098    12.13617
|-------------+----------------------------------------------------------------

(Outcome prog==academic is the comparison group)
Multinomial Logit Example

```
mlogit, rrr

Multinomial logistic regression Number of obs = 200
 LR chi2(6) = 65.51 Prob > chi2 = 0.0000
Log likelihood = -171.34162 Pseudo R2 = 0.1605
--
 prog | RRR Std. Err. z P>|z| [95% Conf. Interval]
 -------------+---
 general |
 female | .9194071 .3500023 -0.22 0.825 .4359837 1.938856
 math | .9287604 .023638 -2.90 0.004 .8835673 .9762651
 socst | .9635856 .0209131 -1.71 0.087 .9234562 1.005459
 -------------+---
 vocation |
 female | .9824078 .4013295 -0.04 0.965 .4411255 2.18787
 math | .8933494 .0258466 -3.90 0.000 .8441006 .9454716
 socst | .9234164 .0210489 -3.50 0.000 .8830693 .9656069
--
(Outcome prog==academic is the comparison group)
```

Same results, but with RRR interpretation
Multinomial Logit Example

```
. listcoef

mlogit (N=200): Factor Change in the Odds of prog

Variable: female (sd=.4992205)

| | b | z | P>|z| | e^b | e^bStdX |
|------------------------------|-------|--------|------|-------|---------|
| general -vocation | -0.06628 | -0.155 | 0.877 | 0.9359 | 0.9675 |
| general -academic | -0.08403 | -0.221 | 0.825 | 0.9194 | 0.9589 |
| vocation-general | 0.06628 | 0.155 | 0.877 | 1.0685 | 1.0336 |
| vocation-academic | -0.01775 | -0.043 | 0.965 | 0.9824 | 0.9912 |
| academic-general | 0.08403 | 0.221 | 0.825 | 1.0877 | 1.0428 |
| academic-vocation | 0.01775 | 0.043 | 0.965 | 1.0179 | 1.0089 |

(similar results for other two independent variables omitted)

“listcoef” gives all the relevant comparisons
Also gives p-values and exponentiated coefficients
Multinomial Logit Example

```
.prchange

mlogit: Changes in Predicted Probabilities for prog

female

<table>
<thead>
<tr>
<th>Avg Chg</th>
<th>general</th>
<th>vocation</th>
<th>academic</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-&gt;1</td>
<td>.0101265</td>
<td>-.01518974</td>
<td>.00147069</td>
</tr>
</tbody>
</table>

math

<table>
<thead>
<tr>
<th>Avg Chg</th>
<th>general</th>
<th>vocation</th>
<th>academic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min-&gt;Max</td>
<td>.49023263</td>
<td>-.23754089</td>
<td>-.49780805</td>
</tr>
<tr>
<td>-+1/2</td>
<td>.01500345</td>
<td>-.0083954</td>
<td>-.01410978</td>
</tr>
<tr>
<td>-+sd/2</td>
<td>.13860906</td>
<td>-.07673311</td>
<td>-.13118048</td>
</tr>
<tr>
<td>MargEfct</td>
<td>.01500588</td>
<td>-.0083978</td>
<td>-.01411102</td>
</tr>
</tbody>
</table>

(socst omitted)

<table>
<thead>
<tr>
<th></th>
<th>general</th>
<th>vocation</th>
<th>academic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr(y</td>
<td>x)</td>
<td>.25754365</td>
<td>.19741122</td>
</tr>
</tbody>
</table>

female math socst

| x= | .545 | 52.645 | 52.405 |
| sd(x)= | .49922 | 9.36845 | 10.7358 |
```

“prchange” gives the probability changes directly
Multinomial Logit Example

- Stata’s “\texttt{mlogplot}” illustrates the impact of each independent variable on the probabilities of each value of the dependent variable.

\begin{align*}
\text{female-0/1} & \quad \text{G} \quad \text{V} \quad \text{A} \\
\text{math-std} & \quad \text{V} \quad \text{G} \\
\text{socst-std} & \quad \text{V} \quad \text{G} \\
\end{align*}

\text{Change in Predicted Probability for prog}

\texttt{mlogplot female math socst, std(0ss) p(.1) dc ntics(9)}
Multinomial Logit Example

- Same plot, with **odds ratio** changes rather than discrete changes

```
mlogplot female math socst, std(0ss) p(.1) or ntics(9)
```
Multinomial Logit Example

Use “prgen” to show how probabilities change with respect to one variable.

```
. mlogit prog math science, nolog
(output omitted)
```

```
| prog | Coef.       | Std. Err. | z     | P>|z|  | [95% Conf. Interval] |
|------|-------------|-----------|-------|-----|----------------------|
|      |             |           |       |     |                      |
| general |           |           |       |     |                      |
|         | math | -.1352046 | .0305449 | -4.43 | 0.000 | -.1950716 | -.0753376 |
|         | science | .0602744 | .0254395 | 2.37 | 0.018 | .0104139 | .1101348 |
|         | _cons | 3.166452 | 1.298818 | 2.44 | 0.015 | .6208165 | 5.712088 |
| vocation |       |           |       |     |                      |
|         | math | -.1690188 | .0331945 | -5.09 | 0.000 | -.2340789 | -.1039588 |
|         | science | .0170098 | .0250403 | 0.68 | 0.497 | -.0320684 | .0660879 |
|         | _cons | 7.053851 | 1.37717 | 5.12 | 0.000 | 4.354647 | 9.753055 |
```

(Outcome prog==academic is the comparison group)

```
. prgen math, gen(m) x(science=50) from(25) to(75) n(100)
```
Multinomial Logit Example

- Use prgen to show how probabilities change with respect to one variable

```
mlogplot female math socst, std(0ss) p(.1) or ntics(9)
```

![Graph showing the probabilities of different outcomes as a function of the changing value of math. The graph has three lines representing `pr(general)` [1], `pr(academic)` [2], and `pr(vocation)` [3].]