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Logit vs. Probit Review

m Use with a dichotomous dependent variable

m Need a link function F(Y) going from the
original Y to continuous Y’
Probit; F(Y) = @ '(Y)
Logit: F(Y) = log[Y/(1-Y)]
m Do the regression and transform the findings
back from Y'to Y, interpreted as a probability

Unlike linear regression, the impact of an
iIndependent variable X depends on its value

And the values of all other independent variables
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Classical vs. Logistic Regression

m Data Structure: continuous vs. discrete
Logistic/Probit regression is used when the
dependent variable is binary or dichotomous.

m Different assumptions between traditional

regression and logistic regression
The population means of the dependent variables at

each level of the independent variable are not on a
straight line, i.e., no linearity.

The variance of the errors are not constant, i.e., no
homogeneity of variance.

The errors are not normally distributed, i.e., no
normality.
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Logistic Regression Assumptions

1. The model is correctly specified, i.e.,

The true conditional probabilities are a logistic
function of the independent variables;

No important variables are omitted,;
No extraneous variables are included; and

The independent variables are measured
without error.

The cases are independent.

The independent variables are not linear
combinations of each other.

Perfect multicollinearity makes estimation
Impossible,

While strong multicollinearity makes estimates
Imprecise.

W o



"
About Logistic Regression

m |t uses a maximum likelihood estimation rather
than the least squares estimation used in
traditional multiple regression.

m The general form of the distribution is assumed.

m Starting values of the estimated parameters are
used and the likelihood that the sample came
from a population with those parameters is
computed.

m [he values of the estimated parameters are
adjusted iteratively until the maximum likelihood
value for the estimated parameters is obtained.

That is, maximum likelihood approaches try to find

estimates of parameters that make the data actually
observed "most likely."



S _
Interpreting Logistic Coefficients

m Logistic slope coefficients can be
interpreted as the effect of a unit of
change in the X variable on the predicted
logits with the other variables in the model
held constant.

That is, how a one unit change in X effects the

log of the odds when the other variables in the
model held constant.



Interpreting Odds Ratios

m Odds ratios in logistic regression can be
interpreted as the effect of a one unit of
change in X in the predicted odds ratio
with the other variables in the model held

constant.

odds{if the corresponding variable i1s incremented by 1)
odds(1f variable not incremented)

P'::'E'!ﬁ,':?['lllii' | 1].:,." [l Pl:;-:_'-ﬁr'n?-t'l[ T ”}
P(event|z) / (1 — P(event | 7))
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Interpreting Odds Ratios

m An important property of odds ratios is that they
are constant.

It does not matter what values the other independent
variables take on.

m For instance, say you estimate the following
logistic regression model:

-13.70837 + .1685 X, + .0039 X,

The effect of the odds of a 1-unit increase in x, is
exp(.1685) = 1.18

Meaning the odds increase by 18%

m Incrementing X, increases the odds by 18%
regardless of the value of x, (0, 1000, etc.)



- — aptitude gender admit
Example: ;

Admissions Data

m 20 observations of
admission into a graduate
program

m Data collected includes
whether admitted, gender
(1 if male) and the student’s
aptitude on a 10 point scale.
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Admissions Example — Calculating the
Odds Ratio

m Example: admissions to a graduate program

Assume 70% of the males and 30% of the females
are admitted in a given year

Let P equal the probability a male is admitted.

Let Q equal the probability a female is admitted.
m Odds males are admitted: odds(M) = P/(1-P) = .7/.3 = 2.33
m Odds females are admitted: odds(F) = Q/(1-Q) = .3/.7 = 0.43

The odds ratio for male vs. female admits is then
s odds(M)/odds(F) = 2.33/0.43 = 5.44
m The odds of being admitted to the program are
about 5.44 times greater for males than females.



Ex. 1. Categorical Independent Var.

. logit admit gender

Logit estimates

Log likelthood = -12.217286

gender | 1.694596 .9759001
_cons | -.8472979 -6900656

1.736
-1.228

Number of obs
LR chi2(1) =
Prob > chi2 =
Pseudo R2 =

0.082 -.2181333
0.220 -2.199801

20
3.29
0.0696
0.1187

3.607325
-5052058

Formula to back out Y from logit estimates: Y =

.dis exp(_bJ[gender]+ b[ cons])/(1+exp( _b[gender]+ b[ cons]))

Al

. dis exp(_b[ _cons])/(1+exp( _b[ cons]))

-3
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Ex. 1. Categorical Independent Variable

To get the results in terms of odds ratios:

logit admit gender,(or)

Logit estimates Number of obs = 20
LR chi2(1) = 3.29

Prob > chi2 = 0.0696

Log likelithood = -12.217286 Pseudo R2 = 0.1187
admit | Odds Ratio  Std. Err. z P>]z] [95% Conf. Interval]
_________ e

gender | 5.444444 5.313234 1.736 0.082 -8040183 36.86729

Translates original logit coefficients to odds ratio on gender
Same as the odds ratio we calculated by hand above
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Ex. 1. Categorical Independent Variable

To get the results in terms of odds ratios:

logit admit gender, or

Logit estimates Number of obs = 20
LR chi2(1) = 3.29

Prob > chi2 = 0.0696

Log likelithood = -12.217286 Pseudo R2 = 0.1187
admit | Odds Ratio  Std. Err. z P>]z] [95% Conf. Interval]
_________ o
gender | 5.444444  5.313234 1.736 0.082 .8040183 36.86729

S0 5.4444 is the “"exponentiated coefficient”
Don’t confuse this with the logit coefficient (1.6945)
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Ex. 1. Categorical Independent Variable

To get the results in terms of odds ratios:

logit admit gender, or
Logit estimates Number of obs = 20
LR chi2(1) = 3.29
Prob > chi2 = 0.0696
Log likelithood = -12.217286 Pseudo R2 = 0.1187
admit | Odds Ratio  Std. Err. z P>]z| [95% Conf. Interval]
_________ PP
gender | 5.444444  5.313234 1.736 0.082 .8040183 36.86729

That is, exp(1.694596) = 5.444444
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Ex. 2: Continuous Independent Var.

logit admit apt

Iteration
Iteration

Iteration

w N B+ O

Iteration
Iteration 4:

Logit estimates

log
log
log
log
log

likelihood
likeli1hood
likeli1hood
likeli1hood
likeli1hood

Log likelithood = -9.3028914

apt | -9455112 .422872
_cons | -4.095248 1.83403

-13.862944
-9.6278718
-9.3197603
-9.3029734
-9.3028914

Look at the probability of
being admitted to
graduate school given the
candidate’s aptitude

Number of obs = 20
LR chi2(1) = 9.12
Prob > chi?2 = 0.0025
Pseudo R2 = 0.3289
P>]z] [95% Conf. Interval]
0.025 .1166974 1.774325
0.026 -7.689881 -.5006154
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Ex. 2: Continuous Independent Var.

Iteration
Iteration
Iteration
Iteration

Iteration

apt |

_cons |

w N B+ O

4:

logit admit apt

log likelihood

log likelithood

log likelithood

log likelithood

log likelihood

Logit estimates

Log likelithood = -9.3028914

-9455112 .422872
-4.095248

-13.862944
-9.6278718
-9.3197603
-9.3029734
-9.3028914

-2.233

Look at the probability of
being admitted to
graduate school given the
candidate’s aptitude

Number of obs = 20
LR chi2(1) = 9.12
Prob > chi2 = 0.0025
Pseudo R2 = 0.3289
P>]z] [95% Conf. Interval]
0.025 .1166974 1.774325
0.026 -7.689881 -.5006154

Aptitude is positive and significantly related to being
admitted into the graduate program




Ex. 2: Continuous Independent Var.

logit admit apt, or

Logit estimates Number of obs = 20

LR chi2(1) = 9.12

Prob > chi2 = 0.0025

Log likelthood = -9.3028914 Pseudo R2 = 0.3289

admit | Odds Ratio Std. Err. z P>|z] [95% Conf. Interval]

_________ e

apt | 2.574129  1.088527 2.236  0.025 1.123779 5.8963

| Pr(admit | apt +1)/1— Pr(admit | apt +1) 557
This means: =<

Pr(admit | apt )/1— Pr(admit | apt)




Ex. 2: Continuous Independent Var.

| | |
2 4 6
aptitude

. predict p
. line p aptitude, sort

|
10



Ex. 2: Continuous Independent Var.

50% chance of
being admitted

aptitude

. predict p
. Iine p aptitude, sort

|
10



'Example 3: Categorical & Continuous

Independent Variables

logit admit gender apt

Logit estimates

Log likelithood = -9.2820991

admit | Coef. Std. Err z

gender | .2671938 1.300899 0.205
apt | -8982803 .4713791

_cons | -4.028765 1.838354 .192

Number of obs =
LR chi2(2) =
Prob > chi2 =
Pseudo R2 =

-2.282521
-.0256057
-7.631871

20
9.16
0.0102
0.3304

2.816909
1.822166
-.4256579

Gender is now insignificant!

Once aptitude is taken into account gender plays no role
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Likelihood Ratio Test

m Log-likelihoods can be used to test
hypotheses about nested models.

m Say we want to test the null hypothesis H,
about one or more coefficients
For example, Hy: x4 =0, or Hy: x4 =%, =0
m Then the likelihood ratio is the ratio of the
likelihood of imposing H, over the likelihood

of the unrestricted model:
L(model restricted by H,)/ L(unrestricted model)

m If H, is true, then this ratio should be near 1
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Likelihood Ratio Test

m Under general assumptions,
-2 * (log of the likelihood ratio) ~ y2(k)

Where the k degrees of freedom are the
number of restrictions specified in H,

m [his is called a likelihood ratio test

m Call the restricted likelihood £, and the
unrestricted likelihood /L.

m Then we can rewrite the equation above as:
-2"log(Ly/ L) = - 2*log(Ly) - 2*log(L) ~ x4(k)
m The difference of the log-likelihoods will be
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Likelihood Ratio Test

m In our admissions example, take
Pr(admit) = B, + B,*gender + [3,*aptitude
The log-likelihood of this model was -9.282



Likelihood Ratio Test

m In our admissions example, take
Pr(admit) = B, + B,*gender + [3,*aptitude
The log-likelihood of this model was -9.282

logit admit gender apt

Logit estimates

Log likelthood = -9.2820991

Number of obs =
LR chi2(2) =
Prob > chi2 =
Pseudo R2 =

20
9.16
0.0102
0.3304

admit | Coef.

Std. Err.

[95% ConfT.

Interval]

_________ o

gender | .2671938
apt | .8982803
_cons | -4.028765

1.300899
4713791
1.838354

-2.282521
-.0256057
-7.631871

2.816909
1.822166
-.4256579
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Likelihood Ratio Test

m In our admissions example, take
Pr(admit) = B, + B,*gender + [3,*aptitude
The log-likelihood of this model was -9.282

C

logit admit gender apt

Logit estimates

Log-likelihood

with no restrictions

/

gender | .2671938
apt | .8982803
_cons | -4.028765

il - -
Log likelthood = -9.2820991
admit | Coef. Std. Err. z
1.300899 0.205
.4713791 1.906
1.838354 -2.192

Number of obs = 20
LR chi2(2) = 9.16
Prob > chi?2 = 0.0102
Pseudo R2 = 0.3304
P>]z] [95% Conf. Interval]
0.837 -2.282521 2.816909
0.057 -.0256057 1.822166
0.028 -7.631871 -_4256579
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Likelihood Ratio Test

m In our admissions example, take
Pr(admit) = B, + B,*gender + [3,*aptitude
The log-likelihood of this model was -9.282
m First look at H,: B, =0

logit admit gender, or

Logit estimates Number of obs = 20
LR chi2(1) = 3.29

Prob > chi2 = 0.0696

Log likelithood = -12.217286 Pseudo R2 = 0.1187
admit | Odds Ratio Std. Err. z P>|z] [95% Conf. Interval]
_________ e

gender | 5.444444 5.313234 1.736 0.082 -8040183 36.86729
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Likelihood Ratio Test

m In our admissions example, take
Pr(admit) = B, + B,*gender + [3,*aptitude
The log-likelihood of this model was -9.282
m First look at H,: B, =0

q

logit admit gender, or Log-erHhood
Logit estimates with aptitude=0 Number of obs = 20
‘/// LR chi2(1) = 3.29
Prob > chi?2 = 0.0696
—_ .- . _ —
Log likelithood = -12.217286 Pseudo R2 = 0.1187
admit | Odds Ratio Std. Err. z P>|z] [95% Conf. Interval]

_________ o

gender | 5.444444 5.313234 1.736 0.082 -8040183 36.86729
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Likelihood Ratio Test

m |n our admissions example, take
Pr(admit) = B, + B,"gender + ,*aptitude
The log-likelinood of this model was -9.282
m Firstlook at Hy: 3, =0
The likelihood of the regression with gender but not
aptitude was -12.217
m Likelihood ratio test:
[-2* (-12.217)] - [-2 * (-9.282)] = 5.87
From Stata

s dis 1- chi2(1, 5.87)
= .01540105

Significant at 5% level. Therefore we can reject the null
hypothesis that 3, = 0.
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Likelihood Ratio Test

m In our admissions example, take
Pr(admit) = B, + B,*gender + [3,*aptitude
The log-likelihood of this model was -9.282
m Now look at H,: B, =0
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Likelihood Ratio Test

m In our admissions example, take
Pr(admit) = B, + B,*gender + [3,*aptitude
The log-likelihood of this model was -9.282
m Now look at H,: B, =0

logit admit apt, or

Logit estimates Number of obs = 20
LR chi2(1) = 9.12

Prob > chi2 = 0.0025

Log likelithood = -9.3028914 Pseudo R2 = 0.3289
admit | Odds Ratio  Std. Err. z P>]z] [95% Conf. Interval]
_________ e

apt | 2.574129 1.088527 2.236 0.025 1.123779 5.8963
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Likelihood Ratio Test

m In our admissions example, take
Pr(admit) = B, + B,*gender + [3,*aptitude
The log-likelihood of this model was -9.282
m Now look at H,: B, =0

logit admit apt, or Log-erHhood
Logit estimates with gender=0 Number of obs = 20
LR chi2(1) = 9.12
g/// Prob > chi2 = 0.0025
C:Eéé likelihood = -9.3028914 Pseudo R2 = 0.3289
admit | Odds Ratio Std. Err. z P>]z| [95% Conf. Interval]
_________ o e
apt | 2.574129  1.088527 2.236 0.025 1.123779 5.8963
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Likelihood Ratio Test

m |n our admissions example, take
Pr(admit) = B, + B,"gender + ,*aptitude
The log-likelinood of this model was -9.282
m Now look atHy,: ;=0

The likelihood of the regression with gender but not
aptitude was -9.303
m Likelihood ratio test:
[-2 * (-9.303)] — [-2 * (-9.282)] = 0.042
From Stata
s dis 1- chi2(1, .042)
= .83761977

Not significant at 5% level. Therefore we fail to reject the
null hypothesis that 3, = 0.
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Example 4: Honors Composition using High
School and Beyond Dataset

use http://www.gseis.ucla.edu/courses/data/hsb?2
Variable Obs Mean Std. Dev. MiIn Max
id 200 100.5 57.87918 1 200
female 200 -545 .4992205 0 1
race 200 3.43 1.039472 1 4
ses 200 2.055 .7242914 1 3
schtyp 200 1.16 .367526 1 2
prog 200 2.025 .6904772 1 3
read 200 52.23 10.25294 28 76
write 200 52.775 9.478586 31 67
math 200 52.645 9.368448 33 75
science 200 51.85 9.900891 26 74
socst 200 52.405 10.73579 26 71
honors 200 .265 .4424407 0 1
sesl 200 .235 .4250628 0 1
ses?2 200 475 -5006277 0 1
ses3 200 .29 .4549007 0 1
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Example 4: Categorical and continuous
iIndependent variables

generate honors = (write>=60)

/* create dummy coding for ses */
tabulate ses, generate(ses)

ses | Freq. Percent Cum.

____________ o

low | 47 23.50 23.50

middle | 95 47 .50 71.00

high | 58 29.00 100.00

____________ o
Total | 200 100.00

tabulate honors

honors | Freq. Percent Cum.

____________ e

0 | 147 73.50 73.50

1| 53 26.50 100.00

____________ e
| -




Example 4: Categorical and continuous

independent variables

generate honors = (write>=60)

/* create dummy coding for ses */

tabulate ses, generate(ses) «———

tabulate honors

Creates new variables
ses1, ses2, and ses3

ses | Freq. Percent
____________ o

low | 47 23.50

middle | 95 47 .50

high | 58 29.00
____________ o

Total | 200 100.00

honors | Freq. Percent
____________ S
0 | 147 73.50
1| 53 26.50
____________ e
I
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Example 4: Categorical and continuous independent var.

describe honors female sesl ses?

storage
variable name type
honors float
female float
sesl byte
ses?2 byte
read float
math float

value
label

display
format

tabi honors femalte

-> tabulation of honors

-> tabulation of female

honors | Freq
____________ S,
01 147
1] 53
____________ S,
Total | 200

female | Freq
____________ S,
male | 91
female | 109
____________ S,
Total | 200

Sesi sesZ2 read math

Percent Cum
73.50 73.50
26.50 100.00

100.00

Percent Cum
45 .50 45 .50
54 .50 100.00

100.00

read math
variable label
ses==low
ses==middle
reading score
math score
-> tabulation of sesl
ses==low | Freq Percent Cum
____________ e
0 | 153 76.50 76.50
1] 47 23.50 100.00
____________ e
Total | 200 100.00
-> tabulation of ses?
ses==middle | Freq Percent Cum
____________ o e e
0] 105 52.50 52.50
1] 95 47 .50 100.00
____________ o e e
Total | 200 100.00
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Example 4: Categorical and continuous
iIndependent var.

i We would
normally worry
about this but....




"
Example 4: Categorical and continuous
iIndependent var.

<
S

We would normally
i worry about this
& but....

—
o

(50}
O T

.04
1

o

T T T T T T
30 40 50 60 70 80
readi ore

ensity
.02
1

The logit link ]
function takes logs
of the series.

.01
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xample 4. Categorical and continuous

iIndependent variables

logit honors female sesl ses2 read math
Logit estimates Number of obs = 200
LR chi2(5) = 87.30
Prob > chi2 = 0.0000
Log likelithood = -71.994756 Pseudo R2 = 0.3774
honors | Coef Std. Err z P>]z| [95% Conf. Interval]
_________ N T T ————————
female | 1.145726 .4513589 2.538 0.011 .2610792 2.030374
sesl | -.0541296 -5945439 -0.091 0.927 -1.219414 1.111155
ses2 | -1.094532 .4833959 -2.264 0.024 -2.04197 -.1470932
read | .0687277 .0287044 2.394 0.017 .0124681 .1249873
math | .1358904 .0336874 4.034 0.000 .0698642 .2019166
cons | -12.49919 1.926421 -6.488 0.000 -16.27491 -8.723475
test sesl ses2
(1) sesl = 0.0 So the socioeconomic
(2) ses2=0.0 variables are significant as a
chi2( 2) = 6.13
Prob > chi2 = 0.0466 group




Example 4. Categorical and continuous

__Independent variables

logistic honors female sesl ses2 read math
Logit estimates : Number of obs = 200
Same as logit, or LR chi2(5) _ 87 20
Prob > chi2 = 0.0000
Log likelithood = -71.994756 Pseudo R2 = 0.3774
honors | Odds Ratio Std. Err z P>]z| [95% Conf. Interval]
_________ P
female | 3.144725 1.4194 2.538 0.011 1.29833 7.616932
sesl | -9473093 .563217 -0.091 0.927 .2954031 3.037865
ses2 | .3346963 .1617908 -2.264 0.024 .1297728 .8632135
read | 1.071145 .0307466 2.394 0.017 1.012546 1.133134
math | 1.145556 .0385909 4.034 0.000 1.072363 1.223746
test sesl ses2
(1) sesl = 0.0 So the socioeconomic
(2) ses2=0.0 variables are significant as a
chi2( 2) = 6.13
Prob > chi2 = 0.0466 group
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Graphing the Results

m Let's say we want to see how the probability
of honors changes with the reading score

m Stata’s postgr3 command will create a new
variable giving the probability after a logit

Impact of Reading Score on Probability of Honors
LO_ -

< 4

. postgr3 read, gen(avg)
. Iine avg read, sort

3
1

Probability of Honors
2
1

A

0
1

T T T T T T
30 40 50 60 70 80
Reading Score



Graphing the Results

m Can do this separately for males & females

Impact of Reading Score on Probability of Honors

Probability of Honors
2 4 .6
| | |

o —
I I I

I
30 40 50 60 70 80
Reading Score

Female

Male

Average

. postgr3 read, gen(male) x(female=0) nodraw

. postgr3 read, gen(fem) x(female=1) nodraw
. graph twoway (line avg read, sort) (line male read, sort) (line fem read, sort)
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—Graphing the Results
m Can do this separately for males & females

Impact of Reading Score on Probability of Honors

(q -
o ' Marginal impact is
@) .
5 higher for females
“g than for males
%
(]
SN
&
-

I I I
30 40 50 60 70 80
Reading Score

Female

Male

Average

. postgr3 read, gen(male) x(female=0) nodraw

. postgr3 read, gen(fem) x(female=1) nodraw
. graph twoway (line avg read, sort) (line male read, sort) (line fem read, sort)
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Assessing Model Fit

m How good a job does the model do of
predicting outcomes?

m General answer is “hits and misses”

What percent of the observations the model
correctly predicts

m How to calculate:

Use model to generate the probability p that each
observation will have Y=1

mlfp=0.5, predict Y=1

m |[fp <0.5, predict Y=0
Check predictions against the actual outcomes in
the data
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Assessing Model Fit

m Can do this by checking predictions

Events that happened that were predicted to
happen

m E.9., model correctly predicts honors

Events that didn’t happen that were predicted
not to happen
m E.9., model correctly predict no honors

m Or can go the other way around

The probability of a positive prediction given
honors
m This is the model’s sensitivity

Tl‘\f\ V\Pf\kﬁk:l:‘l‘\l I\'F ~ hf\ﬂﬁ‘l‘:\l"\ Y\PAA:A+:Aﬂ ﬂ:\l’\h



Example 4. Categorical and continuous

—Independent variables

Istat

Logistic model for honors

Sensitivity
Specificity
Positive predictive value
Negative predictive value

False + rate for true ~D
False - rate for true D

False + rate for classified +
False - rate for classified -

———————- True ---
Classified | D
___________ S
+ | 31
- | 22
___________ g
Total | 53

~D
——————— +
12 |
135 |
——————— +
147 |

Pr( +| D)
Pr( -1-D)
Pr( DI +)

Pr(-Dl -)

Pr( +]~-D)
Pr( -] D)

58.
91.
72.
-99%

Definition of D as
student getting honors

49%
84%
09%




Example 4. Categorical and continuous

—Independent variables

Istat
Logistic model for honors
———————— True --————--—-—-

Classified | D ~D Total
___________ UV Sy

+ | 31 12 | 43

- | 22 135 | 157
___________ e

Total | 53 147 | 200

Classified + 1f predicted Pr(D) >= .5
True D defined as honors ~= 0
Sensitivity Pr(C +] D) 58.49%
Specificity Pr( -|~D)  91.84% Summary of
Positive predictive value Pr( D] +) 72.09% correct predictions
Negative predictive value Pr(-D] -) 85.99%
False + rate for true ~D Pr( +]~D) 8.16%
False - rate for true D PrC -] D) 41.51%
False + rate for classified + Pr(-D] +) 27 .91%
False - rate for classified - Pr( D] -) 14.01%
Correctly classified 83.00%




Example 4. Categorical and continuous

—Independent variables

Istat

Logistic model for honors

Positive predictive value
Negative predictive value

False + rate for true ~D
False - rate for true D
False + rate for classified +
False - rate for classified -

=
w
ol
— e ——

PrC +] D)
Pr( -]-D)
Pr( DI +)
Pr(-=D] -)

Pr( +]~-D)
Pr( -] D)

———————- True ----
Classified | D
___________ Sy
+ | 31
- | 22
___________ e
Total | 53
Classiftied + 1f predicted Pr(D)
True D defined as honors ~= 0
Sensitivity
Specificity

J \

~

~

Summary of
correct predictions

Summary of
incorrect predictions




Example 4. Categorical and continuous

—Independent variables

Istat

Logistic model for honors

True D defined as honors ~= 0

Sensitivity
Specificity
Positive predictive value
Negative predictive value

False + rate for true ~D
False - rate for true D
False + rate for classified +
False - rate for classified -

———————- True ---
Classified | D
___________ S
+ | 31
- | 22
___________ e
Total | 53

~D
——————— +
12 |
135 |
——————— +
147 |

Classified + 1f predicted Pr(D) >= .5

PrC +| D)
Pr( -]-D)
Pr( DI +)
Pr(-=D] -)

Pr( +]~-D)
Pr( -] D)

58.49%
91.84%
72.09%
85.99%

Overall success rate:

(31 + 135)/ 200




Example 4. Categorical and continuous

iIndependent variables

Istat
Logistic model for honors
———————— True --————--—-—-
Classified | D ~D Total
___________ UV Sy
+ | 31 12 | 43
- | 22 135 | 157
___________ e
Total | 53 147 | 200
Classified + 1f predicted Pr(D) >= .5
True D defined as honors ~= 0
Sensitivity Pr(C +] D) 58.49%
Specificity Pr(C -|-D) 91.84%
Positive predictive value Pr( D] +) 72 .09%
Negative predictive value Pr(-D] -) 85.99%
False + rate for true ~D Pr( +]~D) 8.16%
False - rate for true D PrC -] D) 41.51%
False + rate for classified + Pr(-D] +) 27 .91%
False - rate for classified - Pr( D] -) 14.01%
Correctly classified 83.00%

Overall success rate:

(31 + 135)/ 200 = 83%




Assessing Model Fit

m This is all calculated using 50% as a cutoff point for
positive predictions
m But this isn’t set in stone; depending on your
application, you might want to change it
® You might want to avoid false positives
For example, don’t convict innocent people
Then you would set the cutoff higher than 50%

m Or you might want to avoid false negatives

For example, don't report that someone who has a
disease is actually healthy

Then you would set the cutoff lower than 50%



Assessing Model Fit

m \We can imagine changing the cutoff point =
continuously from 0 to 1

m Recall that
Sensitivity = Prob(+ | D)
Specificity = Prob (- | ~D )

m At 1=0, everything is predicted to be positive
That means you will misclassify all the negatives
So the sensitivity=1, specificity=0

m At =1, everything is predicted to be negative
That means you will misclassify all the positives
So the sensitivity=0, specificity=1



Assessing Model Fit

m [n between, you can vary the number of false
positives and false negatives

If your model does a good job of predicting
outcomes, these should be low for all ©

m The ROC curve plots the sensitivity and
1-specificity as © goes from 0 to 1

The better the model does at predicting, the
greater will be the area under the ROC curve

m Produce these with Stata command “lroc”



Example 4: Categorical and continuous
independent variables

Sensitivity
0.50

1.00
|

0.75
|

0.25
|

0.00
|

Area under the ROC

curve is .8912

T T
0.00 0.25

Area under ROC curve = 0.8912

0.50
1 - Specificity

T
0.75

Iroc
Logistic model for honors
number of observations = 200

area under ROC curve = 0.8912




"
Example 4: Categorical and continuous
independent variables

1.00
|

Or, you can use
the “lIsens”
function to
directly plot the
sensitivity and
specificity
as your cutoff
075 1.00 changes from

Sensitivity/Specificity
0.50 0.75
|

0.25
|

0.00
|

T T
0.00 0.25 0.50
Probability cutoff

—— Sensitivity ——@—— Specificity O to 1 .

. Isens



S
Diagnostic Plots

m Can obtain predicted values in the usual way,
with command “predict p”

m Two methods to calculate residuals
Pearson residuals: “predict x, dx2’
Deviance residuals: “predict z, ddeviance’

m Leverage: “predict b, dbeta’

m Draw the graphs:
Pearson residuals vs. predicted probabilities
Deviance residuals vs. predicted probabillities
Leverage residuals vs. predicted probabilities



S
Diagnostic Plots

Pearson Residuals vs. Predicted Probabilities

o |

o

- Residuals Residuals
o~ for Y=1 for Y=0
<
© °®
|
+ honors

o |

° No honors
®
o ® @
~ o ) ® ® [ ] o
o—*oocooﬂl"'“ e oG ® emabdeo
0 2 4 6 8 1'

Pr(honors) -

Two distinct patterns
of residuals

One for Y=1, the
other for Y=0

As with all logits and
probits, the residuals
are definitely
heteroskedastic

scatter x p, ti(Pearson Residuals vs. Predicted

Probabilities)
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Diagnostic Plots

Pearson Residuals vs. Predicted Probabilities

o @383
\ High residual
Large :
Residuals points were

o | predicted to be
S . Y=0, but got
= 60
% honors anyway

. o

‘0
[ 4
oo, . Lo *
o | cumsunttenes ¢ @ o cage o 0 Ve ceme osadee
0 2 4 6 8 %

Pr(honors)

scatter x p, ti(Pearson Residuals vs. Predicted Probabilities)
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Diagnostic Plots

Deviance Residuals vs. Predicted Probability

0s3 Large Same pattern
. Residuals as before.

3 . Same two
T ‘ .
1 . o points as
“, .0 outliers
AN ® .‘ ]
°
° .l"'. e »
® = X 4 L 1
o - M. o ® «al,,
0 2 4 6 g i
Pr(honors)

scatter x p, ti(Deviance Residuals vs. Predicted Probabilities)
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Diagnostic Plots

Influence vs. Predicted Probabilities

N A ®3
o Different points
- o _have large
: 0 influence.
3 060 °
'2&1 ] ® o o ® . .
2 , ° Could eliminate
& o %% e el these and see if
- ®
- .',. e results change.
. . .o % S .
| ° . ‘. ‘ Y o o« '“‘~ o
0 2 4 6 8 i
Pr(honors)

scatter b p, ti(Influence vs. Predicted Probabilities)
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Diagnostic Plots

Pearson Residuals vs. Predicted Probabilities

35

One way to
show both
residuals and
influence on

1 O) one graph is to
weight each
residual marker
by the value of
its influence.

25

H-L dXA2
15 20
|

o
N
EN
o -
™
-

Pr(honors) .

scatter x p [weight=b], msymbol(oh) ylab(0 (5) 35)




" BN
Multinomial Data

m \We now move on to study logits when there
are more than 2 possible outcomes

m There are two major categories of analysis:
ordered and unordered outcomes
m Examples of unordered outcomes
Religion: Protestant, Catholic, or other
Mode of transportation: bus, car, subway, walking

m Examples of ordered outcomes
Regime type: Autocracy, Partial Dem., Full Dem.
Socioeconomic status: High, Medium, Low



" I
Unordered Outcomes

m Pick a base category and calculate the odds
of the other possible outcomes relative to it

For example, say a student can enter a general,
vocational, or academic program

Use academic as the base category

m Then we will use multinomial logit to estimate
Prob(general)/Prob(academic)
Prob(vocational)/Prob(academic)

m That is, the probability of choosing general or
vocational relative to an academic program




" I
Unordered Outcomes

m Pick a base category and calculate the odds
of the other possible outcomes relative to it

For example, say a student can enter a general,

vocational, or academic program

Use academic as the base category

m [hen we will use multinomial logit to estimate

Prob(general)/Prob(academic)
Prob(vocational)/Prob(academic)

|

Two separate
regressions

m That is, the probability of choosing general or
vocational relative to an academic program



" I
Unordered Outcomes

m Can interpret the results from a multinomial
logit as relative risk ratios (RRR)

CRR — Ply=1|z+ 1) /P(y = base category | x + 1)

Py = 1|x) /P(y = base category | x)

m Or they can be interpreted as Conditional
Odds Ratios

COR, — odds(y = 1|z + 1 and (y = 1 or y = base category))

5%

odds(y =1 x and (y = 1 or y = base category) )

COR» — odds(y = 2|z + 1 and (y = 1 or y = base category|)
2T odds(y =1 x and (y = 1 or y = base category) )




" S
Multinomial Logit Example

. mlogit prog female math socst

Multinomial logistic regression Number of obs = 200

LR chi2(6) = 65.51

Prob > chi2 = 0.0000

Log likelithood = -171.34162 Pseudo R2 = 0.1605

prog | Coef. Std. Err. z P>]z] [95% Conf. Interval]

_____________ S
general |

female | -.0840263 .3806826 -0.22 0.825 -.8301505 .6620979

math | -.0739045 .0254512 -2.90 0.004 -.1237879 -.0240211

socst | -.0370939 .0217034 -1.71 0.087 -.0796319 .0054441

_cons | 5.130723 1.392646 3.68 0.000 2.401188 7.860258

_____________ e
vocation |

female | -.0177488 -4085162 -0.04 0.965 -.8184258 . 7829282

math | -.1127775 .0289322 -3.90 0.000 -.1694836 -.0560714

socst | -.079675 .0227946 -3.50 0.000 -.1243516 -.0349984

_cons | 9.106635 1.545711 5.89 0.000 6.077098 12.13617

(Outcome prog==academic Is the comparison group)



" M

Multinomial Logit Example

. mlogit, rrr

Multinomial logistic regression

Log likelihood = -171.34162

Number of obs

200
65.51
0.0000
0.1605

general

female
math
socst

vocation
female
math
socst

-9194071
-9287604
-9635856

-9824078
-8933494
-9234164

-3500023
-023638
-0209131

-4013295
-0258466
-0210489

LR chi2(6) =

Prob > chi?2 =

Pseudo R2 =
P>]z] [95% Conf
0.825 .4359837
0.004 -8835673
0.087 .9234562
0.965 4411255
0.000 8441006
0.000 -8830693

1.938856
-9762651
1.005459

2.18787
-9454716
-9656069

(Outcome prog==academic Is the comparison group)

Same results, but with RRR interpretation
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Multinomial Logit Example

listcoef
mlogit (N=200): Factor Change iIn the 0Odds of prog
Variable: female (sd=.4992205)

Odds comparing]

Group 1 vs Group 2]} b z P>]z]| eb  e™bStdX
__________________ o __
general -vocation | -0.06628 -0.155 0.877 0.9359 0.9675
general -academic | -0.08403 -0.221 0.825 0.9194 0.9589
vocation-general | 0.06628 0.155 0.877 1.0685 1.0336
vocation-academic | -0.01775 -0.043 0.965 0.9824 0.9912
academic-general | 0.08403 0.221 0.825 1.0877 1.0428
academic-vocation | 0.01775 0.043 0.965 1.0179 1.0089

(similar results for other two independent variables omitted)

“listcoef” gives all the relevant comparisons
Also gives p-values and exponentiated coefficients




Multinomial Logit Example

. prchange

mlogit: Changes i1n Predicted Probabilities for prog

female
Avg|Chg] general vocation academic
0->1 .0101265 -.01518974 -00147069 -01371908
math
Avg|Chg] general vocation academic
Min->Max .49023263 -.23754089 -.49780805 . 73534894
-+1/2 -01500345 -.0083954 -.01410978 -02250516

-+sd/?2 -13860906 -.07673311 -.13118048 -20791358
MargEfct -01500588 -.00839781 -.01411102 -02250882

(socst omitted)

general vocation academic
Pr(y|x) .25754365 .19741122 .54504514

female math socst
X= 545 52.645 52.405
sd(x)= 49922 9.36845 10.7358

“prchange’ gives the probability changes directly
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Multinomial Logit Example

m Stata’'s “mlogplot” illustrates the impact of

each independent variable on the probabillities
of each value of the dependent variable

female-0/1 GVA
math-std V G A
socst-std V G A
-13 -.09 _05 0 04 .08 12 17 21

Change in Predicted Probability for prog

mlogplot female math socst, std(0ss) p(-1) dc ntics(9)
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Multinomial Logit Example

m Same plot, with odds ratio changes rather
than discrete changes

Factor Change Scale Relative to C ategory academic
.35 4 .45 .52 59 .67 g7 .88 1

female %/A
0/1
math b(;

Std Coef A

socst \Y G

Std Coef A
106 92 79 -.66 _53 -4 _26 -3 0

Logit Coefficient Scale Relative to C ategory academic

mlogplot female math socst, std(0ss) p(-1) or ntics(9)




Multinomial Logit Example

Use “prgen’ to show how probabilities change with respect
to one variable

. mlogit prog math science, nolog

(output omitted)

general

math
science
_cons

vocation
math
science
_cons

[95% ConfT.

Interval]

-.1352046
-0602744
3.166452

-0305449
-0254395
1.298818

-.1950716
-0104139
-6208165

-.0753376
-1101348
5.712088

-.1690188
-0170098
7.053851

-0331945
-0250403
1.37717

-.2340789
-.0320684
4._.354647

-.1039588
-0660879
9.753055

(Outcome prog==academic Is the comparison group)

- prgen math, gen(m) x(science=50) from(25) to(75) n(100)
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Multinomial Logit Example

m Use prgen to show how probabilities change

with respect to one variable
mlogplot female math socst, std(0ss) p(-1) or ntics(9)

0 -

.6
1

Probabilities
4
1

| | | |
20 40 60 80
Changing value of math

pr(academic) [2] e pr(vocation) [3]

—Dr(general) [1]




