Chapter 10: Inferential Tools for Multiple Regression

Prof. Sharyn O'Halloran Sustainable Development U9611 Econometrics II

What Is Inference About?

- Statisticians are people whose aim in life is to be wrong exactly 5% of the time."
- Inference relates estimation results to the hypotheses being tested.
 - □ Is the coefficient on a single variable significant?
 - Are the coefficients on a group of variables jointly significant?
 - How much of the variance in the data is explained by a given regression model?
- Regression interpretation is about the mean of the coefficients; inference is about their variance.

Example: Bat Echo-Location Data

Echo location requires more energy in-flight

Is b₃ significant? Positive, negative? Magnitude?

Echo-locating bats expend more energy while flying per unit body mass

 $EE_i = b_0 + b_1 * mass_i$ $+b_2 * bird_i + b_3 * e-bat_i + resid_i$

Data: energy expenditures and mass for 4 ne-bats, 4 e-bats, and 12 ne-birds.

Example: Bat Echolocation Data

Q: Do echolocating bats expend more energy than nonecholocating bats and birds, after accounting for mass?

Note: Different Model Parameterizations

- The variable TYPE has 3 levels: birds, e-bats, and ne-bats.
- We have a choice about which of the 3 indicator variables to use
 - □ If we include 2 indicator variables, the omitted category becomes equal to the constant.

• i.e. $\mu(y|x,TYPE) = \beta_0 + \beta_1 x + (\beta_2 I_{type2} + \beta_3 I_{type3})$

Then Type 1 becomes the <u>reference</u> level

 β₂ and β₃ indicate the <u>difference</u> between

 Type 1 and Types 2 and 3, respectively.

Generate dummy variables with STATA:

Type category variable: encode type,

generate(typedum)

- Typedum=1 NE bats
- Typedum=2 NE birds
- Typedum=3 E bats

tab typedum			
Typedum	Freq.	Percent	Cum.
1	4	20.00	20.00
2	12	60.00	80.00
3	4	20.00	100.00
Total	20	100.00	

Generate three dummies:

- Type1 NE bats
- Type2 NE birds
- Type3 E bats

. gen type1=typedum if typedum==1
(16 missing values generated)
. gen type2=typedum if typedum==2
(8 missing values generated)
. gen type3=typedum if typedum==3
(16 missing values generated)

Generate dummy variables with STATA:

Continued...

Label the new dummy variables

label variable type1 "non-echolocating bats"

label variable type2 "non-echolocating birds"

label variable type3 "echolocating bats"

. d type1 type	e2 type3						
variable name	storage type	display format	value label	vari	able label		
type1 type2 type3	float float float	%9.0g %9.0g %9.0g		non- non- echo	echolocating bats echolocating birds locating bats	New dur	nmies!
. tab type1							
non-echoloc ating bats	Free	1. Perce	nt	Cum.	Variables		
0 1	İ	16 80. 4 20.	00 00	80.00 100.00	Target: Command Window mass	MASS	
Total	2	20 100.	00		type typedum enerav	Typedum ENERGY	
. tab type2					type1 type2	non-echolocating bats non-echolocating birds	
ating birds	Free	g. Perce	nt	Cum.	type3 leneray	echolocating bats	
0 1	t	8 40. 12 60.	00 00	40.00 100.00	Imass		
Total	2	20 100.	00				
. tab type3							-
echolocatin							

Dummy variables as shift parameters

 $\mu(y \mid x, TYPE) = \beta_0 + \beta_1 \text{ mass} + (\beta_2 I_{type2} + \beta_3 I_{type3})$

Dummy variables as shift parameters

In the previous model:

- β_0 is the intercept for level 1,
- β₂ is the amount by which the mean of y is greater for level 2 than for level 1 (after accounting for x),
- β₃ is the amount by which the mean of y is greater for level 3 than for level 1 (Display 10.5).

. reg lenergy	lmass type2	type3				
Source	88	df	MS		Number of obs $P(-2) = 16$	= 20
Model Residual	29.4214818 .553317657	3 9.80 16 .034	716059 582354		Prob > F R-squared	= 0.0000 = 0.9815 = 0.9281
Total	29.9747994	19 1.57	762102		Root MSE	= .18596
lenergy	Coef.	Std. Err.	t	P>[t]	[95% Conf.	Intervall
lmass type2 type3 _cons	.8149575 .1022618 .0786636 -1.57636	.0445414 .1141827 .2026793 .2872364	18.30 0.90 0.39 -5.49	0.000 0.384 0.703 0.000	.7205338 1397946 3509973 -2.185274	.9093811 .3443182 .5083245 9674459

Another parameterization is:

$\mu(y|x,TYPE) = \beta_1 x + (\beta_2 I_{type1} + \beta_3 I_{type2} + \beta_4 I_{type3})$

- In this model, there is no β₀; β₂, β₃ and β₄ are the intercepts for types 1, 2, and 3, respectively
- We see that the coefficient on β₂ is, indeed, the constant from the previous regression

And the other coefficients are shifted accordingly

. reg lenergy	lmass type1 t	ype2 type3	, nocons		
Source	SS	df	MS		Number of obs = 20 R(4 16) = 1103 51
Model Residual	152.647883 .553317657	4 38. 16 .03	1619709 4582354		Prob > F = 0.0000 R-squared = 0.9964 Adi R-squared = 0.9955
Total	153.201201	20 7.6	6006006		Root MSE = .18596
lenergy	Coef.	Std. Err.	t	P>iti	[95% Conf. Interval]
lmass type1 type2 type3	.8149575 -1.57636 -1.474098 -1.497696	.0445414 .2872364 .2390155 .149869	18.30 -5.49 -6.17 -9.99	0.000 0.000 0.000 0.000	.7205338 .9093811 -2.1852749674459 -1.980788967408 -1.815405 -1.179988

Another parameterization is:

 $\mu(y|x,TYPE) = \beta_1 x + (\beta_2 I_{type1} + \beta_3 I_{type2} + \beta_4 I_{type3})$

- In this model, there is no β₀; β₂, β₃ and β₄ are the intercepts
- We see that the coefficient on β₂ is, indeed, the constant from the previous regression

NOTE!

□ And the other coefficients are shifted accordingly

. reg lenergy	lmass type1 t	ype2 type3,	nocons		
Source	\$\$	df	MS		Number of obs = 20 E(4 16) = 1103 51
Model Residual	152.647883 .553317657	4 38.1 16 .034	619709 582354		Prob > F = 0.0000 R-squared = 0.9964 Prob > F = 0.9964
Total	153.201201	20 7.66	006006		Root MSE = .18596
lenergy	Coef.	Std. Err.	t	P>{t}	[95% Conf. Interval]
lmass type1 type2 type3	.8149575 -1.57636 -1.474098 -1.497696	.0445414 .2872364 .2390155 .149869	18.30 -5.49 -6.17 -9.99	0.000 0.000 0.000 0.000	.7205338 .9093811 -2.1852749674459 -1.980788967408 -1.815405 -1.179988

Statistical Inference

- Now that we know what the coefficients mean, how do we test hypotheses?
 - E.g., how can we tell if the value of a coefficient is different from 0?

. reg lenergy	lmass type1 t	ype2 type3,	nocons		
Source	88	df	MS		Number of obs = 20 R(4 16) = 1103 51
Model Residual	152.647883 .553317657	4 38.1 16 .034	619709 582354		Prob > F = 0.0000 R-squared = 0.9964 Prob > F = 0.9964
Total	153.201201	20 7.66	006006		Root MSE = .18596
lenergy	Coef.	Std. Err.	t	P>[t]	[95% Conf. Interval]
lmass type1 type2 type3	.8149575 -1.57636 -1.474098 -1.497696	.0445414 .2872364 .2390155 .149869	18.30 -5.49 -6.17 -9.99	0.000 0.000 0.000 0.000	.7205338 .9093811 -2.1852749674459 -1.980788967408 -1.815405 -1.179988

Simple and Multiple Regression Compared

- Coefficients in a simple regression pick up the impact of that variable (plus the impacts of other variables that are correlated with it) and the dependent variable.
- Coefficients in a *multiple* regression account for the impacts of the other variables in the equation.

Simple and Multiple Regression Compared: Example

• Two simple regressions: • Oil = $\beta_0 + \beta_1$ Temp + ε_i • Oil = $\beta_0 + \beta_1$ Insulation + ε_i

Multiple regression:

 \Box Oil = $\beta_0 + \beta_1$ Temp + β_2 Insulation + ε_i

Least Squares Estimation

$$\mu(y|X_1, X_2) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 \qquad \text{var}(y|X_1, X_2) = \sigma^2$$

Unknown
parameters: Regression coefficients Variance
about regression

Fitted values

(predicted)

Residuals

$$\mu(\mathbf{y} | \mathbf{x}_1, \mathbf{x}_2) = \hat{\mathbf{y}} = \hat{\beta}_0 + \hat{\beta}_1 \mathbf{x}_{i1} + \hat{\beta}_2 \mathbf{x}_{i2} \quad i = 1, 2, ... n$$
$$res_i = y_i - \hat{y}_i$$

Least squares estimators, $\hat{\beta}_0$, $\hat{\beta}_1$, $\hat{\beta}_2$, are chosen to minimize the sum of squared residuals (matrix algebra formula)

 $\hat{\sigma}^2$ = (Sum of squared residuals) / (n-p) [p= number of β s]

t-tests and CI's for individual β 's

1. Note: a matrix algebra formula for $SE(\hat{eta}_{\mathrm{j}})$ is also available

2. If distribution of Y given X's is normal, then

t - ratio =
$$\frac{\hat{\beta}_{j} - \beta_{j}}{SE(\hat{\beta}_{j})}$$

has a t-distribution on n-p degrees of freedom

3. For testing the hypothesis H₀: $\beta_2 = 7$; compare t-stat = $\frac{\hat{\beta}_2 - 7}{SE(\hat{\beta}_2)}$

to a t-distribution on n-p degrees of freedom.

4. The p-value for the test H_0 : $\hat{\beta}_i = 0$ is standard output

5. It's often useful to think of H_0 : $\beta_2 = 0$ (for example) as

Full model: $\mu(y|X_1, X_2) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3$ Reduced model: $\beta_0 + \beta_1 X_1 + \beta_3 X_3$

Q: Is the $\beta_2 X_2$ term needed in a model with the other x's?

6. 95% confidence interval for β_i :

$$\hat{\beta}_{j} \pm t_{n-p} = (.975) * SE(\hat{\beta}_{j})$$

- 7. The meaning of a coefficient (and its significance) depends on what other X's are in the model (Section 10.2.2)
- 8. The t-based inference works well even without normality

t-tests and CI's for Bat Data (From Display 10.6)

- 1. Question: Do echolocating bats spend more energy than nonecholocating bats?
- 2. This is equivalent to testing the hypothesis H_0 : $\beta_3=0$

. reg lenergy li	mass type2	type3				
Source	88	df	MS		Number of obs $R(2) = 16$	= 20
Model 2 Residual	29.4214818 .553317657	39 16	.80716059 034582354		Prob > F R-squared	= 0.0000 = 0.9815 = 0.9791
Total 2	29.9747994	19 1	.57762102		Root MSE	= .18596
lenergy	Coef.	Std. En	r, t	P>{t}	[95% Conf.	Intervall
lmass type2 type3 _cons	.8149575 .1022618 .0786636 -1.57636	.044541 .114182 .202679 .287236	.4 18.30 27 0.90 23 0.39 24 -5.49	0.000 0.384 0.703 0.000	.7205338 1397946 3509973 -2.185274	.9093811 .3443182 .5083245 9674459

t-tests and CIs for Bat Data (From Display 10.6)

- 1. Question: Do echolocating bats spend more energy than nonecholocating bats?
- 2. This is equivalent to testing the hypothesis $H_0: \beta_3=0$ *t-statistic*

. reg lenergy	/ lmass type2	type3				
Source	88	df	MS		Number of obs	= 20
Model Residual	29.4214818 .553317657	3 16	9.80716059 .034582354		Prob > F R-squared	= 263.57 = 0.0000 = 0.9815 = 0.9781
Total	29.9747994	19	1.57762102		Root MSE	= .18596
lenergy	Coef.	Std.	Err. t	B>1t1	[95% Conf.	Interval1
lmass type2 type3 _cons	.8149575 .1022618 .0786636 -1.57636	.0445 .1141 .2026 .2872	414 18.3 827 0.9 793 0.3 364 -5.4	0 0.000 0 0.384 9 0.703 9 0.000	.7205338 1397946 3509973 -2.185274	.9093811 .3443182 .5083245 9674459

t-tests and CIs for Bat Data (From Display 10.6)

1. Question: Do echolocating bats spend more energy than nonecholocating bats?

Confidence

interval

2. This is equivalent to testing the hypothesis H_0 : $\beta_3 = 0$ *t-statistic*

Source SS df MS Model 29.4214818 3 9.80716059 Residual .553317657 16 .034582354 Total 29.9747994 19 1.57762102 Ienergy Coef. Std. Err. t P>iti [P5% Conf. Interval] 1mass .8149575 .0445414 18.30 0.000 .7205338 .9093811 type2 .1022618 .1141827 0.90 0.384 1397946 .2443182 type3 .0786636 .2026793 0.39 0.703 3509973 .5083245	. reg lenergy	y lmass type2	type3						
Model Residual 29.4214818 3 9.80716059 Prob > F = 0.0000 Residual .553317657 16 .034582354 Prob > F = 0.0000 Total 29.9747994 19 1.57762102 Prob > F = 0.0000 Ienergy Coef. Std. Err. t P>!t! [95% Conf. Interval] Imass .8149575 .0445414 18.30 0.000 .7205338 .9093811 type2 .1022618 .1141827 0.90 0.384 1397945 .2443182 type3 .0786636 .2026793 0.39 0.703 3509973 .5083245	Source	88	df		MS		Number of obs	= 283 5	0
Total 29.9747994 19 1.57762102 Root MSE = .18596 lenergy Coef. Std. Err. t P>itil [195% Conf. Interval] lmass .8149575 .0445414 18.30 0.000 .7205338 .9093811 type2 .1022618 .1141827 0.90 0.384 1392945 .3443182 type3 .0786636 .2026793 0.39 0.703 3509973 .5083245	Model Residual	29.4214818 .553317657	3 16	9.80 .034	0716059 4582354		Prob > F R-squared	= 0.000 = 0.981	05
lenergy Coef. Std. Err. t P>iti [95% Conf. Interval] lmass .8149575 .0445414 18.30 0.000 .7205338 .9093811 type2 .1022618 .1141827 0.90 0.384 1392946 .2443182 type3 .0786636 .2026793 0.39 0.703 3509973 .5083245 cons -1<52636	Total	29.9747994	19	1.57	762102		Root MSE	= .1859	6
lmass .8149575 .0445414 18.30 0.000 .7205338 .9093811 type2 .1022618 .1141827 0.90 0.384 1397946 .3443182 type3 .0786636 .2026793 0.39 0.703 3509973 .5083245 cons -1<57636 2822364 -5 49 0.000 -2 185274 9524459	lenergy	Coef.	Std.	Err.	t	P>:t:	[95% Conf.	Interval	3
	lmass type2 type3 _cons	.8149575 .1022618 .0786636 -1.57636	.0445 .1141 .2026 .2872	414 827 793 364	18.30 0.90 0.39 -5.49	0.000 0.384 0.703 0.000	.7205338 - 1397945 - 3509973 -2.185274	.909381: .344318 .508324 767445	1259

t-tests and CIs for Bat Data (From Display 10.6)

- Results: The data are consistent with the hypothesis of no energy differences between echolocating and nonecholocating bats, after accounting for body size
 - Confidence interval contains 0
 - 2-sided p-value = .7; i.e., not significant at the 5% level
 - So we <u>cannot</u> reject the null hypothesis that $\beta_3=0$
- 2. However, this doesn't prove that there is no difference.
 A "large" p-value means either:
 (i) there is no difference (H₀ is true) or
 (ii) there is a difference and this study is not powerful enough to detect it
- 3. So report a confidence interval in addition to the pvalue:

95% CI for β_3 : .0787 ± 2.12*.2027 = (-.35,.51).

Interpretation

Back-transform:

 $e^{.0787} = 1.08$, $e^{-.35} = .70$ and $e^{.51} = 1.67$

It is estimated that the median energy expenditure for echolocating bats is 1.08 times the median for non-echolocating bats of the same body weight

(95% confidence interval: .70 to 1.67 times).

Interpretation Depends...

- If we eliminate one of the independent variables (lmass), the other coefficients change
- So regression results depend on the model specification
- Here, we do not control for body mass, as we did before, and β_3 becomes <u>negative</u> and significant!

type2 type3					
88	df	MS		Number of obs	= 20
17.8444807 12.1303187	2 17	8.92224034 .713548161		Prob ≥ F R-squared	= 12.50 = 0.0005 = 0.5953 = 0.5477
29.9747994	19	1.57762102		Root MSE	= .84472
Coef.	Std. H	Err. t	P≻ltl	E95% Conf.	Intervall
6087747 -2.743272 3.39612	.4876 .59730 .42235	598 -1.25 557 -4.59 589 8.04	0.229 0.000 0.000	-1.637728 -4.003477 2.505021	.4201783 -1.483067 4.287219
	type2 type3 \$\$ 17.8444807 12.1303187 29.9747994 Coef. 6087747 -2.743272 3.39612	type2 type3 SS df 17.8444807 2 12.1303187 17 29.9747994 19 Coef. Std. 1 6087747 .4876 -2.743272 .59730 3.39612 .42235	type2 type3 SS df MS 17.8444807 2 8.92224034 12.1303187 17 .713548161 29.9747994 19 1.57762102 Coef. Std. Err. t 6087747 .487698 -1.25 -2.743272 .5973057 -4.59 3.39612 .4223589 8.04	type2 type3 SS df MS 17.8444807 2 8.92224034 12.1303187 17 .713548161 29.9747994 19 1.57762102 Coef. Std. Err. t P>iti 6087747 .487698 -1.25 0.229 -2.743272 .5973057 -4.59 0.000 3.39612 .4223589 8.04 0.000	type2 type3 SS df MS 17.8444807 2 8.92224034 12.1303187 17 .713548161 29.9747994 19 1.57762102 Coef. Std. Err. t P>iti E95% Conf. 6087747 .487698 -1.25 0.229 -1.637728 -2.743272 .5973057 -4.59 0.000 -4.003477 3.39612 .4223589 8.04 0.000 2.505021

Interpretation Depends...

- Ne-bats are clearly much bigger than e-bats.
- So the they naturally use more energy
 - <u>Not</u> necessarily due to the energy demands of echolocation

Explaining Model Variance

- Instead of examining a single coefficient, analysts often want to know how much variation is explained by all regressors.
 - This is the "coefficient of multiple determination," better known as R².
 - □ Recall that:

Calculating R²

Without any independent variables, we would have to predict values of Y by using only its mean:

Full model: $\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$ Reduced model: β_0

$$R^{2} = \frac{SSR}{SST} = \frac{\text{Explained Variation}}{\text{Total Variation}}$$

 R^2 = proportion of total variability (about Y) that is explained by the regression

Extreme Cases

 \square R² = 0 if residuals from full and reduced model are the same (the independent variables provide no additional information about Y)

 \square R² = 1 if residuals from full model are all zero (the independent variables perfectly predict Y)

Calculating R²

- R² can help, somewhat, with practical significance (bat data)
 - \square R² from model with x₁, x₂ and x₃ : .9815
 - \square R² from model with x₂ and x₃ : .5953
- So X₁ explains an extra 67% of the variation in y compared to a model with only x₂ and x₃.

. reg lenerg	y lmass type2	type3		
Source	SS	df	MS	Number of obs = 20 R(2 = 16) = 282 59
Model Residual	29.4214818 .553317657	3 16	9.80716059 .034582354	Prob > F = 0.0000 R-squared = 0.9815 Adi R-squared = 0.9281
Total	29.9747994	19	1.57762102	Root MSE = .18596
. reg lenergy	type2 type3			
Source	SS	df	MS	Number of obs = $\frac{20}{12}$
Model Residual	17.8444807 12.1303187	2 17	8.92224034 .713548161	$\frac{Prob > F}{R-squared} = 0.0005$
Total	20 074700A	10	1 59969109	$\frac{Huj}{Root} = \frac{94472}{Root}$

Limits of R²

R² cannot help with

□ Model goodness of fit,

- □ Model adequacy,
- □ Statistical significance of regression, or

□ Need for transformation.

- It can only help in providing a summary of tightness of fit;
 - Sometimes, it can help clarify practical significance.
- R² can always be made 100% by adding enough terms

Example: Zodiac and Sunshine

Add two irrelevant variables to bat regression

- □ Zodiac sign of month that bat/bird was born
- □ Whether they were born on a sunny day
- □ (Just to be sure, these were filled in randomly.)
- Even so, R² increases from 0.9815 to 0.9830

. reg lene	rgy lmass type2	type3		
Sourc	e SS	df	MS	Number of obs = 20 R(2 16 = 202 E9
Mode Residua	1 29.4214818 1 .553317657	3 16	9.80716059 .034582354	Prob > F = 0.0000 R-squared = 0.9815 Prob > F = 0.9815
Tota	29.9747994	19	1.57762102	Root MSE = .18596
. reg lener	gy lmass type2 t	type3 z	odiac sunshine	
Sourc	e SS	df	MS	Number of obs = 20 E(5 14) = 162 32
Mode Residua	1 29.4664969 .508302494	5 14	5.89329938 .036307321	$\frac{Prob > F}{R-squared} = 0.9830$
Tota	29.9747994	19	1.57762102	Root MSE = .19054

Adjusted R²

Proportion of variation in Y explained by all X variables, adjusted for the number of X variables used and sample size

$$r_{adj}^{2} = 1 - \left[\left(1 - r_{Y \bullet 12 \cdots k}^{2} \right) \frac{n-1}{n-k-1} \right]$$

- Penalizes Excessive Use of Independent Variables
- □ Smaller than R²
- Useful in Comparing among Models

Example Regression Output

. reg lenergy	type1 type2					
Source	88	df	MS		Number of obs	= 20
Model Residual	17.8444807 12.1303187	2 8.9 17 .71	2224034 3548161	\bigvee	F(2, 17) <u>Prob > F</u> <u>R-squared</u> Adi R-squared	$ \begin{array}{r} = & 12.50 \\ = & 0.0005 \\ \hline = & 0.5953 \\ = & 0.5477 \end{array} $
Total	29.9747994	19 1.5	7762102		Root MSE	= .84472
lenergy	Coef.	Std. Err.	t	P≻iti	[95% Conf.	Intervall
type1 type2 _cons	-2.134498 .6087747 2.787345	.487698 .487698 .243849	-4.38 1.25 11.43	0.000 0.229 0.000	-3.16345 4201783 2.272869	-1.105545 1.637728 3.301822

Adjusted R²

reflects the number of explanatory variables and sample size

 \Box is smaller than \mathbb{R}^2

Interpretation of Adjusted R²

$$r_{Y\bullet12}^2 = \frac{SSR}{SST} = .5953$$

59.53% of the total variation in energy can be explained by types 1 and 2

•
$$r_{\rm adj}^2 = .5477$$

54.77% of the total fluctuation in energy expenditure can be explained by types 1 and 2 after adjusting for the number of explanatory variables and sample size

Example: Zodiac and Sunshine

- Recall that R² increases from 0.9815 to 0.9830 with the addition of two irrelevant variables.
- But the <u>adjusted</u> R² falls from 0.9781 to 0.9770

. reg lenergy	y lmass type2 t	уреЗ		
Source	SS	df	MS	Number of obs = $\frac{20}{86}$
Model Residual	29.4214818 .553317657	3 16	9.80716059 .034582354	Prob > F = 0.0000 R-squared = 0.9815 Prob > F = 0.0000
Total	29.9747994	19	1.57762102	Root MSE = .18596
. reg lenergy	lmass type2 ty	pe3 z	odiac sunshir	ne
Source	\$\$	df	MS	Number of obs = 20 E(5 14) = 162 32
Model Residual	29.4664969 .508302494	5 14	5.89329938 .036307321	$\begin{array}{rcl} Prob > F &= 0.0000\\ R-squared &= 0.9830\\ Odi R-squared &= 0.9770\\ \end{array}$
Total	29.9747994	19	1.57762102	Root MSE = .19054

Venn Diagram Representation

- The overlap (purple) is the variation in Y explained by independent variable X (SSR).
- Think of this as <u>information</u> used to explain Y.

Example: Oil Use & Temperature

Variations in Temp not used in explaining variation in Oil

Temp

Variations in Oil explained by the error term (SSE)

Variations in Oil explained by Temp, or variations in Temp used in explaining variation in Oil (SSR)

Example: Oil Use & Temperature

Example: R²=0 and R²=1

Uncorrelated Independent Variables

Here, two independent variables that are <u>uncorrelated</u> with each other. But both affect oil prices.

Then R² is just the <u>sum</u> of the variance explain by each variable.

Uncorrelated Independent Variables

Correlated Independent Variables

- Now each explains some of the variation in Y
- But there is some variation explained by <u>both</u> X and W (the Red area)

Venn Diagrams and Explanatory Power of Regression

Venn Diagrams and Explanatory Power of Regression

F-tests: Overall Model Significance

- To calculate the significance of the entire model, use an F-test
- This compares the added variance explained by including the model's regressors, as opposed to using only the mean of the dependent variable:
- Full model: $\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$ Reduced model: β_0

i.e. in full model, $H_0: \beta_1 = \beta_2 = \beta_3 = 0$

Extra SS=(SSR from full model)-(SSR from reduced model)

$$F - statistic = \frac{[Extra SS / Extra \# of \beta's]}{\hat{\sigma}_{full}^2}$$

1. Fit full model: $\mu(y|x,TYPE) = \beta_0 + \beta_1 \text{ mass} + \beta_2 I_{type2} + \beta_3 I_{type3}$

. reg lenergy	y lmass type2	type3			
Source	SS	df	MS	Number of obs = $P(-3) = 16$	20
Model Residual	29.4214818 .553317657	3 16	9.80716059 .034582354	Prob > F = R-squared = 0di P-orwared = 0di P	0.0000
Total	29.9747994	19	1.57762102	Root MSE =	.18596
	1				

- This is the ANOVA section of the regression output
- It has all the information needed to calculate the F-statistic

1. Fit full model: $\mu(y|x,TYPE) = \beta_0 + \beta_1 \text{ mass} + \beta_2 I_{type2} + \beta_3 I_{type3}$

. reg lenergy	y lmass type2 t	уреЗ			
Source	SS	df	MS	Number of obs = $R(-3) = 16$	20
Model Residual	29.4214818 .55331765?	3 16	9.80716059 .034582354	Prob > F = R-squared = 0di Programmed	0.0000
Total	29.9747994	19	1.57762102	Root MSE =	.18596

Sum of Squared Residuals = 0.55332

1. Fit full model: $\mu(y|x,TYPE) = \beta_0 + \beta_1 \text{ mass} + \beta_2 I_{type2} + \beta_3 I_{type3}$

. reg lenergy	y lmass type2 t	уреЗ			
Source	88	df	MS	Number of obs = $R(-3) = 16$	20
Model Residual	29_4214818 .553317657	16	9.80716059 .034582354	Prob > F = R-squared = 0di R	0.0000
Total	29.9747994	19	1.57762102	Root MSE =	.18596

Sum of Squared Residuals = 0.55332Degrees of freedom = 16

1. Fit full model: $\mu(y|x,TYPE) = \beta_0 + \beta_1 \text{ mass} + \beta_2 I_{type2} + \beta_3 I_{type3}$

. reg lenergy	y lmass type2 t	уреЗ			
Source	88	df	MS	Number of obs = $R(-2) = 16$	20
Model Residual	29_4214818 .553317657	16	9.80216059 .034582354	Prob > F = R-squared = 0di P-squared = 0di P	0.0000
Total	29.9747994	19	1.57762102	Root MSE =	.18596

Sum of Squared Residuals = 0.55332Degrees of freedom = 16Mean Squared Error = 0.03458

2. Fit reduced model: $\mu(y|x,TYPE) = \beta_0$

. reg lenergy	constant, noco	ons							
Source	88	df		MS		Number	of obs	=	20
Model Residual	123.226402 29.9747994	1 19	123. 1.5	.226402 762102		F(1, Prob > R-squa	F red		78.11 0.0000 0.8043
Total	153.201201	20	7.66	5006006		Root M	'squared ISE	=	1.256
lenergy	Coef.	Std.	Err.	t	P>iti	E 95	5% Conf.	In	tervall
constant	2.482201	.2808	577	8.84	0.000	1.8	394359	3	.070043
. sum lenergy									
Variable	Obs	ľ	lean	Std.	Dev.	Min	Ma	ax	
lenergy	20	2.482	201	1.256	034 .0	198026	3.77734	18	

Notice that the coefficient on the constant

2. Fit reduced model: $\mu(y|x,TYPE) = \beta_0$

. reg lenergy	constant, noc	ons							
Source	SS	df		MS		Number	of obs	=	20
Model Residual	123.226402 29.9747994	1 19	123. 1.57	226402 762102		F(1, Prob > R-squar	19) F ed		78.11 0.0000 0.8043
Total	153.201201	20	7.66	006006		Root MS	fuareu E	=	1.256
lenergy	Coef.	Std.	Err.	t	P>[t]	E95%	Conf.	In	tervall
constant	2.482201	.2808	577	8.84	0.000	1.89	4359	3	.070043
. sum lenergy									
Variable	Obs	Μ	ean	Std. De	÷V.	Min	Ma	ax	
lenergy	20	2.482	201	1.25603	34 .01	98026	3.77734	18	

Notice that the coefficient on the constant = mean of Y

2. Fit reduced model: $\mu(y|x,TYPE) = \beta_0$

. reg lenergy	constant, noco	ns							
Source	88	df		MS		Number o	of obs	=	20
Model Residual (123.226402 29.9747994	1 19	123. 1.57	226402 762102		Prob > 1 R-square	ed	=	0.0000
Total	153.201201	20	7.66	006006		Root MSI	luareu E	=	1.256
lenergy	Coef.	Std.	Err.	t	P>{t}	E 95%	Conf.	In	tervall
constant	2.482201	.2808	577	8.84	0.000	1.894	4359	3	.070043
. sum lenergy									
Variable	Obs	ľ	lean	Std. De	. v.	Min	Ma	ax	
lenergy	20	2.482	201	1.25603	.01	98026	3.77734	18	

Sum of Squared Residuals = 29.97

2. Fit reduced model: $\mu(y|x,TYPE) = \beta_0$

. reg lenergy	constant, noc	ons					
Source	SS	df	MS		Number	of obs	= 20
Model Residual (123.226402 29.9747994	19 1.55	.226402 762102		F(1, Prob > R-squar	F ed	= 78.11 = 0.0000 = 0.8043 = 0.7940
Total	153.201201	20 7.66	5006006		Root MS	quareu E	= 1.256
lenergy	Coef.	Std. Err.	t	P>iti	E 95%	Conf.	Interval]
constant	2.482201	.2808577	8.84	0.000	1.89	4359	3.070043
. sum lenergy							
Variable	Obs	Mean	Std. D	ev.	Min	Ma	ax
lenergy	20	2.482201	1.2560	34 .01	98026	3.77734	18

Sum of Squared Residuals = 29.97Degrees of freedom = 19

Check against regression output:

. reg lenergy	y lmass type2 t	:уреЗ		
Source	88	df	MS	Number of obs = $\frac{20}{16}$
Model Residual	29.4214818 .553317657	3 16	9.80716059 .034582354	$\frac{Prob > F}{R-squared} = 0.9815$
Total	29.9747994	19	1.57762102	Root MSE = .18596

Sure enough, the results agree!

Contribution of a Subset of Independent Variables

- We often want to test the significance of a subset of variables, rather than one or all.
 For instance, does the type of animal (e-bat, ne-bat, bird) have any impact on energy use?
- Let X_S be the subset of independent variables of interest
 - □ Then the extra variation explained by X_s is: $SSR(X_s \mid \text{ all others except } X_s)$ $= SSR(all) - SSR(all others except X_s)$

Testing Portions of Model

- So we want to test whether X_s explains a significant amount of the variation in Y
- Hypotheses:
 - H₀: Variables X_s do not significantly improve the model given all others variables included
 - H₁: Variables X_s significantly improve the model given all others included
- Note: If X_S contains only one variable, then the F-test is equivalent to the t-test we performed before.

Example: Bat Data

For the bat data, to test whether type of animal makes a difference, we have:
 Full model: β₀ + β₁ x₁ + β₂ x₂ + β₃ x₃
 Reduced model: β₀ + β₁ x₁
 H₀: β₂ & β₃ are not jointly significant H₀: β₂ & β₃ are jointly significant

The test statistic is essentially the same as before:

$$F - statistic = \frac{[Extra SS / Extra \# of \beta's]}{\hat{\sigma}_{full}^2}$$

The only difference is that the Extra SS comes from adding x_2 and x_3 to the reduced model

1. Fit full model: $\mu(y|x,TYPE) = \beta_0 + \beta_1 \text{ mass} + \beta_2 I_{type2} + \beta_3 I_{type3}$

. reg lenergy	y lmass type2 t	уреЗ			
Source	88	df	MS	Number of obs = $R(-2) = 16$	20
Model Residual	29_4214818 .553317657	16	9.80216059 .034582354	Prob > F = R-squared = 0di R	0.0000
Total	29.9747994	19	1.57762102	Root MSE =	.18596

Sum of Squared Residuals = 0.55332Degrees of freedom = 16Mean Squared Error = 0.03458

2. Fit reduced model: $\mu(y|x,TYPE) = \beta_0 + \beta_1$ mass

. reg lenergy lmass										
Source	SS	df	MS	Number of $obs =$	20					
Model Residual	29.3919082 .582891195		29.3919082 .032382844	Prob > F = R-squared = Odi R-squared =	907.64 0.0000 0.9806 0.9295					
Total	29.9747994	19	1.57762102	Root MSE =	.17995					

Sum of Squared Residuals = 0.5829Degrees of freedom = 18

Check against regression output:

. reg lenergy	y 1mass type2	type3						
Source	SS	df		MS		Number of obs	=	20
Model Residual	29.4214818 .553317657	3 16	9.80 .034	716059 582354		F(3, 16) Prob > F R-squared		283.59 0.0000 0.9815
Total	29.9747994	19	1.57	762102		Adj K-squared Root MSE	=	0.9781
lenergy	Coef.	Std.	Err.	t	P>!t!	E95% Conf.	In	terval]
lmass	.8149575	.0445	414	18.30	0.000	.7205338	_	9093811
type2	.1022618	.1141	827	0.90	0.384	1397946	-	3443182
type3	.0786636	.2026	793	0.39	0.703	3509973		5083245
_cons	-1.57636	.2872	364	-5.49	0.000	-2.185274		9674459
. test type2 t	туре3							
<pre>(1) type2 = (2) type3 =</pre>	= 0 = 0							
F(2, P1	$\frac{16}{80b} = 0$.43						

The results agree again...

Check against regression output:

. reg lenergy	y 1mass type2	type3					
Source	88	df	MS			Number of obs	= 20
Model Residual	29.4214818 .553317657	3 16	9.80 .034	716059 582354		Prob > F R-squared	= 283.57 = 0.0000 = 0.9815 = 0.9781
Total	29.9747994	19	1.57	762102		Root MSE	= .18596
lenergy	Coef.	Std.	Err.	t	P>iti	E95% Conf.	Intervall
lmass	.8149575	.0449	5414	18.30	0.000	.7205338	.9093811
type2	.1022618	.1141	827	0.90	0.384	1397946	.3443182
type3	.0786636	.2026	793	0.39	0.703	3509973	.5083245
_cons	-1.57636	.2872	2364	-5.49	0.000	-2.185274	9674459
<pre>test type2 t (1) type2 = (2) type3 = F(2, P1</pre>	16) = 0	0.43 0.6593					

Note that this is easy to do in Stata