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What Is Inference About?
“Statisticians are people whose aim in life is to be 
wrong exactly 5% of the time.”
Inference relates estimation results to the 
hypotheses being tested.

Is the coefficient on a single variable significant?
Are the coefficients on a group of variables jointly 
significant?
How much of the variance in the data is explained by a 
given regression model?

Regression interpretation is about the mean of 
the coefficients; inference is about their variance.



Echo location requires 
more energy in-flight 

Echo-locating bats expend 
more energy while flying per 

unit body mass

EEi = b0 + b1*massi
+b2*birdi+b3*e-bati+ residi

Is b3 significant? Positive, 
negative? Magnitude?

Location Data-Example: Bat Echo

Data: energy expenditures 
and mass for 4 ne-bats, 
4 e-bats, and 12 ne-birds.



Example: Bat Echolocation Data
Q: Do echolocating bats expend more energy than non-

echolocating bats and birds, after accounting for mass?



Note: Different Model Parameterizations

The variable TYPE has 3 levels: birds, e-bats, and 
ne-bats.
We have a choice about which of the 3 indicator 
variables to use

If we include 2 indicator variables, the omitted category 
becomes equal to the constant.

i.e. µ(y|x,TYPE) = β0 + β1 x + (β2 Itype2+ β3 Itype3)

Then Type 1 becomes the reference level
β2 and β3 indicate the difference between 
Type 1 and Types 2 and 3, respectively.



Generate dummy variables with STATA:

Type category variable:
encode type, 

generate(typedum)
• Typedum=1 NE bats
• Typedum=2 NE birds
• Typedum=3 E bats

Generate three dummies:
• Type1 NE bats
• Type2 NE birds
• Type3 E bats



Label the new dummy variables

label variable  type1 "non-echolocating bats"

label variable  type2 "non-echolocating birds"

label variable  type3 "echolocating bats"

New dummies!

Generate dummy variables with STATA: Continued…



µ(y | x, TYPE) = β0 + β1 mass + (β2 Itype2+ β3 Itype3)

Body Mass (g) [Log scale]

Non- Echolocating bats

Energy (W)
[Log scale]

β0 + β2

β0 + β3

β0

β2

β2- β3

β3
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Dummy variables as shift parameters

Echolocating bats

Birds



In the previous model:
β0 is the intercept for level 1,
β2 is the amount by which the mean of y is greater 
for level 2 than for level 1 (after accounting for x),
β3 is the amount by which the mean of y is greater 
for level 3 than for level 1 (Display 10.5).

Dummy variables as shift parameters



Another parameterization is:

µ( y|x,TYPE) = β1 x+ (β2 Itype1 +β3 Itype2 + β4 Itype3)

In this model, there is no β0; β2, β3 and β4 are the 
intercepts for types 1, 2, and 3, respectively
We see that the coefficient on β2 is, indeed, the 
constant from the previous regression

And the other coefficients are shifted accordingly



Another parameterization is:

µ( y|x,TYPE) = β1 x+ (β2 Itype1 +β3 Itype2 + β4 Itype3)

In this model, there is no β0; β2, β3 and β4 are the 
intercepts
We see that the coefficient on β2 is, indeed, the 
constant from the previous regression

And the other coefficients are shifted accordingly NOTE!



Statistical Inference
Now that we know what the 
coefficients mean, how do we test 
hypotheses?

E.g., how can we tell if the value of a 
coefficient is different from 0?



Simple and Multiple Regression Compared

Coefficients in a simplesimple regression pick up 
the impact of that variable (plus the 
impacts of other variables that are 
correlated with it) and the dependent 
variable.
Coefficients in a multiplemultiple regression 
account for the impacts of the other 
variables in the equation.



Simple and Multiple Regression 
Compared: Example

Two simple regressions:

Multiple regression:
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Oil   Temp
Oil  Insulation
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Least Squares Estimation

Variance
about regression

Regression coefficientsUnknown 
parameters:

var(y|X1, X2) = σ2µ(y|X1, X2) = β0 + β1 X1 + β2 X2    

(Sum of squared residuals) / (n-p) [p= number of βs]

Least squares estimators,                   , are chosen to 
minimize the sum of squared residuals (matrix algebra formula)

Residuals
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t-tests and CI’s for individual β’s
1. Note: a matrix algebra formula for               is also available

2. If distribution of Y given X’s is normal, then

has a t-distribution on n-p degrees of freedom

3. For testing the hypothesis H0: β2 = 7; compare

to a t-distribution on n-p degrees of freedom.

4. The p-value for the test H0:       = 0 is standard output
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5. It’s often useful to think of H0: β2 = 0 (for 
example) as

Full model: µ( y|X1, X2) = β0 + β1 X1 + β2 X2 + β3 X3 
Reduced model:               β0 + β1 X1 +            β3 X3 

Q: Is the β2 X2 term needed in a model with 
the other x’s?

6. 95% confidence interval for βj:

7. The meaning of a coefficient (and its 
significance) depends 
on what other X’s are in the model (Section 10.2.2)

8. The t-based inference works well even without 
normality
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t-tests and CI’s for Bat Data (From Display 10.6)

1.Question: Do echolocating bats spend 
more energy than nonecholocating bats?

2.This is equivalent to testing the 
hypothesis H0: β3=0



t-tests and CIs for Bat Data (From Display 10.6)

1.Question: Do echolocating bats spend 
more energy than nonecholocating bats?

2.This is equivalent to testing the 
hypothesis H0: β3=0 t-statistic



t-tests and CIs for Bat Data (From Display 10.6)

1.Question: Do echolocating bats spend 
more energy than nonecholocating bats?

2.This is equivalent to testing the 
hypothesis H0: β3=0 t-statistic

Confidence 
interval



t-tests and CIs for Bat Data (From Display 10.6)

1. Results: The data are consistent with the hypothesis of 
no energy differences between echolocating and non-
echolocating bats, after accounting for body size 
• Confidence interval contains 0
• 2-sided p-value = .7; i.e., not significant at the 5% level
• So we cannot reject the null hypothesis that β3=0

2. However, this doesn’t prove that there is no difference. 
A “large” p-value means either: 

(i) there is no difference (H0 is true) or
(ii) there is a difference and this study is not powerful 

enough to detect it

3.  So report a confidence interval in addition to the p-
value:

95% CI for β3: .0787 ± 2.12*.2027 = (-.35,.51).



Back-transform:
e.0787 =1.08, e-.35=.70 and e.51=1.67

It is estimated that the median energy 
expenditure for echolocating bats is 1.08 
times the median for non-echolocating 
bats of the same body weight 

(95% confidence interval: .70 to 1.67 times).

Interpretation



If we eliminate one of the independent variables 
(lmass), the other coefficients change
So regression results depend on the model 
specification
Here, we do not control for body mass, as we did 
before, and β3 becomes negative and significant! 

Interpretation Depends…



Interpretation Depends…
• Ne-bats are clearly much bigger than e-bats.
• So the they naturally use more energy

• Not necessarily due to the energy demands of 
echolocation



Explaining Model Variance

Instead of examining a single coefficient, 
analysts often want to know how much 
variation is explained by all regressors.

This is the “coefficient of multiple 
determination,” better known as R2.
Recall that:

SST = SSR + SSE

Total Deviation Explained Deviation Unexplained Deviation



Calculating R2

Without any independent variables, we would have 
to predict values of Y by using only its mean:

Full model: β0 + β1 x1 + β2 x2 + β3 x3
Reduced model: β0

R2 = proportion of total variability (about Y) that 
is explained by the regression

Extreme Cases
R2 = 0 if residuals from full and reduced model are the 

same (the independent variables provide no additional 
information about Y)

R2 = 1 if residuals from full model are all zero (the 
independent variables perfectly predict Y)

2
12

Explained Variation

Total VariationY k
SSRr
SST• = =LR2



Calculating R2

R2 can help, somewhat, with practical significance 
(bat data)

R2 from model with x1, x2 and x3 : .9815
R2 from model with x2 and x3 : .5953

So x1 explains an extra 67% of the variation in y 
compared to a model with only x2 and x3.



Limits of R2

R2 cannot help with 
Model goodness of fit, 
Model adequacy, 
Statistical significance of regression, or 
Need for transformation.

It can only help in providing a 
summary of tightness of fit; 

Sometimes, it can help clarify practical 
significance.

R2 can always be made 100% by 
adding enough terms



Example: Zodiac and Sunshine

Add two irrelevant variables to bat regression
Zodiac sign of month that bat/bird was born
Whether they were born on a sunny day
(Just to be sure, these were filled in randomly.)

Even so, R2 increases from 0.9815 to 0.9830



Adjusted R2

Proportion of variation in Y explained by 
all X variables, adjusted for the number of 
X variables used and sample size

Penalizes Excessive Use of Independent 
Variables
Smaller than R2

Useful in Comparing among Models
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Example Regression Output

2
1 2Y

S S Rr
S S T• =

Adjusted R2  

reflects the number 
of explanatory 
variables and sample 
size 

is smaller than  R2 



Interpretation of Adjusted R2

59.53% of the total variation in energy can be 
explained by types 1 and 2

54.77% of the total fluctuation in energy expenditure 
can be explained by types 1 and 2 after adjusting for 
the number of explanatory variables and sample size

2
adj .9599r =

2
12 .9656Y

SSRr
SST• = = 5953.

5477.



Example: Zodiac and Sunshine
Recall that R2 increases from 0.9815 to 
0.9830 with the addition of two irrelevant 
variables.
But the adjusted R2 falls from 0.9781 to 
0.9770



Venn Diagram Representation

The overlap (purple) is the variation in Y 
explained by independent variable X (SSR).
Think of this as information used to explain Y.



Example: Oil Use & Temperature

Oil

Temp

Variations in Oil 
explained by Temp, 
or variations in 
Temp used in 
explaining variation 
in Oil

Variations in 
Oil explained 
by the error 
term

Variations in 
Temp not used 
in explaining 
variation in Oil ( )SSE

( )SSR
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Example: Oil Use & Temperature
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OilTemp

Example: R2=0 and R2=1

02 =R

Oil &
Temp 12 =R



Uncorrelated Independent Variables
Here, two 
independent 
variables that are 
uncorrelated
with each other.

Oil

Temp
Insul.

But both affect 
oil prices.

Then R2 is just 
the sum of the 
variance explain 
by each variable.



Oil

Temp
Insul.
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Correlated Independent Variables

Now each explains some of the variation in Y
But there is some variation explained by both X 
and W (the Red area)



Venn Diagrams and Explanatory Power of 
Regression

Oil

Temp
Insulation

Variation NOTNOT
explained by 
Temp nor 
Insulation
( )SSE

Variation 
explained by 
Temp and 
Insulation (SSR)



Venn Diagrams and 
Explanatory Power of Regression

Oil

Temp
Insulation
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F-tests: Overall Model Significance
To calculate the significance of the entire model, 
use an F-test
This compares the added variance explained by 
including the model’s regressors, as opposed to 
using only the mean of the dependent variable:

Full model: β0 + β1 x1 + β2 x2 + β3 x3

Reduced model: β0

i.e. in full model, H0: β1=β2=β3=0

Extra SS=(SSR from full model)-(SSR from reduced model)

2ˆ
s]β' of# Extra / SS Extra[

full

statisticF
σ

=−



1. Fit full model: 
µ(y|x,TYPE) = β0 + β1 mass + β2 Itype2 + β3 Itype3

F-tests: Example

• This is the ANOVA section of the regression output
• It has all the information needed to calculate the 
F-statistic



1. Fit full model: 
µ(y|x,TYPE) = β0 + β1 mass + β2 Itype2 + β3 Itype3

F-tests: Example

Sum of Squared Residuals = 0.55332



1. Fit full model: 
µ(y|x,TYPE) = β0 + β1 mass + β2 Itype2 + β3 Itype3

F-tests: Example

Sum of Squared Residuals = 0.55332
Degrees of freedom = 16



1. Fit full model: 
µ(y|x,TYPE) = β0 + β1 mass + β2 Itype2 + β3 Itype3

F-tests: Example

Sum of Squared Residuals = 0.55332
Degrees of freedom = 16
Mean Squared Error = 0.03458



2. Fit reduced model: 
µ(y|x,TYPE) = β0

F-tests: Example

Notice that the coefficient on the constant



2. Fit reduced model: 
µ(y|x,TYPE) = β0

F-tests: Example

Notice that the coefficient on the constant = mean of Y



2. Fit reduced model: 
µ(y|x,TYPE) = β0

F-tests: Example

Sum of Squared Residuals = 29.97



2. Fit reduced model: 
µ(y|x,TYPE) = β0

F-tests: Example

Sum of Squared Residuals = 29.97
Degrees of freedom = 19



F-tests: Example

The extra sum of 
squares is the difference 
between the two residual 

sum of squares

3

Extra SS = 29.97-0.5533 = 29.42

Numerator degrees of 
freedom: # of β’s in the 

full model - # of β’s in the 
reduced model

4

Numerator d.f. = 19 – 16 = 3

Calculate the F-statistic5 56.283
03458.

3
42.29

==− statisticF

Find Pr(F3,16>283.56) 
from table or computer

6
P-value = 0.0000



Check against regression output:

F-tests: Example

Sure enough, the results agree!



Contribution of a Subset of Independent 
Variables

We often want to test the significance of a 
subset of variables, rather than one or all.

For instance, does the type of animal (e-bat, 
ne-bat, bird) have any impact on energy use?

Let XS be the subset of independent 
variables of interest

Then the extra variation explained by XS is:

( )
( ) ( )

|  all others except 

all all others except 
s s

s

SSR X X

SSR SSR X= −



Testing Portions of Model

So we want to test whether Xs explains a 
significant amount of the variation in Y
Hypotheses:

H0:  Variables Xs do not significantly improve the 
model given all others variables included
H1:  Variables Xs significantly improve the model 
given all others included

Note: If XS contains only one variable, then 
the F-test is equivalent to the t-test we 
performed before.



Example: Bat Data
For the bat data, to test whether type of animal 
makes a difference, we have:
Full model: β0 + β1 x1 + β2 x2 + β3 x3

Reduced model: β0 + β1 x1 

H0: β2 & β3 are not jointly significant
H0: β2 & β3 are jointly significant

The test statistic is essentially the same as before:

2ˆ
s]β' of# Extra / SS Extra[

full

statisticF
σ

=−

The only difference is that the Extra SS comes 
from adding x2 and x3 to the reduced model



1. Fit full model: 
µ(y|x,TYPE) = β0 + β1 mass + β2 Itype2 + β3 Itype3

Testing Subsets: Example

Sum of Squared Residuals = 0.55332
Degrees of freedom = 16
Mean Squared Error = 0.03458



2. Fit reduced model: 
µ(y|x,TYPE) = β0 + β1 mass

Testing Subsets: Example

Sum of Squared Residuals = 0.5829
Degrees of freedom = 18



Testing Subsets: Example

The extra sum of 
squares is the difference 
between the two residual 

sum of squares

3

Extra SS = .5829 - .5533 = .0296

Numerator degrees of 
freedom: # of β’s in the 

full model - # of β’s in the 
reduced model

4

Numerator d.f. = 18 – 16 = 2

Calculate the F-statistic5 43.0
03458.

2
0296.

==− statisticF

Find Pr(F2,16>0.43) from 
table or computer

6
P-value = 0.659



Check against regression output:

Testing Subsets: Example

The results agree again…



Check against regression output:

Testing Subsets: Example

Note that this is easy to do in Stata


