Lecture 6: Variable Selection

Prof. Sharyn O'Halloran Sustainable Development U9611 Econometrics II

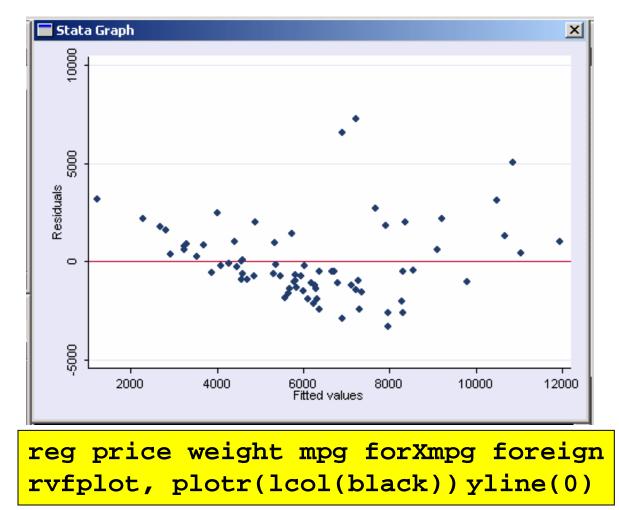
Regression Diagnostics: Review

- After estimating a model, we want to check the entire regression for:
 - □ Normality of the residuals
 - Omitted and unnecessary variables
 - Heteroskedasticity
- We also want to test individual variables for:

 - □ Influence

 - Functional form

Look at Residuals: rvfplot

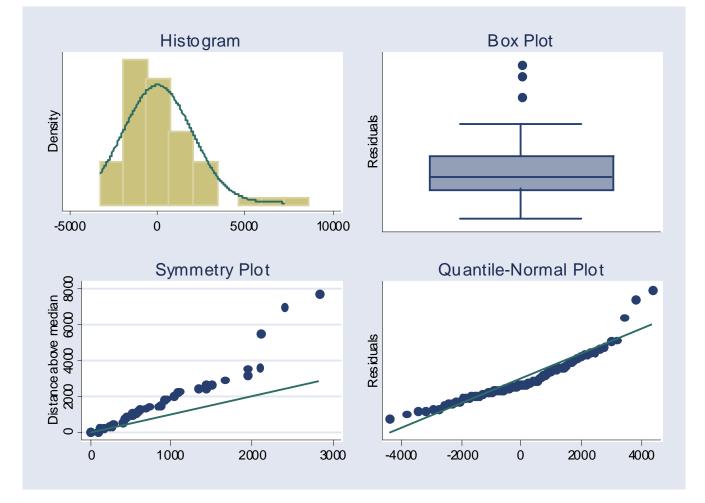


First, examine the residuals e_i vs. \hat{Y} .

Any pattern in the residuals indicates a problem.

Here, there is an obvious U-shape & heteroskedasticity.

Check Residuals for Normality



Residual plots also indicate non-normality

Spring 2005

Stata Commands: imtest

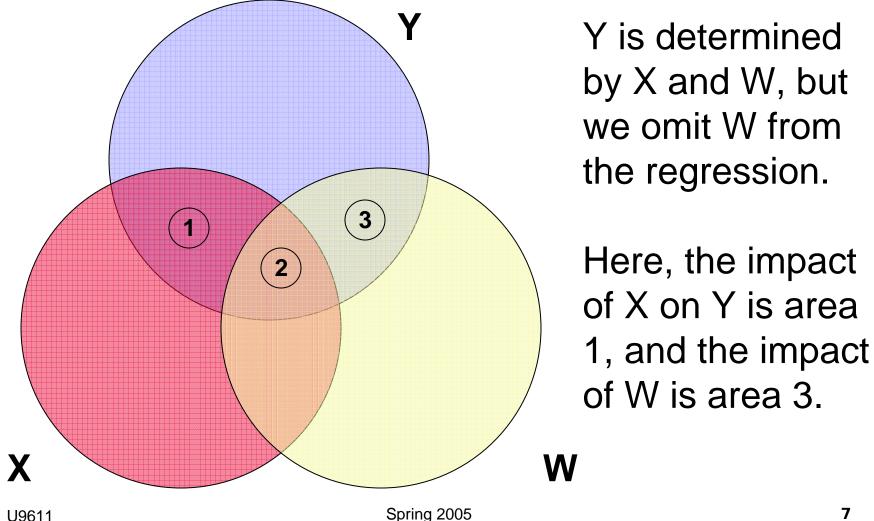
. imtest

Cameron & Trivedi's decomposition of IM-test

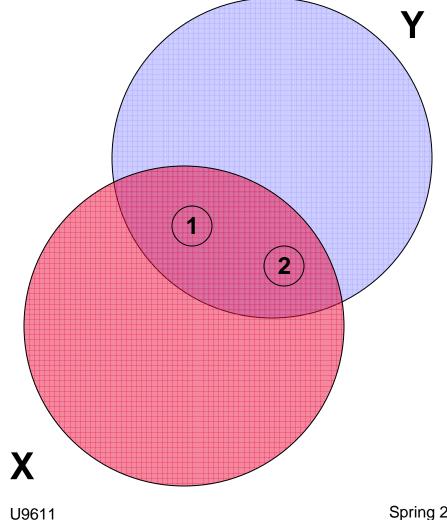
Source	 chi2 +	df	р
Heteroskedasticity Skewness Kurtosis	18.86 11.69 2.33	10 4 1	0.0420 0.0198 0.1273
Total		15	0.0049

The command "imtest" stands for "information matrix." Here, we see heteroskedasticity and skewness.

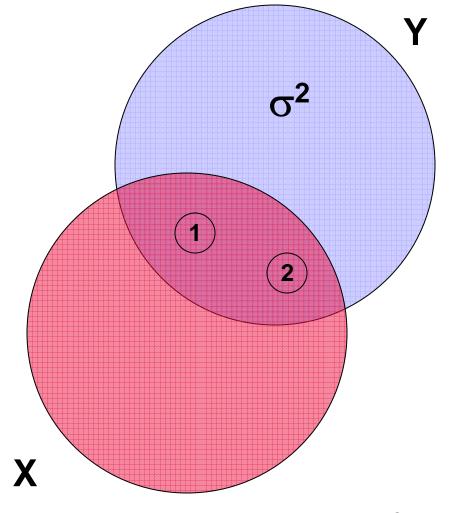
- Omitted variables are variables that significantly influence Y and so should be in the model, but are excluded.
- Questions:
 - □ Why are omitted variables a problem?
 - □ How can we test for them?
 - □ What are the possible fixes?
- Let's check the Venn diagram...



7

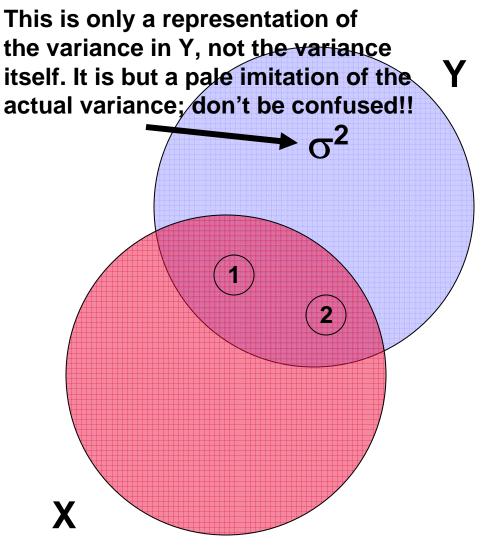


By omitting W, we now estimate the impact of X on Y by areas 1 and 2, rather than just area 1.



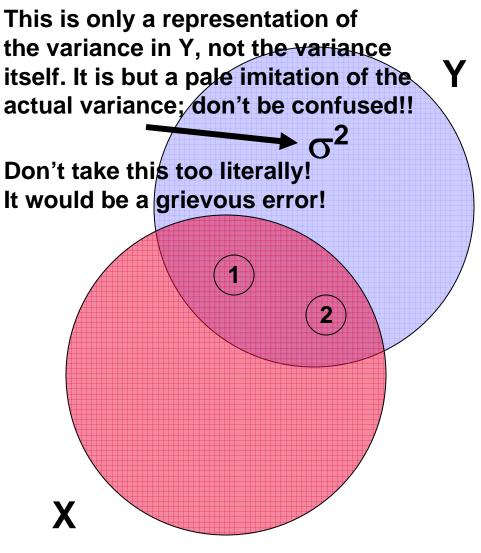
This means that:

- The estimate of β₁ is biased (since area 2 actually belongs to W as well as X).
- 2. The variance of β_1 is reduced (since it's estimated by areas 1 and 2).
- 3. The unexplained variance for Y (σ^2) increases.



This means that:

- The estimate of β₁ is biased (since area 2 actually belongs to W as well as X).
- 2. The variance of β_1 is reduced (since it's estimated by areas 1 and 2).
- 3. The unexplained variance for Y (σ^2) increases.



This means that:

- 1. The estimate of β_X is biased (since area 2 actually belongs to W as well as X).
- 2. The variance of β_X is reduced (since it's estimated by areas 1 and 2).
- 3. The unexplained variance for Y (σ^2) increases.

Stata Command: ovtest

. ovtest

```
Ramsey RESET test using powers of the fitted
values of price
Ho: model has no omitted variables
F(3, 66) = 7.77
Prob > F = 0.0002
```

. hettest

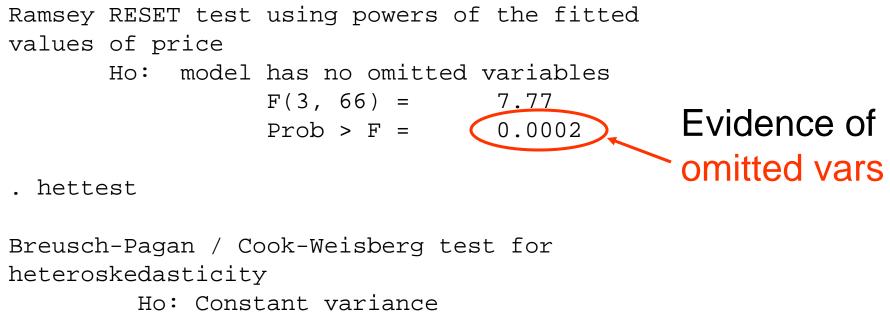
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity

Ho: Constant variance Variables: fitted values of price

```
chi2(1) = 6.50
Prob > chi2 = 0.0108
```

Stata Command: ovtest

. ovtest

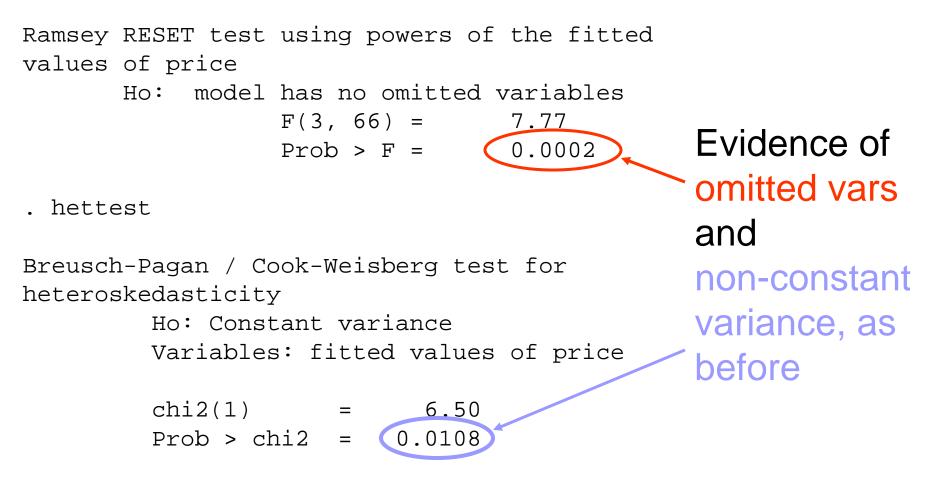


```
Variables: fitted values of price
```

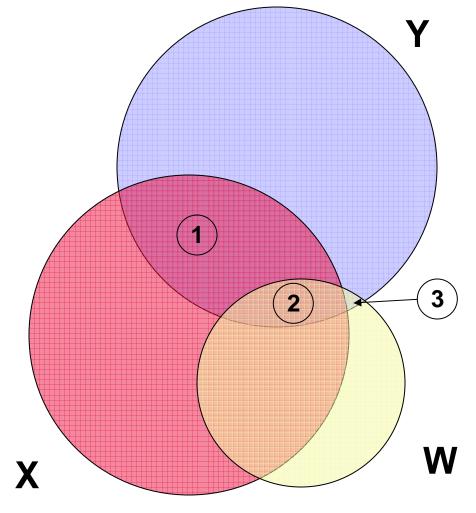
chi2(1) = 6.50 Prob > chi2 = 0.0108

Stata Command: ovtest

. ovtest



Including Unnecessary Variables

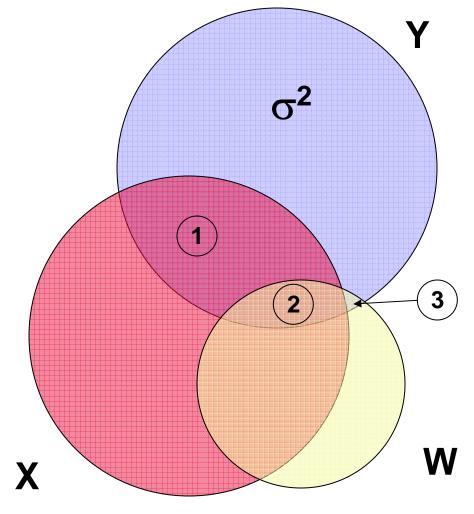


Here, variable W adds little on its own to explaining variation in Y (area 3).

Any explanatory power is due to its correlation with X (area 2).

U9611

Including Unnecessary Variables

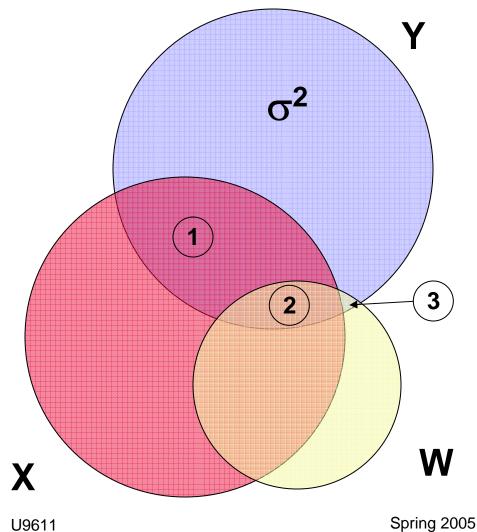


This means that:

- 1. The estimate of β_X is unbiased (since area 2 actually belongs only to X).
- 2. The variance of β_X is increased (since area 2 is removed).
- 3. The unexplained variance for Y (σ^2) is essentially the same (since area 3 is so small).

U9611

Including Unnecessary Variables



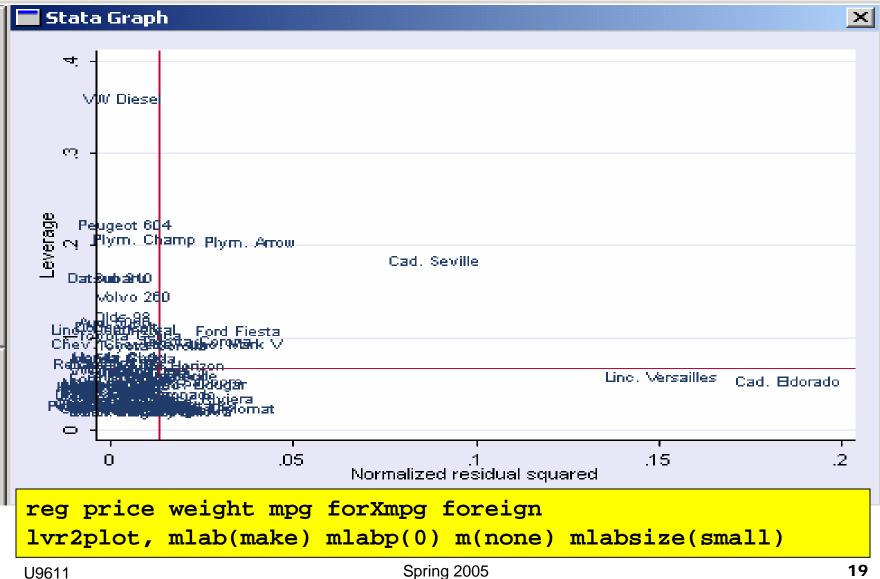
Solution: omit W from the regression.

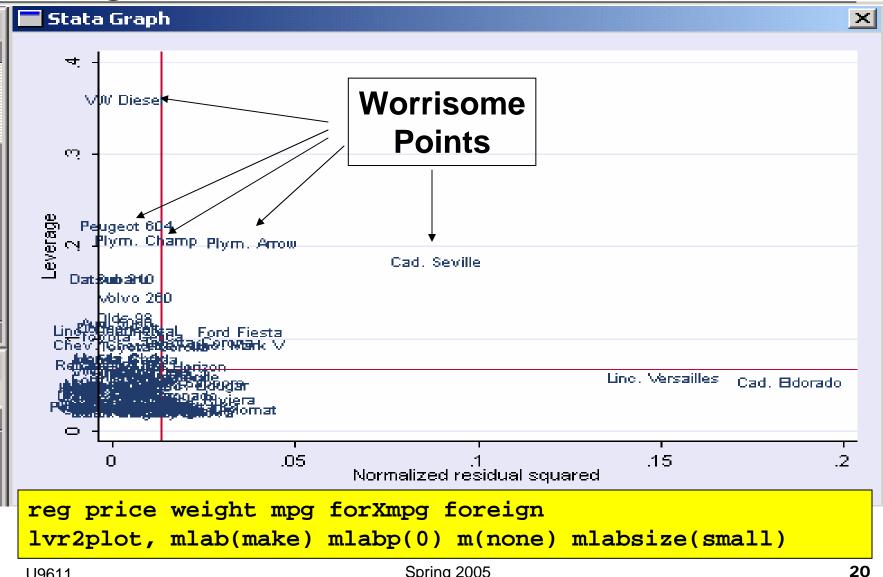
This is why we remove insignificant variables from regression equations.

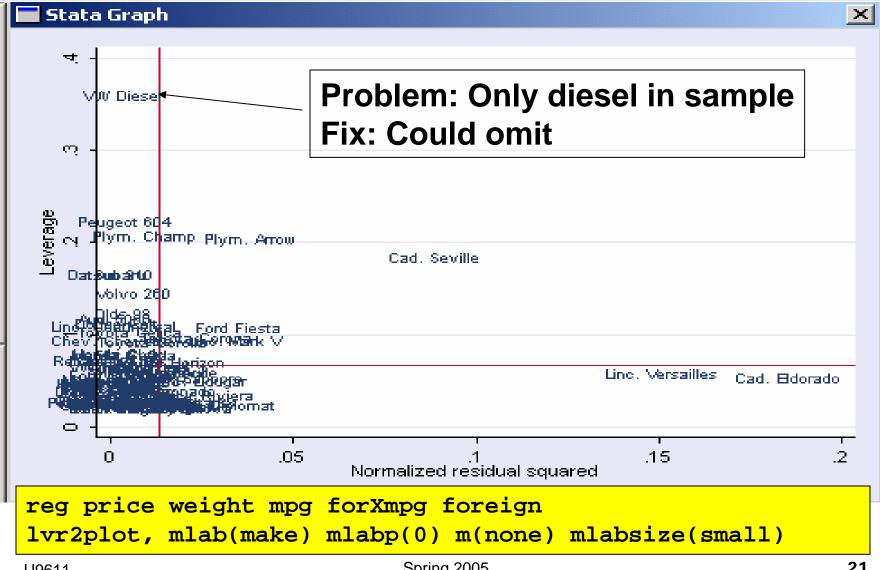
Note: This is similar to multicollinearity: the more variables added to the model, the more uncertainty there is in estimating β_{X} .

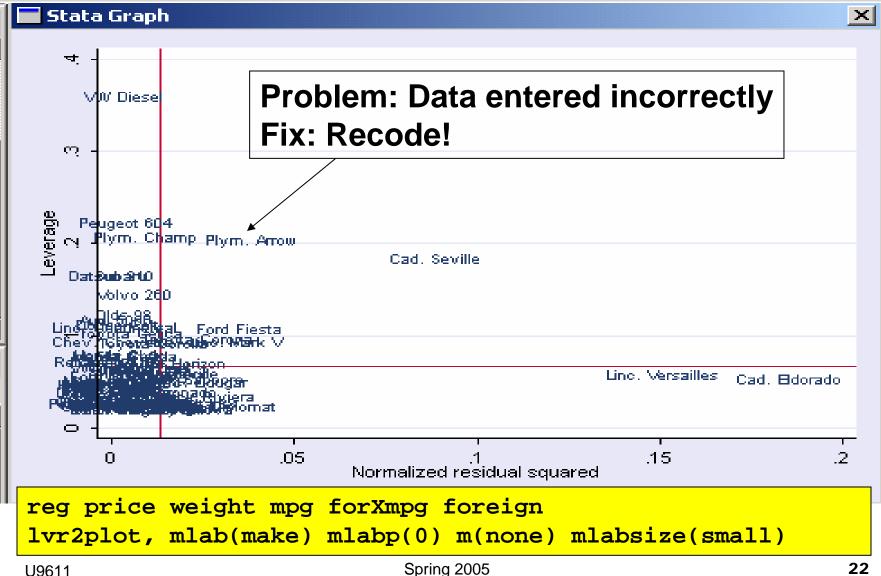
Checking Individual Variables

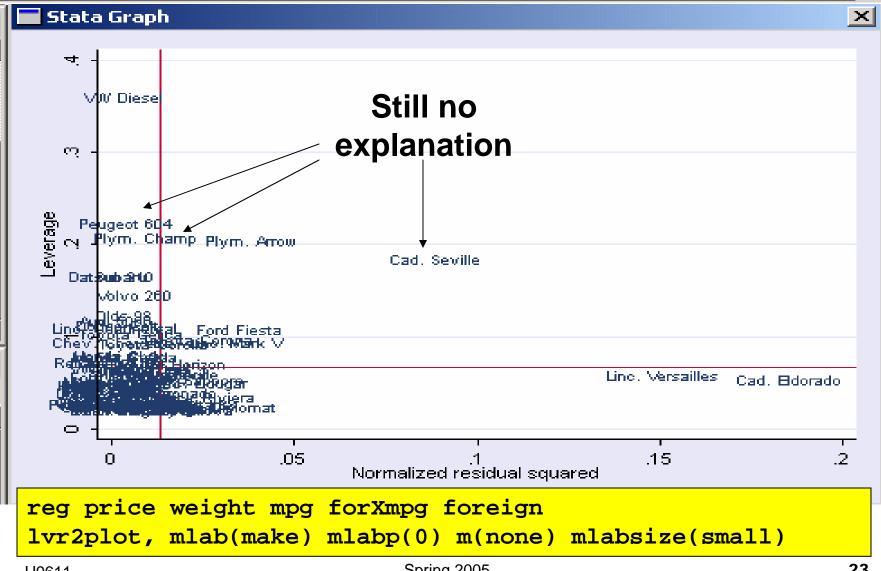
- If the diagnostics on the regression as a whole show potential problems, move to
 - □ Checking observations for:
 - Leverage
 - Outliers
 - Influence
 - Analyzing the contributions of individual variables to the regression:
 - Avplots
 - Cprplots

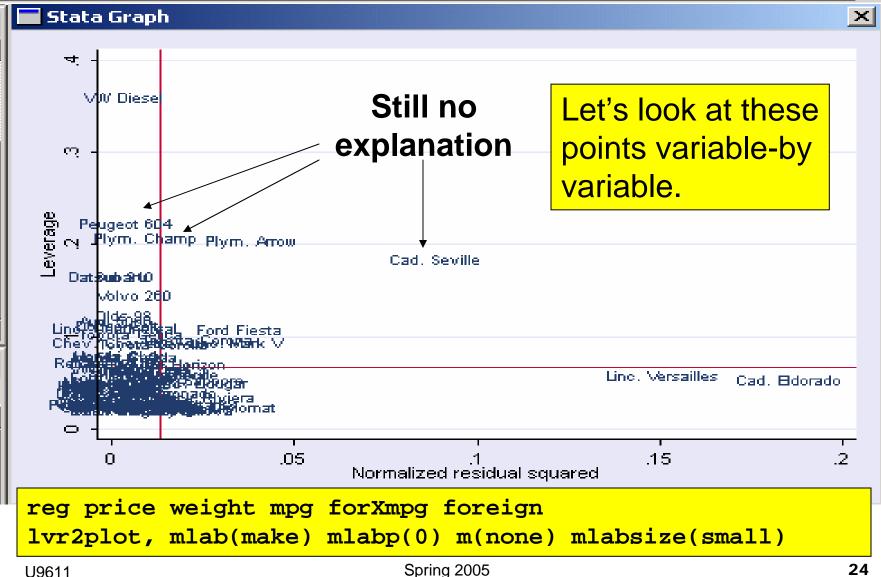












Stata Commands: avplot

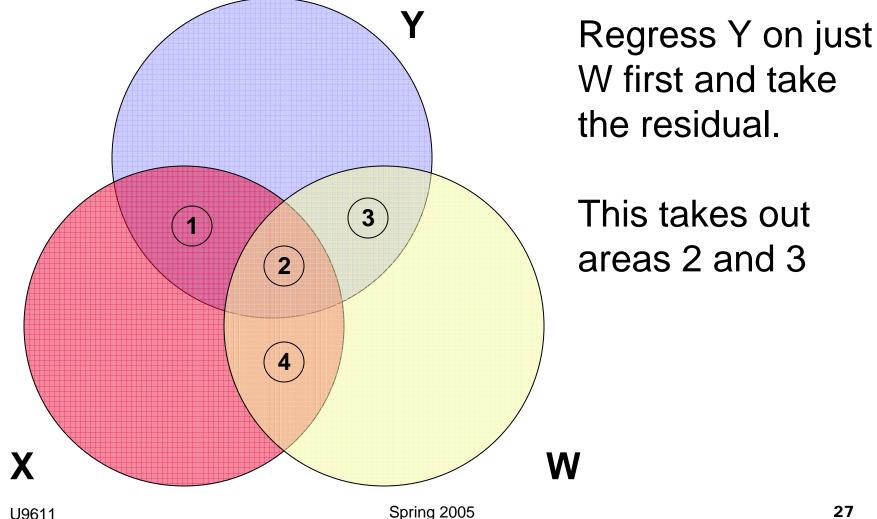
Say the original model is:

$$\mathsf{Y} = \beta_0 + \beta_1 \mathsf{x}_1 + \beta_2 \mathsf{x}_2 + \beta_3 \mathsf{x}_3$$

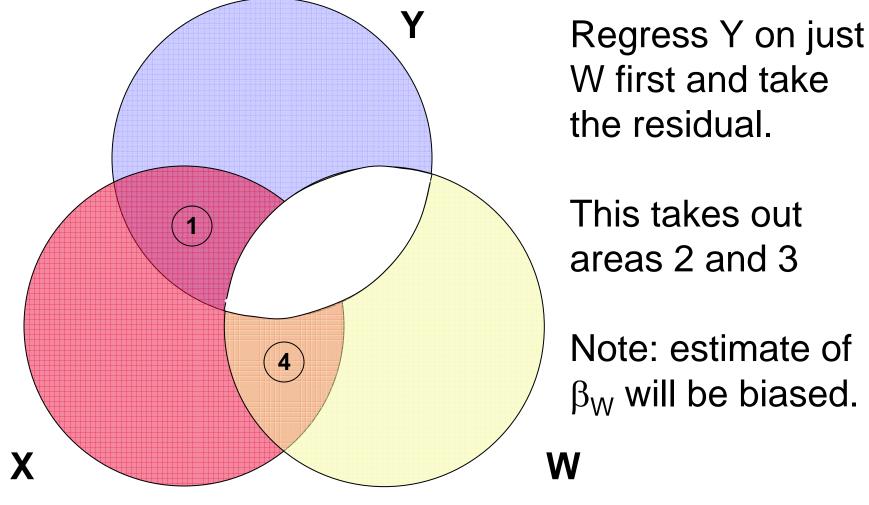
- We would like to graph the relation between Y and a single regressor x₁.
 - Can't do this directly, as we can with only one independent variable (too many dimensions).
- Added variable plots have the property that:
 - 1. There is a 1-to-1 correspondence btwn. $Y_i \& x_{1i}$.
 - 2. A regression of Y on x_1 has the same slope and standard error as in the multiple regression.
 - 3. The "outlierliness" of each observation is preserved.

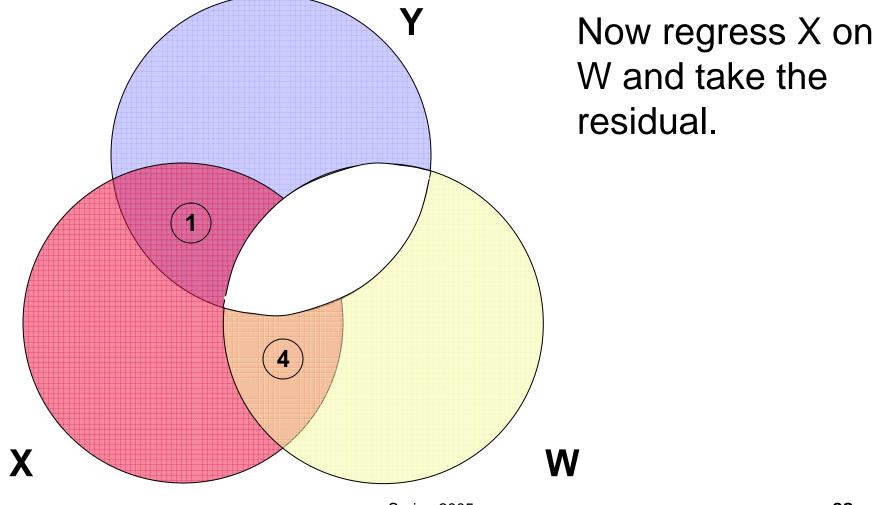
Stata Commands: avplot

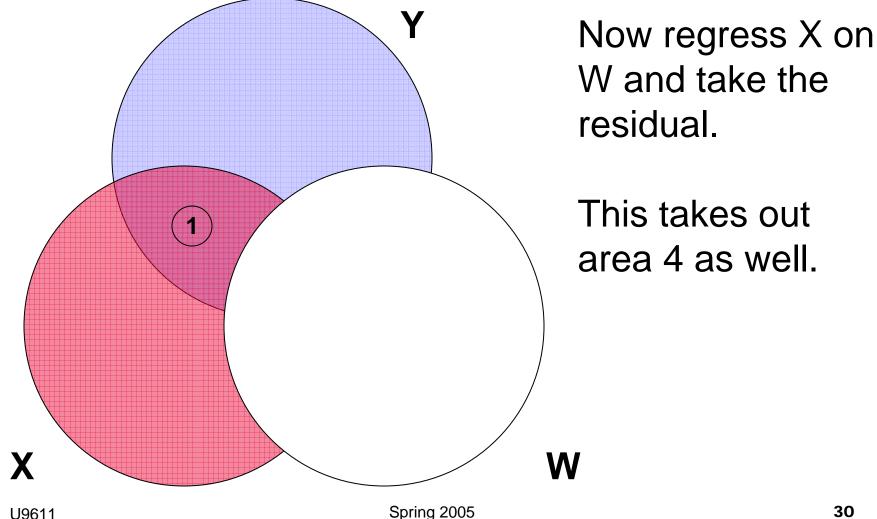
- To obtain the avplot for x_1 :
 - 1. Regress Y on x_2 and x_3 and calculate the residual; call this $e(Y|x_2,x_3)$
 - 2. Regress x_1 on x_2 and x_3 and calculate the residual; call this $e(x_1|x_2,x_3)$
 - 3. The avplot is then $e(Y|x_2,x_3)$ vs. $e(x_1|x_2,x_3)$
- The avplot thus provides a view of the relationship between Y and x_1 with the effects of x_2 and x_3 "taken out" of both.
- The slope coefficient in the avplot is the same as in the multiple regression. Why?

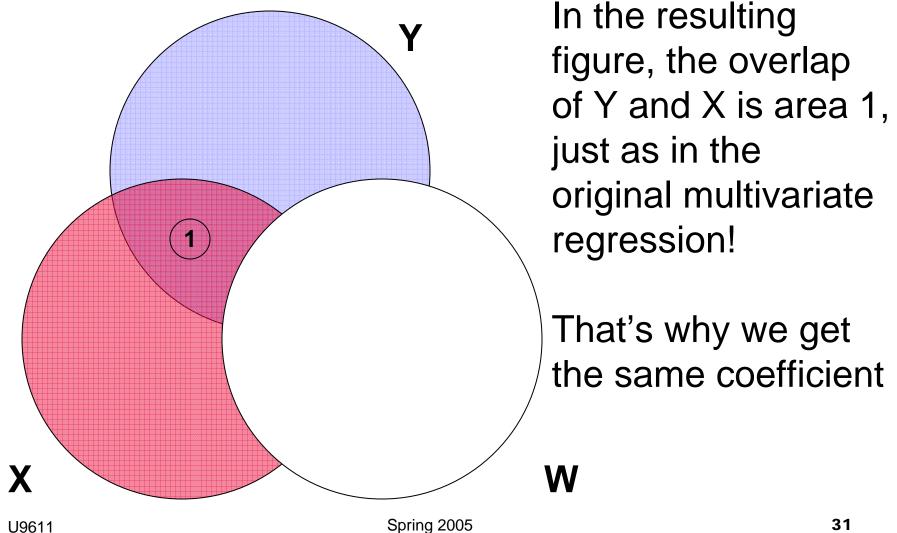


Spring 2005



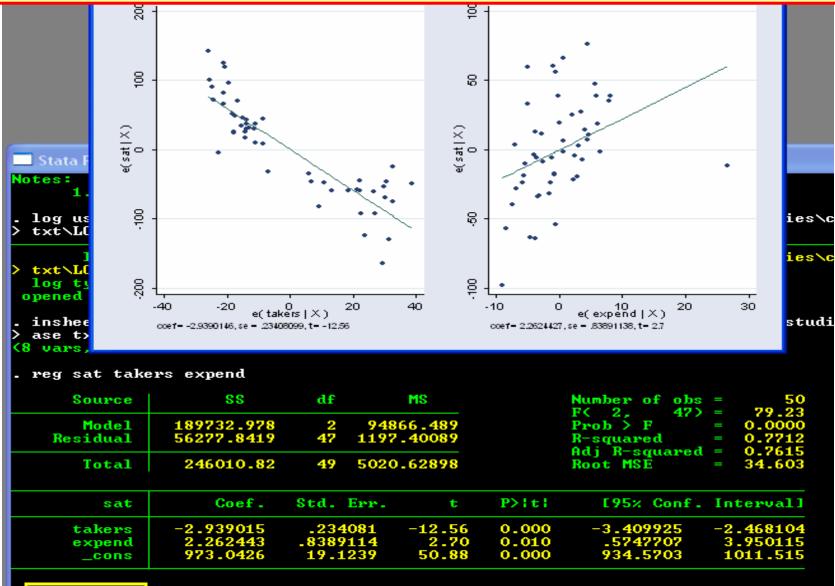




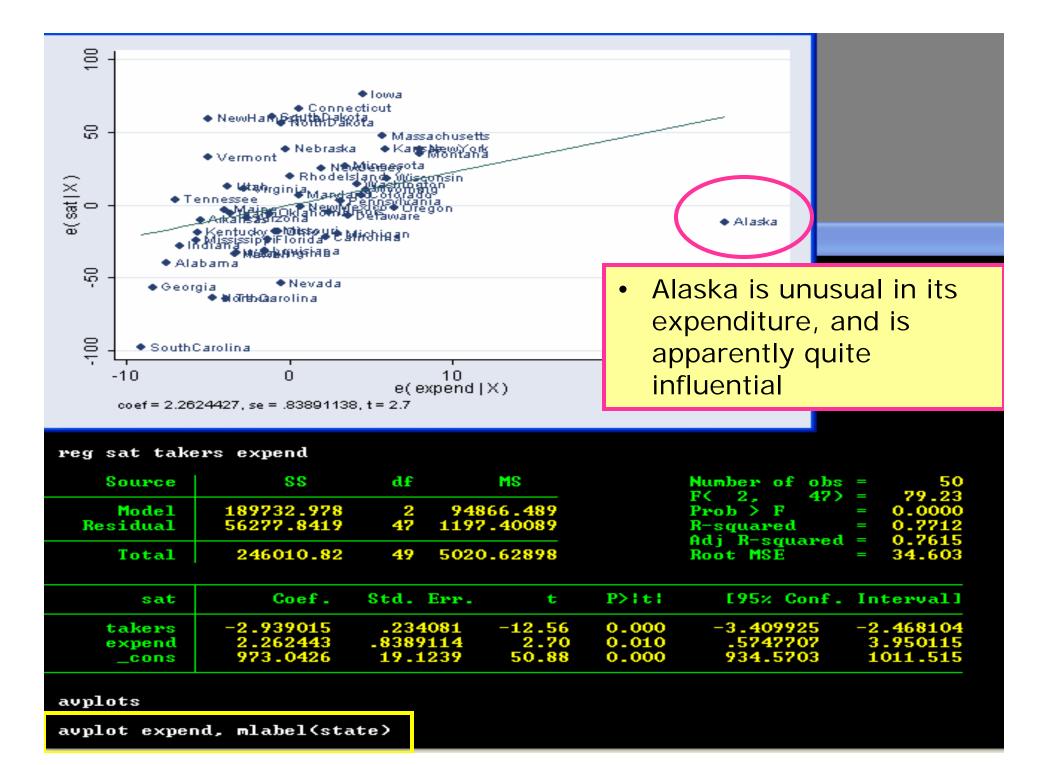


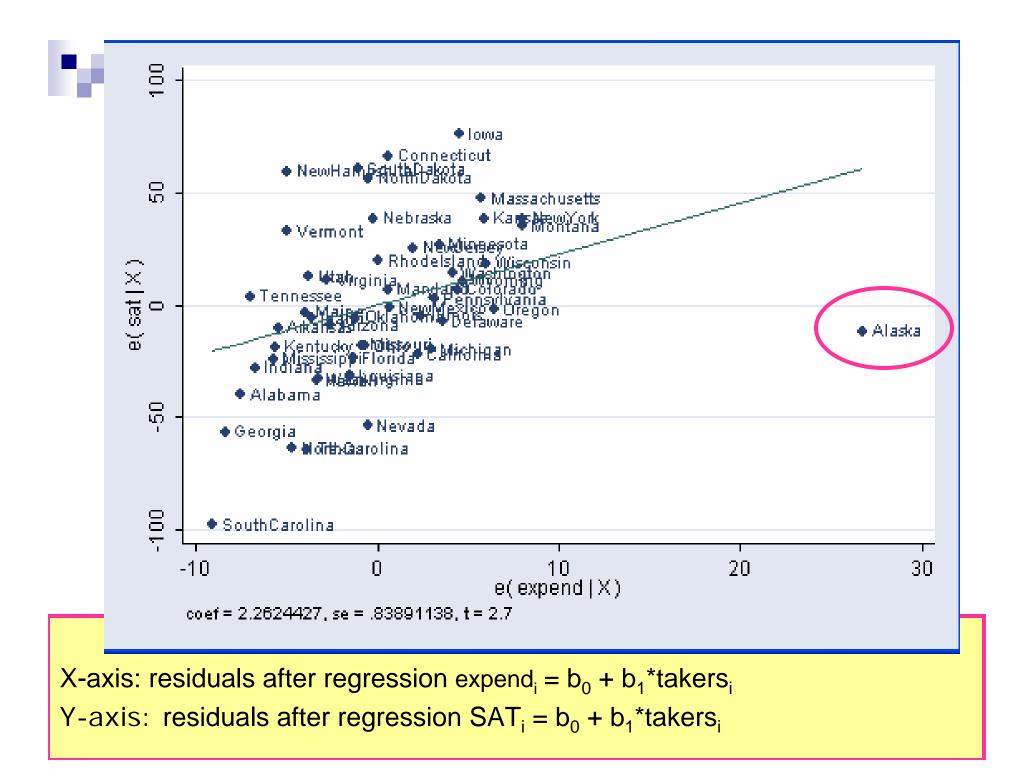
Added variable plots: example

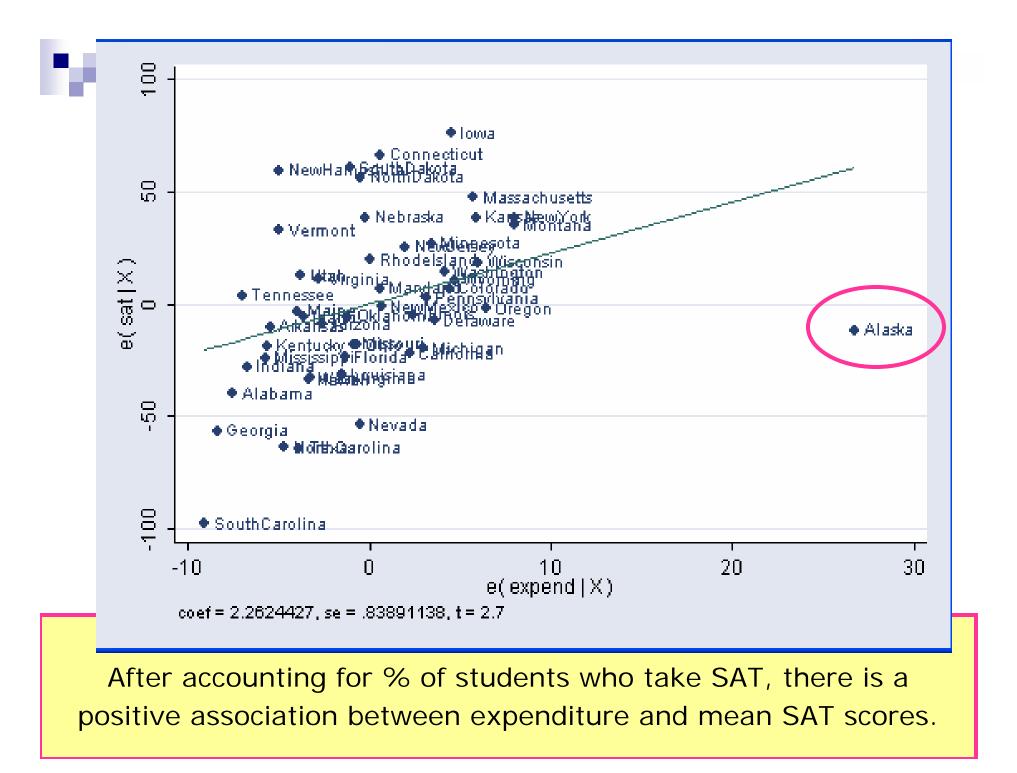
- Is the state with largest expenditure influential?
- Is there an association of expend and SAT, after accounting for takers?



avplots







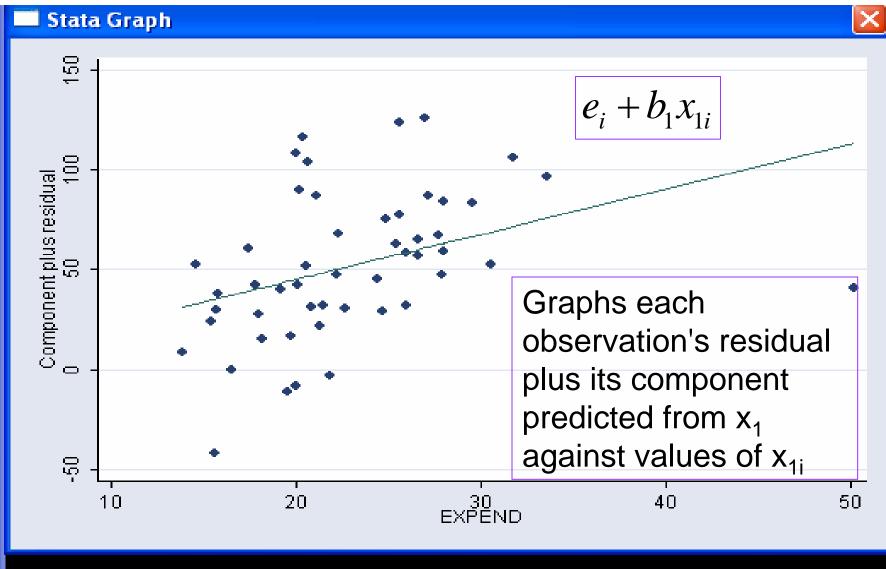
Component Plus Residual Plots

We'd like to plot y versus x₂ but with the effect of x₁ subtracted out;

i.e. plot
$$y - \beta_0 - \beta_1 x_1$$
 versus x_2

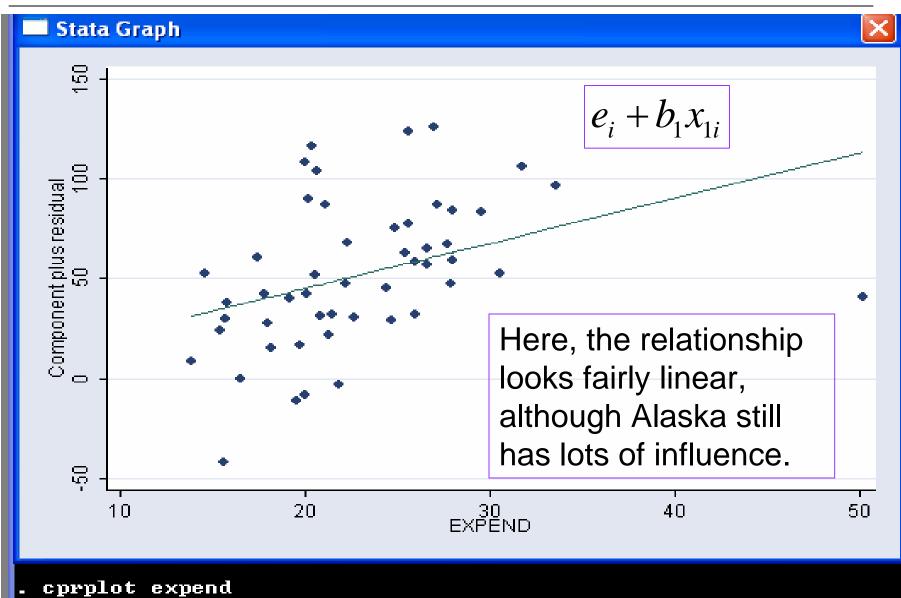
- To calculate this, get the *partial residual for* x_2 :
 - a. Estimate β_0, β_1 , and β_2 in $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$
 - b. Use these results to calculate $y \beta_0 \beta_1 x_1 = \beta_2 x_2 + \varepsilon_i$
 - c. Plot this quantity vs. x_2 .
- Whereas the avplots are better for detecting outliers, cprplots are better for determining functional form.

Graph cprplot x₁



cprplot expend

Graph cprplot x₁



Regression Fixes

- If you detect possible problems with your initial regression, you can:
 - 1. Check for mis-coded data
 - 2. Divide your sample or eliminate some observations (like diesel cars)
 - 3. Try adding more covariates if the ovtest turns out positive
 - 4. Change the functional form on Y or one of the regressors
 - 5. Use <u>robust regression</u>

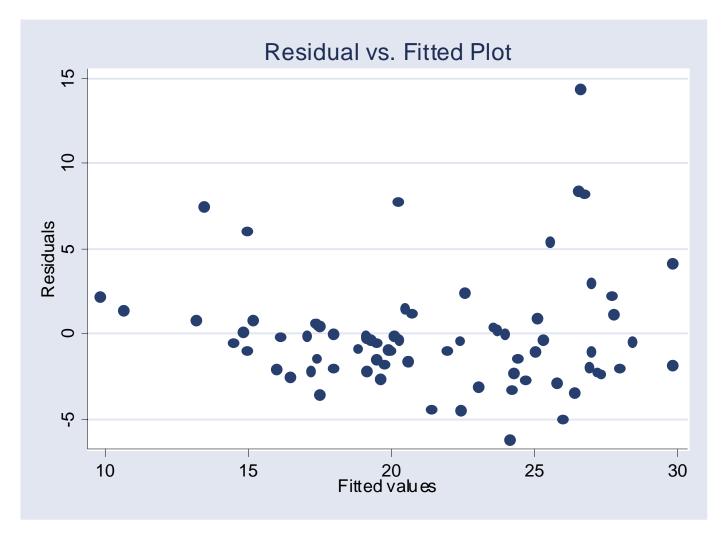
Robust Regression

- This is a variant on linear regression that downplays the influence of outliers
 - 1. First performs the original OLS regression
 - 2. Drops observations with Cook's distance > 1
 - Calculates weights for each observation based on their residuals
 - 4. Performs weighted least squares regression using these weights
- Stata command: "rreg" instead of "reg"

reg mpg weight foreign

Source	SS	df	MS		Number of obs =	74
Model Residual + Total	1619.2877 824.171761 2443.45946	71 11.	643849 608053 		Prob > F = 0 R-squared = 0 Adj R-squared = 0	59.75 .0000 .6627 .6532 .4071
mpg	Coef.	Std. Err.	tt	P> t	[95% Conf. Inter	rval]
weight foreign _cons	0065879 -1.650029 41.6797	.0006371 1.075994 2.165547	-10.34 -1.53 19.25	0.000 0.130 0.000	-3.7955 .495	53175 54422 99768

This is the original regressionRun the usual diagnostics



reg mpg weight foreign

Source	SS	df	MS		Number of $obs = 74$	
Model Residual	1619.2877 824.171761		643849 608053		F(2, 71) = 69.75 Prob > F = 0.0000 R-squared = 0.6627 Adj R-squared = 0.6532	
Total	2443.45946	73 33.4	720474		Root MSE = 3.4071	
mpg	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]	
weight	0065879	.0006371	-10.34	0.000	00785830053175	
foreign	-1.650029	1.075994	-1.53	0.130	-3.7955 .4954422	
_cons	41.6797	2.165547	19.25	0.000	37.36172 45.99768	

rvfplot shows heterskedasticityAlso, fails a hettest

(rreg)mpg weight foreign, genwt(w)

Huber	iteration	1:	maximum	difference	in	weights	=	.80280176
Huber	iteration	2:	maximum	difference	in	weights	=	.2915438
Huber	iteration	3:	maximum	difference	in	weights	=	.08911171
Huber	iteration	4:	maximum	difference	in	weights	=	.02697328
Biweight	iteration	5:	maximum	difference	in	weights	=	.29186818
Biweight	iteration	6:	maximum	difference	in	weights	=	.11988101
Biweight	iteration	7:	maximum	difference	in	weights	=	.03315872
Biweight	iteration	8:	maximum	difference	in	weights	=	.00721325

Robust regression estimates	Number of obs =	74
	F(2, 71) =	168.32
	Prob > F =	0.0000

mpg	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
weight	0063976	.0003718	-17.21	0.000	007139	0056562
foreign	-3.182639	.627964	-5.07	0.000	-4.434763	-1.930514
_cons	40.64022	1.263841	32.16	0.000	38.1202	43.16025

(rreg)mpg weight foreign, genwt(w)

Huber	iteration	1:	maximum	difference	in	weights	=	.80280176
Huber	iteration	2:	maximum	difference	in	weights	=	.2915438
Huber	iteration	3:	maximum	difference	in	weights	=	.08911171
Huber	iteration	4:	maximum	difference	in	weights	=	.02697328
Biweight	iteration	5 :	maximum	difference	in	weights	=	.29186818
Biweight	iteration	6:	maximum	difference	in	weights	=	.11988101
Biweight	iteration	7 :	maximum	difference	in	weights	=	.03315872
Biweight	iteration	8:	maximum	difference	in	weights	=	.00721325

Robust regression estimates	Number of obs =	74
	F(2, 71) =	168.32
	Prob > F =	0.0000

mpg		Std. Err.	t	P> t	[95% Conf.	Interval]
	0063976	.0003718	-17.21	0.000	007139	0056562
	-3.182639	.627964	-5.07	0.000	-4.434763	-1.930514
	40.64022	1.263841	32.16	0.000	38.1202	43.16025

Note: Coefficient on foreign changes from -1.65 to -3.18

	Ist Re		sion	: E>	kamp	le	
Huber itera Huber itera Huber itera Huber itera Biweight itera Biweight itera Biweight itera	ation 2: max ation 3: max ation 4: max ation 5: max ation 6: max ation 7: max	imum differe imum differe imum differe imum differe imum differe imum differe imum differe	ence in we ence in we ence in we ence in we ence in we ence in we	eights = eights = eights = eights = eights = eights =	.2915438 .08911171 .02697328 .29186818 .11988101 .03315872		
Robust regress	sion estimate	S			Number of F(2, Prob > F	71) =	168.32
mpg	Coef.	Std. Err.	t	P> t	[95% Co	nf. I	nterval]
•	0063976 -3.182639 40.64022		-5.07	0.000		3 –	1.930514

This command saves the weights generated by rreg

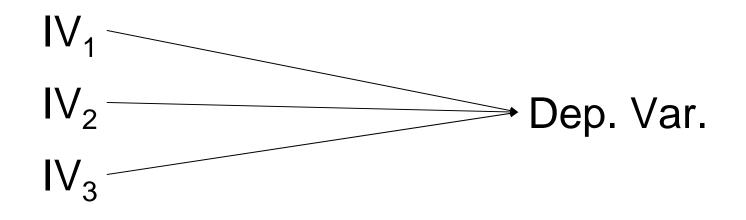
. sort w

. list make mpg weight w if w<.467, sep(0)

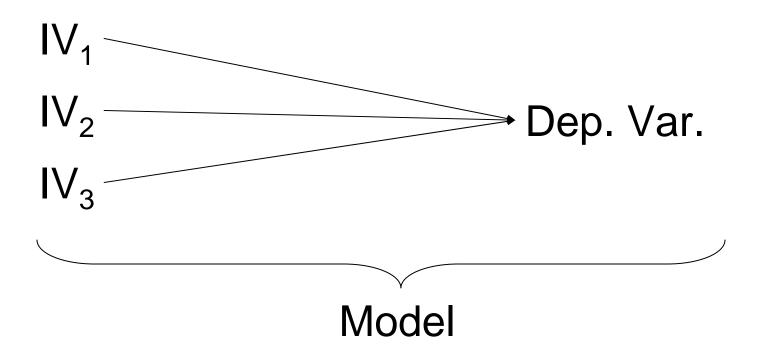
-	+			+
	make	mpg	weight	W
1.	 Subaru	35	2,050	0
2.	VW Diesel	41	2,040	0
3.	Datsun 210	35	2,020	0
4.	Plym. Arrow	28	3,260	.04429567
5.	Cad. Seville	21	4,290	.08241943
6.	Toyota Corolla	31	2,200	.10443129
7.	Olds 98	21	4,060	.28141296
-	+			+

 This shows that three observations were dropped by the rreg, including the VW Diesel

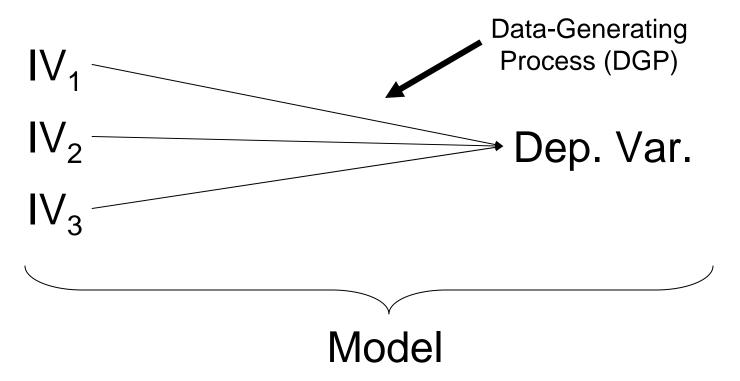
- Question: Which variables should we include on the RHS of our estimation?
- This is a fundamental question of research design and testing.
 - <u>NOT</u> merely a mechanical process.
- So let's first review some basic concepts of theory-driven research.
 - Theory-driven = based on a model of the phenomenon of interest, formal or otherwise.
 - □ We <u>always</u> do this, somehow, in our research



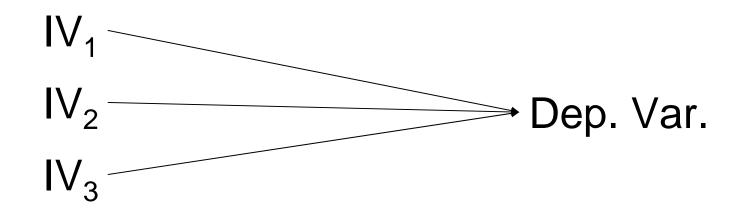
Say we have a theory predicting IV₁, IV₂, and IV₃ all affect dependent variable Y.



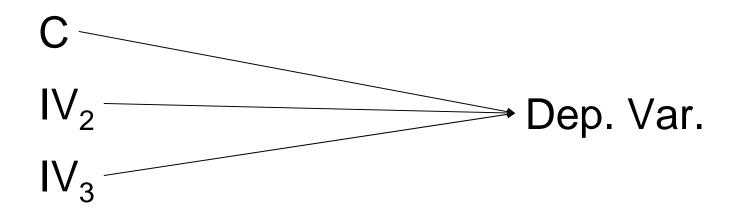
Say we have a theory predicting IV₁, IV₂, and IV₃ all affect dependent variable Y.



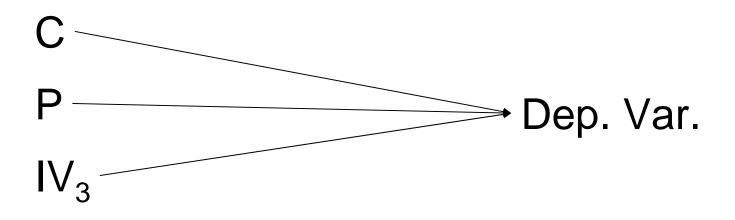
Say we have a theory predicting IV₁, IV₂, and IV₃ all affect dependent variable Y.



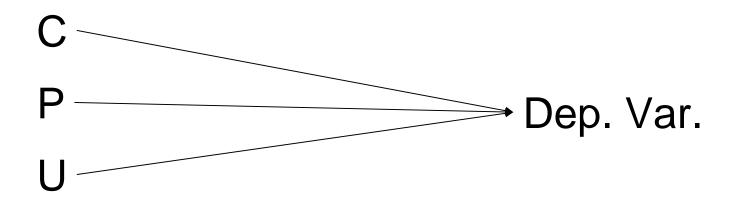
• For instance:



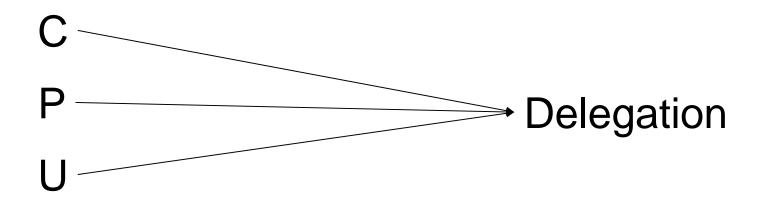
- For instance:
 - 1. Congressional Committee ideal points,



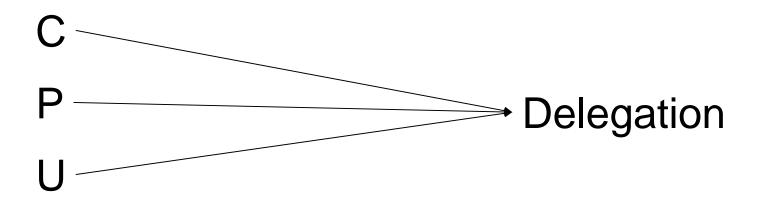
- For instance:
 - 1. Congressional Committee ideal points,
 - 2. The President's ideal point, and



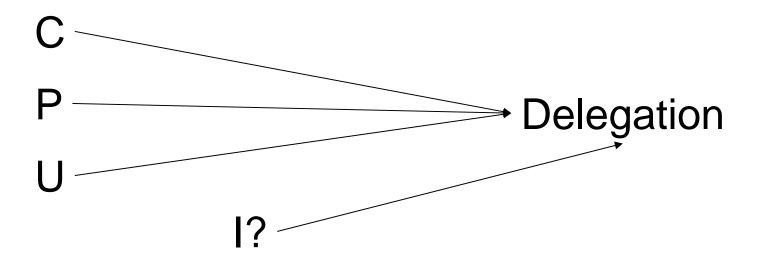
- For instance:
 - 1. Congressional Committee ideal points,
 - 2. The President's ideal point, and
 - 3. Uncertainty in the policy area



- For instance:
 - 1. Congressional Committee ideal points,
 - 2. The President's ideal point, and
 - 3. Uncertainty in the policy area
 - Affect Delegation to the executive.



Question: What if another variable is suggested that might also impact Y?



- Question: What if another variable is suggested that might also impact Y?
- For instance, the Interest group environment surrounding the issue.

U9611

- Remember: our original regression variables came from a particular <u>model</u> of our subject.
- There are, generally, three options when new variables are suggested:
 - Re-solve the model with the new variable(s) included as well;
 - 2. Assume the model is a complete Data Generating Process (DGP) and ignore other potential factors;
 - 3. Treat the model as a partial DGP.
- We will consider each in turn.

Add New Variables to the Model

- We <u>could</u> expand our model to include the new variable(s).
 - □ Formal models: re-solve the equilibrium
 - Qualitative models: re-evaluate the predicted effects
- In the long run, though, this is not feasible
 - There will <u>always</u> be more factors that might affect the phenomenon of interest
 - Don't want to take the position that you can't have a theory of anything without having a theory of everything

Treat the Model as a Complete DGP

- This means to just look at the impact of the variables suggested by your theory on the dependent variable
- This is unrealistic, but an important first cut at the problem
- You can do this with
 - Naturally occuring data
 - Experimental data
 - Either way, this is a direct test of the theory

Treat the Model as a Partial DGP

- This is the modal response just add the new variables to the estimation model
- But it has some shortcomings:
 - You lose the advantages of modelling
 - You're not directly testing your theory any more, but rather your theory plus some conjectures.
 - Have to be careful about how the error term enters the equation where does ϵ come from?
- If you do this, best to use variables already known to affect the dependent variable.

How To Handle Many Regressors

- With this in mind, how can we handle a situation where we have many potential indep. variables?
- Two good reasons for seeking a subset of these:
 - □ General principle: smaller is better (Occam's razor)
 - Unnecessary terms add imprecision to inferences
- Computer assisted tools
 - Fit of all possible models (include or exclude each X)
 Compare with these statistics:
 - Cp, AIC, or BIC
 - Stepwise regression (search along favorable directions)
- But don't expect a BEST or a TRUE model or a law of nature

Objectives when there are many X's (12.2.1)

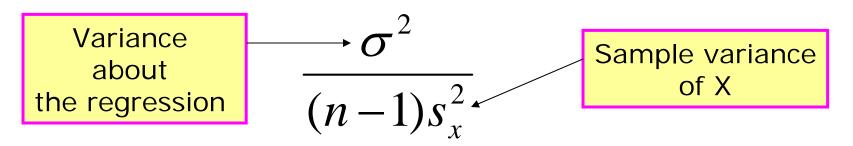
- Assessment of one X, after accounting for many others
 - Ex: Do males receive higher salaries than females, after accounting for legitimate determinants of salary?
 - Strategy: first find a good set of X's to explain salary; then see if the sex indicator is significant when added
- Fishing for association; i.e. what are the important X's?
 - The trouble with this: we can find several subsets of X's that explain Y; but that doesn't imply importance or causation
 - Best attitude: use this for hypothesis generation

Prediction

- □ This is a straightforward objective
- □ Find a useful set of X's; no interpretation required

Loss of precision due to multicollinearity

Review: variance of L.S. estimator of slope in simple reg. =



• Fact: variance of L.S. estimator of coef. of X_j in mult. reg. = σ^2 Sample variance of X_i $(n-1)s_j^2(1-R_j^2)$ R² in the regression of X_j on the other X's in model

Implications of Multicollinearity

- So variance of an estimated coef. will tend to be larger if there are other X's in the model that can predict X_i.
- The S.E. of prediction will also tend to be larger if there are unnecessary or redundant X's in the model.
- The tradeoff for adding more regressors is:
 You explain more of the variance in Y, but
 You estimate the impact of all other variables on Y using less information

Implications of Multicollinearity

- Multicollinearity:
 - The situation in which $s_i^2(1-R_i^2)$ is small for one or more j's (usually characterized by highly correlated X's).
- Strategy:
 - There isn't a real need to decide whether multicollinearity is or isn't present, as long as one tries to find a subset of x's that adequately explains $\mu(Y)$, without redundancies.
- "Good" subsets of x's:
 - (a) lead to a small $\hat{\sigma}^{2}$
 - (b) with as few x's as possible (Criteria Cp, AIC, and BIC formalize this) Spring 2005

U9611

Strategy for dealing with many X's

- Identify objectives; identify relevant set of X's
- 2. Exploration:
 - matrix of scatterplots; correlation matrix;
 Residual plots after fitting tentative models
- 3. Resolve transformation and influence before variable selection
- 4. Computer-assisted variable selection:

Best:

- Compare all possible subset models using either Cp, AIC, or BIC; find some model with a fairly small value
- Next best:
 - Use sequential variable selection, like stepwise regression (this doesn't look at all possible subset models, but may be more convenient with some statistical programs)

Sequential Variable Selection

1. Forward selection

a. Start with no X's "in" the model St 412/512 page 98.b. Find the "most significant" additional X (with an F-test).c. If its p-value is less than some cutoff (like .05) add it to the model (and re-fit the model with the new set of X's).d. Repeat (b) and (c) until no further X's can be added.

2. Backward elimination

a. Start with all X's "in" the mode.

b. Find the "least significant" of the X's currently in the model.

c. If it's p-value is greater than some cutoff (like .05) drop it from the model (and re-fit with the remaining x's).

d. Repeat until no further X's can be dropped.

Sequential Variable Selection (cont.)

- 3. Stepwise regression
- a) Start with no X's "in" St 412/512 page 99
- b) Do one step of forward selection
- c) Do one step of backward elimination
- Repeat (b) and (c) until no further X's can be added or dropped

4. Notes

- a) Add and drop factor indicator variables as a group
- b) Don't take p-values and CI's for selected variables seriously—because of serious data snooping (not a problem for objectives 1 and 3)
- c) A drawback: the product is a single model. This is deceptive.
 - Think not: "here is the best model."
- U9611 Think instead: "here is one, possibly useful model."

Criteria for Comparing Models

(Some function of the mean square of residuals	of th	e function e number of n the model
Criterion to minimize	$= f(\hat{\sigma}^2)$	+	g(p) -
Ср	$= \frac{(n-p)(\hat{\sigma}^2 - \hat{\sigma})}{\hat{\sigma}_{full}^2}$	2 full) +	р
BIC	$= n \log(\hat{\sigma}^2)$	+	$p\log(n)$
AIC	$= n \log(\hat{\sigma}^2)$	+	2 <i>p</i>
with	a: favor models h small mean are of residuals	but penal too many	ize for x's

Comparing Models (continued)

1. The proposed criteria: Mallow's Cp Statistic, Schwarz's Bayesian Information Criterion (BIC or SBC), and Akaike's Information Criterion (AIC)

2. The idea behind these is the same, but the theory for arriving at the trade-off between small $\hat{\sigma}^2$ and small p differs

3. My opinion: there's no way to truly say that one of these Criteria is better than the others

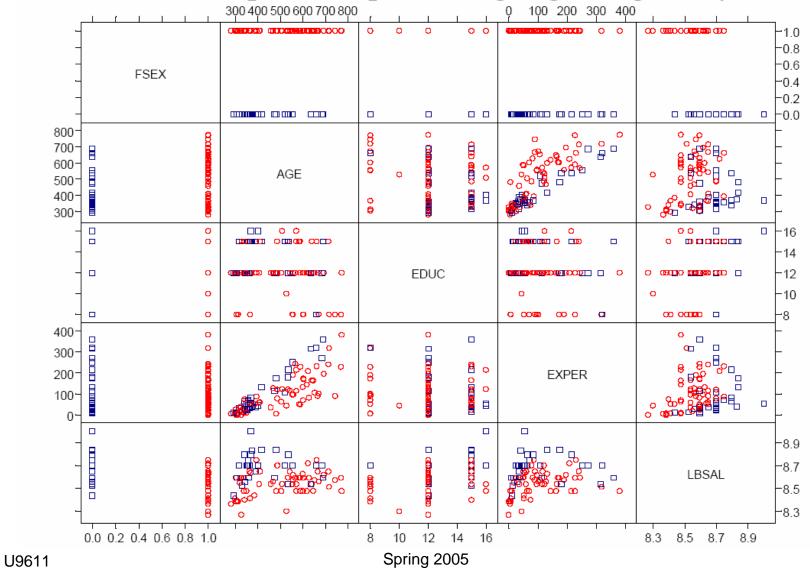
4. Computer programs: Fit all possible models; report the best 10 or so according to the selected criteria

5. Note: one other criteria: $\hat{\sigma}^2 + 0$ (sometimes used; but isn't As good). An equivalent criterion is - $R_{Adjusted}^2$ (see Sect.10.4.1) U9611 Spring 2005 72

Cross Validation (12.6.4)

- If tests, CIs, or prediction intervals are needed after Variable selection and if n is large, maybe try:
- Cross validation
 - Randomly divide the data into 75% for model construction and 25% for inference
 - Perform variable selection with the 75%
 - Refit the same model (don't drop or add anything) on the remaining 25% and proceed with inference using that fit.

Matrix of scatterplots; response= log beginning salary (LBSAL)



2. Correlation matrix

	FSEX	AGE	EDUC	EXPER	LN.BSAL
FSEX	1.00	0.26	-0.33	-0.02	-0.54
AGE	0.26	1.00	-0.23	0.80	0.06
EDUC	-0.33	-0.23	1.00	-0.10	0.41
EXPER	-0.02	0.80	-0.10	1.00	0.19
LN.BSAL	-0.54	0.06	0.41	0.19	1.00

- 3. Notes from plot 1: possible curvature with respect to age, experience, education (also evident in partial residual plots)
- 4. Main idea: (1) find a model explaining Log(BSAL) as a function of AGE, EDUC, and EXPER; (2) add in FEMALE indicator and possible interactions
- 5. Since there are only 3 X's in task (1) and since there is evidence of curvature, try fitting a full 2nd order model (with squared and interaction terms), then manually apply backward elimination—but delete insignificant X² and interaction terms *first*

Fit all		Drop EDUC:AGE				Drop EX		Drop EDUC²	
	$Pr(\geq t)$	-		$Pr(\geq t)$		_ Pr(>	t)	_	$Pr(\geq t)$
(Intercept)	0.0000		(Intercept)	0.0000	ſ	(Intercept)	0.0000	(Intercept)	0.0000
AGE	0.5202	/	AGE	0.0486		AGE	0.0316	AGE	0.0245
EDUC	0.4592		EDUC	0.7506		EDUC	0.7398	EDUC	0.0000
EXPER	0.0155		EXPER	0.0000		EXPER	0.0000	EXPER	0.0000
I(AGE^2)	0.2246		I(AGE^2)	0.0540	\geq	I(AGE^2)	0.0228	I(AGE^2)	0.0167
I(EXPER^2)	0.6947		(I(EXPER^2)	0.8225			/)	
I(EDUC^2)	0.7242		I(EDUC^2)	0.5782		(I(EDUC^2)	0.5815		
EXPER:EDUC	0.2968		EXPER:EDUC	0.0051		EXPER:EDUC	0.0045	EXPER:EDUC	0.0029
EXPER:AGE	0.1169	J	EXPER:AGE	0.0336		EXPER:AGE	0.0001	EXPER:AGE	0.0001
EDUC:AGE	0.4112								

6. Now add the FEMALE indicator and possible interactions

Fit all		Drop FSEX:EXPER				Drop FSEX:AGE		Drop FSEX:EDUC		
	$Pr(\geq t)$	-	•	$Pr(\geq t)$	1		$Pr(\geq t)$	× •	$Pr(\geq t)$	
(Intercept)	0.0000		(Intercept)	0.0000		(Intercept)	0.0000	(Intercept)	0.0000	
AGE	0.1221		AGE	0.1119		AGE	0.1034	AGE	0.0692	
EDUC	0.0026		EDUC	0.0022		EDUC	0.0005	EDUC	0.0001	
EXPER	0.0001		EXPER	0.0000		EXPER	0.0000	EXPER	0.0000	
I(AGE^2)	0.0888		I(AGE^2)	0.0781		I(AGE^2)	0.0455	I(AGE^2)	0.0274	
FSEX	0.9362		FSEX	0.8775		FSEX	0.6340	FSEX	0.0000	
EXPER:EDUC	0.0297		EXPER:EDUC	0.0271 /		EXPER:EDUC	0.0140	EXPER:EDUC	0.0173	
EXPER:AGE	0.0007		EXPER:AGE	0.0004		EXPER:AGE	0.0002	EXPER:AGE	0.0001	
FSEX:AGE	0.8157		FSEX:AGE	0.4052						
FSEX:EDUC	0.2686	J	FSEX:EDUC	0.2627		(FSEX:EDUC	0.1870	STO	P	
FSEX:EXPER	0.9514								-	

7. COEF SE t-STAT

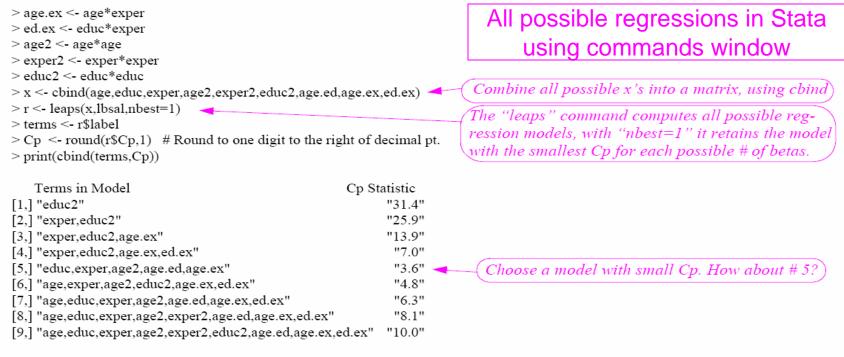
FSEX -0.1155 0.0235 -4.9189 (coefficient of FSEX in final model)

Spring 2005

- 8. Summary: There is overwhelming evidence that the distribution of beginning salary for females was less than that for males, after accounting for the effects of education, age, and previous experience (p-value < .0001). It is estimated that the median salary for females is 89% that of males, after accounting for these other variables (95% confidence interval: 85% to 93% as much).
- 9. Same approach with automatic routines (output next page)
 - a. Automatic backward elimination: 89%
 - b. Automatic forward selection: 87%
 - c. Automatic stepwise regression: 89%
- 10. Same approach using all possible subsets and Cp criterion:

sw - Stepwise regression		n backwar	d elminati	on (Stepping Directi	on: back-
Model 2 by/if/in Weights Reporting	ward)	Value	Std. Erro	or t value Pr(> t)	
Regression terms: Command: (affects weight options) Term 1 (required) Image: Coglog control option (coglog control option) Term 3 Image: Coglog control option (coplog control option) Term 4 Image: Coglog control option (coplog control option) Term 5 Image: Coglog control option (coplog control option) Dependent variable: Term 1 variable(s) to be included or excluded together:	(Intercept) age educ exper I(age^2) age:exper educ:exper	8.5381 -0.0026 0.0388 0.0073 0.0000 0.0000 -0.0002	0.2534 0.0011 0.0076 0.0013 0.0000 0.0000 0.0001	33.6989 0.0000 -2.2901 0.0245 5.0766 0.0000 5.4292 0.0000 2.4419 0.0167 -4.2653 0.0001 -3.0614 0.0029	1
Selection criterion Significance level for removal from the model: Significance level for addition to the model:	Results from (Intercept) I(educ^2) exper I(exper^2) age	n forward Value 8.4645 0.0008 0.0022 0.0000 -0.0003	Std. Erro	Stepping Direction: I pr t value Pr(> t) 123.7843 0.0000 3.9628 0.0002 4.3038 0.0000 -3.8374 0.0002 -2.0326 0.0451	Forward)
 OK Cancel Submit Estimated coef. of FSEX when added into models 1 and 3:116 (SE = .023) 2:139 (SE = .025) 	V (Intercept) age educ exper I(age^2) age:exper	Value S 8.5381 -0.0026 0.0388	td. Error t 0.2534 3 0.0011 - 0.0076 0.0013 0.0000 0.0000 -	Direction: Both) value Pr(> t) 33.6989 0.0000 2.2901 0.0245 5.0766 0.0000 5.4292 0.0000 2.4419 0.0167 4.2653 0.0001 3.0614 0.0029	3

Female median as % of male median (accounting for other x's): 1 and 3: 89%; 2: 87%



When FSEX is added into model 5, it's coefficient is -0.113 (SE = 0.024) (same conclusion as in the summary above)

- a. Note: the different variable selection methods lead to essentially the same coefficient for FSEX
- b. There would also be similar *predictions* from the "good" models