Lecture 7: Review

Prof. Sharyn O'Halloran
Sustainable Development U9611
Econometrics II

Ex 1029: Wage and Race

- The dataset provided is designed to explore the relationship between wage and race (black_indicator), controlling for the region in the US, education, experience and weather they worked in a standard metropolitan statistical area.
- Model to be tested:

$$lwage = \beta_0 + \beta_1 \exp er + \beta_2 educ + \beta_3 smsa_ind + \beta_4 region + \beta_5 black_ind + u$$

Creating Dummy Variables and Interactive Terms

- We proceed by recoding region into 4 dummies:
- We rewrite our model including interaction terms as follows:

$$lwage = \beta_0 + \beta_1 \exp er + \beta_2 educ + \beta_3 smsa _ind$$

$$+ \beta_4 regMW + \beta_5 regNE + \beta_6 regS$$

$$+ \beta_7 black _ind + \beta_8 blackregMW$$

$$+ \beta_9 blackregNE + \beta_{10} blackregSE + u$$

Hypotheses

- We expect positive coefficients for:
 - □ Education
 - Experience and
 - □ SMSA
- We expect a negative coefficient on:
 - □ black-indicator

Results of Tentative Model

reg lwage exper educ smsa_ind regMW regNE regS
black_ind blackregMW blackregNE blackregS

Source	SS	df	MS		Number of obs = 25631 F(10, 25620) = 1010.01	= 25631 = 1010.01
Model Residual	2852.13293 7234.7208		.213293 2385667		Prob > F R-squared	= 0.0000 = 0.2828
Total	10086.8537	25630 .393	3556525		Adj R-squared Root MSE	= 0.2825 = .5314
lwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
exper	.0183495	.0002789	65.79	0.000	.0178028	.0188961
educ	.0969922	.0012015	80.72	0.000	.0946371	.0993473
smsa_ind	.1575999	.0077298	20.39	0.000	.1424491	.1727507
regMW	.0034929	.0100704	0.35	0.729	0162456	.0232315
regNE	.0382672	.0102318	3.74	0.000	.0182123	.0583221
regS	0571932	.0097345	-5.88	0.000	0762735	038113
black_ind	1937687	.040989	-4.73	0.000	2741094	113428
blackregMW	0468973	.051017	-0.92	0.358	1468935	.053099
blackregNE	0242864	.0508993	-0.48	0.633	1240519	.0754792
blackregS	0435901	.0443259	-0.98	0.325	1304714	.0432912
_cons	4.573932	.0196774	232.45	0.000	4.535363	4.612501

Fail to reject the null hypothesis that β_i =0 in favor of the alternatives that $\beta_i \neq 0$.

Residual Plots

No obvious pattern

F-test

- Test the joint significance of the interactive terms
- Command:
 - □ test blackregMW blackregNE blackregS
- (1) blackregMW = 0
- (2) blackregNE = 0
- (3) blackregS = 0 F(3, 25620) = 0.42Prob > F = 0.7408

Results:

- □ Variables not jointly significant
- □ Remove from model

М

Re-run Results

reg lwage exper educ smsa_ind regMW regNE regS black_ind

Source	SS +	df 	MS		Number of obs F(7, 25623)	
■ Model	2851.77965	7 40	7.397093		Prob > F	= 0.0000
Residual	7235.07408	25623 .2	82366393		R-squared	= 0.2827
	+				Adj R-squared	l = 0.2825
■ Total	10086.8537	25630 .3	93556525		Root MSE	= .53138
lwage	Coef.	Std. Err	t	P> t	[95% Conf.	Interval]
■ exper	.0183511	.0002789	65.81	0.000	.0178046	.0188977
educ	.0970151	.0012011	80.77	0.000	.0946609	.0993693
■ smsa_ind	.1578088	.0077105	20.47	0.000	.1426959	.1729218
■ regMW	.0017984	.0098616	0.18	0.855	0175308	.0211276
■ regNE	.0377502	.0100117	3.77	0.000	.0181268	.0573737
■ regS	0593619	.0094407	-6.29	0.000	0778662	0408576
<pre>black_ind</pre>	230438	.012657	-18.21	0.000	2552465	2056296
cons	4.574619 	.0196608 	232.68	0.000	4.536083	4.613155

After removing interactive terms, black indicator variable remains significant

Interpretation

- Keeping all else constant:
 - □ This is a log-level problem; we're regressing the log of y on the level of x
 - □ So we use the formula: $\%\Delta y = (100\beta)\Delta x$
 - □ In this case, b=-.23, so a 1-unit change in x causes a 23% decrease in y.
 - □ That is, black workers on average have wages 23% lower than non-black workers.
- Also note salary differentials by region

b/A

Ex 1123: Air Pollution and Mortality

- The dataset provided is designed to explore the relationship between mortality rate and concentrations in dangerous pollutants such as nitrogen oxides and sulfur dioxide.
- The model we would like to study is the following:

$$mortality = \beta_0 + \beta_1 \log(NO_x) + \beta_2 \log(SO_2) + \beta_3 precipitation$$
$$+ \beta_4 education + \beta_5 non - white + u$$

Transforming Variables

It makes sense to log the independent variables for NO_x and SO₂

Scatterplot with NO_x

Transforming Variables

■ It makes sense to log the independent variables for Nox and SO2

Scatterplot with log of No_x

Hypotheses

- We expect positive coefficients on:
 - $\square \log(NOx)$
 - $\square \log(SO_2)$
 - □ Precipitation (due to acid rain)
 - Non-white population
- We expect a negative coefficient on:
 - □ Education

Results from Tentative Model

reg mort lnox lso2 precip educ nonwhite

Source	SS	df	MS		Number of obs	= 60
	+				F(5, 54)	= 23.85
Model	157116.254	5 314	23.2507		Prob > F	= 0.0000
Residual	71159.1703	54 131	7.76241		R-squared	= 0.6883
	+				Adj R-squared	= 0.6594
Total	228275.424	59 386	9.07498		Root MSE	= 36.301
mort	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	+					
lnox	6.716442	7.399021	0.91	0.368	-8.117702	21.55059
lso2	11.35782	5.295537	2.14	0.036	.7409073	21.97473
precip	1.946748	.7007028	2.78	0.008	.5419234	3.351573
educ	-14.66453	6.937913	-2.11	0.039	-28.57421	7548551
nonwhite	3.028928	.6685249	4.53	0.000	1.688616	4.36924
_cons	940.6586	94.05514	10.00	0.000	752.0894	1129.228

- All signs as expected
- Coefficient on NOx is insignificant, however

100

Checking Case Influence Statistics

New Orleans has a high Cook's Distance

Checking for Problems

It's also an outlier in the avplot for NOx...

Checking for Problems

And for SO₂ as well.

Results Dropping New Orleans

reg mort lr	nox 1so2 p	recip edu	ıc nonw	hite i	f city!="New	v Orleans"
Source	SS	df 	MS		Number of obs F(5, 53)	= 59 = 27.90
Model	143441.648		8.3296		Prob > F	= 0.0000
Residual	54501.7233 +	53 102	8.3344		R-squared Adj R-squared	= 0.7247 = 0.6987
Total	197943.371	58 3412	.81675		Root MSE	= 32.068
mort	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lnox	-9.89842	7.730678	-1.28	0.206	-25.4042	5.607357
lso2	26.03266	5.931109	4.39	0.000	14.13636	37.92896
precip	1.363333	.6357352	2.14	0.037	.08821	2.638457
educ	-5.667182	6.523808	-0.87	0.389	-18.75228	7.417919
nonwhite	3.039655	.590569	5.15	0.000	1.855124	4.224186
_cons	852.3782	85.93317	9.92	0.000	680.0181	1024.738

Now education is no longer significant

Cprplot for NOx

Some indications of non-linearity

Cprplot for SO₂

■ This looks more or less linear

Review

- 1. "Regression", "regression model", "linear regression model", "regression analysis"
- 2. Fitted values, residuals, least squares method of estimation
- 3. Properties of least squares; tests and confidence intervals for individual coefficients; prediction intervals; extra SS F-tests (full and reduced models)
- 4. Model building and refinement: transformation, indicator variables, x^2 , interaction, variable selection
- 5. Influence and case-influence statistics
- 6. Variable selection

- 7. A note on the difference between "confounding variable" and "interaction"
- a. Is there an association between gestation and mean brain weight after accounting for body weight?

$$\mu(brain) = \beta_0 + \beta_1 body + \beta_2 gest$$

 $(\beta_2$ represents the association of gestation with mean brain weight after accounting for body weight.)

b. Is the association between gestation and brain weight Different for animals of different body sizes?

$$\mu(brain) = \beta_0 + \beta_1 body + \beta_2 gest + \beta_3 body*gest$$

(There is an interactive effect of body and gest on brain)

- 8. What about all those F-tests?
- a. All F-tests we've considered are special cases of the extra sum of squares F-test (Sect. 10.3)
- b. F-test for overall significance of regression

Full: a model of interest

Reduced: model with β_0 only

c. F-test for lack-of fit

Full: one-way anova (separate means for each distinct combination of x's)

Reduced: a model of interest

d. Partial F-test is an F-test for a single β

e. One-way ANOVA F-test

Full: model with a separate mean for each group

i.e. β_0 and k-1 indicators to distinguish k groups

Reduced: b₀ only (single mean model)

f. "Type III" F-tests (a computer package term)

Full: model that has been specified

Reduced: model without a particular term

g. "Sequential" F-tests (depends on order that x's are listed)

i. Full: intercept and x_1

Reduced: intercept

ii. Full: intercept, x_1 , and x_2

Reduced: intercept and X_1

iii. Full: intercept, X_1 , X_2 , and X_3

Reduced: intercept, X_1 , and X_2

- 9. In "linear regression," what does "linear in b's" mean?
- a. β_0 *something + β_1 *something + β_2 *something + ...
- b. Ex. of nonlinear regression: $\mu(y|x) = \beta_0 x^{\beta 1}$
- 10. A note about "mean response." It is useful to explicitly write $\mu(y|x_1, x_2, x_3)$ to talk about the mean of y as a function of x_1 , x_2 , and x_3 . Sometimes we abbreviate this to "the mean of the response" if it's clear what x's we're talking about.

- 11. Partial residuals
- a. You may find a plot of partial residuals vs. x_1 to be useful when it is desired to study the relationship between y and x_1 , after getting the effects of x_2 , x_3 . etc. out of the way, especially if the effect of x_1 is relatively small (in which case the plot of y versus x_1 does not reveal much).
- b. For example: How is mammal brain weight related to litter size, after accounting for body weight?
- c. Suppose $\mu(y|x_1, x_2) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$. A plot of y versus x_1 won't show a linear relationship whose slope is β_1 if x_1 and x_2 are correlated. However, a plot of y $(\beta_0 + \beta_2 x_2)$ versus x_1 will show a pattern whose slope is β_1 .
- d. So, the partial residuals are yi (), where the b's are the estimates from the regression of y on x_1 and x_1 .