Review of Linear Estimation

- So far, we know how to handle linear estimation models of the type:

\[Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \varepsilon \equiv X\beta + \varepsilon \]

- Sometimes we had to transform or add variables to get the equation to be linear:
 - Taking logs of Y and/or the X’s
 - Adding squared terms
 - Adding interactions

- Then we can run our estimation, do model checking, visualize results, etc.
Nonlinear Estimation

- In all these models Y, the dependent variable, was continuous.
 - Independent variables could be dichotomous (dummy variables), but not the dependent var.
- This week we’ll start our exploration of nonlinear estimation with dichotomous Y vars.
- These arise in many social science problems
 - Legislator Votes: Aye/Nay
 - Regime Type: Autocratic/Democratic
 - Involved in an Armed Conflict: Yes/No
Link Functions

- Before plunging in, let’s introduce the concept of a link function
 - This is a function linking the actual Y to the estimated Y in an econometric model
- We have one example of this already: logs
 - Start with \(Y = X\beta + \varepsilon \)
 - Then change to \(\log(Y) \equiv Y' = X\beta + \varepsilon \)
 - Run this like a regular OLS equation
 - Then you have to “back out” the results
Link Functions

- Before plunging in, let’s introduce the concept of a link function.
 - This is a function linking the actual Y to the estimated Y in an econometric model.

- We have one example of this already: logs.
 - Start with $Y = X\beta + \varepsilon$.
 - Then change to $\log(Y) \equiv Y' = X\beta + \varepsilon$.
 - Run this like a regular OLS equation.
 - Then you have to “back out” the results.
Link Functions

- If the coefficient on some particular X is β, then a 1 unit $\Delta X \rightarrow \beta \cdot \Delta(Y') = \beta \cdot \Delta[\log(Y)]$
 \[= e^{\beta} \cdot \Delta(Y)\]

 - Since for small values of β, $e^\beta \approx 1 + \beta$, this is almost the same as saying a β% increase in Y
 - (This is why you should use natural log transformations rather than base-10 logs)

- In general, a link function is some $F(\cdot)$ s.t.
 - $F(Y) = X\beta + \varepsilon$

- In our example, $F(Y) = \log(Y)$
Dichotomous Independent Vars.

How does this apply to situations with dichotomous dependent variables?

- I.e., assume that $Y_i \in \{0,1\}$

First, let’s look at what would happen if we tried to run this as a linear regression

As a specific example, take the election of minorities to the Georgia state legislature

- $Y = 0$: Non-minority elected
- $Y = 1$: Minority elected
Dichotomous Independent Vars.

The data look like this.

The only values Y can have are 0 and 1.
And here’s a linear fit of the data.

Note that the line goes below 0 and above 1.
Dichotomous Independent Vars.

The line doesn’t fit the data very well.

And if we take values of Y between 0 and 1 to be probabilities, this doesn’t make sense.
Redefining the Dependent Var.

- How to solve this problem?
- We need to transform the dichotomous Y into a continuous variable $Y' \in (-\infty, \infty)$
- So we need a link function $F(Y)$ that takes a dichotomous Y and gives us a continuous, real-valued Y'
- Then we can run

$$F(Y) = Y' = X\beta + \varepsilon$$
Redefining the Dependent Var.

<table>
<thead>
<tr>
<th>Original</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Redefining the Dependent Var.

Original
Y
Y as a Probability

0 1
0 1
Redefining the Dependent Var.

Original

\[Y \]

\[0 \quad 1 \]

\[Y \text{ as a Probability} \]

\[0 \quad 1 \]

\[Y' \in (-\infty, \infty) \]

\[-\infty \quad \infty \]
Redefining the Dependent Var.

What function $F(Y)$ goes from the $[0,1]$ interval to the real line?

Well, we know at least one function that goes the other way around.

- That is, given any real value it produces a number (probability) between 0 and 1.

This is the...
Redefining the Dependent Var.

- What function $F(Y)$ goes from the $[0,1]$ interval to the real line?
- Well, we know at least one function that goes the other way around.
 - That is, given any real value it produces a number (probability) between 0 and 1.
- This is the cumulative normal distribution Φ
 - That is, given any Z-score, $\Phi(Z) \in [0,1]$
Redefining the Dependent Var.

- So we would say that

\[Y = \Phi(X\beta + \varepsilon) \]

\[\Phi^{-1}(Y) = X\beta + \varepsilon \]

\[Y' = X\beta + \varepsilon \]

- Then our link function is \(F(Y) = \Phi^{-1}(Y) \)

- This link function is known as the **Probit** link
 - This term was coined in the 1930’s by biologists studying the dosage-cure rate link
 - It is short for “probability unit”
Probit Estimation

After estimation, you can back out probabilities using the standard normal dist.
Say that for a given observation, $X\beta = -1$
Probit Estimation

Say that for a given observation, $X\beta = -1$
Probit Estimation

Say that for a given observation, $X\beta = -1$
Say that for a given observation, $X\beta = -1$
Say that for a given observation, $X\beta = 2$
Probit Estimation

Say that for a given observation, $X\beta = 2$
Probit Estimation

Say that for a given observation, $X\beta = 2$
Probit Estimation

- In a probit model, the value of $X\beta$ is taken to be the z-value of a normal distribution.
 - Higher values of $X\beta$ mean that the event is more likely to happen.

- Have to be careful about the interpretation of estimation results here.
 - A one unit change in X_i leads to a β_i change in the z-score of Y (more on this later…)

- The estimated curve is an S-shaped cumulative normal distribution.
Probit Estimation

- This fits the data much better than the linear estimation
- Always lies between 0 and 1
Can estimate, for instance, the BVAP at which $\Pr(Y=1) = 50\%$

This is the “point of equal opportunity”
Probit Estimation

- Can estimate, for instance, the BVAP at which Pr(Y=1) = 50%.
- This is the “point of equal opportunity”
Probit Estimation

• Can estimate, for instance, the BVAP at which $\Pr(Y=1) = 50\%$
• This is the “point of equal opportunity”
Probit Estimation

- This occurs at about 48% BVAP
Redefining the Dependent Var.

- Let’s return to the problem of transforming \(Y \) from \(\{0,1\} \) to the real line.
- We’ll look at an alternative approach based on the odds ratio.
- If some event occurs with probability \(p \), then the odds of it happening are \(O(p) = p/(1-p) \):
 - \(p = 0 \) \(\rightarrow \) \(O(p) = 0 \)
 - \(p = \frac{1}{4} \) \(\rightarrow \) \(O(p) = 1/3 \) (“Odds are 1-to-3 against”)
 - \(p = \frac{1}{2} \) \(\rightarrow \) \(O(p) = 1 \) (“Even odds”)
 - \(p = \frac{3}{4} \) \(\rightarrow \) \(O(p) = 3 \) (“Odds are 3-to-1 in favor”)
 - \(p = 1 \) \(\rightarrow \) \(O(p) = \infty \)
Redefining the Dependent Var.

Original
Y
0
1

Y as a Probability
0
1

So taking the odds of Y occurring moves us from the [0,1] interval...
Redefining the Dependent Var.

- So taking the odds of Y occurring moves us from the $[0, 1]$ interval to the half-line $[0, \infty)$.
The odds ratio is always non-negative.

As a final step, then, take the \(\log \) of the odds ratio.
Redefining the Dependent Var.

Original
Y

Y as a Probability

Odds of Y

Log-Odds of Y
Logit Function

- This is called the logit function
 - $\text{logit}(Y) = \log[O(Y)] = \log[y/(1-y)]$

- Why would we want to do this?
 - At first, this was computationally easier than working with normal distributions
 - Now, it still has some nice properties that we’ll investigate next time with multinomial dep. vars.

- The density function associated with it is very close to a standard normal distribution
The logit function is similar, but has thinner tails than the normal distribution.
Logit Function

- This translates back to the original Y as:

$$\log\left(\frac{Y}{1-Y}\right) = \mathbf{X}\beta$$

$$\frac{Y}{1-Y} = e^{\mathbf{x}\beta}$$

$$Y = (1-Y)e^{\mathbf{x}\beta}$$

$$Y = e^{\mathbf{x}\beta} - e^{\mathbf{x}\beta}Y$$

$$Y + e^{\mathbf{x}\beta}Y = e^{\mathbf{x}\beta}$$

$$\left(1 + e^{\mathbf{x}\beta}\right)Y = e^{\mathbf{x}\beta}$$

$$Y = \frac{e^{\mathbf{x}\beta}}{1 + e^{\mathbf{x}\beta}}$$
Latent Variables

- For the rest of the lecture we’ll talk in terms of probits, but everything holds for logits too.
- One way to state what’s going on is to assume that there is a latent variable Y^* such that
 \[Y^* = X\beta + \varepsilon, \quad \varepsilon \sim N(0, \sigma^2) \]
Latent Variable Formulation

- For the rest of the lecture we’ll talk in terms of probits, but everything holds for logits too.
- One way to state what’s going on is to assume that there is a latent variable Y^* such that

 $$Y^* = X\beta + \varepsilon, \quad \varepsilon \sim N(0, \sigma^2)$$

 $\text{Normal} = \text{Probit}$
Latent Variables

- For the rest of the lecture we’ll talk in terms of probits, but everything holds for logits too.
- One way to state what’s going on is to assume that there is a latent variable Y^* such that

$$Y^* = X\beta + \varepsilon, \quad \varepsilon \sim N(0, \sigma^2)$$

- In a linear regression we would observe Y^* directly.
- In probits, we observe only

$$y_i = \begin{cases}
0 & \text{if } y_i^* \leq 0 \\
1 & \text{if } y_i^* > 0
\end{cases}$$
Latent Variables

- For the rest of the lecture we’ll talk in terms of probits, but everything holds for logits too.
- One way to state what’s going on is to assume that there is a latent variable Y^* such that
 \[Y^* = X\beta + \varepsilon, \quad \varepsilon \sim N(0,\sigma^2) \]

 - In a linear regression we would observe Y^* directly.
 - In probits, we observe only
 \[y_i = \begin{cases}
 0 & \text{if } y_i^* \leq 0 \\
 1 & \text{if } y_i^* > 0
 \end{cases} \]

These could be any constant. Later we’ll set them to $\frac{1}{2}$.
Latent Variables

- This translates to possible values for the error term:

\[y_i^* > 0 \Rightarrow \beta'x_i + \varepsilon_i > 0 \Rightarrow \varepsilon_i > -\beta'x_i \]

\[\Pr(y_i^* > 0 \mid x_i) = \Pr(y_i = 1 \mid x_i) = \Pr(\varepsilon_i > -\beta'x_i) \]

\[= \Pr\left(\frac{\varepsilon_i}{\sigma} > \frac{-\beta'x_i}{\sigma}\right) \]

\[= \Phi\left(-\frac{\beta'x_i}{\sigma}\right) \]

- Similarly,

\[\Pr(y_i = 0 \mid x_i) = 1 - \Phi\left(-\frac{\beta'x_i}{\sigma}\right) \]
Latent Variables

- Look again at the expression for $\Pr(Y_i=1)$:

$$\Pr(y_i = 1 \mid x_i) = \Phi\left(\frac{-\beta'x_i}{\sigma}\right)$$

- We can’t estimate both β and σ, since they enter the equation as a ratio.

- So we set $\sigma=1$, making the distribution on ε a standard normal density.

- One (big) question left: how do we actually estimate the values of the b coefficients here?
 - (Other than just issuing the “probit” command in Stata!)
Maximum Likelihood Estimation

- Say we’re estimating $Y = \mathbf{X}\beta + \varepsilon$ as a probit
 - And say we’re given some trial coefficients β'.
- Then for each observation y_i, we can plug in \mathbf{x}_i and β' to get $Pr(y_i=1) = \Phi(\mathbf{x}_i \beta')$.
 - For example, let’s say $Pr(y_i=1) = 0.8$
- Then if the actual observation was $y_i=1$, we can say its likelihood (given β') is 0.8
- But if $y_i=0$, then its likelihood was only 0.2
 - And conversely for $Pr(y_i=0)$
Maximum Likelihood Estimation

- Let $\mathcal{L}(y_i \mid \beta)$ be the likelihood of y_i given β.
- For any given trial set of β' coefficients, we can calculate the likelihood of each y_i.
- Then the likelihood of the entire sample is:

$$\mathcal{L}(y_1) \cdot \mathcal{L}(y_2) \cdot \mathcal{L}(y_3) \cdots \cdot \mathcal{L}(y_n) = \prod_{i=1}^{n} \mathcal{L}(y_i)$$

- Maximum likelihood estimation finds the β's that maximize this expression.
- Here’s the same thing in visual form.
Maximum Likelihood Estimation

\[y^* = x\beta + \varepsilon, \text{ Probit: } \mathbb{R}^1 \mapsto [0, 1] \]

\[P(y=1) = \text{Probit}(y^*) \]
Maximum Likelihood Estimation

$y^* = x\beta' + \varepsilon$, Probit: $\mathbb{R}^1 \mapsto [0,1]$

$P(y=1) = \text{Probit}(y^*)$

Given estimates $\hat{\beta}'$ of β, the distance from y_i to the line $P(y=1)$ is $1 - \mathcal{L}(y_i \mid \beta')$
Maximum Likelihood Estimation

\[y^* = x\beta' + \varepsilon, \text{ Probit: } \mathbb{R}^1 \mapsto [0,1] \]
\[P(y=1) = \text{Probit}(y^*) \]

Given estimates \(\beta' \) of \(\beta \), the distance from \(y_3 \) to the line \(P(y=1) \) is \(1 - \mathcal{L}(y_3 | \beta') \)
Maximum Likelihood Estimation

\[y^* = x\beta + \varepsilon, \text{ Probit: } \mathbb{R}^1 \mapsto [0,1] \]
\[P(y=1) = \text{Probit}(y^*) \]

Given estimates \(\beta' \) of \(\beta \), the distance from \(y_9 \) to the line \(P(y=1) \) is \(1-\mathcal{L}(y_9|\beta') \)
Impact of changing β'…
Maximum Likelihood Estimation

Impact of changing β' to β''
Maximum Likelihood Estimation

Remember, the object is to maximize the product of the likelihoods $\mathcal{L}(y_i | \beta)$.
Maximum Likelihood Estimation

Using β'' may bring regression line closer to some observations, further from others.
Maximum Likelihood Estimation

\[P(y_1 = 1) = P(y_1^* \geq 0) = P(\epsilon_1 \geq -x_1\beta) \]
Maximum Likelihood Estimation

Time Series

$t = 1 \ 2 \ 3 \ldots \ T$

1

$\frac{1}{2}$

0

$t = 1 \ 2 \ 3 \ldots \ T$

Time Series
Maximum Likelihood Estimation

- Recall that a likelihood function is:

\[\mathcal{L}(y_1) \cdot \mathcal{L}(y_2) \cdot \mathcal{L}(y_3) \cdot \ldots \cdot \mathcal{L}(y_n) = \prod_{i=1}^{n} \mathcal{L}(y_i) = \mathcal{L} \]

- To maximize this, use the trick of taking the log first

 - Since maximizing the log(\(\mathcal{L}\)) is the same as maximizing \(\mathcal{L}\)

\[
\log(\mathcal{L}) = \log \prod_{i=1}^{n} \mathcal{L}(y_i) = \sum_{i=1}^{n} \log[\mathcal{L}(y_i)]
\]
Maximum Likelihood Estimation

- Let’s see how this works on some simple examples
- Take a coin flip, so that $Y_i=0$ for tails, $Y_i=1$ for heads
 - Say you toss the coin n times and get p heads
 - Then the proportion of heads is p/n
 - Since Y_i is 1 for heads and 0 for tails, p/n is also the sample mean
 - Intuitively, we’d think that the best estimate of p is p/n
- If the true probability of heads for this coin is ρ, then the likelihood of observation Y_i is:

$$
\mathcal{L}(y_i) = \begin{cases}
\rho & \text{if } y_i = 1 \\
1 - \rho & \text{if } y_i = 0
\end{cases}
$$

$$
= \rho^{y_i} \cdot (1 - \rho)^{1-y_i}
$$
Maximum Likelihood Estimation

Maximizing the log-likelihood, we get

$$\max_\rho \sum_{i=1}^{n} \log \mathcal{L}(y_i | \rho) = \sum_{i=1}^{n} \log \left[\rho^{y_i} \cdot (1 - \rho)^{1-y_i} \right]$$

$$= \sum_{i=1}^{n} y_i \log(\rho) + (1 - y_i) \log(1 - \rho)$$

To maximize this, take the derivative with respect to ρ

$$\frac{d \log \mathcal{L}}{\rho} = \frac{d}{\rho} \left[\sum_{i=1}^{n} y_i \log(\rho) + (1 - y_i) \log(1 - \rho) \right]$$

$$= \sum_{i=1}^{n} y_i \frac{1}{\rho} - (1 - y_i) \frac{1}{1 - \rho}$$
Maximum Likelihood Estimation

Finally, set this derivative to 0 and solve for ρ

$$\sum_{i=1}^{n} \left[\frac{y_i}{\rho} - \frac{(1-y_i)}{1-\rho} \right] = 0$$

$$\sum_{i=1}^{n} \left[y_i(1-\rho) - (1-y_i)\rho \right] \rho(1-\rho) = 0$$

$$\sum_{i=1}^{n} \left[y_i - y_i\rho - \rho + (1-y_i)\rho \right] = 0$$

$$n\rho = \sum_{i=1}^{n} y_i$$

$$\rho = \frac{\sum_{i=1}^{n} y_i}{n}$$
Maximum Likelihood Estimation

Finally, set this derivative to 0 and solve for ρ

\[
\sum_{i=1}^{n} \left[\frac{y_i}{\rho} - \frac{(1-y_i)}{1-\rho} \right] = 0
\]

\[
\sum_{i=1}^{n} \left[y_i(1-\rho) - (1-y_i)\rho \right] \frac{1}{\rho(1-\rho)} = 0
\]

\[
\sum_{i=1}^{n} \left[y_i - y_i\rho - \rho + (1-y_i)\rho \right] = 0
\]

Magically, the value of ρ that maximizes the likelihood function is the sample mean, just as we thought.

\[
\rho = \frac{\sum_{i=1}^{n} y_i}{n}
\]

\[
n\rho = \sum_{i=1}^{n} y_i
\]
Maximum Likelihood Estimation

- Can do the same exercise for OLS regression
 - The set of β coefficients that maximize the likelihood would then minimize the sum of squared residuals, as before
- This works for logit/probit as well
- In fact, it works for any estimation equation
 - Just look at the likelihood function L you’re trying to maximize and the parameters β you can change
 - Then search for the values of β that maximize L
 - (We’ll skip the details of how this is done.)
- Maximizing L can be computationally intense, but with today’s computers it’s usually not a big problem
Maximum Likelihood Estimation

This is what Stata does when you run a probit:

```
. probit black bvap

Iteration 0:   log likelihood = -735.15352
Iteration 1:   log likelihood = -292.89815
Iteration 2:   log likelihood = -221.90782
Iteration 3:   log likelihood = -202.46671
Iteration 4:   log likelihood = -198.94506
Iteration 5:   log likelihood = -198.78048
Iteration 6:   log likelihood = -198.78004

Probit estimates                                  Number of obs =       1507
LR chi2(1)    =    1072.75                        Prob > chi2     =     0.0000
Log likelihood = -198.78004                      Pseudo R2       =     0.7296
------------------------------------------------------------------------------
black |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
bvap |   0.092316   .5446756    16.95   0.000     0.081641    0.102992
   _cons |  -0.047147   0.027917   -16.89   0.000    -0.052619   -0.041676
------------------------------------------------------------------------------
```
Maximum Likelihood Estimation

This is what Stata does when you run a probit:

```
. probit black bvap
Iteration 0:   log likelihood = -735.15352
Iteration 1:   log likelihood = -292.89815
Iteration 2:   log likelihood = -221.90782
Iteration 3:   log likelihood = -202.46671
Iteration 4:   log likelihood = -198.94506
Iteration 5:   log likelihood = -198.78048
Iteration 6:   log likelihood = -198.78004
Probit estimates                                  Number of obs =       1507
LR chi2(1)    =    1072.75
Prob > chi2     =     0.0000
Log likelihood = -198.78004                       Pseudo R2       =     0.7296
------------------------------------------------------------------------------
black |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
bvap |   0.092316   .5446756    16.95   0.000     0.081641    0.102992
_cons |  -0.047147   0.027917   -16.89   0.000    -0.052619   -0.041676
------------------------------------------------------------------------------
Maximizing the log-likelihood function!
```
Maximum Likelihood Estimation

This is what Stata does when you run a probit:

```
.probit black bvap
```

Iteration 0: log likelihood = -735.15352
Iteration 1: log likelihood = -292.89815
Iteration 2: log likelihood = -221.90782
Iteration 3: log likelihood = -202.46671
Iteration 4: log likelihood = -198.94506
Iteration 5: log likelihood = -198.78048
Iteration 6: log likelihood = -198.78004

Probit estimates

```
------------------------------------------------------------------------------
black |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
bvap |   0.092316   .5446756    16.95   0.000     0.081641    0.102992
_cons |  -0.047147   0.027917   -16.89   0.000    -0.052619   -0.041676
------------------------------------------------------------------------------
```

Maximizing the log-likelihood function!

Coefficients are significant
Marginal Effects in Probit

- In linear regression, if the coefficient on x is β, then a 1-unit increase in x increases Y by β.

- But what exactly does it mean in probit that the coefficient on BVAP is 0.0923 and significant?
 - It means that a 1% increase in BVAP will raise the \textit{z}-score of $\Pr(Y=1)$ by 0.0923.
 - And this coefficient is different from 0 at the 5% level.

- So raising BVAP has a constant effect on Y'.

- But this doesn't translate into a constant effect on the original Y.
 - This depends on your starting point.
Marginal Effects in Probit

For instance, raising BVAP from .2 to .3 has little appreciable impact on $\Pr(\text{Black Elected})$.
Marginal Effects in Probit

But increasing BVAP from .5 to .6 does have a big impact on the probability of electing a Black Rep.
Marginal Effects in Probit

- So lesson 1 is that the marginal impact of changing a variable is not constant.
- Another way of saying the same thing is that in the linear model

\[Y = \beta_0 + \beta_1 x_1 + \beta_1 x_1 + \ldots + \beta_n x_n, \text{ so } \]
\[\frac{\partial Y}{\partial x_i} = \beta_i \]

- In the probit model

\[Y = \Phi(\beta_0 + \beta_1 x_1 + \beta_1 x_1 + \ldots + \beta_n x_n), \text{ so } \]
\[\frac{\partial Y}{\partial x_i} = \beta_i \phi(\beta_0 + \beta_1 x_1 + \beta_1 x_1 + \ldots + \beta_n x_n) \]
Marginal Effects in Probit

- This expression depends on not just β_i, but on the value of x_i and all other variables in the equation.
- So to even calculate the impact of x_i on Y you have to choose values for all other variables x_j.
 - Typical options are to set all variables to their means or their medians.
- Another approach is to fix the x_j and let x_i vary from its minimum to maximum values.
 - Then you can plot how the marginal effect of x_i changes across its observed range of values.
Example: Vote Choice

- Model voting for/against incumbent as

$\text{Probit}(Y) = X\beta + \varepsilon$, where

$x_{1i} = \text{Constant}$

$x_{2i} = \text{Party ID same as incumbent}$

$x_{3i} = \text{National economic conditions}$

$x_{4i} = \text{Personal financial situation}$

$x_{5i} = \text{Can recall incumbent's name}$

$x_{6i} = \text{Can recall challenger's name}$

$x_{7i} = \text{Quality challenger}$
Example: Vote Choice

<table>
<thead>
<tr>
<th>variable</th>
<th>Probit MLEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>.184 (.058)</td>
</tr>
<tr>
<td>Party identification</td>
<td>1.35 (.056)</td>
</tr>
<tr>
<td>National economic performance</td>
<td>-.114 (.069)</td>
</tr>
<tr>
<td>(Retrospective Judgment)</td>
<td></td>
</tr>
<tr>
<td>Personal financial situation</td>
<td>.095 (.068)</td>
</tr>
<tr>
<td>(Retrospective Judgment)</td>
<td></td>
</tr>
<tr>
<td>Recall incumbent’s name</td>
<td>.324 (.0808)</td>
</tr>
<tr>
<td>Recall challenger’s name</td>
<td>-.677 (.109)</td>
</tr>
<tr>
<td>Quality of challenger</td>
<td>-.339 (.073)</td>
</tr>
</tbody>
</table>

Notes: Standard errors in parentheses.
N = 3341. -2ln L = 760.629 Percent correctly predicted = 78.5%
Example: Vote Choice

Table 6.1: Probability of Voting for the Incumbent Member of Congress

<table>
<thead>
<tr>
<th>variable</th>
<th>Probit MLEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>.184</td>
</tr>
<tr>
<td></td>
<td>(.058)</td>
</tr>
<tr>
<td>Party identification</td>
<td>1.35</td>
</tr>
<tr>
<td></td>
<td>(.056)</td>
</tr>
<tr>
<td>National economic performance</td>
<td>−.114</td>
</tr>
<tr>
<td>Retrospective Judgment</td>
<td>(.069)</td>
</tr>
<tr>
<td>Personal financial situation</td>
<td>.095</td>
</tr>
<tr>
<td>Retrospective Judgment</td>
<td>(.068)</td>
</tr>
<tr>
<td>Recall incumbent’s name</td>
<td>.324</td>
</tr>
<tr>
<td></td>
<td>(.0808)</td>
</tr>
<tr>
<td>Recall challenger’s name</td>
<td>-.677</td>
</tr>
<tr>
<td></td>
<td>(.109)</td>
</tr>
<tr>
<td>Quality of challenger</td>
<td>−.339</td>
</tr>
<tr>
<td></td>
<td>(.073)</td>
</tr>
</tbody>
</table>

Notes: Standard errors in parentheses.

\[N = 3341, \ -2 \ln L = 760.629 \text{ Percent correctly predicted } = 78.5\% \]
Example: Vote Choice

Table 6.2: Marginal Effects on Probability of Voting for the Incumbent Member of Congress

<table>
<thead>
<tr>
<th>variable</th>
<th>$\hat{\beta}_j \phi(\hat{\beta}' x_i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Party identification</td>
<td>.251</td>
</tr>
<tr>
<td>National economic performance (Retrospective Judgment)</td>
<td>-0.021</td>
</tr>
<tr>
<td>Personal financial situation (Retrospective Judgment)</td>
<td>.018</td>
</tr>
<tr>
<td>Recall incumbent’s name</td>
<td>.060</td>
</tr>
<tr>
<td>Recall challenger’s name</td>
<td>-0.126</td>
</tr>
<tr>
<td>Quality of challenger</td>
<td>-0.063</td>
</tr>
</tbody>
</table>

Notes: Explanatory variables are set equal to their medians in the sample.

This backs out the marginal impact of a 1-unit change in the variable on the probability of voting for the incumbent.
Example: Vote Choice

Table 6.2: Marginal Effects on Probability of Voting for the Incumbent Member of Congress

<table>
<thead>
<tr>
<th>variable</th>
<th>$\hat{\beta}_j \phi(\hat{\beta}' x_i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Party identification</td>
<td>.251</td>
</tr>
<tr>
<td>National economic performance</td>
<td>-.021</td>
</tr>
<tr>
<td>(Retrospective Judgment)</td>
<td></td>
</tr>
<tr>
<td>Personal financial situation</td>
<td>.018</td>
</tr>
<tr>
<td>(Retrospective Judgment)</td>
<td></td>
</tr>
<tr>
<td>Recall incumbent’s name</td>
<td>.060</td>
</tr>
<tr>
<td>Recall challenger’s name</td>
<td>-.126</td>
</tr>
<tr>
<td>Quality of challenger</td>
<td>-.063</td>
</tr>
</tbody>
</table>

Notes: Explanatory variables are set equal to their medians in the sample.

This backs out the marginal impact of a 1-unit change in the variable on the probability of voting for the incumbent.
Example: Vote Choice

- Or, calculate the impact of facing a quality challenger by hand, keeping all other variables at their median.

\[
Pr(y_i = 1 | x_{7i} = 0) = \Phi(\beta_1 + \beta_2 x_{2i} + \beta_3 x_{3i} + \beta_4 x_{4i} + \beta_5 x_{5i} + \beta_6 x_{6i} + \beta_7 x_{7i}) \\
= \Phi(0.184 + 1.355 \times 1 - 0.114 \times 0.5 + 0.095 \times 0.5 \\
+ 0.324 \times 0 - 0.677 \times 0 - 0.339 \times 0) \\
= 0.936
\]
Example: Vote Choice

Or, calculate the impact of facing a quality challenger by hand, keeping all other variables at their median.

\[
\Pr(y_i = 1|x_{7i} = 0) = \Phi(\beta_1 + \beta_2 x_{2i} + \beta_3 x_{3i} + \beta_4 x_{4i} + \beta_5 x_{5i} + \beta_6 x_{6i} + \beta_7 x_{7i}) \\
= \Phi(.184 + 1.355 \times 1 - .114 \times .5 + .095 \times .5 \\
+ .324 \times 0 - .677 \times 0 - .339 \times 0) \\
= .936
\]

\(\Phi(1.52)\)
Example: Vote Choice

Or, calculate the impact of facing a quality challenger by hand, keeping all other variables at their median.

\[
Pr(y_i = 1|x_7 = 0) = \Phi(\beta_1 + \beta_2 x_{2i} + \beta_3 x_{3i} + \beta_4 x_{4i} + \beta_5 x_{5i} + \beta_6 x_{6i} + \beta_7 x_{7i})
\]

\[
= \Phi(.184 + 1.355 \times 1 - .114 \times .5 + .095 \times .5 + .324 \times 0 - .677 \times 0 - .339 \times 0)
\]

\[
= .936
\]

From standard normal table $\Phi(1.52)$
Example: Vote Choice

Or, calculate the impact of facing a quality challenger by hand, keeping all other variables at their median.

\[
\begin{align*}
\Pr(y_i = 1 | x_{7i} = 0) &= \Phi(\beta_1 + \beta_2 x_{2i} + \beta_3 x_{3i} + \beta_4 x_{4i} + \beta_5 x_{5i} + \beta_6 x_{6i} + \beta_7 x_{7i}) \\
&= \Phi(.184 + 1.355 \times 1 - .114 \times .5 + .095 \times .5 \\
&\quad + .324 \times 0 - .677 \times 0 - .339 \times 0) \\
&= .936
\end{align*}
\]

\[
\Phi(1.52)
\]

From standard normal table

\[
\begin{align*}
\Pr(y_i = 1 | x_{7i} = 1) &= .881 \\
\Phi(1.52 - .339)
\end{align*}
\]

So there’s an increase of .936 - .881 = 5.5% votes in favor of incumbents who avoid a quality challengers.
Example: Senate Obstruction

- Model the probability that a bill is passed in the Senate (over a filibuster) based on:
 - The coalition size preferring the bill be passed
 - An interactive term: size of coalition \(\times \) end of session

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>-1.671</td>
<td>0.962</td>
</tr>
<tr>
<td>Coalition size</td>
<td>6.155</td>
<td>2.224</td>
</tr>
<tr>
<td>Coalition size (\times) end of session</td>
<td>-1.944</td>
<td>0.690</td>
</tr>
</tbody>
</table>

Likelihood ratio test: 12.84 \((p = 0.002) \)

\% correctly predicted: 72

Note: \(N = 114 \).
Example: Senate Obstruction

- Graph the results for end of session = 0
Example: Senate Obstruction

- Graph the results for end of session = 1