# Lecture 9: Logit/Probit

Prof. Sharyn O'Halloran Sustainable Development U9611 Econometrics II

## **Review of Linear Estimation**

So far, we know how to handle <u>linear</u> estimation models of the type:

 $\mathbf{Y} = \beta_0 + \beta_1^* \mathbf{X}_1 + \beta_2^* \mathbf{X}_2 + \dots + \varepsilon \equiv \mathbf{X}\beta + \varepsilon$ 

 Sometimes we had to transform or add variables to get the equation to be linear:
 Taking logs of Y and/or the X's
 Adding squared terms
 Adding interactions

Then we can run our estimation, do model checking, visualize results, etc.

## **Nonlinear Estimation**

- In all these models Y, the dependent variable, was continuous.
  - Independent variables could be dichotomous (dummy variables), but not the dependent var.
- This week we'll start our exploration of nonlinear estimation with dichotomous Y vars.
- These arise in many social science problems
  Legislator Votes: Aye/Nay
  - □ Regime Type: Autocratic/Democratic
  - □ Involved in an Armed Conflict: Yes/No

## Link Functions

- Before plunging in, let's introduce the concept of a <u>link function</u>
  - □ This is a function linking the actual Y to the estimated Y in an econometric model
- We have one example of this already: logs
  - $\Box$  Start with Y = X $\beta$  +  $\epsilon$
  - $\Box \text{ Then change to } \log(Y) \equiv Y' = X\beta + \varepsilon$
  - □ Run this like a regular OLS equation
  - □ Then you have to "back out" the results

## Link Functions

- Before plunging in, let's introduce the concept of a <u>link function</u>
  - □ This is a function linking the actual Y to the estimated Y in an econometric model
- We have one example of this already: logs
  - $\Box$  Start with Y = X $\beta$  +  $\epsilon$

Different β's here

- $\Box \text{ Then change to } \log(Y) \equiv Y' = X\beta + \varepsilon$
- □ Run this like a regular OLS equation
- □ Then you have to "back out" the results

## Link Functions

- If the coefficient on some particular X is  $\beta$ , then a 1 unit  $\Delta X \rightarrow \beta \cdot \Delta(Y') = \beta \cdot \Delta[\log(Y))]$ =  $e^{\beta} \cdot \Delta(Y)$ 
  - □ Since for small values of  $\beta$ ,  $e^{\beta} \approx 1 + \beta$ , this is almost the same as saying a  $\beta$ % increase in Y
  - □ (This is why you should use natural log transformations rather than base-10 logs)
- In general, a link function is some  $F(\cdot)$  s.t. □  $F(Y) = X\beta + \varepsilon$
- In our example, F(Y) = log(Y)

How does this apply to situations with dichotomous dependent variables?

 $\Box$  I.e., assume that  $Y_i \in \{0,1\}$ 

- First, let's look at what would happen if we tried to run this as a linear regression
- As a specific example, take the election of minorities to the Georgia state legislature

 $\Box$  Y = 0: Non-minority elected

 $\Box$  Y = 1: Minority elected



The data look like this.

The only values Y can have are 0 and 1



And here's a linear fit of the data

Note that the line goes below 0 and above 1



The line doesn't fit the data very well.

And if we take values of Y between 0 and 1 to be probabilities, this doesn't make sense

- How to solve this problem?
- We need to transform the dichotomous Y into a continuous variable Y' ∈ (-∞,∞)
- So we need a <u>link function</u> F(Y) that takes a dichotomous Y and gives us a continuous, real-valued Y'

Then we can run

$$F(Y) = Y' = X\beta + \varepsilon$$

Original • • 1





- What function F(Y) goes from the [0,1] interval to the real line?
- Well, we know at least one function that goes the other way around.
  - □ That is, given any real value it produces a number (probability) between 0 and 1.
- This is the...

- What function F(Y) goes from the [0,1] interval to the real line?
- Well, we know at least one function that goes the other way around.
  - That is, given any real value it produces a number (probability) between 0 and 1.
- This is the cumulative normal distribution  $\Phi$ That is, given any Z-score,  $\Phi(Z) \in [0,1]$

So we would say that

 $Y = \Phi(X\beta + \varepsilon)$  $\Phi^{-1}(Y) = X\beta + \varepsilon$  $Y' = X\beta + \varepsilon$ 

- Then our link function is  $F(Y) = \Phi^{-1}(Y)$
- This link function is known as the Probit link
  This term was coined in the 1930's by biologists studying the dosage-cure rate link
  It is short for "probability unit"



After estimation, you can back out probabilities using the standard normal dist.



Say that for a given observation,  $X\beta = -1$ 













- In a probit model, the value of Xβ is taken to be the z-value of a normal distribution
   Higher values of Xβ mean that the event is more likely to happen
- Have to be careful about the interpretation of estimation results here
  - □ A one unit change in  $X_i$  leads to a  $\beta_i$  change in the <u>z-score</u> of Y (more on this later...)
- The estimated curve is an S-shaped cumulative normal distribution



- This fits the data much better than the linear estimation
- Always lies between 0 and 1



- Can estimate, for instance, the BVAP at which Pr(Y=1) = 50%
- This is the "point of equal opportunity"



- Can estimate, for instance, the BVAP at which Pr(Y=1) = 50%
- This is the "point of equal opportunity"



- Can estimate, for instance, the BVAP at which Pr(Y=1) = 50%
- This is the "point of equal opportunity"



This occurs at about 48% BVAP

- Let's return to the problem of transforming Y from {0,1} to the real line
- We'll look at an alternative approach based on the odds ratio
- If some event occurs with probability p, then the odds of it happening are O(p) = p/(1-p)

$$\Box p = 0 \rightarrow O(p) = 0$$

 $\square$  p =  $\frac{1}{4} \rightarrow O(p) = \frac{1}{3}$  ("Odds are 1-to-3 against")

$$\Box p = \frac{1}{2} \rightarrow O(p) = 1$$
("Even odds")

 $\square$  p =  $\frac{3}{4} \rightarrow O(p) = 3$  ("Odds are 3-to-1 in favor")

$$\Box p = 1 \rightarrow O(p) = \infty$$



So taking the odds of Y occuring moves us from the [0,1] interval...



So taking the odds of Y occuring moves us from the [0,1] interval to the half-line [0, ∞)



The odds ratio is always non-negative

As a final step, then, take the log of the odds ratio


# Logit Function

- This is called the logit function
   logit(Y) = log[O(Y)] = log[y/(1-y)]
- Why would we want to do this?
  - At first, this was computationally easier than working with normal distributions
  - Now, it still has some nice properties that we'll investigate next time with multinomial dep. vars.
- The density function associated with it is very close to a standard normal distribution

#### Logit vs. Probit



The logit function is similar, but has thinner tails than the normal distribution

# Logit Function

This translates back to the original Y as:

$$\log\left(\frac{Y}{1-Y}\right) = \mathbf{X}\beta$$
$$\frac{Y}{1-Y} = e^{\mathbf{X}\beta}$$
$$Y = (1-Y)e^{\mathbf{X}\beta}$$
$$Y = e^{\mathbf{X}\beta} - e^{\mathbf{X}\beta}Y$$
$$Y + e^{\mathbf{X}\beta}Y = e^{\mathbf{X}\beta}$$
$$(1+e^{\mathbf{X}\beta})Y = e^{\mathbf{X}\beta}$$
$$Y = \frac{e^{\mathbf{X}\beta}}{1+e^{\mathbf{X}\beta}}$$

- For the rest of the lecture we'll talk in terms of probits, but everything holds for logits too
- One way to state what's going on is to assume that there is a latent variable Y\* such that

$$Y^* = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}, \quad \boldsymbol{\varepsilon} \sim N(0, \sigma^2)$$

## Latent Variable Formulation

- For the rest of the lecture we'll talk in terms of probits, but everything holds for logits too
- One way to state what's going on is to assume that there is a latent variable Y\* such that

$$Y^* = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}, \quad \boldsymbol{\varepsilon} \sim N(0, \sigma^2) \longleftarrow \text{Normal} = \text{Probit}$$

- For the rest of the lecture we'll talk in terms of probits, but everything holds for logits too
- One way to state what's going on is to assume that there is a latent variable Y\* such that

$$Y^* = \mathbf{X}\beta + \varepsilon, \quad \varepsilon \sim N(0, \sigma^2) \longleftarrow$$
 Normal = Probit

- In a linear regression we would observe Y\* directly
- In probits, we observe only

$$y_{i} = \begin{cases} 0 \text{ if } y_{i}^{*} \leq 0\\ 1 \text{ if } y_{i}^{*} > 0 \end{cases}$$

- For the rest of the lecture we'll talk in terms of probits, but everything holds for logits too
- One way to state what's going on is to assume that there is a latent variable Y\* such that

$$Y^* = \mathbf{X}\beta + \varepsilon, \quad \varepsilon \sim N(0, \sigma^2) \longleftarrow$$
 Normal = Probit

- In a linear regression we would observe Y\* directly
- In probits, we observe only

$$y_i = \begin{cases} 0 \text{ if } y_i^* \leq 0 \\ 1 \text{ if } y_i^* > 0 \end{cases}$$
These could be any constant. Later we'll set them to  $\frac{1}{2}$ .

This translates to possible values for the error term:

$$y_{i}^{*} > 0 \Rightarrow \beta' \mathbf{x}_{i} + \varepsilon_{i} > 0 \Rightarrow \varepsilon_{i} > -\beta' \mathbf{x}_{i}$$

$$\Pr(y_{i}^{*} > 0 | \mathbf{x}_{i}) = \Pr(y_{i} = 1 | \mathbf{x}_{i}) = \Pr(\varepsilon_{i} > -\beta' \mathbf{x}_{i})$$

$$= \Pr\left(\frac{\varepsilon_{i}}{\sigma} > \frac{-\beta' \mathbf{x}_{i}}{\sigma}\right)$$

$$= \Phi\left(\frac{-\beta' \mathbf{x}_{i}}{\sigma}\right)$$

Similarly,

$$\Pr(y_i = 0 \mid \mathbf{x}_i) = 1 - \Phi\left(\frac{-\beta' \mathbf{x}_i}{\sigma}\right)$$

Look again at the expression for Pr(Y<sub>i</sub>=1):

$$\Pr(y_i = 1 \mid \mathbf{x}_i) = \Phi\left(\frac{-\beta' \mathbf{x}_i}{\sigma}\right)$$

- We can't estimate both β and σ, since they enter the equation as a ratio
- So we set σ=1, making the distribution on ε a standard normal density.
- One (big) question left: how do we actually estimate the values of the b coefficients here?

□ (Other than just issuing the "probit" command in Stata!)

- Say we're estimating Y=Xβ+ε as a probit
   And say we're given some trial coefficients β'.
- Then for each observation y<sub>i</sub>, we can plug in x<sub>i</sub> and β' to get Pr(y<sub>i</sub>=1)=Φ(x<sub>i</sub>β').
   For example, let's say Pr(y<sub>i</sub>=1) = 0.8
- Then if the actual observation was y<sub>i</sub>=1, we can say its <u>likelihood</u> (given β') is 0.8
- But if y<sub>i</sub>=0, then its likelihood was only 0.2
   And conversely for Pr(y<sub>i</sub>=0)

- Let  $\mathcal{L}(y_i | \beta)$  be the likelihood of  $y_i$  given  $\beta$
- For any given trial set of β' coefficients, we can calculate the likelihood of each y<sub>i</sub>.
- Then the likelihood of the entire sample is:

$$\mathcal{L}(y_1) \cdot \mathcal{L}(y_2) \cdot \mathcal{L}(y_3) \cdot \ldots \cdot \mathcal{L}(y_n) = \prod_{i=1}^n \mathcal{L}(y_i)$$

- Maximum likelihood estimation finds the β's that maximize this expression.
- Here's the same thing in visual form





Given estimates  $\beta'$  of  $\beta$ , the distance from  $y_i$  to the line P(y=1) is  $1-\mathcal{L}(y_i | \beta')$ 





Given estimates  $\beta'$  of  $\beta$ , the distance from y<sub>9</sub> to the line P(y=1) is 1- $\mathcal{L}(y_9 | \beta')$ 



Impact of changing  $\beta'$ ...



#### Impact of changing $\beta'$ to $\beta''$



Remember, the object is to maximize the product of the likelihoods  $\mathcal{L}(y_i | \beta)$ 



Using  $\beta''$  may bring regression line closer to some observations, further from others



#### Error Terms for MLE



**Time Series** 

#### **Time Series Cross Section**



Recall that a likelihood function is:

$$\mathcal{L}(y_1) \cdot \mathcal{L}(y_2) \cdot \mathcal{L}(y_3) \cdot \ldots \cdot \mathcal{L}(y_n) = \prod_{i=1}^n \mathcal{L}(y_i) \equiv \mathcal{L}(y_i)$$

To maximize this, use the trick of taking the log first
 Since maximizing the log(L) is the same as maximizing L

$$\log(\mathcal{L}) = \log \prod_{i=1}^{n} \mathcal{L}(y_i)$$
$$= \sum_{i=1}^{n} \log[\mathcal{L}(y_i)]$$

- Let's see how this works on some simple examples
- Take a coin flip, so that Y<sub>i</sub>=0 for tails, Y<sub>i</sub>=1 for heads
   Say you toss the coin n times and get p heads
   Then the proportion of heads is p/n
  - Since Y<sub>i</sub> is 1 for heads and 0 for tails, p/n is also the sample mean
     Intuitively, we'd think that the best estimate of p is p/n
- If the true probability of heads for this coin is ρ, then the likelihood of observation Y<sub>i</sub> is:

$$\mathcal{L}(y_i) = \begin{cases} \rho \text{ if } y_i = 1\\ 1 - \rho \text{ if } y_i = 0 \end{cases}$$
$$= \rho^{y_i} \cdot (1 - \rho)^{1 - y_i}$$

Maximizing the log-likelihood, we get

$$\max_{\rho} \sum_{i=1}^{n} \left[ \log \mathcal{L}(y_i | \rho) \right] = \sum_{i=1}^{n} \log \left[ \rho^{y_i} \cdot (1 - \rho)^{1 - y_i} \right]$$
$$= \sum_{i=1}^{n} y_i \log(\rho) + (1 - y_i) \log(1 - \rho)$$

To maximize this, take the derivative with respect to ρ

$$\frac{d\log \mathcal{L}}{\rho} = \frac{d\left[\sum_{i=1}^{n} y_i \log(\rho) + (1 - y_i)\log(1 - \rho)\right]}{\rho}$$
$$= \sum_{i=1}^{n} y_i \frac{1}{\rho} - (1 - y_i)\frac{1}{1 - \rho}$$

Finally, set this derivative to 0 and solve for  $\rho$ 

$$\sum_{i=1}^{n} \left[ \frac{y_i}{\rho} - \frac{(1 - y_i)}{1 - \rho} \right] = 0$$
$$\frac{\sum_{i=1}^{n} \left[ y_i (1 - \rho) - (1 - y_i) \rho \right]}{\rho (1 - \rho)} = 0$$
$$\sum_{i=1}^{n} \left[ y_i - y_i \rho - \rho + (1 - y_i) \rho \right] = 0$$
$$n\rho = \sum_{i=1}^{n} y_i$$
$$\rho = \frac{\sum_{i=1}^{n} y_i}{n}$$

Finally, set this derivative to 0 and solve for  $\rho$ 

$$\sum_{i=1}^{n} \left[ \frac{y_i}{\rho} - \frac{(1 - y_i)}{1 - \rho} \right] = 0$$
$$\frac{\sum_{i=1}^{n} \left[ y_i (1 - \rho) - (1 - y_i) \rho \right]}{\rho (1 - \rho)} = 0$$
$$\sum_{i=1}^{n} \left[ y_i - y_i \rho - \rho + (1 - y_i) \rho \right] = 0$$
$$n\rho = \sum_{i=1}^{n} y_i$$
$$\rho = \frac{\sum_{i=1}^{n} y_i}{n}$$

Magically, the value of ρ that maximizes the likelihood function is the sample mean, just as we thought.

- Can do the same exercise for OLS regression
  - $\hfill\square$  The set of  $\beta$  coefficients that maximize the likelihood would then minimize the sum of squared residuals, as before
- This works for logit/probit as well
- In fact, it works for <u>any</u> estimation equation
   Just look at the likelihood function *L* you're trying to maximize and the parameters β you can change
   Then search for the values of β that maximize *L* (We'll skip the details of how this is done.)
- Maximizing *L* can be computationally intense, but with today's computers it's usually not a big problem

#### This is what Stata does when you run a probit:

. probit black bvap

| Iteration                   | 0:                                    | log | likelihoo | d = · | -735.15 | 5352         |             |        |       |           |
|-----------------------------|---------------------------------------|-----|-----------|-------|---------|--------------|-------------|--------|-------|-----------|
| Iteration                   | 1:                                    | log | likelihoo | d = • | -292.89 | 9815         |             |        |       |           |
| Iteration                   | 2:                                    | log | likelihoo | d = · | -221.90 | )782         |             |        |       |           |
| Iteration                   | 3:                                    | log | likelihoo | d = • | -202.46 | 5671         |             |        |       |           |
| Iteration                   | 4:                                    | log | likelihoo | d = · | -198.94 | <b>1</b> 506 |             |        |       |           |
| Iteration                   | 5:                                    | log | likelihoo | d = · | -198.78 | 3048         |             |        |       |           |
| Iteration                   | 6:                                    | log | likelihoo | d = · | -198.78 | 3004         |             |        |       |           |
|                             |                                       |     |           |       |         |              |             |        |       |           |
| Probit est                  | Probit estimates Number of obs = 1507 |     |           |       |         |              |             | 1507   |       |           |
|                             |                                       |     |           |       |         |              | LR chi2     | (1)    | =     | 1072.75   |
|                             |                                       |     |           |       |         |              | Prob >      | chi2   | =     | 0.0000    |
| Log likelihood = -198.78004 |                                       |     |           |       |         |              | Pseudo R2 = |        |       | 0.7296    |
|                             |                                       |     |           |       |         |              |             |        |       |           |
|                             |                                       |     |           |       |         |              |             |        |       |           |
| bla                         | ack                                   |     | Coef.     | Std.  | Err.    | Z            | P>   z      | [95%   | Conf. | Interval] |
| ,                           | +-                                    |     |           |       |         |              |             |        |       |           |
| 70.                         | 7ap                                   | 0.  | 092316    | .5440 | 6756    | 16.95        | 0.000       | 0.081  | .641  | 0.102992  |
| _cc                         | ons                                   | -0. | 047147    | 0.02  | /91/    | -16.89       | 0.000       | -0.052 | 2619  | -0.041676 |
|                             |                                       |     |           |       |         |              |             |        |       |           |

#### This is what Stata does when you run a probit:

. probit black bvap

| Iteration | 0: | log | likelihood | = | -735.15352 |
|-----------|----|-----|------------|---|------------|
| Iteration | 1: | log | likelihood | = | -292.89815 |
| Iteration | 2: | log | likelihood | = | -221.90782 |
| Iteration | 3: | log | likelihood | = | -202.46671 |
| Iteration | 4: | log | likelihood | = | -198.94506 |
| Iteration | 5: | log | likelihood | = | -198.78048 |
| Iteration | 6: | log | likelihood | = | -198.78004 |

```
Maximizing the log-likelihood function!
```

| Probit estimates            |                                                                  |                                                                                  |                                                                                                                                         |                                                                                                                                                                                                                                                                                    | 1507                                                                                                                                                                                      |
|-----------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             |                                                                  | LR chi                                                                           | 2(1)                                                                                                                                    | =                                                                                                                                                                                                                                                                                  | 1072.75                                                                                                                                                                                   |
|                             |                                                                  |                                                                                  |                                                                                                                                         | =                                                                                                                                                                                                                                                                                  | 0.0000                                                                                                                                                                                    |
| Log likelihood = -198.78004 |                                                                  |                                                                                  |                                                                                                                                         |                                                                                                                                                                                                                                                                                    | 0.7296                                                                                                                                                                                    |
|                             |                                                                  |                                                                                  |                                                                                                                                         |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                           |
| Coef. Std. Err              | c. z                                                             | P> z                                                                             | <b>[9</b> 5%                                                                                                                            | Conf.                                                                                                                                                                                                                                                                              | Interval]                                                                                                                                                                                 |
| 092316 .5446756             | 5 16.95                                                          | 0.000                                                                            | 0.081                                                                                                                                   | 641                                                                                                                                                                                                                                                                                | 0.102992                                                                                                                                                                                  |
| 047147 0.027917             | -16.89                                                           | 0.000                                                                            | -0.052                                                                                                                                  | 2619                                                                                                                                                                                                                                                                               | -0.041676                                                                                                                                                                                 |
|                             | 98.78004<br>Coef. Std. Err<br>092316 .5446756<br>047147 0.027917 | 98.78004<br>Coef. Std. Err. z<br>092316 .5446756 16.95<br>047147 0.027917 -16.89 | Number<br>LR chi<br>Prob ><br>98.78004 Pseudo<br>Coef. Std. Err. z P> z <br>092316 .5446756 16.95 0.000<br>047147 0.027917 -16.89 0.000 | Number of obs         LR chi2(1)         Prob > chi2         98.78004       Pseudo R2         Coef. Std. Err.       z       P> z        [95%         092316       .5446756       16.95       0.000       0.081         047147       0.027917       -16.89       0.000       -0.052 | Number of obs =<br>LR chi2(1) =<br>Prob > chi2 =<br>Pseudo R2 =<br>Coef. Std. Err. z $P> z $ [95% Conf.<br>092316 .5446756 16.95 0.000 0.081641<br>047147 0.027917 -16.89 0.000 -0.052619 |

#### This is what Stata does when you run a probit:

. probit black bvap

\_cons

| Iteration | 0: | log | likelihood | = | -735.15352 |
|-----------|----|-----|------------|---|------------|
| Iteration | 1: | log | likelihood | = | -292.89815 |
| Iteration | 2: | log | likelihood | = | -221.90782 |
| Iteration | 3: | log | likelihood | = | -202.46671 |
| Iteration | 4: | log | likelihood | = | -198.94506 |
| Iteration | 5: | log | likelihood | = | -198.78048 |
| Iteration | 6: | log | likelihood | = | -198.78004 |

-0.047147

```
Probit estimates
                                          Number of obs
                                                        =
                                                               1507
                                          LR chi2(1)
                                                        = 1072.75
                                          Prob > chi2
                                                        = 0.0000
Log likelihood = -198.78004
                                          Pseudo R2
                                                            0.7296
                                                        =
             Coef. Std. Err. z P > |z| [95% Conf. Interval]
     black |
             0.092316 .5446756
                                16.95
                                         0.000
      bvap |
                                                 0.081641
                                                            0.102992
```

0.027917

-16.89

Coefficients are significant

0.000

Maximizing the

-0.052619

-0.041676

log-likelihood

function!

- In linear regression, if the coefficient on x is β, then a 1-unit increase in x increases Y by β.
- But what exactly does it mean in probit that the coefficient on BVAP is 0.0923 and significant?
  - It means that a 1% increase in BVAP will raise the <u>z-score</u> of Pr(Y=1) by 0.0923.
  - $\Box$  And this coefficient is different from 0 at the 5% level.
- So raising BVAP has a constant effect on Y'.
- But this <u>doesn't</u> translate into a constant effect on the original Y.

□ This depends on your starting point.

For instance, raising BVAP from .2 to .3 has little appreciable impact on Pr(Black Elected)



But increasing BVAP from .5 to .6 does have a big impact on the probability



- So lesson 1 is that the marginal impact of changing a variable is not constant.
- Another way of saying the same thing is that in the linear model

$$Y = \beta_0 + \beta_1 x_1 + \beta_1 x_1 + \ldots + \beta_n x_n, \text{ so}$$
$$\frac{\partial Y}{\partial x_i} = \beta_i$$

In the probit model

$$Y = \Phi(\beta_0 + \beta_1 x_1 + \beta_1 x_1 + \dots + \beta_n x_n), \text{ so}$$
$$\frac{\partial Y}{\partial x_i} = \beta_i \phi(\beta_0 + \beta_1 x_1 + \beta_1 x_1 + \dots + \beta_n x_n)$$

- This expression depends on not just β<sub>i</sub>, but on the value of x<sub>i</sub> and <u>all other variables</u> in the equation
- So to even calculate the impact of x<sub>i</sub> on Y you have to choose values for all other variables x<sub>i</sub>.
  - Typical options are to set all variables to their means or their medians
- Another approach is to fix the x<sub>j</sub> and let x<sub>i</sub> vary from its minimum to maximum values
  - Then you can plot how the marginal effect of x<sub>i</sub> changes across its observed range of values
Model voting for/against incumbent as Probit(Y) = **X** $\beta$  +  $\varepsilon$ , where  $x_{1i} = \text{Constant}$  $x_{2i}$  = Party ID same as incumbent  $x_{3i}$  = National economic conditions  $x_{A_i}$  = Personal financial situation  $x_{5i}$  = Can recall incumbent's name  $x_{6i}$  = Can recall challenger's name  $x_{7i}$  = Quality challenger

| Table 6.1: | Probability o | f Voting | for the | Incumbent | Member |
|------------|---------------|----------|---------|-----------|--------|
| of Congres | 85            |          |         |           |        |

| variable                      | Probit MLEs |
|-------------------------------|-------------|
| Intercept                     | .184        |
|                               | (.058)      |
| Party identification          | 1.35        |
|                               | (.056)      |
| National economic performance | 114         |
| (Retrospective Judgment)      | (.069)      |
| Personal financial situation  | .095        |
| (Retrospective Judgment)      | (.068)      |
| Recall incumbent's name       | .324        |
|                               | (.0808)     |
| Recall challenger's name      | 677         |
|                               | (.109)      |
| Quality of challenger         | 339         |
|                               | (.073)      |

Notes: Standard errors in parentheses. N = 3341.  $-2 \ln L = 760.629$  Percent correctly predicted = 78.5%

Table 6.1: Probability of Voting for the Incumbent Member

| of Congress                                               |                  |            |              |
|-----------------------------------------------------------|------------------|------------|--------------|
| variable                                                  | Probit MLEs      |            |              |
| Intercept                                                 | .184<br>(.058)   |            |              |
| Party identification                                      | $1.35 \\ (.056)$ |            |              |
| National economic performance<br>(Retrospective Judgment) | 114 (.069)       | $\nearrow$ | Significant  |
| Personal financial situation<br>(Retrospective Judgment)  | .095<br>(.068)   | À          | Coefficients |
| Recall incumbent's name                                   | .324<br>(.0808)  |            |              |
| Recall challenger's name                                  | 677(.109)        |            |              |
| Quality of challenger                                     | 339<br>(.073)    |            |              |

Notes: Standard errors in parentheses. N = 3341.  $-2 \ln L = 760.629$  Percent correctly predicted = 78.5%

Table 6.2: Marginal Effects on Probability of Voting for the Incumbent Member of Congress

| variable                                                  | $\hat{\beta}_{j}\phi(\hat{\boldsymbol{\beta}}'\mathbf{x}_{i})$ |
|-----------------------------------------------------------|----------------------------------------------------------------|
| Party identification                                      | .251                                                           |
| National economic performance<br>(Retrospective Judgment) | 021                                                            |
| Personal financial situation<br>(Retrospective Judgment)  | .018                                                           |
| Recall incumbent's name                                   | .060                                                           |
| Recall challenger's name                                  | 126                                                            |
| Quality of challenger                                     | 063                                                            |

This backs out the marginal impact of a 1-unit change in the variable on the probability of voting for the incumbent.

Notes: Explanatory variables are set equal to their medians in the sample.

Table 6.2: Marginal Effects on Probability of Voting for the Incumbent Member of Congress



Notes: Explanatory variables are set equal to their medians in the sample.

Or, calculate the impact of facing a quality challenger by hand, keeping all other variables at their median.

$$Pr(y_i = 1 | x_{7i} = 0) = \Phi(\beta_1 + \beta_2 x_{2i} + \beta_3 x_{3i} + \beta_4 x_{4i} + \beta_5 x_{5i} + \beta_6 x_{6i} + \beta_7 x_{7i})$$
  
=  $\Phi(.184 + 1.355 \times 1 - .114 \times .5 + .095 \times .5 + .324 \times 0 - .677 \times 0 - .339 \times 0)$   
= .936

Or, calculate the impact of facing a quality challenger by hand, keeping all other variables at their median.

$$\Pr(y_i = 1 | x_{7i} = 0) = \Phi(\beta_1 + \beta_2 x_{2i} + \beta_3 x_{3i} + \beta_4 x_{4i} + \beta_5 x_{5i} + \beta_6 x_{6i} + \beta_7 x_{7i})$$
  
=  $\Phi(.184 + 1.355 \times 1 - .114 \times .5 + .095 \times .5 + .324 \times 0 - .677 \times 0 - .339 \times 0)$   
= .936

Or, calculate the impact of facing a quality challenger by hand, keeping all other variables at their median.

$$Pr(y_{i} = 1 | x_{7i} = 0) = \Phi(\beta_{1} + \beta_{2}x_{2i} + \beta_{3}x_{3i} + \beta_{4}x_{4i} + \beta_{5}x_{5i} + \beta_{6}x_{6i} + \beta_{7}x_{7i})$$

$$= \Phi(.184 + 1.355 \times 1 - .114 \times .5 + .095 \times .5$$

$$+ .324 \times 0 - .677 \times 0 - .339 \times 0) \qquad \Phi(1.52)$$

$$= .936 \qquad From standard$$
normal table

Or, calculate the impact of facing a quality challenger by hand, keeping all other variables at their median.



So there's an increase of .936 - .881 = 5.5% votes in favor of incumbents who avoid a quality challengers.

#### **Example: Senate Obstruction**

- Model the probability that a bill is passed in the Senate (over a filibuster) based on:
  - The coalition size preferring the bill be passed
  - An interactive term: size of coalition X end of session

Table 6.3: Probit analysis of passage of obstructed measures, 1st-64th Congresses

| Variable                               | Coefficient | Std. Err.   |
|----------------------------------------|-------------|-------------|
| Constant                               | -1.671      | 0.962       |
| Coalition size                         | 6.155       | 2.224       |
| Coalition size $\times$ end of session | -1.944      | 0.690       |
|                                        |             |             |
| Likelihood ratio test                  | 12.84       | (p = 0.002) |
| % correctly predicted                  | 72          |             |
| <i>Note:</i> $N = 114$ .               |             |             |

#### **Example: Senate Obstruction**

Graph the results for end of session = 0



Not End of Congress

#### **Example: Senate Obstruction**

Graph the results for end of session = 1



End of Congress