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Abstract

This paper investigates a variety of dynamic probit models for time-series–
cross-section data in the context of explaining state failure. It shows that
ordinary probit, which ignores dynamics, is misleading. Alternatives that
seem to produce sensible results are the transition model and a model which
includes a lagged latent dependent variable. It is argued that the use of a
lagged latent variable is often superior to the use of a lagged realized depen-
dent variable. It is also shown that the latter is a special case of the transi-
tion model. The relationship between the transition model and event history
methods is also considered: the transition model estimates an event history
model for both values of the dependent variable, yielding estimates that are
identical to those produced by the two event history models. Furthermore,
one can incorporate the insights gleaned from the event history models into
the transition analysis, so that researchers do not have to assume duration
independence. The conclusion notes that investigations of the various models
have been limited to data sets which contain long sequences of zeros; models
may perform differently in data sets with shorter bursts of zeros and ones.



1 Introduction

Students of comparative politics and international relations have grown in-
creasingly more methodologically aware when they model time-series–cross-
section data with a binary dependent variable (“BTSCS”) over the last half
decade or so.1 There are a number of possible avenues that researchers might
use, and as methodologists we are in the infancy of understanding how these
models work for typical political science applications.2 The purpose of this
paper is to see how a variety of different methods work in one particular
application, the study of state failure.3

Obviously one cannot assess the statistical properties of any estimator,
or compare the performance of a variety of estimators, by looking at one
application. But it is important to see how the various methods, and their
underlying statistical models, comport with real political science applica-
tions. So far the major political science test bed for comparing the various
approaches has been the study of conflict in international relations, using
the dyad-year design. It thus seems sensible to examine an application to
comparative politics, though, as we shall see, some of the properties of the
state failure data are similar to the IR conflict data.

The models used here have been discussed by us in previous papers (Beck,
Katz and Tucker, 1998; Beck and Tucker, 1997; Jackman, 2000b) and so we
do not go into detail on the etiology of the various models here. Since the
paper is concerned with modelling dynamics, we focus on only one substan-
tive model and do not consider model specification issues that are unrelated
to dynamics.4 In the next section we lay out the notation and the various

1This is not to say that all researchers were unaware of the methodological issues before
that (for example, Londregan and Poole, 1990; Przeworski, Alvarez, Cheibub and Limongi,
2000). But these exceptional works typically did not lead other researchers to follow the
paths they took.

2Scholars in other areas, particularly biometrics, have devoted much effort to binary
panel data (see Diggle, Liang and Zeger, 1994). But if one looks at the paradigmatic
applications of binary panel analysis in biometry, that is, whether someone in a panel
is classified as ill over a repeated series of observations, it is clear that the biometric
applications are different from the typical BTSCS applications that appear in IR and
comparative politics. We can and have made much use of the work of biometricians, but
we have to make sure that what is useful in biometrics is also useful in the various subfields
of social science. Indeed, that is a principal endeavor of this paper.

3The State Failure Task Force has developed quite a complete data set on revolutionary
wars, ethnic wars, regime changes, and genocides in order to study the causes of state
breakdown in the postwar era. The data are described more fully in Section 3 below.

4Thus, in particular, we do not consider a number of issues in analyzing state failure
discussed by King and Zeng (N.d.). We note that much of their discussion deals with
issues arising from case-control designs, whereas here we use data from all nations. They,
correctly, focus on the out-of-sample forecasting issue. For our purposes, and at the current
moment, in-sample analyses suffice, though we agree that at the end of the day, it is out-
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models, followed by a brief discussion of some features of these models that
have received insufficient attention. Section 3 then discusses data and mea-
surement issues. Section 4 presents the ordinary probit results and some
non-specification based “fixes;” Section 5 discusses the various transitional
models, with latent variable models described in Section 6. The concluding
section generalizes the discussion beyond state failure.

2 Models and notation

We assume the data are generated as a binary dependent variable time-series–
cross-section. Thus we assume that the number of units (“countries”) , N ,
is fixed and all asymptotics are in the number of time periods, T , (“years”).
While we make no specific assumptions about N or T , we assume that T is
large enough (say more than 10) so that some time-series analysis is possible.5

Let the binary dependent variable be yi,t, i = 1, . . . , N, t = 1, . . . , T . Since
we do not deal with spatial issues, when we discuss the model for a generic
observation, i, we suppress the first subscript and refer to the observations
for that generic unit as yt. For simplicity of notation, assume a rectangular
data structure, where all countries are observed for the same time period.
This simplifies notation and is not critical; the data set we analyze is in fact
non-rectangular.6 Let us assume we have some set of independent variables
of interest, xi,t, which, when we can do so without confusion, we refer to as
xt.

The “ordinary” probit7 model assumes that all observations are indepen-

of-sample forecast performance that is most important. Finally, we note that King and
Zeng implicitly use one of our preferred methods for treating dynamics in the state failure
data and so there is no major disagreement between us on how one should model the
dynamics of state failure.

5Almost all the binary longitudinal studies in biometrics are applications to panel data,
which has asymptotics in N , not T (and typically, though not always, has a small T ). The
comparative politics applications (time-series–cross-section data) have fixed N and larger
T than do the typical panel study; asymptotics are in T . Thus methods which are either
good for, or made necessary by, binary panel data may not either work well or be necessary
for BTSCS data, and vice versa (Beck, 2001).

6In dynamic models it is important that we somehow deal with interior missing data,
since the models assume that the data analyzed are spaced at yearly intervals. The issue
of missing data is orthogonal to the issue of modelling dynamics, and so in our own data
analysis we are a bit cavalier about missing data. We fully agree with King and Zeng that
correctly handling missing data issues is critical and agree that multiple imputations are
the appropriate way to do this. Fortunately there is relatively little interior missing data
for the variables we analyze. We return to this issue in Section 3.

7We focus on probit here because it works more easily with some later models. Almost
everything we say here would also hold for logit.
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dent, so we estimate

y∗t = xtβ + εt (1)

yt = 1 if y∗t > 0 (2)

yt = 0 otherwise (3)

εt ∼ N(0, 1) (4)

This is the usual probit model which simply ignored dynamics. When we do
not need to explicitly refer to the latent y∗t we denote the probit model defined
in Equations 1–4 by y = Probit(xβ). Unless stated otherwise, we also assume
independent identically distributed standard normal errors throughout.

Few analysts today would estimate the ordinary probit. Many, following
common time series procedure, would simply add a lagged dependent variable
to the model, yielding what we will call the “restricted transition” (the reason
for this name will become obvious presently) probit:

y∗t = xtβ + ρyt−1 + εt (5)

Note that this model simply shifts up the latent y by ρ when the lagged
observed y is one (dropping the first observation for each country from the
estimation). Because of the non-linear nature of the probit, this does not
shift probabilities by a simple function of ρ. The restricted transition probit
is often used simply because it looks like a standard time series method,
but some analysts (for example, Londregan and Poole, 1990) have used this
model (or models very much like it) because they theoretically believe that
previous realized values of y are the determinants of current y.

The restricted transition model, however, is NOT the natural analog to
the continuous dependent variable time series model with a lagged dependent
variable. The right way to think about binary time series analogies of their
continuous cousins is to write the times series model in terms of a continuous
latent variable and then just take each period’s realization of a zero or one as
arising from a draw from the underlying normal distribution. We thus have
the generalization of Equation 1 to

y∗t = xtβ + ρy∗t−1 + εt (6)

(with Equations 2–4 remaining unchanged). In this model, the latent y∗

follows a standard time series pattern. The difference between the two models
is that in the restricted transition model it is the realized lagged values of
y that affect current values, whereas in the latent lagged model, it is the
underlying latent variable that shows persistence. The two models differ
when a chance draw of the observed y is one even though the underlying
latent y∗ was small, or vice-versa, so that the chance of getting such an
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observed draw was low. The lagged latent model looks more like a standard
time series model than does the restricted transition model; it is also much
harder to estimate.8

Just as the ordinary probit is a special case of the restricted transition
model with ρ = 0, so is the restricted transition model a special case of
the full “transition” model employed in Jackman (2000b) (hence our choice
of nomenclature9. This model is based on analyzing the transitions from a
lagged y of zero or one to a current y of zero or one (based on simple first order
Markov assumptions), allowing for different processes based on the lagged
value of y. While in principle these two processes could be based on totally
different independent variables, it is notationally most convenient (and also
commonly, though perhaps incorrectly, assumed) that the same variables
affect both transition processes, but with different parameters. With this
simplifying assumption, the transition model has

P (yt = 1|yt−1 = 0) = Probit(xtβ) (7)

P (yt = 1|yt−1 = 1) = Probit(xtα) (8)

which can be writen more compactly as

P (yt = 1) = Probit(xtβ + yt−1xtγ) (9)

where

γ = α− β. (10)

Thus 5 is the case of 9 in which the constant coefficient in γ is ρ and the
coefficients on all x terms in γ are 0. This model is well known in both
biometrics and econometrics (for example, Amemiya, 1985; Ware, Lipsitz
and Speizer, 1988) and has been used, for example, by Przeworski et al.
(2000) in their work on transitions to democracy. In parlance, the restricted
transition model is “observation-driven,” while the lagged latent model is
“parameter-driven.”10

While the similarity of the transition model and the event history ap-
proach proposed in Beck, Katz and Tucker (1998) (BKT) has not always

8Estimation is via Markov Chain Monte Carlo (MCMC), as described in Appendix B.
Estimation is difficult because we do not observe y∗, but only its sign.

9See Appendix A.
10Because we are in a binary dependent variable world, where we must assume that the

variance of the underlying latent errors is one, it makes no difference whether we estimate
the full transition model by probit (or logit), or whether we estimate models separately
on the two subsets of data; either way the estimates of α, β and γ will be identical. This is
different from the continuous dependent variable case, where the estimates of the variance
of the errors differ depending on whether we do one big regression or two subset regressions.
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been noticed, the two approaches have much in common. BKT propose to
only model years where yt−1 = 0, that is, to only estimate Equation 7, drop-
ping all observations where yt−1 = 1. They then note that estimating Equa-
tion 7 is equivalent to assuming no duration dependence in the isomorphic
duration model. They thus propose to add a series of dummy variables, ti,j,k
to Equation 7 where the dummies mark the time that has elapsed since the
previous occurrence of an “event” (yi,j−k = 1). We return to the similarity
of the transition and event history approaches in the following subsection.

Discussion

The consequences of serial correlation in binary data are only partially un-
derstood. For instance, it is known that the probit estimates of β obtained
under the assumption of independence (i.e., ignoring serial correlation of the
error) remain consistent and asymptotically normal in the presence of seri-
ally correlated disturbances (Gourieroux, Monfort and Trognon, 1982; Poirier
and Ruud, 1988), although the probit standard errors are no longer accurate.
It should be noted that these results are for a single time series, not BTSCS
data. The asymptotics here refer to the length of the time series (T ), which
in the BTSCS setting may not be large. Thus these asymptotic results pro-
vide little comfort, and, moreover, we are unaware of any characterizations
of the finite sample properties of this estimator.

Gourieroux, Monfort and Trognon (1982) proposed tests of the null hy-
pothesis of independence, against the alternative of ARMA disturbances. In
particular, a score-based test of AR(1) errors is easily implemented, requir-
ing only estimates of β obtained under the null of independence. The test
has many parallels with well-known tests of serially correlated residuals from
regression models for continuous dependent variables. In the case of a binary
response model, they define generalized residuals as

ε̂it = E(εit|yit, xit, β)

with

E(εit|yit = 0, xit, β) =
−φit

1− Φit

(11)

E(εit|yit = 1, xit, β) =
φit

Φit

(12)

(13)

where φit = φ(xitβ) and Φit = Probit(xitβ). These residuals can be estimated
given MLEs of β, β̂. Their score test for AR(1) residuals is then

s =
n∑

i=1

Ti∑
t=2

ε̂itε̂i,t−1 (14)
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which has variance

V (s) =
n∑

i=1

Ti∑
t=2

φ2
it

Φit(1− Φit)

φ2
i,t−1

Φi,t−1(1− Φi,t−1)
. (15)

Under the null of independence, z = s/
√

V (s)
asy∼ N(0, 1).

Assuming that this score test rejects the null of serially uncorrelated er-
rors, we can either attempt to “fix” the errors or model the dynamics. We
prefer the latter, and so only briefly discuss the former. Fixes which do not
explicitly model the dynamics include Huber’s (1967) robust standard errors
(treating each country as a cluster) and Liang and Zeger’s (1986) “general-
ized estimating equation (GEE)” Neither of these model the dynamics, in the
sense that both use the ordinary probit for predicting y.11 It is probably the
case that either of these methods are an improvement on the ordinary pro-
bit (and almost certainly cannot hurt), but our interest is in attempting to
model dynamics. We do, however, show the results from these two methods,
and do find them more in line with estimates that we believe are superior to
ordinary probit.12

While we present results on a model with serially correlated errors, we
find this model as unappealing in the BTSCS context as in the standard time
series context. In BTSCS terms the serially correlated error model (with AR1
errors) is

y∗t = xtβ + εt (16)

εt = ρεt−1 + νt (17)

where the ν are independently and identically distributed. We find this an
odd model in the standard time series context, and equally odd here. The se-
rially correlated errors model asserts that a one unit change in an unmeasured
variable (in political science, errors are simply errors of the observer, that is,

11The Huber method simply fixes the standard errors of the ordinary probit, while
leaving the estimated β̂ intact; the GEE makes assumptions about the interrelationship
of yt and yt−1 and then uses those assumptions to perform “quasi-maximum likelihood.”
While this is a well known and often used method, it is a bit of a black box. While some
political scientists, such as Zorn (2001) have found the GEE to be useful, it clearly is not
an attempt to model the dynamics.

12We also do not discuss the use of fixed or random effects, which are another way to
model the interrelationship of the observations without explicitly modelling the dynamics.
Note that fixed effects would lead to our losing all observations on the approximately 80%
of nations that never failed; all comparisons would be restricted to the timing of failure
amongst those nations with at least one failure. Such a loss of information seems foolish
for BTSCS data (Beck and Katz, 2001). The situation is very different for binary panels
(that is, with small T ), where random effects, or fixed effects using conditional logit, might
be the best we can do to model interrelationships amongst the observations for any unit.
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variables that we happen not to have measured) immediately increases y by
one unit, with that effect declining exponentially at a rate of 1− φ per year.
But a one unit increase in a measured variable increases y by β units, with
no dynamics whatsoever, that is, the effect of a change in some measured
independent variable is only felt immediately. Since what variables are in
the x and what are in the ε are determined by what we can and choose to
measure, why should the two types of variables be treated differently? The
lagged latent model we prefer does not do so. Thus we do not pursue the
serially correlated errors model in any detail here.13

The restricted transition and lagged latent models differ only in whether
they include lagged realized y or the lagged latent y∗ in the specification.
Obviously the model with lagged realized y is much easier to estimate (much,
much easier!), but the model with lagged latent y is becoming easier to
estimate and it is also much easier to interpret than is the restricted transition
model. Thus the long run effect of a unit change in an independent variable is
easy to calculate ( β

1−ρ
) whereas it is hard to calculate this for the restricted

transition model. For the latter, one would have to use simulation, since
long run impacts depend heavily on the probability of the latent y∗ being
converted to an observed 0 or 1.

But we should not choose on the basis on convenience. The two models
are very different theoretically. Calling an occurrence of yt = 1 an event, the
question is whether past events make future events more unlikely, even if the
prior event was itself unlikely. Thus Londregan and Poole (1990) argue that
coups themselves cause coups, and so the lagged number of coups belongs in
the specification. A more standard time series argument is that it takes time
for a change in an independent variable to fully work its way through the
system, and a simple general model for this is one of exponential decay. This
would lead to the lagged latent variable model.14 To see this formally, we can
proceed as in the derivation of the Koyck (1954) exponentially distributed
lag model. We can thus write

y∗t = xtβ + xt−1βρ + xt−2βρ2 · · ·+ εt + ρεt−1 + ρ2εt−2 (18)

and then transform as Koyck did, yielding Equation 6.15 While there clearly
will be situations where the restricted transition model is preferred on purely

13This is to say that the issue of whether the errors in either the restricted transition
or lagged latent variable models are uncorrelated is not important; if they are, then the
estimates of these models which assume serially uncorrelated errors will be inconsistent.
There must be a Lagrange multiplier (score) test for this which should be easy to imple-
ment, but as of this moment we do not know the exact form of such a test. If BTSCS are
anything like standard time series, we suspect that after including either a lag of y or the
latent y∗ there will be relatively little remaining serial correlation of the error, and usually
not enough to do any statistical harm. But that is a conjecture.

14A partial adjustment story would also lead to the lagged latent variable model.
15This is a bit different than the original model of Koyck, which proposed that the
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theoretical grounds, it seems likely that the lagged latent model, like its time
series cousins, will often be the default choice.

The restricted transition is also an odd choice in that, as noted above, it is
a special case of the transition model (assuming that one of the independent
variables is a constant). While it may be preferred by the data to the full
transition model, this is easy to test for and hence an odd place to start. It
may be that the only parameter that differentiates transitions from 0 to 1 and
1 to 1 is the constant, but that should be a conclusion, not an assumption.
The full transition model, on the other hand, seems quite sensible; should
events following events be modelled the same as events following non-events?
The answer seems obvious.

The message of the transition model is that we need to think about two
separate theoretical processes, one of which tells us why events occur for the
first time and the second of which tells us why they persist. The theories
underlying these two processes may be similar or different. In BKT we argued
that the process which leads to continuation of peace is different than the
process which leads to continuation of war, and hence should be modelled
differently. There may be some situations where the two transition processes
are identical; again, this can be tested for, and should be a conclusion, not
an assumption.

In many cases, we may have more interest in, say, the transition from
a non-event to an event, or we may have a better understanding of the
theory that drives such a transition. If this is the case, there is absolutely
nothing lost by focusing only on those transitions, that is, on estimating
models using only data until the first event is observed, dropping all the latter
years of sequences of events. (In the epidemiology world, this distinction
is between modelling incidence and prevalence.) If one believes that the
observation-driven transition model is correct, nothing is lost by modelling
only transitions to first events and using the appropriate subset of the data
to estimate that model.16 The only difference between BKT and transition

effect of the x died out exponentially but the errors are serially uncorrelated (and so have
only immediate effect). This leads to a complicated model with a moving average error
term (with a restricted MA coefficient). But if we make the reasonable assumption that
the effect of the errors die out at the same rate as the effect of the measured independent
variables, we end up with the simpler model with serially uncorrelated errors (Beck, 1991).

16We ignore the tricky problem of second spells of non-failure following a failure. In
BKT we had several suggestions for modelling this. But the simplest assumption is that
second events are independent of first events, so the first year of a non-event simply marks
a new “spell” of non-events. In the empirical analysis below, there is no indication (based
on trying methods detailed in BKT) that second spells of non-failure are different than
first spells. But one would want to test for this, not assume it. Note the transition
model, and most other models, assume that the probability of an event is only conditional
on the prior year’s observation rather than the entire event history that preceded that
observation. Thus the probability of emerging from, say, the fifth failure in a nation is
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models is that BKT does not attempt to model the transition from 1 to 1
or 1 to 0, and it attempts a more general model of the transition process
from 0 to 1; but it is very clearly a model of that transition, and so at least
the first half of the observation-driven transition model (Equation 7) is just
a special case of what was proposed in BKT. It is easy to test whether this
specialization is correct, that is, do the ti,j,k’s belong in the specification?17

Before discussing how the various models work with the state failure
dataset, it is appropriate to describe the data and to lay out the independent
variables that will be used in all of our specifications.

3 Data

Our dependent variable for this study is “state failure,” which captures se-
vere political crisis exemplified by such recent events as Bosnia, Somalia and
Afghanistan. In these instances, violent conflict or humanitarian crisis so
weakened the institutions of governance that they could no longer exercise
civil authority or maintain political order. While there exist many theories as
to the conditions that generate failures—ranging from poverty to rising ex-
pectations to the presence of extractable natural resources—most observers
are in agreement that the factors which cause failure are different from the
factors which end it. Once the spark has been lit and failure sets in, the the-
ory goes, the security dilemma that arises is so great that participants will
not be able to reinstall a peaceful regime absent outside third-party guaran-
tees of safety to all sides. Thus failures are a good candidate for studying via
transition models, so that we do not a priori force the beginnings and ends
of failure to have equal but opposite causes.

The data consist of annual observations on 147 countries between 1955
and 1997. As mentioned above these data are not rectangular, as some
countries did not exist for the entire time period. Indeed, there were 50

assumed to be the same as the probability of emerging from the first failure.
17To see this, note that the standard formula for discrete time event history data is

that the probability of observing a spell of length t, that is, non-failures in years 1, . . . , t−
1 and then failure in year t is P (yt = 1, yt−1 = 0, yt−2 = 0, . . . , y1 = 0) = P (yt =
1|yt−1 = 0)P (yt−1 = 0|yt−2 = 0 . . . P (y2 = 0|y1 = 0)P (y1 = 0). The discrete time event
history approach estimates each of these terms as a probit (or other binary dependent
variable model). Note that the transition model is a special case of this, since it assumes
that P (yt = 1|yt−1 = 0) = P (yt−1 = 1|yt−2 = 0) = · · · = P (y2 = 1|y1 = 0) whereas
the event history approach allows these probabilities to differ as a function of time (the
time dummies, the discrete time analogies of the baseline hazard in Cox’s (1972) semi-
parametric model). Note that the transition model drops observations for t = 1 since
we cannot observe t = 0 data to condition on; the event history approach just uses the
unconditional data at t = 1. While this difference can lead to an annoying difference in
sample period for the two types of analysis, this is hardly a major issue if care is taken.
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countries coded in 1955, as opposed to 138 today. One reason for this is that
the recent political restructuring undertaken by many former Socialist Bloc
countries has created a number of new states; for example, Azerbaijan only
arrived in 1994. Moreover, some countries changed name during the time
period; for instance, Czechoslovakia is in the data set until 1992 and then
reenters as the Czech Republic in 1993. New states and states that changed
identity are treated as new cases in our analysis.

While the complete collapse of state authority is rare—only 18 cases have
occurred in the last 45 years—partial and sporadic failures are much more
common, comprising 90 cases in the same time period. A set of coding rules
was therefore needed to identify significant loss of government authority and
the breakdown of the rule of law. Accordingly, states can fail in any of four
ways: they can experience an ethnic war, a revolutionary war, an adverse
regime change, or a genocide/politicide. These are defined as follows.18

• Revolutionary wars (50 episodes/359 case-years) are episodes of violent
conflict between governments and politically organized groups (political
challengers) that seek to overthrow the central government, to replace
its leaders, or to seize power in one region. Conflicts must include
substantial use of violence by one or both parties to qualify as “wars.”

“Politically organized groups” may include revolutionary and reform
movements, political parties, student and labor organizations, elements
of the armed forces, or the regime itself. If the challenging group rep-
resents a national, ethnic, or other communal minority, the conflict is
analyzed as an Ethnic war, below. At a minimum, each party must
mobilize 1000 or more people (armed agents, demonstrators, troops)
and an average of 100 or more fatalities per year must occur during the
episode.

• Ethnic wars (60 episodes/692 case-years) are episodes of violent conflict
between governments and national, ethnic, religious, or other commu-
nal minorities (ethnic challengers) in which the challengers seek major
changes in their status. Most ethnic wars since 1955 have been guer-
rilla or civil wars in which the challengers have sought independence or
regional autonomy. A few, like the events in South Africa’s black town-
ships in 1976-77, involve large-scale demonstrations and riots aimed at
sweeping political reform that were violently suppressed by police and
military. Rioting and warfare between rival communal groups is not
coded as ethnic warfare unless it involves conflict over political power
or government policy.

18Full definitions are provided in Esty, Goldstone, Gurr, Surko and Unger (1995).
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As with revolutionary wars, the minimum thresholds for including an
ethnic conflict in the problem set are that each party must mobilize
1000 or more people (armed agents, demonstrators, troops) and an
average of 100 or more fatalities per year must occur during the episode.
The fatalities may result from armed conflict, terrorism, rioting, or
government repression.

• Adverse or disruptive regime transitions (87 episodes/255 case-years)
are defined as major, abrupt shifts in patterns of governance, including
state collapse, periods of severe elite or regime instability, and shifts
away from democratic toward authoritarian rule. Abrupt but nonvio-
lent transitions from autocracy to democracy are not considered state
failures and, thus, are not included. Two criteria were used to identify
potential transitions: an abrupt shift of 3 points or more on the Polity
scales of Democracy or Autocracy scores, or a transition period defined
by the lack of stable political institutions.19

• Genocide/Politicide (36 episodes/265 case-years) is the promotion, ex-
ecution, and/or implied consent of sustained policies by governing elites
or their agents—or in the case of civil war, either of the contend-
ing authorities—that result in the deaths of a substantial portion of
a communal group or politicized non-communal group. In genocides
the victimized groups are defined primarily in terms of their communal
(ethnolinguistic, religious) characteristics. In politicides, by contrast,
groups are defined primarily in terms of their political opposition to
the regime and dominant groups.

Geno/politicide is distinguished from state repression and terror. In
cases of state terror authorities arrest, persecute or execute a few mem-
bers of a group in ways designed to terrorize the majority of the group
into passivity or acquiescence. In the case of genocide/politicide au-
thorities physically exterminate enough (not necessarily all) members
of a target group so that it can no longer pose any conceivable threat
to their rule or interests.

We code FAILURE as a binary variable equal to one if any one of the
four modes of failure is present for a given country in a given year; otherwise,
the variable takes on the value zero. Due to the difficulties in determining
the start and end dates of failure episodes, any string of three or fewer non-
failure years between failure episodes was also coded as a failure. Overall,
our data set contains 4596 country-years from 1955 through 1997. Of these,
849 were failures, or 18.47 percent overall. Figure 1 shows the number of

19Polity scores are taken from Jaggers and Gurr (1995), updated through 1997.
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new failures each year, and the total number of failures present at any given
point in time.

As might be gathered, these failures did not necessarily occur in isola-
tion. Of the country-years with failure, 566 had only one mode of failure,
189 had two modes, 65 had three, and 11 displayed all four modes simul-
taneously.20 Furthermore, some failure modes were less likely to occur in
isolation. In particular, our data shows no instances of geno/politicides oc-
curring by themselves; they are all coincident with at least one other mode
of failure. In all, 108 different cases of failure occurred, with an average du-
ration of 7.86 years. Of the 147 countries in the study, 68, or 46 percent, had
no failures at all, accounting for 42 percent of the country-years in the data.
Of the remaining 79 countries, the average percent of years in failure was
36 percent, ranging from 2.33 percent (Greece and Mexico) to 100 percent
(Angola, Azerbaijan, Moldova and India), as shown in Figure 2.

The independent variables used to explain failure include OPEN, trade
openness (defined as exports plus imports over GDP as a decimal), INF-
MORT, logged infant mortality, POPDENS, logged population density, and
DEMOC, democracy, coded as 1 if the country’s polity score is above 0.
Summary statistics are provided in Table 1.

Table 1: Summary Statistics

Variable Mean Std.Dev. Min Max
OPEN .61 .40 .02 .44
DEMOC .310 .46 0 1.00
INFMORT 3.97 .96 1.45 5.38
POPDENS 3.51 1.46 .07 8.59
FAILURE .18 .39 0.00 1.00

N=4596

Missing Data

The variables we used contain some missing data; almost all of this was ei-
ther for very small countries (usually not even in the Correlates of War list
of countries) in their entirety, or for a variety of nations either before some
period (typically 1960, but sometimes later) or after some period (typically
either 1996 or 1997). Since our methods are only difficult to use if there is

20These unfortunates were Zaire 1964-65, Philippines 1972, Iran 1981, Somalia 1989-90,
and Angola 1992-96.
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missing data in the interior of a country’s sample period, we simply dropped
all observations with missing data that were either at the beginning or end of
the overall observation period. In a few cases, such as Vietnam, entire coun-
tries were dropped from the analysis due to missing independent variables;
for Vietnam the problem was the lack of reliable data for infant mortality
or trade openness. There were a few missing interior observations on the
DEMOC variable. Since DEMOC is a dummy variable indicating that a na-
tion was democratic, and given what we know of the coding decisions in the
Polity data set, we decided to treat those few remaining missing observations
on DEMOC as zeros.21

4 Results: Naive models (and simple fixes)

We begin our presentation with the ordinary probit model. While we do not
expect many political scientists would actually estimate this model, it does
provide a baseline for comparison. Results are in Table 2; for completeness
this table also shows the Huber robust standard errors (with clustering by
country).

Table 2: Ordinary Probit Estimates of State Failure Model; All Failures

Ordinary Probit GEE

Variable β̂ SE Robust SE β̂ SE
OPEN −.71 .08 .23 −.31 .12
DEMOC −.40 .07 .26 −.36 .09
INFMORT .25 .04 .13 .28 .09
POPDENS .19 .02 .07 .19 .05
Constant −2.12 .21 .68 −2.45 .50
ρ̂ .86

N=4596

If we believed the ordinary probit, we would believe that all four indepen-
dent variables have a highly statistically significant effect on the probability
of state failure. Since we are always going to use the same specification, we

21There were approximately 10 such cases. While we did not choose our country list
based on the Correlates of War list, had we done so we would have eliminated about half
our missing data cases. Since our interest here is orthogonal to the missing data issue, we
felt it made most sense to do what we did. If this were a more substantive paper we would
clearly have to revisit the issue of missing data.
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can generally just compare coefficients and standard errors for the different
dynamic models. But to get a sense of what the various coefficients tell us
about the probability of state failure, note that if we set all other variables
at their mean, the probability of state failure for a democracy is .10 while it
rises to .19 for a non-democracy; a confidence interval for this difference is
(.06, .11). Looking at non-democracies, we if move INFMORT from its 75th
percentile to it 25th percentile, we change the probability of state failure
from .14 to .24; a confidence interval for this difference is (.08,.13). A similar
move in openness from the 75th percentile to the 25th percentile increases
the probability of state failure from .16 to .24; a confidence interval for this
difference is (.06,.10). Finally, a similar move in population density increases
the probability of state failure from .15 to .25; a confidence interval for this
difference is (.08,.12).22 Thus not only do the estimated impacts look very
statistically significant (with z-scores ranging from 6 to 10), but they are also
substantively large, since a change in the probability of state failure of even
a few percent is substantively very meaningful.

For the ordinary probit model presented in Table 2, the score test over-
whelmingly rejects the null of independent disturbances (z = 50.94); this
is not surprising, given that the data comprise largely of uninterrupted se-
quences of non-failure and failure.23 Figure 3 also makes this apparent, with
the four clusters of residuals in each quadrant corresponding to the four possi-
ble pairs in our data: (yt−1, yt) = (0, 0) in the bottom left and (1, 1) in the top
right. The few transitions in the data in the “off-diagonal” quadrants, where
a negative generalized residual is followed by positive generalized residual, or
vice-versa.

Clearly, then, assumptions of independence in these data are untenable,
and we now consider models designed to directly tap the dynamics in the
data or methods which attempt to “fix” the problems of ordinary probit. In
this section we briefly consider the latter.

The Huber standard errors leave the underlying model intact but do cor-
rect for the statistical dependence of different yearly observations for the
same country. In Beck and Katz (1997), we presented simulation results
that showed the Huber standard errors (grouping on unit) to be much more
accurate than the ordinary probit standard errors in the presence of serially
correlated errors. The Huber standard errors show that the ordinary probit
overstates confidence (z-scores by a factor of 3 or 4). The effect of democ-

22All computations other than the Markov Chain Monte Carlo computations were done
using Stata Version 7 (with some graphs and more complicated statistics produced using
Splus); the probabilities were calculated using Clarify. Individual probabilities based on
the ordinary probit have a standard error of about one percent.

23To be precise, 97.44 percent of non-failures were followed by failures, while 89.84
percent of failures were followed by further failures.
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racy on state failure is no longer statistically significant and the three other
z-scores now range from 2 to 3.

While the ordinary probit results with Huber standard errors yield more
realistic z-scores than do the basic ordinary probit estimates, the Huber pro-
cedure does not attempt to model the dynamics, nor does it change any
insights about either estimated coefficients or the way in which the indepen-
dent variables affect state failure. Surely if one were limited to the ordinary
probit model, one would at least use Huber standard errors. But we are not
so limited.

For completeness we also present the GEE results, assuming that the
dependent variable is correlated as a first order autoregressive process. Not
surprisingly, the observations are highly correlated (.86). The z-scores for the
GEE analysis are closer to the more realistic Huber z-scores than what was
obtained from the ordinary probit. But only the DEMOC coefficient changes
very much. As noted above, the GEE uses the same model to estimate the
probability of failure as does the ordinary probit. While the GEE results
here are probably superior to the ordinary probit, we can do better by trying
to model the dynamic process, that is, allowing the dynamics to affect the
probability of state failure. We turn to these more reasonable specifications
now.

5 Results: Transition models

The standard transitional model (Equation 9) is both easy to estimate and
interpret. The model results are Table 3.

Table 3: Transition Model; All Failures; Duration Independent

yt−1 = 0 yt−1 = 0

Variable β̂ SE β̂ SE
OPEN −.39 .16 −.45 .22
DEMOC −.55 .17 .55 .23
INFMORT .17 .08 .10 .12
POPDENS .08 .04 .07 .06
Constant −2.12 .21 .75 .67

N=3632 N=817

We note again that one would obtain the exact results in Table 3 if one
first did a probit of state failure using only observations following a non-
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failure (this would give the two left columns) and then the same probit using
only observations following a failure (dropping the first observation for each
country).

Since we have already seen how the various coefficients affect the proba-
bility of state failure in the ordinary probit analysis, we can limit ourselves to
comparing coefficient estimates in comparing the ordinary probit and tran-
sition models. The first thing to note is that the constant term is almost
three points greater in transitions from a state failure than in transitions to
a state failure; thus knowing whether a nation is transitioning from a pre-
vious failure or a previous non-failure has about seven times the effect on
current state failure as knowing whether a nation is a democracy.

The transition model does more than simply shift the intercept in the or-
dinary probit as a function of prior state failure; it also allows all coefficients
to differ depending on whether a nation is transitioning from a non-failure
or a failure. While the coefficients of three of our four independent vari-
ables do not change as a function of prior state failure, the coefficient on
DEMOC, perhaps our most interesting political variable, changes dramati-
cally.24 Democracies are significantly less likely to fail if they had not failed
last year, but they are significantly more likely to fail if they failed last year.
That is, democracy keeps states from failing, but once they do fail, it actually
makes them more likely to continue to fail. While the difference is probably
not statistically significant, the ordinary probit, if anything, understates the
role of democracy in preventing state failure. Thus, for example, a democ-
racy (with all other independent variables set at their medians) is about 10
points less likely to fail than a non-democracy if it was not failing last year,
but is about 10 points more likely to fail if it was failing last year.

For completeness, we note that the z-scores of the substantive indepen-
dent variables are much smaller than the corresponding scores for the ordi-
nary probit, and only slightly larger than those obtained with either Huber
standard errors or the GEE model. We also note that the Huber standard
errors for the transition model (not shown) are within 10% of the standard
errors in Table 3, indicating that the transition model does a good job of
taking account of the clustering of observations within a country.

To further evaluate the performance of these models, we examine their
ROC (Receiver Operating Characteristic) curves.25 This curve plots a model’s

24A test of the hypothesis that the other three variables do not change as a function
of whether they are transitioning from a prior failure or not yields a χ3

3 = .32, P < .96.
Estimates of the three restricted coefficients are similar to those in Table 3 with z-scores
close to those in that table.

25The military origins of this measure account for its strange locution. Early signal
theory was concerned with the ability of an operator sitting at a radar screen to perceive
an enemy ship, say, and distinguish it from a friendly one. This insight was taken up
by biomedical researchers interested in the ability of tests to generate true positives and

19



performance as one continuously changes the cutoff criterion for counting a
given observation as a positive finding, with the percent of true positives
(the test’s sensitivity) on the y-axis and the false positives (1-specificity, in
parlance) on the x-axis. A higher cutoff threshold will cut down on the false
positive, but reduce the true positives as well. A more aggressive lower cutoff
will catch more true positives but likely introduce more false positives.

Figure 4 shows ROC curves for the ordinary probit and transition models.
Since our data is binary, flipping a coin could get the classification right 50
percent of the time. The 45 degree line therefore indicates the minimal
possible model performance. As the ROC curve diverges from the 45 degree
line, overall predictions improve in that fewer false positives and more true
positives will be classified. Thus the area under the ROC curve, also known
as the C statistic, gives a general measure of in-sample performance. As
indicated in the figure, the ordinary probit estimation produces a C statistic
of 0.72, while the transition model’s C statistic is 0.96. Since the latter curve
lies consistently to the northwest of former, by this measure the transition
model dominates the ordinary probit.

Lest we become too sanguine about the relative performances of the mod-
els, though, Figure 5 shows the predicted transition probabilities for obser-
vations in each of the four possible classes: non-failures that remained non-
failures in the next period, non-failures that transitioned to failures, and so
on. As the figure indicates, the ordinary (“naive”) probit model nearly always
predicts that a country will be in non-failure the following year, even if it is
currently in failure; its maximum probability of failure never exceeds about
60%. This should be no surprise, given that the ordinary probit estimator
cannot distinguish which state the system is currently in, so its predictions
are dragged down by the prevalence of 0’s in the data set. By comparison,
the transition model correctly discovers that a country in failure is likely to
remain there, and likewise with a country currently in non-failure.

This superior performance in predicting 0-0 and 1-1 observations is the
basis for the transition model’s dominance in the ROC curve analysis; after
all, these account for 96.2% of the data. On the other hand, it is also true
that the transition model actually does less well in predicting state transi-
tions; that is, the 0-1 and 1-0 pairs. Table 4 shows the four models’ average
predicted probabilities for each possible transition class. Just as a stopped
clock is right twice a day, the ordinary probit’s insistence that a country is
always about 20 percent likely to be a non-failure makes it the best predic-
tor for both types of transition. We do not pursue issues of out-of-sample
prediction further here, and one would certainly not want to overemphasize
the naive probit’s ability to predict transitions. But it is clear that if one is

minimize false positives, and it has now found its way into the social science literature as
well.
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Figure 5: Comparison of Model Performance: Ordinary Probit vs. Transition
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interested in forecasting, at the end of the day one should assess a model’s
performance in terms of (appropriately weighted) predictive power.26

Table 4: In-Sample Prediction Summary

Model 0 → 0 0 → 1 1 → 0 1 → 1
Ordinary Probit 0.17 0.25 0.23 0.25
Full Transition 0.03 0.04 0.88 0.90
Restricted Transition 0.03 0.04 0.89 0.90
Lagged Latent 0.07 0.10 0.65 0.70

Since the transition model is identical to estimating two separate probits
depending on the prior state of FAILURE, the analysis is identical to what
the BKT analyst would find in the absence of any duration dependence (ex-
cept for the dropping of the first observation of any spell). Note that BKT
assumed that one type of spell was either of more interest to the analyst than
the other, or that the theory being tested applied to only one type of spell.
Thus, in the IR dispute data, we analyzed spells of peace which were termi-
nated by a dispute (which showed strong evidence of duration dependence),
but did not analyze spells of disputes terminated by peace. This was partly
because the data did not allow for the latter type of analysis; it contained
only very short dispute spells. But it was also the case that the theory being
tested related to the duration of spells of peace, not spells of disputes. Here
we have enough data to examine both spells of non-failure and of failure, and
the issue of the causes of transition from failure to non-failure is of interest.27

Let us begin with the transition model for spells of non-failure, that is,
conditioning on yt−1 = 0. The estimates in the left columns of Table 3 assume
duration independence, that is the probability of an exit from non-failure to
failure (which given the conditioning in the data, is just P(FAILURE)) is
assumed to not vary with t. As argued in BKT this is both a strong and
testable assumption; if it is incorrect, then the results in the left columns of
Table 3 will be wrong. To test the null hypothesis of duration independence
for spells of non-failure, we added functions of time since last failure to the
probit specification (both using dummy variables and splines). In all cases,

26King and Zeng (N.d.) make this point clearly in their assessment of the Task Force’s
previous claims regarding the predictive success of their model.

27Note that there is nothing in the transition model that forces us to use the same
independent variables to model the transitions from yt−1 = 0 and 1; we could easily put
together two entirely different models. But putting the two models in the one transition
model is illusory, since, as we have seen, the transition model is really two independent
models, based on the prior state of the binary dependent variable.
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tests very clearly failed to reject the null hypothesis of duration independence.
Thus the results for spells of non-failure, ignoring duration dependence, are
not problematic.

The situation is different for spells of failure, that is, conditioning on
yt−1 = 1. If we enter years since last non-failure (FAILURE YEARS) in
the specification, we see in Table 5 that it is significant and it depresses the
anomalous positive effect of democracy on length of spells of failure (to where
it is no longer statistically significant).28 Substantively, a nation with a spell
of ten years of failure is about as unlikely to emerge from failure as is a
democracy when compared to a non-democracy. At this point the results in
Table 5 tell us there is some duration dependence in the data, but also more
clearly tell us that we do not have a good model of when nations emerge from
spells of failure. While this has something to do with our theories of why
nations fail being better than our theories of why they emerge from failure,
it also has something to do with the limited amount of data we have when
conditioning on prior failure.

Table 5: Transition Model; Spells of Failure; Duration Dependence

Variable β̂ SE
OPEN −.35 .22
DEMOC .38 .24
INFMORT .12 .12
POPDENS .07 .06
FAILURE YEARS .03 .01
Constant .41 .68

N=817

6 Results: Lagged latent models

Before turning to the estimation of the lagged latent model, we present the re-
sults of estimating the apparently similar restricted transition model. While
the difference between using lagged realized values of y and the lagged la-
tent is not trivial, the models do appear superficially to be similar. Since

28We only show the linear analysis here. There is some indication that the effect of
FAILURE YEARS is strongest early in a spell, and after about 10 years disappears. But
with only 817 observations on years of failure, it is hard to be sure this effect is real; there
is not enough data for the semi-parametric analysis we prefer, and so we limit ourselves
to the model with the simple linear term.
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this is a special case of the transition model, and we have already seen that
the effect of democracy on state failure changes dramatically depending on
whether we are modelling entry into failure or exit from failure, we know the
transition model is preferred to the restricted transition model for this data
set and specification. But even so, it is interesting to compare the restricted
transition results, shown in Table 6, with our prior results.

Table 6: Restricted Transition Model; All Failures

Variable β̂ SE
OPEN −.37 .12
DEMOC −.17 .11
INFMORT .20 .06
POPDENS .10 .03
FAILURE lagged 3.12 .08
Constant −2.87 .34

N=4449

These results are clearly closer to those from the transition model than
those from the ordinary probit model. We note that the coefficient on the
DEMOC variable is negative but statistically not significant in the restricted
transition model; this is because it is averaging the two opposite signed effects
in the full transition model.

When comparing the coefficients of the restricted transition (or transition
model) with those of the ordinary probit model, we must remember that the
former models are analogies of distributed lag time series models whereas the
latter is the analogue of a static model. Thus, for example, in the ordinary
probit model, a move from non-democracy to democracy has an immediate
effect on the probability of state failure of (negative) 10 points. This effect
takes place all in one period. In the restricted transition or transition model,
the effect takes place over time. But unlike the standard time series models,
we cannot simply estimate the long run effect of a change in an independent
variable as a simple function of its coefficient and the coefficient on the re-
stricted transition. This is because the coefficient on the restricted transition
only is relevant if a change in the independent variable is large enough to
change the dependent variable from 0 to 1 or vice versa. One could compute
long run effects (and associated standard errors) by simulation, but this is
not quite as simple as dividing two coefficients.

The restricted transition (and transition) models both condition on prior
state failure (or non-failure). Thus they make the substantive claim that
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failure itself makes future failure more likely (and non-failure itself makes
future non-failure more likely). This is the identical claim made by Londregan
and Poole (1990) about coups. From a policy perspective, this means that if
we want to avoid state failure, we should attempt to keep states from failing
by whatever means, which, if done, will prevent future state failure even with
no changes in any of the variables which affect state failure. Failure breeds
failure and non-failure breeds non-failure. This is what Heckman (1981) calls
true state dependence.

Alternatively, there may simply be persistence in the underlying latent
variable, that is, a change in an independent variable may only affect FAIL-
URE over time, with the full impact being phased in exponentially. This
seems like a generally plausible story. Note that if one accepts this story,
then it does not matter whether a state failed or not last year, all that mat-
ters is the value of its latent propensity to fail last year. Thus a lucky state,
which does not fail in spite of a high propensity to fail, is no less likely to
fail this year because it was a non-failure last year. The policy implication
of this model is that we must manipulate the relevant independent variables,
not simply the outcome. We show the results of estimating such a lagged
latent variable model (Equation 6) in Table 7.

Table 7: Lagged Latent Model; All Failures

Short Run Long Run

Variable Posterior Mean SD Posterior Mean SD
OPEN −.179 .046 −.92 .24
DEMOC −.087 .038 −.45 .20
INFMORT .065 .019 .33 .10
POPDENS .041 .010 .21 .05
y∗t−1 .805 .018
Constant −.472 .115

N=4449

If we compare the short run estimates in Table 7, that is the estimates of
β in Equation 6, to the ordinary probit estimates in Table 2, they look quite
different. But we must remember that the β in the lagged latent model are
only short term effects, so the right comparison to the ordinary probit are the
long-run effects, also presented in Table 7. The estimated long-run effects,

as in continuous dependent variable time series analysis, are just β̂
1−ρ̂

. It
should be noted that the MCMC methodology makes it easy to compute the
standard error of this long run effect. While the long run effects estimated by
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the lagged latent model are similar to the ordinary probit β̂’s, the standard
errors for the long run effects in the latent lagged model are much smaller
than the standard errors from the ordinary probit, and comparable to those
we have obtained in the various other dynamic models we have shown here.
The ordinary probit assumes that a change in an independent variable is
felt instantaneously; the estimate of ρ in the lagged latent model indicates
it takes many years for a change in an independent variable to have its full
impact. But the long-run impacts implied by the latent lagged model are
considerably greater than those implied by the transition model (which, like
the ordinary probit estimates, assume that all effects occur instantaneously).

The ROC curves for both the restricted transition and lagged latent mod-
els are nearly identical to the curve shown in the bottom half of Figure 4,
with similar C statistics of 0.95 as well. This indicates that the ability to
take history into account goes most of the way towards improving the mod-
els’ performance. Exploring the lagged latent model a bit further, Figure 6
compares its predictions to those of the naive probit, similar to Figure 5
above. As shown, the lagged latent model is less extreme in its predictions
than was the transition model, especially in predicting transitions away from
failures. This difference is also apparent in the last two rows of Table 4: the
restricted transition model produces transition probabilities quite similar to
those of the full transition model, but the lagged latent has higher probabili-
ties of both entering and leaving failure than either transition model; that is,
it looks like a hybrid of the naive probit and the transition models. This last
finding is due mainly to the fact that the predicted values of the y∗ terms
are not as extreme as the 0-1 lagged y terms, and so they will not shift the
curves up or down by as great a factor.

For completeness, we also show the results of estimating a model with
serially correlated errors. These results, in Table 8 show roughly the same
dynamics as shown by the lagged latent model. This is similar to what we
typically find in standard time series analysis. It is the case, however, that
none of the substantive independent variables have a statistically significant
impact, and all have substantive impacts similar to the short run estimates
for the lagged latent model (but of course, the short and long run effects
of the substantive independent variables are the same, which is why we do
not like the serially correlated errors model). There is nothing in Table 8 to
cause us to rethink our preference for the lagged latent model to the model
with serially correlated errors.

7 Discussion and conclusion

Obviously one can draw no firm conclusions about general properties of mod-
els from one data set. We also warn that the data set we use has long se-
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Figure 6: Comparison of Model Performance: Ordinary Probit vs. Lagged
Latent
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Table 8: Serially Correlated Errors Model; All Failures

Variable Posterior Mean SD
OPEN −.11 .10
DEMOC −.10 .09
INFMORT .09 .07
POPDENS .05 .05
ρ̂ .86 .03
Constant −.72 .40

N=4449

quences of non-failure followed by various length sequences of failure; in this
it looks a lot like the conflict data that we have analyzed elsewhere. Thus
we have not tried the various models on data sets which consist of short
sequences of 0’s and 1’s. While we intend to do this, as of now we have not
found such a data set (at least that is not panel, all discussion here is for the
BTSCS case).

There is no doubt that the ordinary probit should not be used if there is
evidence of serious temporal correlation of the observations (within a unit).
Evidence for this can either be the score test of Gourieroux, Monfort and
Trognon we discussed, or perhaps a simple intuitive appeal that long se-
quences of 0’s are unlikely to coexist with temporal independence.

While there are a variety of “fixes” for temporally dependent data, we
prefer model-based approaches. Two appealing alternatives are the transition
model (with the event history duration dependence extensions of BKT if
necessary) or the lagged latent variable model. The latter is often thought
too hard to estimate, but recent breakthroughs make it only very hard to
estimate. While we should not underestimate the costs of estimating this
model, it is very attractive in that it is the natural analogue of what we
typically do in continuous dependent variable time series analysis. It also
can be extended in some theoretically appealing ways. At this point we
would suggest that BTSCS researchers faced with data like the state failure
data use both of these approaches.

A Nomenclature

Since different disciplines have well accepted but differing terminologies for
the models we discuss, and since some of our nomenclature is non-standard,
Table 9 keys the disciplinal names to the various equations in the text.
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B Identification, Estimation and Inference for

the “Lagged Latent” Model

For clarity, we begin by briefly reproducing the derivation of the ordinary
probit model, temporarily ignoring the i subscript indexing countries. Let
θt = Pr[yt = 1] be the probability of a failure at time t. For ordinary
probit, the probability of failure depends on covariates via a latent regression
function

h(θt) ≡ y∗t = xtβ + εt, (19)

where xt is a row vector of observations on k independent variables at time
t, β is a vector of parameters to be estimated, y∗t ∈ R is a latent dependent
variable, observed only in terms of its sign, i.e.,

yt =

{
0, if y∗t ≤ 0
1, if y∗t > 0

(20)

and εt is a zero mean stochastic disturbance, identically and independently
distributed for all t. For probit, we assume f(εt) = N(0, 1) ≡ φ(),∀ t; recall
that the regression parameters β are identified only up to the scale factor
σ, and so setting σ = 1 is a convenient normalization with no substantive
implications. Note that with this latent regression approach we can express
the joint probability for the observed data yt in terms of the latent data, y∗t :
i.e.,

Pr(y1 = 1, . . . , yT = 1) = Pr(y∗1 > 0, . . . , y∗T > 0)

Independence is a key assumption in the derivation of an ordinary probit
model. In the present case, temporal independence means that

Pr(y1 = 1, . . . , yT = 1) = Pr(y1 = 1)× . . .× Pr(yT = 1) =
T∏

t=1

θt (21)

or, in words, the joint probability for the data equals the product of the
marginal probabilities, and so the log-likelihood can be simply written as
sum of the observation-specific log-probabilities:

lnL =
T∑

t=1

[yt ln θt + (1− yt) ln(1− θt)] . (22)

This log-likelihood is easily maximized to yield estimates of β with well-
known asymptotic properties (consistency, and normality).
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The “Lagged Latent” Model

Recall that the latent regression function for the “lagged latent” model is

y∗t = xtβ + ρyt−1 + εt, |ρ| < 1

where the censoring rule in (20) links the latent and observed dependent vari-
ables. Given this model, the likelihood for the data given can now no longer
be written as the product of the θt. Since y∗t is a function of y∗t−1, Pr(yt = 1)
is no longer independent of Pr(yt−r = 1),∀ r 6= 0; in turn, the joint proba-
bility of the data is no longer the product of the time-specific probabilities,
Instead, the joint probability of the sequence of outcomes observed for dyad
i:

L = Pr[y1, y2, . . . , yT ]

=

∫ bi1

ai1

∫ bi2

ai2

. . .

∫ biTi

aiTi

fT (y∗|xβ, Σ) dy∗T . . . dy∗2 dy∗i1, (23)

where

(at, bt) =

{
(−∞, 0) if yt = 0
(0,∞) if yt = 1

(24)

and fT (y∗|Xβ, Σ) is the T -dimensional probability density for the vector of
latent variables y∗ = (y∗1, . . . , y

∗
T )′ (Poirier and Ruud, 1988, equation 2.8).

For probit, this density is the multivariate normal PDF

(2π)−
T
2 |Σ|−

1
2 exp

[
−ε′Σ−1ε

2

]
,

with ε = (ε1, . . . , εT )′, where εt = y∗t − ρy∗t−1 − xtβ, ∀ t = 2, . . . , T and
ε1 = y∗1 − x1β.

The likelihood function in (23) poses a ferocious maximization problem,
bearing a close resemblance to the intractabilities presented by the multino-
mial probit (MNP) model for qualitative choice. In MNP, the likelihood func-
tion becomes increasingly complex as the number of choices increases; each
choice adds another dimension to the integral in the likelihood. Here we have
a time-series probit model with the likelihood for each country i = 1, . . . , n
involving integration of a Ti-dimensional Normal density. Statistical software
packages such as GAUSS or S-Plus will evaluate integrals of bivariate Nor-
mal densities, but in any interesting time series setting Ti will be much larger
than 2 or 3!

Estimation by Bayesian Simulation

The recent advent of simulation-based inference makes time-series probit
models tractable. In particular, Markov chain Monte Carlo (MCMC) is at-
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tractive for this particular problem.29 Rather than attempt to evaluate the
high dimensional integral in the likelihood function in (23), the latent y∗it
themselves can be recovered by successively sampling from the sequence of
conditional densities f(y∗t |y∗t−1), t = 2, . . . , T . This sampling algorithm is an
example of Gibbs sampling, the workhorse of MCMC. A review of Gibbs
sampling need not detain us here,30 but the key idea is that conditional on
the latent y∗it, the parameter-driven transitional model is simply a regression
model with a lagged dependent variable. The MCMC algorithm proceeds
by (1) generating imputations or, more formally, samples from the condi-
tional distribution for the latent y∗it, to yield a complete set of data; (2) using
that complete set of data to estimate β and ρ, and then sampling from their
implied conditional distributions.

In this case we seek the posterior distribution for the unknown parameters
and latent data,

π(β, ρ, y∗|X, y), (25)

recalling that X and y are the observed data. The MCMC approach be-
gins by decomposing the joint posterior distribution into the two conditional
distributions

g1(β, ρ, |y∗, X, y)

and
g2(y

∗|β, ρ, X, y).

The MCMC algorithm here consists of successively sampling from each of
these distributions, replacing β, ρ and y∗ when they appear as conditioning
arguments with the most recently sampled value for each. At the end of
iteration m over each of the conditional distributions, the vector of sampled
quantities (β(m), ρ(m), y∗(m))′ comprises the state vector of a Markov chain
that has the joint posterior in (25) as its invariant distribution. When the
Markov chain Monte Carlo algorithm has been run for a sufficiently lengthy
period, each realization of the state vector is a draw from the joint posterior.
These draws from the posterior distribution are saved and summarized for
inference.

29Geweke, Keane and Runkle (1997) report that other simulation methods for dealing
with the high-dimensional integrals required in multi-period probit models perform poorly
as serial dependency increases; for instance, the Geweke-Hajivassiliou-Keane (GHK) simu-
lator needs to be run for increasingly longer simulation runs as the magnitude of ρ increases.
Indeed, a Markov Chain Monte Carlo (MCMC) approach generally outperforms the GHK
simulator in the experimental conditions considered by Geweke, Keane and Runkle (1997).

30Jackman (2000a) provides a review of MCMC geared towards political scientists; mod-
els for discrete outcomes are among the examples used.
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Conditional Densities for the Gibbs Sampler

The conditional distribution of y∗ is a multivariate normal distribution with
mean vector Xβ and variance-covariance matrix Σ, truncated to the region
(a1, b1)× . . .× (aT , bT ), as defined in equation (24). Sampling from this trun-
cated multivariate distribution can be accomplished by sequentially sampling
from the conditional distributions for each y∗t , where the conditioning is not
just on the observed data and the parameters β and ρ, but also on the
sampled values for y∗r<t. For a probit model, each of these conditional distri-
butions is a truncated univariate normal distribution. Given the model for
the latent dependent variable

y∗t = ρy∗t−1 + xtβ + εt, t = 2, . . . , T

and the stationarity assumption |ρ| < 1, then if the covariates X are consid-
ered non-stochastic,

var(yt) = ρ2var(yt−1) + var(εt)

∀ t = 2, . . . , T . But given the identifying normalization var(yt) = 1, this im-
plies that var(εt) = 1−ρ2,∀ t = 2, . . . , T . For probit, the latent disturbances
have normal distributions, and so εt ∼ N(0, 1− ρ2),∀ t = 2, . . . , T . Thus

y∗t |y∗t−1 ∼ N
(
ρy∗t−1 + xtβ, 1− ρ2

)
I(at, bt) (26)

for t = 2, . . . , T , where the function I(·, ·) is a binary (0,1) indicator function
for the truncation bounds. The first observation of each unit-specific time
series is sampled from

y∗1 ∼ N(x1β, 1)I(a1, b1)

Having generated the latent y∗ by sampling from these distributions, we
can update the estimates of β and ρ by simply running a regression of the y∗t
on y∗t−1 and X, ∀ t = 2, . . . , T . This regression yields a vector of parameter

estimates (ρ̂, β̂), and a variance-covariance matrix σ2
ε (Z

′Z)−1, where Z is
the matrix formed by concatenating y∗t−1 and the matrix of covariates X,
dropping the t = 1 observation within each unit. Note that σ2

ε is fixed at 1−
ρ2. With a diffuse prior, the update for β and ρ is obtained by sampling from
the multivariate Normal distribution with mean vector (ρ̂, β̂) and variance-
covariance matrix σ2

ε (Z
′Z)−1; to enforce the stationarity constraint we would

reject sampled values for ρ greater than 1, or less than -1, although we do
not encounter any instances of the sampler attempting to visit this region of
the parameter space cases with our data.

This Gibbs sampling scheme converges extremely quickly from a range of
plausible starting values; the results in the text are based on 10,000 iterations,
thinned by a factor of 10, and discarding the initial 1,000 iterations as burn-
in. A C program implementing this sampler is available upon request.
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Probit with AR(1) Errors

For the probit model with AR(1) errors, we again use MCMC methods. The
latent regression function is as for ordinary probit

y∗t = xtβ + εt (27)

but with the following AR(1) process for the latent disturbances:

εt = ρεt−1 + νt, |ρ| < 1 (28)

To estimate this model we employ an MCMC procedure similar to the well-
known Cochrane-Orcutt procedure for regression models with AR(1) distur-
bances.

1. With the current estimate of β, generate the generalized residuals

ε∗t = E(εt; yt, xt, β)

Expressions for these quantities are defined above, in the body of the
paper.

2. Sample from the conditional distribution for ρ:

ρ ∼ N(r, R−1)

where

r =

∑T
t=2 ε∗t ε

∗
t−1

R
,

R =
T∑

t=2

ε∗2t−1

3. Sample from the conditional distribution for β ∼ N(b, B), where

b = (X∗′
X∗)−1X∗′

y∗∗

B = σ2
ν(X

∗′
X∗)−1

X∗ = (x∗
2, . . . , x

∗
T )′

y∗∗ = (y∗∗2 , . . . , y∗∗T )′

x∗
t = xt − ρxt−1, t = 2, . . . , T

y∗∗t = y∗t − ρy∗t−1, t = 2, . . . , T

y∗t ∼ N(xtβ + ρε∗t−1, 1− ρ2)I(at, bt)

at =

{
−∞ ⇐⇒ yt = 0
0 ⇐⇒ yt = 1

bt =

{
0 ⇐⇒ yt = 0
∞ ⇐⇒ yt = 1

σ2
ν = 1− ρ2
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We iterate this scheme 10,000 times
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