### Higher-Dimension Markov Models

David Epstein Sharyn O'Halloran

Columbia University
July 26, 2005

#### Iron Laws of the Political Science Profession

#### Tolstoy's Law of Journal Reviews

All good reviews are good in the same way; all bad reviews are bad in different ways.

#### Corollary

Never revise a paper for a new journal submission in response to comments by a bad reviewer at the previous journal.

The James Bond Law of Previous Literature Never say never; you are sure to be wrong.

#### Iron Laws of the Political Science Profession

#### Tolstoy's Law of Journal Reviews

All good reviews are good in the same way; all bad reviews are bad in different ways.

#### Corollary

Never revise a paper for a new journal submission in response to comments by a bad reviewer at the previous journal.

The James Bond Law of Previous Literature Never say never; you are sure to be wrong.

#### Iron Laws of the Political Science Profession

#### Tolstoy's Law of Journal Reviews

All good reviews are good in the same way; all bad reviews are bad in different ways.

#### Corollary

Never revise a paper for a new journal submission in response to comments by a bad reviewer at the previous journal.

#### The James Bond Law of Previous Literature

Never say never; you are sure to be wrong.

#### Basics of Markov Models

- Given: a system that can exist in any of a finite number of states in each period.
- Markov models estimate the probabilities  $\pi_{ab}$  of transitions from state a at time t-1 to state b at time t.

```
\begin{pmatrix}
\pi_{11} & \pi_{12} & \dots & \pi_{1N} \\
\pi_{21} & \pi_{22} & \dots & \pi_{2N} \\
\vdots & \vdots & \vdots & \vdots \\
\pi_{N1} & \pi_{N2} & \dots & \pi_{NN}
\end{pmatrix}
```

#### Basics of Markov Models

- Given: a system that can exist in any of a finite number of states in each period.
- Markov models estimate the probabilities  $\pi_{ab}$  of transitions from state a at time t-1 to state b at time t.

```
\begin{pmatrix} \pi_{11} & \pi_{12} & \dots & \pi_{1N} \\ \pi_{21} & \pi_{22} & \dots & \pi_{2N} \\ \vdots & \vdots & \vdots & \vdots \\ \pi_{N1} & \pi_{N2} & \dots & \pi_{NN} \end{pmatrix}
```

#### Basics of Markov Models

- Given: a system that can exist in any of a finite number of states in each period.
- Markov models estimate the probabilities  $\pi_{ab}$  of transitions from state a at time t-1 to state b at time t.

$$\begin{pmatrix} \pi_{11} & \pi_{12} & \dots & \pi_{1N} \\ \pi_{21} & \pi_{22} & \dots & \pi_{2N} \\ \vdots & \vdots & \vdots & \vdots \\ \pi_{N1} & \pi_{N2} & \dots & \pi_{NN} \end{pmatrix}$$

- 1. International Relations: Friendly ↔ War
- 2. Election Challenger: Unchallenged ↔ Challenger
- 3. Transitions: Autocracy ↔ Democracy

- ► This is the simplest 2x2 case
- ▶ But one can imagine higher dimension categories...

- 1. International Relations: Friendly ↔ War
- 2. Election Challenger: Unchallenged ↔ Challenger
- 3. Transitions: Autocracy ↔ Democracy

- ► This is the simplest 2x2 case
- ▶ But one can imagine higher dimension categories...

- 1. International Relations: Friendly ↔ War
- 2. Election Challenger: Unchallenged ↔ Challenger
- 3. Transitions: Autocracy ↔ Democracy

- ► This is the simplest 2x2 case
- ▶ But one can imagine higher dimension categories...

- 1. International Relations: Friendly  $\leftrightarrow$  Tense  $\leftrightarrow$  War
- 2. Election Challenger: None  $\leftrightarrow$  Weak  $\leftrightarrow$  Strong
- 3. Transitions: Autocracy  $\leftrightarrow$  Partial Dem.  $\leftrightarrow$  Democracy

▶ These higher dimension models have never been used in political science.

- 1. International Relations: Friendly  $\leftrightarrow$  Tense  $\leftrightarrow$  War
- 2. Election Challenger: None  $\leftrightarrow$  Weak  $\leftrightarrow$  Strong
- 3. Transitions: Autocracy  $\leftrightarrow$  Partial Dem.  $\leftrightarrow$  Democracy

These higher dimension models have never been used in political science.

- 1. International Relations: Friendly  $\leftrightarrow$  Tense  $\leftrightarrow$  War
- 2. Election Challenger: None  $\leftrightarrow$  Weak  $\leftrightarrow$  Strong
- 3. Transitions: Autocracy  $\leftrightarrow$  Partial Dem.  $\leftrightarrow$  Democracy

► These higher dimension models have never been used in political science.

- 1. International Relations: Friendly  $\leftrightarrow$  Tense  $\leftrightarrow$  War
- 2. Election Challenger: None  $\leftrightarrow$  Weak  $\leftrightarrow$  Strong
- 3. Transitions: Autocracy ↔ Partial Dem. ↔ Democracy

- Previous implementations in political science include:
  - 1. Dean and Moran (1977)
  - 2. Jones, Kim and Starz (2005)
  - 3. Walker (2005)
  - 4. Others??

# Models of Transition Dynamics

Given C categories for the dependent variable, let  $\pi_{ab}$  be the transition probabilities from state a to state b be, where  $0 \le a, b \le C - 1$  and  $\sum_b \pi_{ab} = 1$ .

The simplest Markov process consists of a two-state system:

$$\begin{array}{ccc}
0 & 1 \\
0 & \pi_{00} & \pi_{01} \\
1 & \pi_{10} & \pi_{11}
\end{array}$$

Using a logit link, this two-state case could be estimated by a single regression:

$$\Pr(Y_t = 1) = \operatorname{logit}(X_{t-1}\beta).$$



- ➤ This formulation implicitly assumes that the factors moving the state from 0 to 1 are equal and opposite from those that move it from 1 to 0.
- ▶ In many substantive applications, we would not wish to assume this *a priori*:
  - Religious factionalization starts ethnic wars; international intervention stors them
  - A bad economy makes people want to elect Democrats;
    - Good economic conditions foster transitions out of

- ➤ This formulation implicitly assumes that the factors moving the state from 0 to 1 are equal and opposite from those that move it from 1 to 0.
- ▶ In many substantive applications, we would not wish to assume this *a priori*:
  - Religious factionalization starts ethnic wars; international intervention stops them
  - A bad economy makes people want to elect Democrats; war makes them want to elect Republicans
  - Good economic conditions foster transitions out of autocracy; group-based politics and violence trigger reversals to autocracy

- ➤ This formulation implicitly assumes that the factors moving the state from 0 to 1 are equal and opposite from those that move it from 1 to 0.
- ▶ In many substantive applications, we would not wish to assume this *a priori*:
  - Religious factionalization starts ethnic wars; international intervention stops them
  - ▶ A bad economy makes people want to elect Democrats; war makes them want to elect Republicans
  - Good economic conditions foster transitions out of autocracy; group-based politics and violence trigger reversals to autocracy



- ➤ This formulation implicitly assumes that the factors moving the state from 0 to 1 are equal and opposite from those that move it from 1 to 0.
- ▶ In many substantive applications, we would not wish to assume this *a priori*:
  - Religious factionalization starts ethnic wars; international intervention stops them
  - ► A bad economy makes people want to elect Democrats; war makes them want to elect Republicans
  - Good economic conditions foster transitions out of autocracy; group-based politics and violence trigger reversals to autocracy



- ➤ This formulation implicitly assumes that the factors moving the state from 0 to 1 are equal and opposite from those that move it from 1 to 0.
- ▶ In many substantive applications, we would not wish to assume this *a priori*:
  - Religious factionalization starts ethnic wars; international intervention stops them
  - ► A bad economy makes people want to elect Democrats; war makes them want to elect Republicans
  - Good economic conditions foster transitions out of autocracy; group-based politics and violence trigger reversals to autocracy

The Markov approach is to estimate the 2x2 system by a pair of logit regressions, each depending explicitly on the prior state of the system:

$$\Pr(Y_t = 1 | Y_{t-1} = 0) = \operatorname{logit}(X_{t-1}\beta)$$
  
 $\Pr(Y_t = 1 | Y_{t-1} = 1) = \operatorname{logit}(X_{t-1}\alpha)$ 

which can be written more compactly as

$$\Pr(Y_t = 1) = \text{logit}(X_{t-1}\beta + Y_{t-1}X_{t-1}\gamma)$$

$$\gamma = \alpha - \beta.$$



The Markov approach is to estimate the 2x2 system by a pair of logit regressions, each depending explicitly on the prior state of the system:

$$\Pr(Y_t = 1 | Y_{t-1} = 0) = \operatorname{logit}(X_{t-1}\beta)$$
  
 $\Pr(Y_t = 1 | Y_{t-1} = 1) = \operatorname{logit}(X_{t-1}\alpha)$ 

which can be written more compactly as

$$\Pr(Y_t = 1) = \text{logit}(X_{t-1}\beta + Y_{t-1}X_{t-1}\gamma)$$

$$\gamma = \alpha - \beta$$
.



The Markov approach is to estimate the 2x2 system by a pair of logit regressions, each depending explicitly on the prior state of the system:

$$\Pr(Y_t = 1 | Y_{t-1} = 0) = \operatorname{logit}(X_{t-1}\beta)$$
  
 $\Pr(Y_t = 1 | Y_{t-1} = 1) = \operatorname{logit}(X_{t-1}\alpha)$ 

which can be written more compactly as

$$\Pr(Y_t = 1) = \operatorname{logit}(X_{t-1}\beta + Y_{t-1}X_{t-1}\gamma)$$

$$\gamma = \alpha - \beta$$
.



The Markov approach is to estimate the 2x2 system by a pair of logit regressions, each depending explicitly on the prior state of the system:

$$\Pr(Y_t = 1 | Y_{t-1} = 0) = \operatorname{logit}(X_{t-1}\beta)$$
  
 $\Pr(Y_t = 1 | Y_{t-1} = 1) = \operatorname{logit}(X_{t-1}\alpha)$ 

which can be written more compactly as

$$\Pr(Y_t = 1) = \text{logit}(X_{t-1}\beta + Y_{t-1}X_{t-1}\gamma)$$

$$\gamma = \alpha - \beta$$
.



### Higher-Dimension Processes

For the 3-state case we want to estimate the probabilities  $\pi_{ab}$  in the transition matrix

$$\begin{array}{cccc}
Y_0 & Y_1 & Y_2 \\
Y_0 & \pi_{00} & \pi_{01} & \pi_{02} \\
Y_1 & \pi_{10} & \pi_{11} & \pi_{12} \\
Y_2 & \pi_{20} & \pi_{21} & \pi_{22}
\end{array}$$

We could run nine regular logits for each entry in the matrix; this is known as the "fully saturated" model.

(Note nine vs. two in the 2x2 case.)

But there are some improvements we can make

### Higher-Dimension Processes

For the 3-state case we want to estimate the probabilities  $\pi_{ab}$  in the transition matrix

$$\begin{array}{cccc}
Y_0 & Y_1 & Y_2 \\
Y_0 & \pi_{00} & \pi_{01} & \pi_{02} \\
Y_1 & \pi_{10} & \pi_{11} & \pi_{12} \\
Y_2 & \pi_{20} & \pi_{21} & \pi_{22}
\end{array}$$

We could run nine regular logits for each entry in the matrix; this is known as the "fully saturated" model.

(Note nine vs. two in the 2x2 case.)

But there are some improvements we can make.



#### Cumulative Probabilities

First, it is easier to work with *cumulative* transition probabilities:  $Y_a^* = 1$  if  $Y \le a$ .

Given the cumulative probabilities, we can recover the cell probabilities since  $\Pr(Y \le a) = \Pr(Y \le a - 1) + \Pr(Y = a)$ .

In the 3-state case the translation from Y to  $Y^*$  is:

Note that  $Y_2^* = 1$ .

#### Cumulative Probabilities

First, it is easier to work with *cumulative* transition probabilities:  $Y_a^* = 1$  if  $Y \le a$ .

Given the cumulative probabilities, we can recover the cell probabilities since  $\Pr(Y \le a) = \Pr(Y \le a - 1) + \Pr(Y = a)$ .

In the 3-state case the translation from Y to  $Y^*$  is:

| <i>Y</i> : | 0 | 1 | 2 |
|------------|---|---|---|
| $Y_0^*$ :  | 1 | 0 | 0 |
| $Y_1^*$ :  | 1 | 1 | 0 |

Note that  $Y_2^* = 1$ .

As a simple example, the log-odds model of cumulative probabilities is:

logit 
$$\Pr(Y \le a) = \log \frac{\Pr(Y \le a)}{\Pr(Y > a)} = \theta_a + X\beta.$$

If X=0, then  $\Pr(Y\leq a)=e^{\theta_a}/(1+e^{\theta_a})$ , which is non-decreasing in a, so  $\theta_0\leq \theta_1\leq \ldots \leq \theta_{C-2}$ .

If  $\theta_a = \theta_{a+1}$ , then  $\Pr(Y \le a) = \Pr(Y \le a+1)$ , and categories a and a+1 can therefore be collapsed.

Second, we can run each column of the matrix as a single estimation equation, as in the 2x2 case.

Assume that for any given a, the model to be estimated is

$$\Pr(Y_t = b | Y_{t-1} = a) = \operatorname{logit}(\theta_{ab} + X\beta_a)$$

$$\Pr(Y_t = b) = \operatorname{logit}\left(X_{t-1}\beta + \sum_{a} Y_{at-1}^* X_{t-1} \gamma_a\right)$$

Second, we can run each column of the matrix as a single estimation equation, as in the 2x2 case.

Assume that for any given a, the model to be estimated is

$$\Pr(Y_t = b | Y_{t-1} = a) = \operatorname{logit}(\theta_{ab} + X\beta_a)$$

$$\Pr(Y_t = b) = \operatorname{logit}\left(X_{t-1}\beta + \sum_{a} Y_{at-1}^* X_{t-1} \gamma_a\right)$$

Second, we can run each column of the matrix as a single estimation equation, as in the 2x2 case.

Assume that for any given a, the model to be estimated is

$$\Pr(Y_t = b | Y_{t-1} = a) = \operatorname{logit}(\theta_{ab} + X\beta_a)$$

$$\Pr(Y_t = b) = \operatorname{logit}\left(\frac{X_{t-1}\beta}{X_{t-1}\beta} + \sum_{a} Y_{at-1}^* X_{t-1} \gamma_a\right)$$

Second, we can run each column of the matrix as a single estimation equation, as in the 2x2 case.

Assume that for any given a, the model to be estimated is

$$\Pr(Y_t = b | Y_{t-1} = a) = \operatorname{logit}(\theta_{ab} + X\beta_a)$$

$$\Pr(Y_t = b) = \operatorname{logit}\left(X_{t-1}\beta + \sum_{a} Y_{at-1}^* X_{t-1} \gamma_a\right)$$

Say we have three states and one independent variable. Then we estimate:

$$\Pr(Y_{it} = b) = \beta_0 + \beta_1 y_0^* + \beta_2 y_1^* + \gamma_0 X + \gamma_1 X y_0^* + \gamma_2 X y_1^*$$

Now if X = 0, then

$$Pr(Y_t = b | Y_{t-1} = 2) = \beta_0$$

$$Pr(Y_t = b | Y_{t-1} = 1) = \beta_0 + \beta_2$$

$$Pr(Y_t = b | Y_{t-1} = 0) = \beta_0 + \beta_2 + \beta$$

Say we have three states and one independent variable. Then we estimate:

$$\Pr(Y_{it} = b) = \beta_0 + \beta_1 y_0^* + \beta_2 y_1^* + \gamma_0 X + \gamma_1 X y_0^* + \gamma_2 X y_1^*$$

Now if X=0, then

$$Pr(Y_t = b | Y_{t-1} = 2) = \beta_0$$

$$Pr(Y_t = b | Y_{t-1} = 1) = \beta_0 + \beta_2$$

$$Pr(Y_t = b | Y_{t-1} = 0) = \beta_0 + \beta_2 + \beta$$

Say we have three states and one independent variable. Then we estimate:

$$\Pr(Y_{it} = b) = \frac{\beta_0}{\beta_0} + \beta_1 y_0^* + \beta_2 y_1^* + \gamma_0 X + \gamma_1 X y_0^* + \gamma_2 X y_1^*$$

Now if X=0, then

$$Pr(Y_t = b | Y_{t-1} = 2) = \beta_0$$

$$Pr(Y_t = b | Y_{t-1} = 1) = \beta_0 + \beta_2$$

$$Pr(Y_t = b | Y_{t-1} = 0) = \beta_0 + \beta_2 + \beta_3$$

Say we have three states and one independent variable. Then we estimate:

$$\Pr(Y_{it} = b) = \frac{\beta_0}{\beta_0} + \beta_1 y_0^* + \frac{\beta_2}{\beta_2} y_1^* + \gamma_0 X + \gamma_1 X y_0^* + \gamma_2 X y_1^*$$

Now if X=0, then

$$Pr(Y_t = b | Y_{t-1} = 2) = \beta_0$$

$$Pr(Y_t = b | Y_{t-1} = 1) = \beta_0 + \beta_2$$

$$Pr(Y_t = b | Y_{t-1} = 0) = \beta_0 + \beta_2 + \beta_3$$

Say we have three states and one independent variable. Then we estimate:

$$\Pr(Y_{it} = b) = \frac{\beta_0}{\beta_0} + \frac{\beta_1}{\beta_0} y_0^* + \frac{\beta_2}{\beta_0} y_1^* + \gamma_0 X + \gamma_1 X y_0^* + \gamma_2 X y_1^*$$

Now if X=0, then

$$Pr(Y_t = b | Y_{t-1} = 2) = \beta_0$$

$$Pr(Y_t = b | Y_{t-1} = 1) = \beta_0 + \beta_2$$

$$Pr(Y_t = b | Y_{t-1} = 0) = \beta_0 + \beta_2 + \beta_1$$

Say we have three states and one independent variable. Then we estimate:

$$\Pr(Y_{it} = b) = \beta_0 + \beta_1 y_0^* + \beta_2 y_1^* + \gamma_0 X + \gamma_1 X y_0^* + \gamma_2 X y_1^*$$

$$Pr(Y_t = b | Y_{t-1} = 2, X) = \gamma_0$$

$$Pr(Y_t = b | Y_{t-1} = 1, X) = \gamma_0 + \gamma_2$$

$$Pr(Y_t = b | Y_{t-1} = 0, X) = \gamma_0 + \gamma_2 + \gamma_1$$

Say we have three states and one independent variable. Then we estimate:

$$\Pr(Y_{it} = b) = \beta_0 + \beta_1 y_0^* + \beta_2 y_1^* + \gamma_0 X + \gamma_1 X y_0^* + \gamma_2 X y_1^*$$

$$Pr(Y_t = b | Y_{t-1} = 2, X) = \gamma_0$$

$$Pr(Y_t = b | Y_{t-1} = 1, X) = \gamma_0 + \gamma_2$$

$$Pr(Y_t = b | Y_{t-1} = 0, X) = \gamma_0 + \gamma_2 + \gamma_2$$

Say we have three states and one independent variable. Then we estimate:

$$\Pr(Y_{it} = b) = \beta_0 + \beta_1 y_0^* + \beta_2 y_1^* + \gamma_0 X + \gamma_1 X y_0^* + \gamma_2 X y_1^*$$

$$Pr(Y_t = b | Y_{t-1} = 2, X) = \gamma_0$$

$$Pr(Y_t = b | Y_{t-1} = 1, X) = \gamma_0 + \gamma_2$$

$$Pr(Y_t = b | Y_{t-1} = 0, X) = \gamma_0 + \gamma_2 + \gamma_1$$

Say we have three states and one independent variable. Then we estimate:

$$\Pr(Y_{it} = b) = \beta_0 + \beta_1 y_0^* + \beta_2 y_1^* + \gamma_0 X + \gamma_1 X y_0^* + \gamma_2 X y_1^*$$

$$Pr(Y_t = b | Y_{t-1} = 2, X) = \gamma_0$$

$$Pr(Y_t = b | Y_{t-1} = 1, X) = \gamma_0 + \gamma_2$$

$$Pr(Y_t = b | Y_{t-1} = 0, X) = \gamma_0 + \gamma_2 + \gamma_1$$

To summarize, for any given independent variable X:

- ▶ The  $\gamma_0$  coefficient on the un-interacted X term gives the impact of  $X_{t-1}$  on  $Y_t$  when  $Y_{t-1} = Y_{C-1}$ , the "last" category of Y.
- ▶ The  $\gamma_a$  coefficients on the interaction terms  $Xy_a^*$  give the differential impact of  $X_{t-1}$  on  $Y_t$  between  $Y_{t-1} = Y_{a+1}$  and  $Y_{t-1} = Y_a$ .
- ▶ The cell probabilities giving the impact of X on  $\Pr(Y_t = b | Y_{t-1} = a)$  when a < C 1 can be recovered as the sums of the  $\gamma$  coefficients, in the order

$$\gamma_0 + \gamma_{C-1} + \gamma_{C-2} + \ldots + \gamma_{a+1}$$

To summarize, for any given independent variable X:

- ▶ The  $\gamma_0$  coefficient on the un-interacted X term gives the impact of  $X_{t-1}$  on  $Y_t$  when  $Y_{t-1} = Y_{C-1}$ , the "last" category of Y.
- ▶ The  $\gamma_a$  coefficients on the interaction terms  $Xy_a^*$  give the differential impact of  $X_{t-1}$  on  $Y_t$  between  $Y_{t-1} = Y_{a+1}$  and  $Y_{t-1} = Y_a$ .
- The cell probabilities giving the impact of X on  $\Pr(Y_t = b | Y_{t-1} = a)$  when a < C-1 can be recovered as the sums of the  $\gamma$  coefficients, in the order

To summarize, for any given independent variable X:

- ▶ The  $\gamma_0$  coefficient on the un-interacted X term gives the impact of  $X_{t-1}$  on  $Y_t$  when  $Y_{t-1} = Y_{C-1}$ , the "last" category of Y.
- ▶ The  $\gamma_a$  coefficients on the interaction terms  $Xy_a^*$  give the differential impact of  $X_{t-1}$  on  $Y_t$  between  $Y_{t-1} = Y_{a+1}$  and  $Y_{t-1} = Y_a$ .
- ► The cell probabilities giving the impact of X on  $\Pr(Y_t = b | Y_{t-1} = a)$  when a < C 1 can be recovered as the sums of the  $\gamma$  coefficients, in the order  $\gamma_0 + \gamma_{C-1} + \gamma_{C-2} + \ldots + \gamma_{a+1}$ .

$$Y_{t-1} = 0$$
 $Y_{0}^{*} \rightarrow \qquad \leftarrow \qquad X \cdot Y_{0}^{*}$ 
 $Y_{t-1} = 1$ 
 $Y_{1}^{*} \rightarrow \qquad \leftarrow \qquad X \cdot Y_{1}^{*}$ 
 $Y_{t-1} = 2$ 

Insignificant values of coefficients on interactions of X with  $Y_a^st$  mean that X has a similar impact on Y for categories a and a+1, so we can collapse those categories in the analysis

$$Y_{0}^{*} \rightarrow Y_{t-1} = 0$$

$$Y_{0}^{*} \rightarrow Y_{t-1} = 1$$

$$Y_{1}^{*} \rightarrow Y_{t-1} = 2$$

$$Y_{t-1} = 2$$

Insignificant values of coefficients on interactions of X with  $Y_a^*$  mean that X has a similar impact on Y for categories a and a+1, so we can collapse those categories in the analysis.



$$Y_{t-1} = 0$$

$$Y_0^* \rightarrow \qquad \leftarrow \qquad X \cdot Y_0^*$$

$$Y_{t-1} = 1$$

$$Y_1^* \rightarrow \qquad \leftarrow \qquad X \cdot Y_1^*$$

$$Y_{t-1} = 2$$

Insignificant values of coefficients on interactions of X with  $Y_a^*$  mean that X has a similar impact on Y for categories a and a+1, so we can collapse those categories in the analysis.



$$Y_{0}^{*} \rightarrow Y_{t-1} = 0$$

$$Y_{0}^{*} \rightarrow Y_{t-1} = 1$$

$$Y_{1}^{*} \rightarrow X \cdot Y_{0}^{*}$$

$$Y_{t-1} = 1$$

$$Y_{t-1} = 2$$

Insignificant values of coefficients on interactions of X with  $Y_a^*$  mean that X has a similar impact on Y for categories a and a+1, so we can collapse those categories in the analysis.



$$Y_{t-1} = 0 Y_0^* \to & \leftarrow X \cdot Y_0^* & Y_{t-1} = 1 Y_1^* \to & \leftarrow X \cdot Y_1^* & Y_{t-1} = 2$$

Insignificant values of coefficients on interactions of X with  $Y_a^*$  mean that X has a similar impact on Y for categories a and a+1, so we can collapse those categories in the analysis.



#### Key points in higher-dimension Markov models:

- Work with cumulative probabilities.
- ▶ Combine cases for transitions to state b using interactions with the  $y^*$  terms.
- Start with the saturated model with all interactive terms and test down.

Key points in higher-dimension Markov models:

- Work with cumulative probabilities.
- ▶ Combine cases for transitions to state b using interactions with the  $y^*$  terms.
- ▶ Start with the saturated model with all interactive terms and test down.

Key points in higher-dimension Markov models:

- Work with cumulative probabilities.
- ▶ Combine cases for transitions to state b using interactions with the  $y^*$  terms.
- ► Start with the saturated model with all interactive terms and test down.

Key points in higher-dimension Markov models:

- Work with cumulative probabilities.
- ▶ Combine cases for transitions to state b using interactions with the  $y^*$  terms.
- ► Start with the saturated model with all interactive terms and test down.

- ▶ Modernization theory (Lipset 1959) says that as countries get richer, they get democratic.
- ► This was always thought of as a causal relationship, although there has always been a dispute about the mechanics.
- Przeworski, et. al. ("PACL" 2000) challenge this, saying that the process could be:
  - Once there, higher  $\mathsf{GDP}$  per capita helps keep them there.
- So a GDP-democracy relationship could develop, even though modernization doesn't cause democracy.

- ▶ Modernization theory (Lipset 1959) says that as countries get richer, they get democratic.
- ► This was always thought of as a causal relationship, although there has always been a dispute about the mechanics.
- ▶ Przeworski, et. al. ("PACL" 2000) challenge this, saying that the process could be:
  - 1. Countries become democratic randomly
  - Once there, higher GDP per capita helps keep them there.
- So a GDP-democracy relationship could develop, even though modernization doesn't cause democracy.

- ▶ Modernization theory (Lipset 1959) says that as countries get richer, they get democratic.
- ➤ This was always thought of as a causal relationship, although there has always been a dispute about the mechanics.
- ► Przeworski, et. al. ("PACL" 2000) challenge this, saying that the process could be:
  - 1. Countries become democratic randomly.
  - 2. Once there, higher GDP per capita helps keep them there.
- ► So a GDP-democracy relationship could develop, even though modernization doesn't *cause* democracy.



- ▶ Modernization theory (Lipset 1959) says that as countries get richer, they get democratic.
- ➤ This was always thought of as a causal relationship, although there has always been a dispute about the mechanics.
- ► Przeworski, et. al. ("PACL" 2000) challenge this, saying that the process could be:
  - 1. Countries become democratic randomly.
  - 2. Once there, higher GDP per capita helps keep them there.
- So a GDP-democracy relationship could develop, even though modernization doesn't cause democracy.



- ▶ Modernization theory (Lipset 1959) says that as countries get richer, they get democratic.
- ➤ This was always thought of as a causal relationship, although there has always been a dispute about the mechanics.
- ▶ Przeworski, et. al. ("PACL" 2000) challenge this, saying that the process could be:
  - 1. Countries become democratic randomly.
  - 2. Once there, higher GDP per capita helps keep them there.
- So a GDP-democracy relationship could develop, even though modernization doesn't cause democracy.



- ▶ Modernization theory (Lipset 1959) says that as countries get richer, they get democratic.
- ➤ This was always thought of as a causal relationship, although there has always been a dispute about the mechanics.
- ▶ Przeworski, et. al. ("PACL" 2000) challenge this, saying that the process could be:
  - 1. Countries become democratic randomly.
  - 2. Once there, higher GDP per capita helps keep them there.
- ➤ So a GDP-democracy relationship could develop, even though modernization doesn't *cause* democracy.



### Results from PACL Table 2.12

| Indep.<br>Var. | $D \to A$ | A 	o D (Original) | A 	o D (Corrected) |
|----------------|-----------|-------------------|--------------------|
| Constant       | -1.144**  | -2.524**          | -2.524**           |
|                | (0.000)   | (0.000)           | (0.000)            |
| GDP            | -0.201    | 0.329             | 0.329**            |
|                | (0.162)   | (0.484)           | (0.004)            |
| $GDP^2$        | -0.003    | -0.029            | -0.029             |
|                | (0.874)   | (0.191)           | (0.069)            |
| GDP            | -0.042**  | -0.021**          | -0.021*            |
| Growth         | (0.003)   | (0.000)           | (0.015)            |

- ▶ PACL also run a regression adding a number of covariates, but without GDP<sup>2</sup>.
- ► Actual results here are more favorable to their hypothesis:
  - GDP helps keep democracies from backsliding, but has no effect on autocracy.
    - These results are somewhat fragile to specification.
- Leaves open the central question of modernization and democracy.

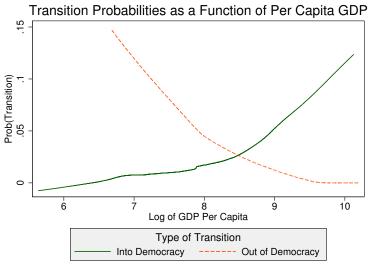
- ▶ PACL also run a regression adding a number of covariates, but without GDP<sup>2</sup>.
- ▶ Actual results here are more favorable to their hypothesis:
  - ▶ GDP helps keep democracies from backsliding, but has no effect on autocracy.
  - ▶ These results are somewhat fragile to specification.
- Leaves open the central question of modernization and democracy.

- ▶ PACL also run a regression adding a number of covariates, but without GDP<sup>2</sup>.
- ▶ Actual results here are more favorable to their hypothesis:
  - GDP helps keep democracies from backsliding, but has no effect on autocracy.
  - ▶ These results are somewhat fragile to specification.
- Leaves open the central question of modernization and democracy.

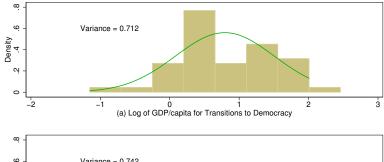
- ▶ PACL also run a regression adding a number of covariates, but without GDP<sup>2</sup>.
- ▶ Actual results here are more favorable to their hypothesis:
  - GDP helps keep democracies from backsliding, but has no effect on autocracy.
  - ▶ These results are somewhat fragile to specification.
- Leaves open the central question of modernization and democracy.

- ▶ PACL also run a regression adding a number of covariates, but without GDP<sup>2</sup>.
- ▶ Actual results here are more favorable to their hypothesis:
  - GDP helps keep democracies from backsliding, but has no effect on autocracy.
  - ▶ These results are somewhat fragile to specification.
- Leaves open the central question of modernization and democracy.

# Impact of GDP on Transition Probabilities

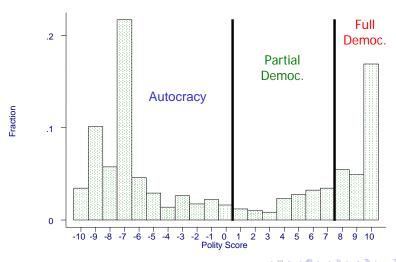


### Distribution of GDP for Transition Years

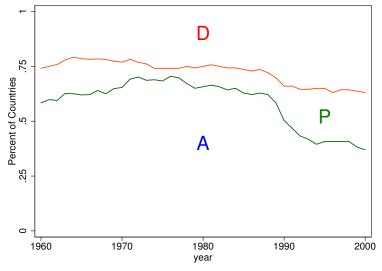




# Definition of Partial Democracy



### World Democratization Trends, 1960-2000



# Transition Marginals

|                   | Current Year |                   |           |
|-------------------|--------------|-------------------|-----------|
| Previous Year     | Autocracy    | Partial Democracy | Democracy |
| Autocracy         | 97.3%        | 2.1%              | 0.7%      |
|                   | (3,121)      | (66)              | (22)      |
| Partial Democracy | 6.4%         | 90.4%             | 3.3%      |
|                   | (49)         | (695)             | (25)      |
| Democracy         | 1.1%         | 0.8%              | 98.2%     |
|                   | (16)         | (12)              | (1,496)   |
| Total             | 3,186        | 773               | 1,543     |

Note: Numbers in parentheses are cell counts.



# **Summary Statistics**

| Variable                  | Mean  | Std. Dev. | Min.  | Max.  | N    |
|---------------------------|-------|-----------|-------|-------|------|
| Polity Score              | -0.45 | 7.58      | -10   | 10    | 5671 |
| Regime Category           | 0.70  | 0.88      | 0     | 2     | 5671 |
| Log of Per Capita GDP     | 8.14  | 1.04      | 5.64  | 10.21 | 4417 |
| Percent Change in GDP     | 0.02  | 0.06      | -0.52 | 1.01  | 4475 |
| Percent Urban Pop.        | 44.94 | 24.29     | 2.3   | 100   | 5245 |
| Log of Population Density | 3.61  | 1.46      | -0.49 | 8.77  | 5600 |
| Log of Trade Openness     | 3.98  | 0.62      | 0.43  | 6.16  | 4902 |
| Previous Transitions      | 3.96  | 6.41      | 0     | 31    | 5671 |
| Resource Curse            | 0.23  | 0.42      | 0     | 1     | 5671 |

### Regression Results

### Adding Partial Autocracies

|              | Polity Range |
|--------------|--------------|
| Autocracy    | (-10,-7)     |
| Partial Aut. | (-6,0)       |
| Partial Dem. | (1,7)        |
| Democracy    | (8,10)       |

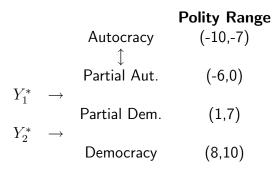
Check to see if we should split the autocracies as well.

### Adding Partial Autocracies

|         |                   |              | Polity Range |
|---------|-------------------|--------------|--------------|
|         |                   | Autocracy    | (-10,-7)     |
| $Y_0^*$ | $\longrightarrow$ |              | , ,          |
|         |                   | Partial Aut. | (-6,0)       |
| $Y_1^*$ | $\longrightarrow$ |              |              |
|         |                   | Partial Dem. | (1,7)        |
| $Y_2^*$ | $\longrightarrow$ |              |              |
|         |                   | Democracy    | (8,10)       |

Use the  $Y^*$  variables to test for collapsing adjacent categories.

## Adding Partial Autocracies



Only  $Y_0^*$  is insignificant, lending support to our three-way classification vs. four-way classification with partial autocracies.



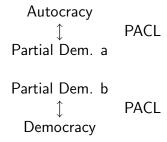
Autocracy

Partial Dem. a

Partial Dem. b

Democracy

Split our partial democracies into PACL autocracies (a) and PACL democracies (b).



PACL collapse the partial democracies into the full autocracies and full democracies.

Autocracy

Partial Dem. a

O'Epstein

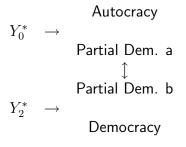
Partial Dem. b

Democracy

We collapse the partial democracies into a single category.

$$Y_0^* \quad \rightarrow \\ \qquad \qquad \text{Partial Dem. a} \\ Y_1^* \quad \rightarrow \\ \qquad \qquad \qquad \text{Partial Dem. b} \\ Y_2^* \quad \rightarrow \\ \qquad \qquad \qquad \qquad \text{Democracy} \\$$

Again use the  $Y^*$  variables to discriminate.



Only  $Y_1^*$  is insignificant, lending support to our three-way classification vs. PACL's dichotomous classification.