
 - 1 -

MotionInput: Gestural Text Entry in the Air

Shuo Qiu

M.S. in CS „13

sq2144

@columbia.edu

Kyle Rego

SEAS „13

kar2150

@columbia.edu

Lei Zhang

M.S. in CS „13

lz2343

@columbia.edu

Feifei Zhong

M.S. in CS „13

fz2185

@columbia.edu

Michael Zhong

SEAS „13

mqz2001

@columbia.edu

ABSTRACT

Gestural keyboards have become a popular alternative to

character-by-character entry on touch screen devices today.

The obvious limitation to text entry via a touch screen

though is that it is fixed to the device. For this project, we

aimed to examine methodologies to input text with hand

gestures in the air. This paper outlines a means to extend

the implementation of gestural text entry on a touch screen

and map such an input into gestural inputs in the air. In our

implementation, we provide a simple means for the user to,

in one continuous motion, enter text by selecting a cluster

of letters. Given the selected cluster of letters, the user can

then select a list of possible words. Our approach has

several drawbacks, mainly that it required the use of a

reference visual interface and the text-entry is tediously

slow. However, we found that our system is easy to learn

and it does successfully input text via hand gestures through

the air.

Keywords

Text Entry, Gestures

INTRODUCTION

Over the last decade there has been a surge of commercially

available gestural keyboards from products such as Swype,

ShapeWriter, SwiftKey, TouchPal, and T9 Trace [1]. These

gestural keyboards in experimental settings typically far

outperform manual character-entry methods in speed (as

measured by words per minute) and are on par in terms of

error rate. For a more complicated version of gestural

keyboards, that is with bimanual gesture keyboards on a

mobile device, the experiment reported superior text-entry

speed, and it also noted that users were able to easily adapt

to a gestural keyboard approach. Gestural keyboards have

become steadily more popular in touch screens and have

been successful commercially.

With all the advantages a gestural keyboard contains, the

gestural keyboard implementation also has limitations that

form the basis for our research. One issue is simply that the

gestural keyboard is fixed to a touchscreen, whether it be a

smartphone or a touchpad. A second issue is that all

gestural keyboards presently rely on a reference frame,

usually indicated by having an image of a keyboard on the

touchscreen. This requires active attention using both touch

and sight and can be susceptible to the fat finger problem,

an issue that arises when the user‟s finger occludes the user

from seeing where the finger is actually touching on the

screen [2]. This can be detrimental because of the gestural

keyboard‟s reliance on a reference image and visual input.

Figure 1. Swype, a commercial gestural keyboard, displayed in

action. The word pizza is being entered using a single gesture.

For our project, we strove to alleviate these problems found

with a touchscreen-based gestural keyboard. Our project,

MotionInput, is a gestural text entry system that operates by

making hand gestures, primarily by tracing a finger.

Specifically we display an octagon where each edge

contains a group of letters and a word is spelled out by

moving one‟s finger towards each of the respective letter

groups, as illustrated below.

Figure 2. The word “mobile” is being spelled out here by tracing

one’s finger towards the appropriate letter clusters.

 - 2 -

Once the letter group is traced out, using the T9 predictive

word algorithm [3,4], if there are three or more possible

words, the algorithm will pick the three most popular words,

which the user can then pick from by raising one, two, or

three fingers.

We were unable to implement a reliable system for

MotionInput that excluded the use of visual input—we

ended up using a dynamically updating visual image for

referencing. However, MotionInput, in our user study, was

found to be very easy to learn and by not being confined to

a touchscreen, does not encounter the fat finger occlusion

problem.

RELATED WORK

There has been considerable research put into text-entry the

past two decades. However, to our knowledge, there is no

existing per-word gesture text-entry system implemented

through the air. In addition, according to developers

working for Leap Motion, there presently have been no

text-entry systems that have used the Leap device, a

controller yet to be shipped that can detect hand and finger

movements.

Gestural keyboards on a touchscreen are related to the work

we propose. The fastest gestural keyboards on a

touchscreen enter text far more quickly than MotionInput.

These systems though are not implemented in the air, are

more confined in terms of what is an acceptable movement,

and have a different character layout on the keyboard [1,5].

Hex, a gestural text-entry system implemented by

Williamson and Murray-Smith (2005) has a similar

character layout to MotionInput and a similar text-entry

method [6]. However, Hex, pictured below, too is confined

to touchscreens.

Figure 3. The character layout of the text-entry system Hex.

One of the earliest text-entry systems not confined to a

touchscreen was Roeber, Bacus, and Tomasi‟s research in

2003. For their work, they produced a keyboard that could

be projected onto a flat surface and then typed into

manually [7]. Such a system was novel at the time, but is

different from our work in that it enters text on a per-

character basis rather than a per-word basis and it still

requires a flat surface.

More recently in 2008, Castellucci and MacKenzie

produced a text entry system called Unigest. Unigest does

input characters in a three-dimensional space by using a

Nintendo Wii controller to produce characters. Each

character in the alphabet is mapped to a certain set of

gestures [8]. Unigest differs from MotionInput in that,

although it does enter text in three dimensions and does

succeed in achieving our end goal of entering text without

any visual references, it enters words on a per-character

basis and does not enter in a word using a single elongated

gesture. Unigest provides more accurate notation to mark

the beginning and end of a word by use of pressing the Wii

controller‟s “A” button. Unlike our project, this feature

requires the input device to be in the user‟s hand while

entering text.

There have been many gesture recognizers that can detect

hand movement in the air. One of many examples is the $1

Recognizer that can detect a variety of gestures on a limited

scale with up to 99 percent accuracy [9]. These gesture

recognizers have a fixed number of patterns though and to

our knowledge have not transferred over into the realm of

text-entry.

IMPLEMENTATION

The inner workings of MotionInput can be divided up into

three parts: detecting the gesture of the hand position and

finger movements as well as mapping the finger position to

the corresponding letter cluster, drawing the finger

movements onto the visual reference, and then selecting the

possible words associated with the given set of letter

clusters.

Gesture Detection
For gesture detection, we used a Leap Motion controller,

which was built specifically for hand and finger detection

(rather than full-body detection, like the Kinect). Presently

the Leap Motion is not commercially available and we

acquired a Leap Motion controller by applying through its

developer‟s program. The latest software version we used

was 0.7.3. To interact with the Leap Motion device, we

used its Python API available through its Software

Development Kit. Using the Leap Motion‟s built-in API

calls, we were able to acquire data on the finger positions as

well as the number of fingers at any given time.

For our implementation, we relied exclusively on finger

gestures for MotionInput. Having one finger out produced

the pointer which selected the first candidate character

cluster. If the user wished to remove a letter, the user would

extend out five fingers. Once the desired word was spelt out,

extending four fingers would signal the end of the word.

Then given the most likely words, the user would then tap

one, two, or three fingers to select the desired word.

Drawing and Animation
For the visual output, we used standard tkinter GUI toolkit

taken from Python‟s libraries. The canvas is about 400x400

pixels and in the middle is an octagon with each line of the

octagon representing a different letter cluster that could be

chosen. The visual interface‟s boundaries are indicated by

two circle around the octagon. When a user moves the

finger through a line of the octagon into the button area,

MotionInput would know which button is chose. Each time

 - 3 -

MotionInput receives a new input, it then uses the T9

algorithm (outlined below) to get the candidate list of words

and display them on the top of the window. Each time

MotionInput would display at most three candidate words

and users can use gestures to see the rest of the words.

We mapped the Leap Motion‟s finger coordinates to the

canvas, using relative positioning and computing the angle

of the change in direction in order to identify the position of

the pointer at any point, which is then corresponded to the

right letter cluster.

Below is an image of the final visual output produced after

a complete run-through of one word of the MotionInput.

The word “am” is being spelt out in the below image.

Figure 4. The MotionInput visual interface.

Text Input Algorithm
MotionInput uses a simplified version of the proprietary T9

algorithm, which was developed by Tegic Communications

(now a part of Nuance Communications), and can predict

the most probable words given a number-to-letter-cluster

mapping. The number-to-letter-cluster mapping used by the

T9 algorithm is the exact same as the number-to-letter-

cluster used on a standard keypad of a telephone. We

adopted the same mapping for our text input algorithm.

Using the simplified T9 algorithm provided in open source

by GitHub user npezolano, we read a dictionary file—

which can be manually altered—and stored every word into

the search tree. When MotionInput gets the new input, it

would search the words in the tree using regular expression

and then provide the word list based on frequency. Right

now our algorithm runs at near-instantaneous speeds for

words of seven or fewer characters, but slows down

considerably for words longer than that. Given that our end

goal was focused more on examining the usability and

intuitiveness of entering text in the air, and less so with

performance and glitches, while this bothered us, we were

satisfied with the simplified T9 algorithm‟s word-finding

prowess.

USER STUDY

For our user study, we had two main goals in mind. The

first was to test the usability and intuitiveness of entering

text in the air through hand and finger gestures. The second

was to evaluate the performance of our work. Our end goal

was to survey some of the implications of entering text

through a per-word, single-gesture text system.

Participants

We recruited 10 participants (4 females) passing by the

second floor of Lerner Hall at Columbia University, at

random, between the ages of 19 to 25. Of the 10, 9 used

their right hand to enter in text. Each participant used his or

her dominant hand to enter in text.

Apparatus

Each user interacted with the Leap Motion controller, with

a brief demonstration on how to use the controller. The

visual output was displayed on a 13” MacBook Pro.

Procedures

We tested each user with two different interfaces—our

primary, aforementioned interface, and a different interface

where the user indicates with one, two, three, or four

fingers the appropriate character of the given letter cluster.

For each user, we alternated which interface the user used

first. Users were given two minutes to practice with both

interfaces beforehand.

For each interface we provided a script of words for the

user to enter in through MotionInput or the second system

mentioned in the previous paragraph, allowing the user to

type in as many words as possible within a three-minute

window. The script was read out loud; immediately after a

user finished entering in a word, we provided them the next

word.

Following the end of the test, users were asked to fill out a

questionnaire concerning the usability and issues with

entering text through MotionInput.

Results

Tests were conducted for both interfaces. We investigated

how quickly and how accurately a user could input text.

With regards to accuracy, on average, using MotionInput,

the user erred 16 percent of the time. The second interface

was considerably more buggy, produced considerably more

errors, and users reported was less enjoyable to use.

With respect to speed, using MotionInput, the average user

entered in text at 8.4 words per minute, with the best user

entering text at 11 words a minute. The second system was

considerably slower. On average, the user was able to enter

in 4.1 words a minute, with the top user entering in 7 wpm.

 - 4 -

Performance wise, the system performed poorly in terms of

speed and accuracy relative to touchscreen gestural text-

entry systems, and in our questionnaire, users

overwhelmingly said the most important improvement

needed for MotionInput was to make text-entry faster.

Users reported finding our system easy and comfortable to

use. When asked about the comfort of the system and the

ease of learning the system, on a 1-5 scale, users reported

scores of 4.2 and 4.8 respectively.

DISCUSSION

Our study results showed that our system was learnable and

comfortable to use. Performance wise, relative to other

commercial text-entry systems like Swype, ShapeWriter, or

TouchPal, as well as research text-entry systems such as

Hex, MotionInput was found to be considerably slower. In

some instances, MotionInput was slower by triple the word

speed relative to the fastest text-entry systems. For the error

rate, while closer to other text-entry systems than its speed,

MotionInput still performed worse.

Our work can be viewed as a recognition that users can

readily pick up this implementation of in-the-air gestural

text entry, but as it is presently defined and implemented, is

not a practical product.

FUTURE WORK

There are many ways we can develop on our initial

prototype of entering text through a three-dimensional field.

Purely implementation-based, there are a few nagging bugs

that we need to correct in our system—for example,

presently with words more than seven characters long, it

takes too long for the T9 algorithm to produce an output.

Conceptually, one regret with this project was that we were

unable to provide a reliable implementation that did not rely

on a visual output in order to guide hand gestures. One way

to make our system more mobile would be eliminate this

dependency on a visual reference.

Furthermore, while users were able to adapt to our system

easily, the character layout is not as intuitive as, for

example, a keyboard layout. The words per minute

measurement is not particularly low—which is acceptable

for our purposes of seeing whether users could quickly

grasp using an in-the-air text entry system, but makes the

system almost obsolete for practical purposes. Including

some machine learning techniques and incorporating the

use of shape-detection and pattern-recognition techniques

for gestures, rather than relying on a reference point, would

certainly be worth further investigation.

Our system is also a fairly crude implementation—that is, it

is restricted just to the English alphabet and does not

support the use of any symbols. We could investigate

autocomplete features, autocorrect functionality, including

punctuation, and/or correcting errors in words. In short,

there are many paths we can take that build off of our initial

prototype.

CONCLUSION

This paper outlines what we believe to be the first per-word

gesture-based text entry system produced. We conducted a

user study to test MotionInput‟s performance. We found

text entry with MotionInput to be considerably slower than

commercial text-entry systems such as Swype or SwiftKey.

Our interface though was very easy to grasp and provided

more flexibility for movement—and again, was not

confined to a surface—than a touchscreen interface.

REFERENCES

1. Bi, X., Chelba, C., Ouyang, T., Partridge, K., & Zhai, S.

(2012). Bimanual gesture keyboard. In Proceedings of

the 25th annual ACM symposium on User interface

software and technology (pp. 137-146). ACM.

2. Vogel, D., & Baudisch, P. (2007). Shift: a technique for

operating pen-based interfaces using touch.

In Proceedings of the SIGCHI conference on Human

factors in computing systems (pp. 657-666). ACM.

3. Definition of T9: What is T9 Predictive Text?

http://cellphones.about.com/od/phoneglossary/g/t9predi

ctivetext.htm

4. Python T9 Implementation

https://github.com/npezolano/Python-T9-

implementation

5. Kristensson, P. O., & Zhai, S. (2004). SHARK 2: a large

vocabulary shorthand writing system for pen-based

computers. In Proceedings of the 17th annual ACM

symposium on User interface software and

technology (pp. 43-52). ACM.

6. Williamson, J., & Murray-Smith, R. (2005). Hex:

Dynamics and probabilistic text entry. In Switching and

Learning in Feedback Systems (pp. 333-342). Springer

Berlin Heidelberg.

7. Roeber, H., Bacus, J., & Tomasi, C. (2003). Typing in

thin air: the canesta projection keyboard-a new method

of interaction with electronic devices. In CHI'03

extended abstracts on Human factors in computing

systems(pp. 712-713). ACM.

8. Castellucci, S. J., & MacKenzie, I. S. (2008). Unigest:

text entry using three degrees of motion. In CHI'08

Extended Abstracts on Human Factors in Computing

Systems (pp. 3549-3554). ACM.

9. Wobbrock, J. O., Wilson, A. D., & Li, Y. (2007,

October). Gestures without libraries, toolkits or training:

a $1 recognizer for user interface prototypes. In

Proceedings of the 20th annual ACM symposium on

User interface software and technology (pp. 159-168).

ACM.

