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EC.1. Extensions

In this section we consider a number of extensions of the model and policy.

EC.1.1. AdX with Multiple Bidders

Here we generalize our results to the case where multiple buyers participate in the Ad Exchange. We

model AdX as an auction with K risk neutral buyers with individual valuations drawn independently

from the same distribution with c.d.f F (·), density f(·), and support [p0, p∞] (to simplify the notation

we drop the dependence on the user attributes). Moreover, we assume that the distribution of the values

have increasing failure rates, are absolutely continuous and strictly monotonic.

Myerson (1981) argued that under our assumptions the optimal mechanism is a Vickrey or second-price

sealed-bid auction. Moreover, it is known that in such auctions bidding the true valuation is a dominant

strategy for the buyers, and that the optimal reservation price p∗(c) is independent of the number of

buyers (Laffont and Maskin 1980).

Let B1:K and B2:K be highest and the second highest bid, respectively. Given a reserve price p, the

item is sold if B1:K ≥ p, i.e., there is some bid higher than the reserve price. The winning buyer pays the

second highest bid, or alternatively max{B2:K , p}, since the seller should receive at least the reserve price

p. Therefore, the publisher’s maximization problem is

R(c) = max
p≥0

E [1{B1:K ≥ p}max{B2:K , p}+1{B1:K < p}c] .

The setup of §2.2 can be consider as a particular case of a second-price auction in which we have only

one bidder and B2:K = 0.

As done previously, we cast our problem in terms of survival or winning probabilities. Letting s be the

probability than the impression is sold, we have that s= P{B1:K ≥ p}= 1−FK(p) since valuations are i.i.d.

Conversely, the reserve price as a function of the survival probability is given by p(s) = F̄−1(1−(1−s)1/K),

which is well-defined due to the strict monotonicity of the c.d.f. In terms of survival probabilities, the

problem is now

R(c) = max
0≤s≤1

r(s) + (1− s)c,

where we defined the revenue function as r(s) = r(p(s)), and r(p) =E [1{B1:K ≥ p}max{B2:K , p}].
The next proposition shows that the revenue function is regular, and as a consequence all previous

results hold for the case with multiple bidders.

Proposition EC.1. Under the previous assumptions the revenue function r(s) is regular. Moreover,

the optimal reserve price p∗(c) solves

F̄ (p)

f(p)
= p− c,

when c∈ [p0−1/f(p0), p∞]. When the opportunity cost is higher than the null price (c > p∞), the publisher

bypasses the exchange (p∗(c) = p∞). Finally, when the opportunity cost is low enough (c < p0− 1/f(p0)),

the impression is kept by the highest bidder (p∗(c) = p0).



e-companion to Balseiro et al.: Yield Optimization with Ad Exchange ec3

Proof of Proposition EC.1. The joint distribution of B1:K and B2:K has a density function (Laffont

and Maskin 1980)

f(b1, b2) =

{
K(K − 1)F (b2)K−2f(b1)f(b2) if b1 ≥ b2

0 otherwise
.

Then, we have that

r(p) =E [1{B2:K ≥ p}B2:K + p1{B1:K ≥ p,B2:K < p}]

=

∫ ∞
p

∫ b1

p

b2f(b1, b2) db2 db1 + p

∫ ∞
p

∫ p

0

f(b1, b2) db2 db1

=K(K − 1)

∫ ∞
p

b2F (b2)K−2f(b2)(1−F (b2)) db2 +KpF (p)K−1(1−F (p))

Continuity of r(s) follows because the p.d.f. is continuous, and p(s) is continuous (if F not strictly

monotone, the inverse may have jumps). Additionally, we may bound the revenue by

r(p)≤E [1{B1:K ≥ p}B1:K ]≤KE [1{B ≥ p}B]≤KEB <∞,

the first inequality follows because B1:K is the maximum, the second because any order statistic is upper

bounded by the sum of the bids, and the fourth because bids are integrable. Moreover, integrability of

B implies that limp→∞ r(p) = 0.

Next, we turn to the concavity of r(s). Differentiating w.r.t to p we get dr
dp

=KF (p)K−1(F̄ (p)−pf(p)).

Then, using the fact that ds
dp

=−KF (p)1−k/f(p) we get from the composition rule that dr
ds

= dr
dp

∣∣∣
p(s)

dp
ds

=

p(s)− 1
h(p(s))

, where h(p) = f(p)/F̄ (p) is the hazard rate of the bidder’s valuation. Because p(s) is non-

increasing in s and the h(p) is non-decreasing in p, we conclude that dr
ds

is non-increasing. Thus, the

revenue function is concave.

Finally, notice that the that derivative of the objective w.r.t to s is

p(s)− 1

h(p(s))
− c, (EC.1)

which is non-increasing. When c > p∞ we have that (EC.1) is negative, so s∗(c) = 0 and p∗(c) = p∞.

Similarly, when c < p0− 1/h(p0) we that (EC.1) is positive, so s∗(c) = 1 and p∗(c) = p0. �

EC.1.2. Covering Constraints

Guaranteed contracts typically specify a lump-sum amount in return for a fixed number of impressions

and the publisher is not be monetarily rewarded for delivering impressions beyond these targets. In some

settings, however, the publisher may seek to exceed these contractual targets in view of attracting feature

business, at the expense of reducing the revenue from the exchange.

Our model is quite general and allows to easily accommodate covering constraints, that is, the case

where the number of impressions assigned to each contract should be greater or equal to the capacity.

In this case the capacity constraint of the DAP is relaxed to E
[∑N

n=1 in,a

]
≥ Nρa, for all a ∈ A. The
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analysis proceeds as before with the only difference that now the dual variables are non-negative, that

is, the publisher should solve its dual problem under the constraint that va ≥ 0. Additionally, when

implementing the stochastic policy the publisher should now allow contracts to exceed their capacity.

This amounts to determining the maximum contract-adjusted quality between all contracts a∈A (when

the total number of impressions left is greater than the number of impressions necessary to fulfill the

contracts), or equivalently changing Line 5 of Policy 2 to a∗n = arg maxa∈A∪{0} {Qn,a− va}. Regarding the

performance the bid-price control µB, Theorem 2 still holds in this setting.

EC.1.3. Target Quality Constraints

Some publishers might feel more comfortable specifying target quality constraint than picking a Lagrange

multiplier to weight the impact of quality in the objective. In other settings the advertisers themselves

might demand that certain level of quality is guaranteed. In the following, we consider the case where

the publisher strives to maximize the revenue from AdX, while complying with target quality constraints

and capacity constraints.

The publisher imposes that the average quality of the impressions assigned to advertiser a is larger or

equal than a threshold value `a. The DAP is similar, except that the objective only accounts for AdX’s

revenue, and for the inclusion of the constraints

E

[
1

N

N∑
n=1

in,aQn,a

]
≥ `a, ∀a∈A. (EC.2)

Let γa ≥ 0 be the Lagrange multiplier associated to (EC.2). Problem (3) can be interpreted as the

Lagrange relaxation of our new problem w.r.t. the target quality constraints, and the dual variables γa

as the shadow prices of the target quality constraints. The new constraints preserve the convexity of the

primal program, and strong duality still holds. Following the same steps, we obtain the new dual problem

N min
γ≥0,v

{
ER
(

max
a∈A0

{γaQa− va}
)

+
∑
a∈A

vaρa− γa`a

}
,

which still is a convex minimization problem. The publisher now jointly optimizes over v and γ to

determine the bid-prices of the stochastic policy.

Regarding the performance of bid-price control, one can reproduce the steps of Theorem 2’s proof

to show that the policy asymptotically attains the optimal revenue from AdX, while complying with

the delivery targets. Additionally, from the same asymptotic analysis one obtains that the expected

average quality for contract a is lower bounded by
(

1−K/
√
N
)
E [i∗aQa]. Hence, for advertisers with

binding constraint (EC.2), albeit not feasible, the expected average quality becomes arbitrary close to

the threshold value as the number of impressions in the horizon increases. For the remaining advertisers

whose target quality constraint is not binding, the expected average quality will surpass the threshold

for suitably large N .
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EC.2. Additional Proofs

Given a subset of the quality space D ⊆ Ω, we define the measure PR(D) as the probability that the

quality vector belongs to that subset and the impression is rejected by the Ad Exchange when the optimal

survival probability is used. More formally,

PR(D) =E
[(

1− s∗
(

max
a∈A0

{γQa− va};U
))

1{Q∈D}
]
.

Notice that the latter is not a probability measure since PR(Ω)≤ 1. Proposition EC.2 characterizes the

directional derivative of the objective function of the dual along some directions that, as we will show

later, are of particular interest. Results are given in terms of the measure PR.

Proposition EC.2. Given a subset α ∈A, the directional derivative of the objective function of the

dual w.r.t. directions 1α and −1α are respectively

∇1αψ̄(v) =−PR
{

max
a∈α
{γQa− va}> max

a∈A0\α
{γQa− va}

}
+
∑
a∈α

ρa,

∇−1αψ̄(v) = PR
{

max
a∈α
{γQa− va} ≥ max

a∈A0\α
{γQa− va}

}
−
∑
a∈α

ρa,

where ψ̄(v) =ψ(v)/N is the normalized dual objective.

Proof of Proposition EC.2. We consider first the direction 1α. Notice that the random function

R (maxa∈A0
{Qa− va};U) is convex, and thus directionally differentiable. We first show that ψ̄(v) is finite.

From Assumption 1 we have that the revenue function is bounded by r(s;u) ≤M , and thus R(c;u) ≤

M + max(c,0)≤M + |c|. Therefore, using the triangle inequality we obtain that

ψ̄(v)≤M +E|max
a∈A0

{γQa− va}|+
∑
a∈A

|va| ≤M +
∑
a∈A

γE|Qa|+ 2|va|<∞

We can now apply Theorem 7.46 in Shapiro et al. (2009) and obtain that ψ̄(v) is directionally differentiable

at v and that one can exchange expectation and directional derivative. Putting all together we get that

∇1αψ̄(v) =E
[
∇1αR

(
max
a∈A0

{γQa− va};U
)]

+
∑
a∈α

ρa

=E
[

dR

dc

(
max
a∈A0

{γQa− va};U
)
∇1α

{
max
a∈A0

{γQa− va}
}]

+
∑
a∈α

ρa,

where the second equation follows from the chain rule. We conclude by the fact that dR
dc

(c;u) =

1 − s∗(c;u) and ∇1α {maxa∈A0
{γQa− va}} = −1

{
maxa∈α{γQa− va}>maxa∈A0\α{γQa− va}

}
. A sim-

ilar result follows for the opposite direction −1α from the fact that ∇−1α {maxa∈A0
{γQa− va}} =

1
{

maxa∈α{γQa− va} ≥maxa∈A0\α{γQa− va}
}

. �
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EC.3. A Representative Publisher

In this section we describe in detail the structure of Publisher 3. This medium-size publisher has 17

guaranteed contacts, 13 types, and it is moderately constrained with
∑

a∈A ρa = 43%.

The next figure shows the type-advertiser graph of the publisher. This bipartite graph has one node for

each type T with a supply of π(T ) on the left side; one node for each advertisers a∈A with a demand ρa

on the right side; and one arc joining user type T with advertisers a if and only if a∈ T . In this publisher

most advertisers have distinct targeting criteria, and few compete for the same inventory: on average each

type can be assigned to 1.3 advertiser. The average number of advertisers per type is typically higher for

the other publishers, with the highest equal to 6.6 in Publisher 6.
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Figure EC.1 User type-advertiser graph for Publisher 3 (rotated 90 degrees clock-wise).

The next figure exhibits the estimated AdX’s survival probability and revenue function for Publisher

3, which has an optimal acceptance probability of 74%.
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Figure EC.2 Estimated survival probability and revenue function from AdX for Publisher 3.
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We conclude by showing the empirical distributions of log-quality for the 13 types in Publisher 3.

Each type has its own subfigure with a matrix plot of the placement qualities of the advertisers that

belong to the type. On the diagonals we show histograms of the empirical marginal distributions of

log-quality together with the fitted normals distributions. The marginal log-quality of each advertiser

approximately resembles a normal curve. On the off-diagonals, we show scatter plots of the correlation

between advertisers, and the ellipse-like level curve for the fitted distributions at the confidence level of

90%. The scatter plots show that the correlation between advertisers is strongly positive, which may be

a result of advertisers having similar targeting criteria.

(a) Type 1 (b) Type 2 (c) Type 3

(d) Type 4 (e) Type 5 (f) Type 6

Figure EC.3 Empirical distribution of log-quality for types 1 to 6.
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(a) Type 7 (b) Type 8 (c) Type 9

(d) Type 10 (e) Type 11 (f) Type 12

(g) Type 13

Figure EC.4 Empirical distribution of log-quality for types 7 to 13.
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EC.4. Numerical Results

Publisher 1
γ 0 0.001 0.01 0.05 0.1 0.25 0.5 1 2.5 5 10 100 Inf

DAP revenue (JD(γ)
A ) 622.1 622.1 621.8 619.8 618.2 612.9 604.4 592.5 569.1 546.3 526.2 499.1 494.1

quality (JD(γ)
C ) 673.0 673.1 720.9 804.0 825.7 857.5 881.4 898.3 913.1 919.7 922.6 923.9 923.9

optimality gap 0.016% 0.000% 0.000% 0.001% 0.001% 0.002% 0.003% 0.005% 0.006% 0.005% 0.007% 0.019% 0.023%
Policy revenue (JB(γ)

A ) 621.8 621.8 621.3 618.4 616.6 611.3 602.8 591.6 568.4 546.1 526.2 499.1 494.1
quality (JB(γ)

C ) 669.6 669.7 716.2 797.0 818.8 849.2 871.5 888.4 902.7 908.8 912.1 913.6 913.8

Publisher 2
γ 0 0.001 0.01 0.1 0.25 0.5 1 2.5 5 10 25 50 100 Inf

DAP revenue (JD(γ)
A ) 163.0 163.1 163.0 163.1 163.1 163.0 162.7 161.7 159.9 155.2 139.8 117.0 89.8 49.2

quality (JD(γ)
C ) 60.3 60.5 60.5 60.7 60.8 60.9 61.3 62.0 62.5 63.1 64.0 64.7 65.0 65.3

optimality gap 0.045% 0.012% 0.018% 0.000% 0.000% 0.000% 0.000% 0.008% 0.003% 0.010% 0.013% 0.017% 0.053% 0.019%
Policy revenue (JB(γ)

A ) 162.7 163.1 163.1 163.1 163.0 163.0 162.7 161.6 159.7 155.0 139.5 116.8 89.8 49.2
quality (JB(γ)

C ) 60.0 60.2 60.2 60.4 60.5 60.6 61.0 61.6 62.1 62.8 63.7 64.3 64.7 64.9

Publisher 3
γ 0 0.001 0.01 0.05 0.1 0.25 0.5 1 2.5 5 10 100 Inf

DAP revenue (JD(γ)
A ) 1826.9 1830.0 1830.0 1829.9 1823.8 1806.4 1790.8 1755.1 1662.9 1562.6 1448.8 1186.3 1066.0

quality (JD(γ)
C ) 551.7 620.4 620.4 623.5 649.3 779.6 826.3 880.2 934.8 964.3 981.9 994.0 994.5

optimality gap 0.225% 0.015% 0.015% 0.020% 0.282% 0.071% 0.063% 0.098% 0.218% 0.166% 0.060% 0.023% 0.030%
Policy revenue (JB(γ)

A ) 1826.8 1828.8 1828.8 1828.7 1824.3 1802.9 1788.6 1750.8 1660.4 1558.5 1445.2 1184.4 1066.0
quality (JB(γ)

C ) 541.5 606.9 606.9 610.3 636.2 764.9 810.1 863.8 916.3 945.1 961.5 973.9 974.6

Publisher 4
γ 0 0.001 0.01 0.05 0.1 0.25 0.5 1 2.5 5 10 100 Inf

DAP revenue (JD(γ)
A ) 1319.4 1319.3 1318.3 1317.7 1315.2 1302.7 1269.4 1216.8 1129.1 1072.6 1028.8 974.2 954.9

quality (JD(γ)
C ) 331.1 461.8 514.1 535.9 567.3 645.7 735.0 808.1 868.6 884.9 892.5 895.2 895.3

optimality gap 0.125% 0.057% 0.128% 0.125% 0.149% 0.103% 0.170% 0.203% 0.080% 0.116% 0.025% 0.033% 0.029%
Policy revenue (JB(γ)

A ) 1319.7 1319.6 1318.2 1317.3 1315.0 1302.1 1268.4 1215.6 1128.2 1070.8 1027.9 973.8 954.9
quality (JB(γ)

C ) 328.7 458.9 510.4 531.2 563.2 635.4 726.1 800.6 856.5 873.0 879.1 881.5 881.4

Publisher 5
γ 0 0.001 0.01 0.05 0.1 0.25 0.5 1 2.5 5 10 100 Inf

DAP revenue (JD(γ)
A ) 828.7 837.2 837.3 836.3 833.3 822.9 805.9 771.8 702.1 633.2 562.3 428.0 383.1

quality (JD(γ)
C ) 1526.5 1539.3 1550.2 1564.2 1611.0 1677.4 1723.0 1770.5 1815.2 1835.2 1845.6 1849.9 1853.5

optimality gap 0.428% 0.045% 0.035% 0.104% 0.081% 0.059% 0.087% 0.104% 0.115% 0.092% 0.075% 0.213% 0.028%
Policy revenue (JB(γ)

A ) 831.0 837.5 837.5 836.4 833.1 822.6 805.0 770.3 700.4 631.6 560.7 427.0 383.1
quality (JB(γ)

C ) 1527.1 1539.4 1551.7 1563.8 1609.6 1672.4 1718.4 1766.4 1810.9 1830.1 1840.2 1843.5 1847.7

Publisher 6
γ 0 0.001 0.01 0.05 0.1 0.25 0.5 1 2.5 5 10 100 Inf

DAP revenue (JD(γ)
A ) 2050.7 2052.8 2052.9 2052.3 2050.9 2032.3 1976.6 1907.5 1805.8 1727.2 1658.5 1539.7 1492.4

quality (JD(γ)
C ) 525.1 678.6 679.2 696.6 716.3 797.8 956.7 1056.4 1120.8 1142.8 1154.5 1161.4 1161.4

optimality gap 0.150% 0.039% 0.035% 0.044% 0.049% 0.171% 0.152% 0.196% 0.329% 0.454% 0.383% 0.344% 0.357%
Policy revenue (JB(γ)

A ) 2050.7 2052.8 2052.7 2052.4 2050.9 2032.3 1976.3 1907.2 1805.3 1726.8 1658.0 1539.1 1492.4
quality (JB(γ)

C ) 525.8 678.8 679.8 699.6 721.6 803.3 959.2 1054.2 1118.9 1140.3 1149.5 1153.7 1153.8

Publisher 7
γ 0 0.001 0.01 0.05 0.1 0.25 0.5 1 2.5 5 10 100 Inf

DAP revenue (JD(γ)
A ) 1376.2 1376.1 1376.6 1374.5 1373.7 1371.3 1366.8 1357.4 1330.3 1301.0 1269.9 1194.6 1155.5

quality (JD(γ)
C ) 122.5 126.5 147.0 192.4 207.2 219.1 232.9 247.2 263.0 272.6 277.3 281.6 281.8

optimality gap 0.199% 0.161% 0.116% 0.188% 0.171% 0.224% 0.223% 0.215% 0.524% 0.504% 0.563% 0.424% 0.419%
Policy revenue (JB(γ)

A ) 1376.5 1376.5 1376.2 1375.1 1374.2 1371.6 1367.0 1356.2 1328.9 1298.9 1268.0 1193.2 1155.5
quality (JB(γ)

C ) 123.5 127.4 148.1 194.8 209.0 221.6 234.1 248.0 262.9 270.0 275.0 276.9 276.6

Table EC.1 AdX’s revenue, contracts’ quality, and optimality for the DAP, together with the simulated AdX’s revenue

and contracts’ quality from the policy µB for 7 publishers, and different choices of γ.
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Publisher 1
γ 0.001 0.01 0.05 0.1 0.25 0.5 1 2.5 5 10 100

Bid-price Pol. yield (JB(γ)) 622.4 628.4 658.3 698.5 823.6 1038.5 1480.0 2825.3 5090.2 9647.0 91856.7
Greedy Pol. yield 622.6 627.1 645.2 670.6 740.4 860.0 1117.4 1888.4 3223.0 5934.9 54860.9

gap 0.00% -0.21% -1.99% -3.99% -10.10% -17.19% -24.50% -33.16% -36.68% -38.48% -40.28%
Static Price Pol. yield 622.4 628.5 655.3 689.2 796.2 994.0 1427.9 2784.7 5063.4 9633.8 91873.2

gap -0.00% 0.00% -0.46% -1.32% -3.33% -4.29% -3.52% -1.44% -0.53% -0.14% 0.00%

Publisher 2
γ 0.001 0.01 0.1 0.25 0.5 1 2.5 5 10 25 50 100

Bid-price Pol. yield (JB(γ)) 163.1 163.7 169.1 178.2 193.3 223.7 315.6 470.2 782.6 1731.6 3334.0 6563.6
Greedy Pol. yield 51.0 51.5 56.4 64.8 78.8 106.9 192.2 338.0 631.9 1495.2 2830.1 5519.0

gap -68.72% -68.53% -66.64% -63.63% -59.25% -52.22% -39.08% -28.12% -19.26% -13.65% -15.12% -15.91%
Static Price Pol. yield 51.0 51.6 57.5 67.2 83.4 115.9 213.2 375.5 700.1 1673.7 3296.5 6542.1

gap -68.71% -68.46% -66.02% -62.28% -56.84% -48.19% -32.43% -20.14% -10.54% -3.34% -1.13% -0.33%

Publisher 3
γ 0.001 0.01 0.05 0.1 0.25 0.5 1 2.5 5 10 100

Bid-price Pol. yield (JB(γ)) 1829.4 1834.9 1859.2 1887.9 1994.2 2193.7 2614.6 3951.1 6283.9 11060.4 98570.7
Greedy Pol. yield 1443.1 1446.6 1485.4 1536.7 1706.8 1896.2 2228.1 3186.2 4727.9 7820.8 64573.5

gap -21.12% -21.16% -20.11% -18.60% -14.41% -13.56% -14.78% -19.36% -24.76% -29.29% -34.49%
Static Price Pol. yield 1459.8 1468.0 1504.6 1550.4 1687.8 1916.8 2374.7 3747.4 6057.4 10857.0 98527.3

gap -20.21% -19.99% -19.07% -17.88% -15.36% -12.62% -9.18% -5.15% -3.60% -1.84% -0.04%

Publisher 4
γ 0.001 0.01 0.05 0.1 0.25 0.5 1 2.5 5 10 100

Bid-price Pol. yield (JB(γ)) 1320.1 1323.3 1343.9 1371.3 1461.0 1631.5 2016.2 3269.4 5435.9 9819.3 89121.3
Greedy Pol. yield 1295.9 1323.5 1337.6 1355.6 1410.5 1503.7 1699.7 2325.5 3424.8 5688.9 46954.2

gap -1.83% 0.00% -0.47% -1.14% -3.45% -7.83% -15.70% -28.87% -37.00% -42.06% -47.31%
Static Price Pol. yield 1262.8 1267.8 1290.3 1318.3 1402.1 1544.6 1914.5 3191.1 5383.2 9787.5 89095.3

gap -4.34% -4.19% -3.99% -3.86% -4.03% -5.32% -5.05% -2.39% -0.97% -0.32% -0.03%

Publisher 5
γ 0.001 0.01 0.05 0.1 0.25 0.5 1 2.5 5 10 100

Bid-price Pol. yield (JB(γ)) 839.1 853.0 914.6 994.1 1240.7 1664.2 2536.6 5227.6 9782.0 18963.0 184774.0
Greedy Pol. yield 400.5 412.0 469.5 543.7 759.1 1093.4 1719.5 3581.6 6679.0 12915.2 124740.4

gap -52.27% -51.70% -48.66% -45.30% -38.82% -34.30% -32.21% -31.49% -31.72% -31.89% -32.49%
Static Price Pol. yield 401.3 417.9 491.8 584.2 861.4 1323.3 2247.1 5018.7 9637.9 18876.5 185172.1

gap -52.18% -51.01% -46.23% -41.23% -30.57% -20.48% -11.41% -4.00% -1.47% -0.46% 0.00%

Publisher 6
γ 0.001 0.01 0.05 0.1 0.25 0.5 1 2.5 5 10 100

Bid-price Pol. yield (JB(γ)) 2053.4 2059.5 2087.3 2123.0 2233.1 2455.9 2961.4 4602.6 7428.2 13153.5 116911.0
Greedy Pol. yield 1965.1 1968.0 1983.2 2011.5 2133.6 2270.9 2497.0 3220.8 4475.2 7019.2 53457.0

gap -4.30% -4.44% -4.99% -5.25% -4.45% -7.53% -15.68% -30.02% -39.75% -46.64% -54.28%
Static Price Pol. yield 1997.9 2005.1 2037.2 2077.2 2197.2 2397.1 2877.8 4518.2 7352.5 13084.8 116896.0

gap -2.71% -2.64% -2.40% -2.16% -1.61% -2.39% -2.82% -1.83% -1.02% -0.52% -0.01%

Publisher 7
γ 0.001 0.01 0.05 0.1 0.25 0.5 1 2.5 5 10 100

Bid-price Pol. yield (JB(γ)) 1376.6 1377.7 1384.9 1395.1 1427.0 1484.0 1604.2 1986.1 2649.1 4018.3 28887.1
Greedy Pol. yield 1378.3 1378.8 1381.2 1384.7 1395.7 1414.4 1451.5 1559.3 1736.7 2084.0 8478.1

gap 0.00% 0.00% -0.26% -0.75% -2.19% -4.69% -9.52% -21.49% -34.44% -48.14% -70.65%
Static Price Pol. yield 1376.6 1377.7 1383.8 1393.8 1425.1 1479.3 1589.3 1956.9 2614.5 3977.5 28893.8

gap -0.00% 0.00% -0.08% -0.10% -0.13% -0.31% -0.93% -1.47% -1.31% -1.02% 0.00%

Table EC.2 Comparison of the yield of the optimal policy with the yield of the Greedy and Static Price policy for 7

publishers and different choices of γ.
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EC.5. Non-parametric Learning Policy

In this section we present a policy that learns in a non-parametric fashion the parameters of the modified

bid-price policy with tie-breaking. Similar to the work of Devanur and Hayes (2009), Feldman et al.

(2010), Vee et al. (2010), Agrawal et al. (2009) our policy determines a dual variable for each contract

and then assigns the impressions to the advertiser with maximum contract adjusted quality. The policy

presented here, however, extends their work in two directions. First, previous work assumes that inputs

are in general position so that ties can be effectively discarded. We have seen that ties contribute to a

sizable fraction of the yield, so these need to be carefully dealt with. Our new policy explicitly handles

ties by implementing the novel tie-breaking rule introduced in Section 4.3, and determines tie-breaking

probabilities by solving a feasible flow problem. Additionally, we present a new theoretical analysis on

the expected performance of the policy by borrowing tools from statistical learning theory and introduce

a bound that accounts for the number of potential ties in the problem. Second, our policy accounts for

the pricing dimension of the problem by dynamically determining a reserve price for the AdX auction

based on the opportunity cost of not assigning the impression to a contract.

A limitation of our policy is that it assumes that the revenue function and distribution of the highest bid

in the exchange are known in advance. The pricing dimension of the problem introduces some complexities

that are beyond the scope of this paper. The first issue is the observability of the rewards in the pricing

problem. The literature on prior-free allocation problems for online advertising assumes that rewards are

observed –before– the decision is made. However, a distinct feature of the dynamic pricing problem is that

rewards are observed –after– the decision is made since the publisher observes the result of the auction

after posting the reserve price, which is binding. As a result, a prior-free method would need to carefully

explore the price space in the AdX problem and the usual exploration vs. exploitation trade-off of the

learning literature for pricing applies here (see, e.g, Broder and Rusmevichientong (2012) and Besbes and

Zeevi (2009)). Note that this trade-off is absent in the allocation problem. The second issue is that a prior-

free approach for the AdX pricing problem needs to estimate the whole demand curve. In the standard

dynamic pricing problem the firm aims to estimate a single parameter: the revenue maximizing price.

In our problem, however, the optimal reserve price for AdX should take into account the opportunity

cost of assigning the impression to an advertiser (as given by maxa∈A0
{γqn,a− va}), which is potentially

different in each auction. As a result the publisher needs to estimate the whole pricing curve to price

efficiently in the presence of the guaranteed contracts, which calls for more involved methods.

EC.5.1. The Learning Policy

The policy has a learning phase followed by a implementation phase. In the first phase an i.i.d. sample

of M vectors of user attributes is used to learn the parameters of the policy. In the second phase the

obtained policy is implemented in an independent horizon of N impressions, and the impressions are

delivered to the contracts.
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Learning Phase. In the learning phase an i.i.d. sample of M vectors of user attributes {um}Mm=1 is

employed to learn the parameters of the modified bid-price policy with tie-breaking, which is given by a

pair (v̂, p̂) with v̂ ∈RA the vector of dual variables and p̂ : 2A0→ [0,1]A+1 the tie-breaking rule. The dual

variables are obtained by solving the Sample Average Approximation version of the dual

min
v

1

M

M∑
m=1

R
(

max
a∈A0

{γqm,a− va};un
)

+
∑
a∈A

ρava, (EC.3)

which is a non-differentiable convex minimization problem.

While one could potentially determine the tie-breaking probabilities for all possible ties, in prac-

tice most ties do not occur with positive probability and can be effectively discarded. Our policy

exploits prior knowledge about the ties that have positive probability with respect to the underly-

ing unknown probability measure, by determining the tie-breaking probabilities only for these. Let

Sa =
{
S ⊆A0 : a∈ S and P

{
S = arg maxa∈A0

{γQa− va}
}
> 0 for some v ∈RA

}
be the set of potential ties

involving contract a∈A0 that occur with positive probability for some vector of dual variables. Similarly,

let Sca = {S ⊆A0 : a ∈ S,S 6∈ Sa} be the subsets containing a for which the probability of a tie occurring

is zero. The tie-breaking rule is obtained by solving an assignment problem over sets in Sa

∑
S∈Sa

P̂(S-tie)pa(S)≤ ρa, ∀a∈A , (EC.4a)∑
S∈Sa

P̂(S-tie)pa(S)≥ ρa−
∑
S∈Sca

P̂(S-tie), ∀a∈A , (EC.4b)∑
a∈S

pa(S) = 1, ∀S ∈∪a′∈ASa′ , (EC.4c)

pa(S)≥ 0, ∀S ∈∪a′∈ASa′ , a∈ S ,

pa(S) = 0, ∀S 6∈ ∪a′∈ASa′ , a∈ S ,

where we define P̂(S-tie) = 1
M

∑M

m=1

(
1− s∗(maxa∈A0

{γqa,m− v̂a};um)
)
1
{
S = arg maxa∈A0

{γqa,m− v̂a}
})

as the empirical probability that the impression is rejected by AdX and the maximum is verified by

contracts in the set S. Because the tie-breaking policy is restricted to the sets with positive probability,

the fraction of impressions assigned to contract a could be different than ρa even over the sample {um}Mm=1.

Equations (EC.4a) and (EC.4b) guarantee that contract a is assigned a fraction of impressions “close”

to ρa. Equation (5b) guarantees that for each tie S the probabilities sum up to one.

Implementation Phase. In the implementation phase the policy prices in the exchange according to

the acceptance probability s(v̂,p̂)(u) = s∗(maxa∈A0
{γqa− v̂a};u), and, if rejected, assigns the impression to

contract a with probability I(v̂,p̂)
a (u) =

∑
S⊆A0:a∈S p̂a(S)1{S = arg maxa′∈A0

{γqa′ − v̂a′}}. The corrections

of Policy 2 are implemented to guaranteed that contracts are satisfies almost surely. Policy 1 describes

the algorithm in detail.



e-companion to Balseiro et al.: Yield Optimization with Ad Exchange ec13

Policy 1 Learning Policy µL.

1: Observe samples {um}Mm=1.

2: Solve problem (EC.3) to determine dual variables v̂.

3: Solve problem (EC.4) to determine tie-breaking rule p̂.

4: for n= 1, . . . ,N do

5: Observe state (n,X), and the vector of attributes un.

6: Determine the vector of placement qualities qn.

7: Let An = {a∈A : xn,a > 0} be the set of ads yet to be satisfied.

8: if
∑

a∈A xn,a <n then

9: Let Sn = arg maxa∈An∪{0} {γqn,a− v̂a}

10: Submit to AdX with price p∗(maxa∈An∪{0} {γqn,a− v̂a} ;un).

11: if impression rejected by AdX then assign to advertiser a∈ Sn with probability p̂a(Sn).

12: else

13: Let Sn = arg maxa∈An {γqn,a− v̂a}

14: Assign to advertiser a with probability p̂a(Sn).

15: end if

16: end for

EC.5.2. Analysis

In this section we analyze the expected performance of the learning policy described in Policy 1. The

main result extends the asymptotic analysis of §4.4 to take into account the learning of the algorithm.

We prove the main result under the following assumption on the primitives.

Assumption EC.1. The exchange’s bids lie in [0, B̄] with B̄ <∞; placement qualities lie in [Q,Q̄] with

∞<Q≤ 0< Q̄ <∞; and the minimum capacity-to-impression ratio ρ= mina∈A0
ρa is strictly positive,

that is, ρ> 0.

The previous assumption imposes that all the primitives are bounded both from below and above,

which is reasonable for most settings. Let ‖S‖1 =
∑

a∈A |Sa| be the total number of potential ties. Our

main result bounds the expected regret of the learning policy w.r.t. the optimal online policy that has

full knowledge of the probabilistic distributions of the primitives.

Theorem EC.1. Suppose that Assumptions 1 and EC.1 hold. Let JL the expected performance of the

learning policy with a training set of M > 2 samples on an independent horizon of length N . The expected

regret of the learning policy w.r.t. the optimal online policy is bounded by

J∗−JL

N
≤O

(
1√
N

+ ‖S‖1

√
A log(M)

M

)
,

whenever N ≥K2 and M >A.
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The first term of the bound of Theorem EC.1 controls for the error introduced by the stationary

nature of the policy during the implementation phase of the campaigns. This term depends exclusively

on the number of impressions of the horizon, and is of order
√

1/N as in Theorem 2. The second term

of the bound controls for the error introduced during the learning phase and its impact on the delivery

of the campaigns. This term depends on the number of samples M and advertisers A and is of order√
A log(M)/M .

The learning error term also depends linearly on the number of ties ‖S‖1, which is upper bounded

by A2A. The latter bound is conservative and in most applications one can obtain better bounds by

exploiting the known structure of the distribution of placement qualities. For example, when placement

qualities are absolutely continuous all ties are singletons, and thus ‖S‖1 = A. In the user type model

presented in §5 the number of ties is at most ‖S‖1 ≤ TA, where T is the number of types.

EC.5.3. Proof of Main Result

We prove the result in five steps. First, we show that the dual variables can be restricted to a compact

domain. Second, we prove that the problem (EC.4) admits a feasible tie-breaking rule when the optimal

dual variables of (EC.3) are used. Third, we quantify the impact of the learning error on the expected

performance of the algorithm during the implementation phase. In the last two steps we bound the

expected error of the learning phase in terms of the number of samples in the training set.

Lemma EC.1. Suppose that EC.1 holds. Then the optimal dual variables of problem (EC.3) lie in the

compact set [−V,V ]A with V , (B̄+ γAQ̄− γQ)/ρ.

For the following result we first show that if we consider every possible tie in problem (EC.4), then the

resulting assignment problem admits a feasible solution. The latter follows from repeating the steps of

Proposition 2’s proof with the empirical measure P̂ instead of unknown probability measure P, and using

the SAA version of the dual (EC.3) instead of (4). Then we proceed by constructing a feasible solution

to our problem by setting to zero the tie-breaking probabilities associated to ties with zero probability.

Lemma EC.2. The assignment problem EC.4 admits a feasible tie-breaking rule.

Let ξ(v,p)
a =E

[
(1−s(v,p)(U))I(v,p)

a (U)
]
−ρa be the error incurred in the expected fraction of impressions

assigned to contract a∈A by a bid-price control that employs dual variables v and the tie-breaking rule

p, where the expectation is taken over the unknown distribution of user’s attributes. The second result

shows that the expected performance of any policy can be lower bounded in terms of the error of the

policy.

Proposition EC.3. Suppose that Assumptions 1 and EC.1 hold. Let J (v,p) be the expected perfor-

mance in the implementation phase of a stochastic policy with dual variables v and the tie-breaking rule

p in an horizon of length N . The performance is lower bounded by

J (v,p) ≥ JD−V ρK
√
N − (N + 1)V ‖ξ(v,p)‖1 ,
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whenever N ≥K2.

In the last two steps we bound the expected error of the learning phase by decomposing it into an

estimation error and an empirical assignment error. The empirical assignment error is given by ξ̂(v̂,p̂)
a =

1
M

∑M

m=1(1− s(v̂,p̂)(um))I(v,p)
a (um)− ρa, and is equal to the error incurred in the fraction of impressions

assigned to contract a∈A by a bid-price control that employs dual variables v̂ and the tie-breaking rule p̂,

which are computed by solving problems (EC.3) and (EC.4) using the sample {um}Mm=1. Because the tie-

breaking probabilities are determined by considering only the subsets with positive probability ∪a∈ASa,

even over the sample {um}Mm=1 the fraction of impressions assigned to contract a could be different than

ρa. The next results bounds the empirical assignment error by showing that the contribution of the ties

that are not considered is limited because these essentially occur with zero probability.

Proposition EC.4. Suppose that M >A. Let (v̂, p̂) be the dual variables and tie-breaking probabilities

obtained by solving problem (EC.3) and (EC.4) on a sample {um}Mm=1. The expected empirical assignment

error for contract a∈A is upper bounded by

EM |ξ̂(v̂,p̂)
a | ≤ A

M
,

where the expectation is taken over i.i.d. samples of length M .

The next result bounds the expected error in the assignment incurred by the learning phase of the

algorithm by using tools from statistical learning theory.

Proposition EC.5. Suppose that Assumption 1 holds and M >A. Let (v̂, p̂) be the dual variables and

tie-breaking probabilities obtained by solving problem (EC.3) and (EC.4) on a sample {um}Mm=1 of length

M > 2. The expected error is upper bounded by

EM‖ξ(v̂,p̂)‖1 ≤ 17‖S‖1

√
A log(M)

M
,

where the expectation is taken over i.i.d. samples of length M .

The proof of the main result follows from noting that the expected performance of the algorithm is

given by JL = EM
[
J (v̂,p̂)

]
where the expectation is taken over i.i.d. samples of length M . Hence one

obtains that

J∗−JL

N
=
J∗−EM

[
J (v̂,p̂)

]
N

≤
V ρK
√
N

+ 2V EM‖ξ(v̂,p̂)‖1 ≤
V ρK
√
N

+ 34V ‖S‖1

√
A log(M)

M
,

where the first inequality follows from taking expectations in the bound of Proposition EC.3 and that

J∗ ≤ JD from Theorem 3; and the second inequality from Proposition EC.5.
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EC.5.4. Optimal Sample Size

In Policy 1 the parameters of the policy are learned on an independent set {um}Mm=1 of length M . In

practice one would employ εN of the horizon to learn the parameters and then implement the resulting

policy in the remaining (1− ε)N of the horizon. In choosing the fraction ε, the decision-maker faces the

typical trade-off between exploration to reduce the estimation error and exploitation of the best estimated

parameters. The bound of Theorem EC.1 allows one to determine the optimal fraction ε that balances

these two effects.

Let µL(ε) be a policy with an exploration phase of εN impressions followed by an exploitation phase

(1− ε)N impressions. During the exploration phase impressions are assigned arbitrarily to the different

contracts so that each contract receives exactly εCa impressions (to simplify the argument we ignore

rounding issues). After learning the dual variables v̂ and tie-breaking probabilities p̂, the resulting policy is

implemented during the exploitation phase. Let JL(ε) denote the expected performance of this algorithm,

which takes into account the yield loss during the exploration phase.

The expected regret of this algorithm w.r.t. the optimal policy is upper bounded by

J∗−JL(ε)

N
≤
J∗−EεN

[
J

(v̂,p̂)

(1−ε)N

]
N

≤ εJD

N
+V ρK

√
1− ε
N

+
(1− ε)N + 1

N
V EεN

[
‖ξ(v,p)‖

]
≤ εV ρ+V ρK

√
1− ε
N

+ 34(1− ε)V ‖S‖1

√
A log(εN)

εN
, (EC.5)

where the first inequality follows from discarding the yield of the exploration phase to obtain JL(ε) ≥

EεN
[
J

(v̂,p̂)

(1−ε)N

]
, where J

(v̂,p̂)

(1−ε)N is the expected yield of a policy with parameters (v̂, p̂) in an horizon of length

(1− ε)N with capacities (1− ε)Ca; and the expectation is taken over the εN samples in the exploration

phase; the second inequality follows from Proposition EC.3; and the third inequality from the fact that

JD ≤NV ρ and Proposition EC.5.

The optimal fraction is chosen by minimizing the bound EC.5 over ε∈ (0,1). For example by choosing

ε∼N−1/3 we obtain that the regret is of order O(
√

logNN−1/3).

EC.5.5. Proof of Auxiliary Results

Proof of Lemma EC.1. Let ψ̂(v) be the objective function of the dual SAA problem (EC.3). We show

that the dual variables are bounded by proving that if for any a∈A the dual variables lie outside [−V,V ]

then the objective value is largen than ψ̂(0) regardless of the value of the other variables.

Using that R(c)≤ B̄+ c we can upper bound the objective value at zero by

ψ̂(0) =
1

M

M∑
m=1

R
(

max
a∈A0

{γqm,a};un
)
≤ B̄+

1

M

M∑
m=1

max
a∈A0

{γqm,a} ≤ B̄+ γAQ̄ ,

where the last inequality follows from the fact that qualities are bounded by Q̄.

Fix a ∈A. We first prove the upper bound by showing that ψ̄(v)≥ ψ̄(0) whenever the ath-component

of the vector satisfies va ≥ V . Note that ψ̂(v) ≥ ρ · v and ψ̂(v) ≥ γQ − va′ + ρ · v for a′ ∈ A \ {a}
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because R(c) ≥ c. Taking the point-wise maximum of these inequalities implies that ψ̂(v) ≥ ρava +(∑
a′∈A\{a} ρa′va′ + maxa′∈A\{a}

{
γQ− va′

}+
)

. The term in parenthesis on the right hand-side can be

understood as the dual objective of an assignment problem without contract a, with weights γQ and

capacity constraints exactly equal to ρa′ . It is not hard to show that the optimal objective value of the

latter is γQ
∑

a′∈A\{a} ρa′ . By minimizing over va′ for a′ 6= a we obtain that

ψ̂(v)≥ ρava + γQ
∑

a′∈A\{a}

ρa′ ≥ ρV + γQ= B̄+ γAQ̄≥ ψ̂(0) ,

where the second inequality follows from the fact that ρa ≥ ρ, va ≥ V and
∑

a′∈A\{a} ρa′ ≤ 1 together with

Q≤ 0; the equality from our definition for V ; and the last from the upper bound on ψ̂(0).

For the lower bound we prove that ψ̄(v)≥ ψ̄(0) whenever va ≤−V . Similarly to the previous case we

have that ψ̂(v) ≥ γQ− va′ + ρ · v for all a′ ∈ A. Taking the point-wise maximum implies that ψ̂(v) ≥

ρava +
(∑

a′∈A\{a} ρa′va′ + maxa′∈A
{
γQ− va′

}+
)

. By minimizing over va′ for a′ 6= a we obtain that

ψ̂(v)≥ γQ− va

1−
∑

a′∈A\{a}

ρa′

≥ γQ+ ρV = B̄+ γAQ̄≥ ψ̂(0) ,

where the second inequality follows from the fact that −va ≥ V and 1−
∑

a′∈A\{a} ρa′ = ρa + ρ0 ≥ ρ; the

equality from our definition for V ; and the last from the upper bound on ψ̂(0). �

Proof of Lemma EC.2. We prove the result by following closely the proof of Proposition 2. Consider

problem (EC.4) without being restricted to the subsets with positive probability, which can be written

as ∑
S⊆A0:a∈S

P̂(S-tie)pa(S) = ρa, ∀a∈A , (EC.6a)∑
a∈S

pa(S) = 1, ∀S ⊆A0 , (EC.6b)

pa(S)≥ 0, ∀S ⊆A0, a∈ S . (EC.6c)

The latter is identical to the assignment problem (5) with the unknown probability measure P(U ∈B)

replaced by the empirical measure P̂(U ∈B) = 1
M

∑M

m=1 1{um ∈B}. Repeating the steps of Proposition 2’s

proof with the empirical measure P̂ instead of unknown probability measure P, and using the SAA version

of the dual (EC.3) instead of (4), one obtains that problem (EC.6) admits a feasible solution. Using a

solution of the latter as a starting point we shall construct a solution to our problem.

Let p̂a(S) be a solution of problem (EC.6). Consider a solution p̂′a(S) given by

p̂′a(S) =

{
p̂a(S) , if S ∈∪a∈ASa ,
0 , otherwise .
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We need to show that this solution is feasible for (EC.4). Non-negativity follows trivially, equation (EC.4c)

follows directly from (EC.6b), and by construction we have that p̂′a(S) = 0 for all subsets with zero

probability. For the capacity constraints we obtain by dividing the sum over the subsets S ⊆A0 : a ∈ S

into Sa and Sca, and using the definition of p̂′a(S) that∑
S∈Sa

P̂(S-tie)p̂′a(S)≤
∑

S⊆A0:a∈S

P̂(S-tie)p̂a(S)≤
∑
S∈Sa

P̂(S-tie)p̂′a(S) +
∑
S 6∈Sa

P̂(S-tie)

where the inequality to the left follows from discarding the terms in Sca because p̂a(S) ≥ 0; while the

equation to the right follows from the fact that p̂a(S) ≤ 1. From equation (EC.6a) we have that ρa =∑
S⊆A0:a∈S P̂(S-tie)p̂a(S), which implies equations (EC.4a) and (EC.4b), respectively. �

Proof of Proposition EC.3. We prove the result by extending the proof of Theorem 2 to take into

account the errors in the assignment. In the remainder of the proof time periods are indexed forward in

time.

Let Sµn,a =
∑n

i=1 (1−Xi(s
µ
i (Ui))) I

µ
i,a(Ui) be the total number of impressions assigned to adver-

tiser a by time n when following the stochastic policy µ that employs dual variables v and the

tie-breaking rule p. Additionally, we denote by Sµn = {Sµn,a}a∈A the random vector of impressions

assigned to advertisers (with the case of a = 0 defined as before). Let the stopping time Nµ =

inf
{

1≤ n≤N : Sµn,a =Ca for some a∈A0

}
be the first time that any advertiser’s contract is fulfilled or

the point is reached where all arriving impressions need to be assigned to the advertisers. Let Y µ
n be the

yield from impression n under policy µ.

As in the proof of Theorem 2 we define by Sn,a the number of impressions assigned to contract a∈A0

by time n and Yn the yield when following the deterministic controls in an alternate coupled system with

no capacity constraints. It is the case that Sn,a = Sµn,a and Yn = Y µ
n for n<Nµ. We get that the expected

yield is lower bounded by

J (v,p) =E

[
N∑
n=1

Y µ
n

]
≥E

[
Nµ∑
n=1

Yn

]
=E[Nµ]E[Y1],

where the inequality follows from discarding terms after the stopping time, and the last equality from

Wald’s equation. We next bound each term at a time.

Expected Yield. Before proceeding to lower bound the expected yield of a single impression, we

observe that the total contract adjusted quality satisfies∑
a∈A

I(v,p)
a (U)(γQa− va) =

∑
a∈A

∑
S⊆A0:a∈S

pa(S)(γQa− va)1
{
S = arg max

a′∈A0

{γQa′ − va′}
}

= max
a∈A0

{γQa− va}
∑
S⊆A0

(
1
{
S = arg max

a′∈A0

{γQa′ − va′}
}∑
a∈S

pa(S)

)
= max

a∈A0

{γQa− va}1
{
S 3 arg max

a′∈A0

{γQa′ − va′}
}

(a.s.)
= max

a∈A0

{γQa− va} ,
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where the first equation follows from the definition of the bid-price control I(v,p)
a (U); the second from

exchanging summations and using that γQa − va achieves the maximum whenever a ∈ S; the third

equation because the tie-breaking rule satisfies that
∑

a∈S pa(S) = 1 for S ∈ S and at most one subset

in S verifies the maximum because pa(S) = 0 for S 6∈ S; and the last because with probability one the

maximum the verified by one subset in S.

Let J̄D = JD/N and ψ̄(v) =ψ(v)/N be the normalized optimal yield from the DAP and dual function,

respectively. Using the previous remark the yield of a single impression can be written as a function of

the dual objective as follows

E[Y1] =E

[
r(s(v,p)(U);U) + γ

(
1− s(v,p)(U)

)∑
a∈A

I(v,p)
a (U)Qa

]

=E

[
r(s(v,p)(U);U) +

(
1− s(v,p)(U)

)∑
a∈A

I(v,p)
a (U)(γQa− va)

]
+
∑
a∈A

ρava +
∑
a∈A

vaξ
(v,p)
a

=E
[
R

(
max
a∈A0

{γQa− va}
)]

+
∑
a∈A

ρava +
∑
a∈A

vaξ
(v,p)
a

= ψ̄(v) +
∑
a∈A

vaξ
(v,p)
a ≥ J̄D +

∑
a∈A

vaξ
(v,p)
a ,

where the third equation follows the previous remark and because the acceptance probability is chosen

optimality with respect to that opportunity cost; the fourth equation follows from the definition of the

dual function, and the inequality from weak duality for the DAP. Using the fact that dual variables

satisfy |va| ≤ V we obtain the final bound E[Y
(v,p)

1 ]≥ J̄D−V ||ξ(v,p)||1.

Expected Stopping Time. For the stopping time recall that we have that Nµ (d)
= mina∈A0

{Na}
where we define Na = inf {n≥ 1 : Sn,a =Ca} as the time when the contract of advertiser a ∈ A0 is

fulfilled. For a ∈ A0, the summands of Sn,a are independent Bernoulli random variables with success

probability ρa + ξ(v,p)
a . Hence, Na − Ca is distributed as a negative binomial random variable with Ca

successes and success probability ρa + ξ(v,p)
a . The mean and variance are given by ENa =N ρa

ρa+ξ
(v,p)
a

, and

Var[Na] =Nρa
1−ρa−ξ

(v,p)
a

(ρa+ξ
(v,p)
a )2

, where we used that ρa = Ca/N . In the latter we set ξ
(v,p)
0 = 1−

∑
a∈AE

[
(1−

s(v,p)(U))I(v,p)
a (U)

]
− ρ0 =−

∑
a∈A ξ

(v,p)
a because ρ0 = 1−

∑
a∈A ρa.

Consider yet another alternate system in which we truncate the error term to its positive part (ξ(v,p)
a )+,

and let Ñµ
a be the stopping time for contract a in this alternate system. That is, Ña−Ca is distributed as

a negative binomial random variable with Ca successes and success probability ρa + (ξ(v,p)
a )+. Clearly we

have that Na stochastically dominates Ña because successes are less likely in the former and more trials

are needed to reach the capacity Ca. Additionally, the mean is lower bounded by EÑµ
a =N ρa

ρa+(ξ
(v,p)
a )+

≥

N
(

1− (ξ
(v,p)
a )+

ρa

)
and the variance is upper bounded by Var[Ña] = Nρa

1−ρa−(ξ
(v,p)
a )+

(ρa+(ξ
(v,p)
a )+)2

≤ N 1−ρa
ρa

because

(ξ(v,p)
a )+ ≥ 0. Using the fact that the minimum is non-decreasing together with the lower bound on the

mean of the minimum of a number of random variables of Aven (1985) we get that

ENµ =E min
a∈A0

{Na} ≥E min
a∈A0

{Ña} ≥ min
a∈A0

EÑa−
√

A

A+ 1

∑
a∈A0

Var[Ña]
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≥N min
a∈A0

(
1− (ξ(v,p)

a )+

ρa

)
−
√

A

A+ 1

√∑
a∈A0

N
1− ρa
ρa

=N

(
1−max

a∈A0

(ξ(v,p)
a )+

ρa

)
−
√
NK ,

where the third inequality follows from the bounds on the means and variances, and the last from our

definition of K in the statement of Theorem 2. Using the fact that ρa ≥ ρ and that maxa∈A0
(ξ(v,p)
a )+ ≤

‖ξ(v,p)‖1 because ξ
(v,p)
0 =−

∑
a∈A ξ

(v,p)
a we obtain the final bound ENµ ≥N −

√
NK −‖ξ(v,p)‖1/ρ.

Putting it all together. Combining the previous bounds we obtain that

J (v,p) ≥E[Nµ]E[Y1]≥
(
J̄D−V ‖ξ(v,p)‖1

)+(
N −

√
NK −‖ξ(v,p)‖1/ρ

)+

≥ JD− J̄DK
√
N − (NV + J̄D/ρ)‖ξ(v,p)‖1 ,

where the last inequality follows from the identity (a− b|x|)+(c−d|x|)+ ≥ ac− (ad+ bc)|x| for a, b, c, d≥ 0

because N ≥K2 and dropping one term. The result follows from J̄D ≤ ψ̄(0) = V ρ from the proof of the

previous lemma. �

Proof of Proposition EC.4. Fix the sample {um}Mm=1. From Lemma EC.2 we know that problem

(EC.4) admits a feasible solution. We have that the empirical assignment error can be equivalently written

as

ξ̂(v̂,p̂)
a =

1

M

M∑
m=1

(1− s(v̂,p̂)(um))I(v̂,p̂)
a (um)− ρa =

∑
S⊆A0:a∈S

p̂a(S)P̂(S-tie)− ρa =
∑
S∈Sa

p̂a(S)P̂(S-tie)− ρa ,

where the second equality follows from the definition of the controls s(v̂,p̂)(u) and I(v̂,p̂)
a (u), exchanging

summations, and the definition of P̂(S-tie); and the last from the fact that p̂a(S) = 0 for S ∈ Sca.

The capacity constraint (EC.4a) implies that ξ̂(v̂,p̂)
a ≤ 0, while the capacity constraint (EC.4b) implies

that ξ̂(v̂,p̂)
a ≥−

∑
S∈Sca

P̂(S-tie). Taking expectations w.r.t. the samples we obtain that

EM

∣∣∣ξ̂(v̂,p̂)
a

∣∣∣≤EM
∑
S∈Sca

P̂(S-tie)

≤EM
 1

M

M∑
m=1

∑
S∈Sca

1

{
S = arg max

a′∈A0

{γQm,a′ − v̂a′}
}

≤ 1

M
EM

[
sup
v∈RA

M∑
m=1

1

{
Sca 3 arg max

a′∈A0

{γQm,a′ − va′}
}

︸ ︷︷ ︸
(4)

]
,

where the second inequality follows because P̂(S-tie) ≤ 1
M

∑M

m=1 1{S = arg maxa′∈A0
{γqm,a′ − v̂a′}} and

exchanging summations, and the last from taking the supremum over all possible dual variables v ∈RA

and using the fact that at most subset in Sca verifies the maximum.

Let ν(q,S) be the set of dual variables for which the maximum contract adjusted

quality of q ∈ Ω is verified by all contracts in the subset S ⊆ A0. Let B ={
(Qm)Mm=1 :

⋂N

n=1

⋃
S∈Sca

ν(Qm, S) = ∅ for all subsequence {mn}Nn=1 with N ≥A+ 1
}

be the event that
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there is no dual variable v that guarantees that the impression is assigned to more than A+ 1 samples

when the control is restricted to ties in the set Sca. By conditioning on this event we obtain that

EM

∣∣∣ξ̂(v̂,p̂)
a

∣∣∣≤ 1

M
EM [(4)1{B}+ (4)1{B̄}]≤ 1

M
EM [A1{B}+M1{B̄}] =

A

M
P{B}+ (1−P{B}) =

A

M
,

where the second inequality follows from the fact that when the event B is true the supremum (4) is

at most A and the supremum (4) is always less than M . The last equality follows from the fact that

Lemma EC.5 implies that P{B}= 1 whenever M ≥A+ 1.

Proof of Proposition EC.5. We proceed to bound the error term of each contract a∈A. Let i(v,p)a (u) =(
1− s(v,p)(u)

)
I(v,p)
a (u) =

∑
S∈Sa pa(S)

(
1 − s∗(γqa − va;u)

)
1{S = arg maxa′∈A0

{γqa′ − va′}} be the total

probability that the impression is assigned to contract a when the user attribute is u∈ U , where we used

that only probabilities in the set Sa have positive mass. Using the triangle inequality, the error incurred

by the learning phase can be decomposed into an estimation error and an empirical assignment error as

follows

EM
∣∣ξ(v̂,p̂)
a

∣∣=EM
∣∣EU[i(v̂,p̂)a (U)|(v̂, p̂)

]
− ρa

∣∣
≤EM

∣∣∣∣∣EU[i(v̂,p̂)a (U)|(v̂, p̂)
]
− 1

M

M∑
m=1

i(v̂,p̂)(Um)

∣∣∣∣∣+EM

∣∣∣∣∣ 1

M

M∑
m=1

i(v̂,p̂)(Um)− ρa

∣∣∣∣∣
=EM

∣∣∣χ(v̂,p̂)
a

∣∣∣+EM
∣∣∣ξ̂(v̂,p̂)
a

∣∣∣ ,
where we denote by χ(v̂,p̂)

a = EU
[
i(v̂,p̂)a (U)|(v̂, p̂)

]
− 1

M

∑M

m=1 i
(v̂,p̂)(um) the estimation error. The second

term is controlled in Proposition EC.4. In the remainder of this proof we bound the first term.

We have that

EM
∣∣χ(v̂,p̂)
a

∣∣=EM

∣∣∣∣∣EU[i(v̂,p̂)a (U)|(v̂, p̂)
]
− 1

M

M∑
m=1

i(v̂,p̂)(um)

∣∣∣∣∣
≤EM

[
sup

(v,p)∈E

∣∣∣∣∣EU[i(v,p)a (U)|(v, p)
]
− 1

M

M∑
m=1

i(v,p)a (Um)

∣∣∣∣∣
]

≤ 2EM,σ

[
sup

(v,p)∈E

∣∣∣∣∣ 1

M

M∑
m=1

σmi
(v,p)
a (Um)

∣∣∣∣∣
]

= 2EM

[
RM(Fa, ~U)

]
,

where first inequality follows from taking the supremum over the space of dual variables v and tie-

breaking probabilities p given by E = RA× (2A0→∆A+1) where ∆A+1 = {x ∈RA+1 : xa ≥ 0,
∑
xa = 1} is

the probability simplex of dimension A+ 1, and the second inequality from a symmetrization argument

where {σm}Mm=1 are i.i.d. Rademacher random variables (see, e.g., Mendelson (2003)). The last expression

was bounded by 2EM

[
RM(Fa, ~U)

]
where RM(Fa, ~u) is the Rademacher complexity of the function class

Fa = {i(v,p)a : U → [0,1] : ∀(v, p)∈ E} with each element a function in the space U → [0,1].

We bound the Rademacher complexity by considering a larger class of functions. Let Fs = {1 −

s∗(γqa − va;u) : va ∈ R} be the function class of exchange acceptance probabilities parameterized by
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the dual variable va ∈ R. For every subset S ⊆ A0 such that a ∈ S we consider the class Fa(S) ={
1{S = arg maxa′∈A0

{γqa′ − va′}} : v ∈ RA
}

of indicator functions that contracts in the subset S verify

the maximum contract adjusted quality parameterized by dual variables v ∈RA. We consider the class of

functions H= (Fs · Fa(S))S∈Sa given by the weighted sum over subsets S ∈ Sa of the product of functions

from Fs and Fa(S) (see Lemma EC.3 and Lemma EC.4 for notation). This class verifies that Fa ⊆H
since we allow different dual variables for each tie and pricing in the exchange.

Using Lemma EC.4 together with the fact that Fa ⊆H we obtain that for every sample ~u∈ UM

RM(Fa, ~u)≤RM(H, ~u)≤
∑
S⊆Sa

RM(Fs · Fa(S), ~u) .

By the Discretization Theorem (see, e.g., Mendelson (2003)) we can upper bound the Rademacher com-

plexity of each product class in terms of its α-covering number N (α,Fs · Fa(S),M) (precise definitions

are provided in Section EC.5.6) as follows

RM(Fs · Fa(S), ~u)≤ inf
α>0

α+

√
2 logN (α,Fs · Fa(S),M)

M
. (EC.7)

Next we proceed to bound the α-covering number of the function class.

For the class Fs we have that for a fixed sample ~u ∈ UM the set F|~u is a curve in the space [0,1]M

parameterized by the dual variable va ∈ R. Because s∗(·) is non-increasing, the curve is non-increasing

and has a length of at most M w.r.t. the `1 norm. Performing a natural parametrization w.r.t. the `1

norm, this curve can be equivalently written as φ : [0,M ]→ [0,1]M , where we interpolate linearly through

discontinuities. For any α > 0 one can split the domain in M/α points to obtain an α-covering. Thus,

N (α,Fs,M)≤M/α. For the class Fa(S) it is not hard to see that the Vapnik-Chervonenkis dimension

is d≤A, which implies by the Sauer-Shelah lemma that for all M ≥ d we have that the covering number

is bounded as N (α,Fa(S),M)≤ (eM/d)d for any α≥ 0. Using Lemma EC.3 we obtain that

N (α,Fs · Fa(S),M)≤N (α,Fs,M)N (0,Fa(S),M)≤ M

α

(
eM

d

)d
.

Using the equation (EC.7) we get that

RM(Fs · Fa(S), ~u)≤ inf
α>0

α+

√
2 logN (α,Fs · Fa(S),M)

M
≤ 2

√
log(M 3+2de2dd−2d)

M
≤ 8

√
A log(M)

M
,

where the second inequality follows from using the parameter balancing technique of Ahuja et al. (1993,

page 65) and choosing α equal to the second term in the infimum to obtain a 2-approximation, and the

last is a loose bound for M > 2.

Putting it all together. Summing over all subsets in Sa we obtain that EM
∣∣χ(v̂,p̂)
a

∣∣ ≤
2EM

[
RM(Fa, ~U)

]
≤ 16|Sa|

√
A log(M)

M
. Summing over all contracts a ∈ A and using Proposition EC.4 we

get that

EM‖ξ(v̂,p̂)‖1 ≤EM‖χ(v̂,p̂)‖1 +EM‖ξ̂(v̂,p̂)‖1 ≤ 16‖S‖1

√
A log(M)

M
+
A2

M
≤ 17‖S‖1

√
A log(M)

M
,

where we used that A≤ ‖S‖1 together with the fact that M >A and M > 2 to bound the second term. �
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EC.5.6. Auxiliary Results

For a set X ⊆ [0,1]M , we say that the set Y ⊆ [0,1]M is an α-cover of X if for every x∈X there is a y ∈ Y

such that ‖x− y‖1 ≤ α. For a fixed α≥ 0 we denote by N (X,α) the cardinality of the smallest α-cover

for X, that is, N (X,α) = inf{|Y | : Y is an α-cover of X}.

Let F = {f : U → [0,1]} be a class of functions that map a sample in U to the interval [0,1]. For a fixed

vector of samples ~u ∈ UM and a function f ∈ F we let f |~u =
(
f(u1), f(u2), . . . , f(uM)

)
be the vector of

values of the function at the sample, and by F~u = {f |~u : f ∈F}⊆ [0,1]M the set of vectors of values of all

functions in the class at the sample. The uniform α−covering number of the class F for samples of size

M is given by N (α,F ,M) = sup~u∈UM N (F|~u, α).

Lemma EC.3. Let F and G be two classes of functions and consider the class of product functions

F · G = {fg : f ∈F , g ∈ G} where (fg)(u) = f(u)g(u). Then for every αg ≥ 0, αf ≥ 0, and M ≥ 1 we have

that

N
(
F · G, αfαg +αf +αg,M

)
≤N

(
F , αf ,M

)
N
(
G, αg,M

)
.

Proof. Fix the sample ~u∈ UM . Using the claim N
(
F · G|~u, αfαg +αf +αg

)
≤N

(
F|~u, αf

)
N
(
G|~u, αg

)
,

the result follows from taking the supremum over ~u ∈ UM and using that supx r(x)s(x) ≤(
supx r(x)

)(
supx s(x)

)
for any two non-negative functions r(x) and s(x).

In the remainder of the proof we prove the claim. Let Yf be a minimal αf -cover of F|~u, that is, |Yf |=

N
(
F|~u, αf

)
. Similarly, let Yg be a minimal αg-cover of G|~u. We shall show that Y = {x◦y : x∈ Yf , y ∈ Yg}

is an (αfαg + αf + αg)-cover of F · G|~u, where x ◦ y , (x1y1, . . . , xMyM) is the Hadamard product. For

every (fg)|~u ∈F ·G|~u we can find x∈ Yf and y ∈ Yg such that ‖f |~u−x‖1 ≤ αf and ‖g|~u−y‖1 ≤ αg because

Yf and Yg are covers. We have that

‖(fg)|~u−x ◦ y‖1 =
M∑
m=1

|f(um)g(um)−xmym|=
M∑
m=1

|
(
f(um)−xm +xm

)(
g(um)− ym + ym

)
−xmym|

≤
M∑
m=1

|f(um)−xm| · |g(um)− ym|+ |xm| · |g(um)− ym|+ |ym| · |f(um)−xm|

≤ αfαg +αf +αg ,

where the first inequality follows from canceling terms and the triangle inequality, and the second because

|f(um)−xm| ≤ ‖f |~u−x‖1 ≤ αf and the codomain is [0,1]. Thus Y is an (αfαg +αf +αg)-cover for F ·G|~u,

and we have that N
(
F ·G|~u, αfαg +αf +αg

)
≤ |Y | ≤ |Yf | · |Yg|=N

(
F|~u, αf

)
N
(
G|~u, αG

)
, because Yf and

Yg are minimal. �

For a class of functions F and a vector of samples ~u ∈ UM we denote the Rademacher complexity as

RM(F , ~u) = 1
M
E supf∈F

∣∣∣∑M

m=1 σmf(um)
∣∣∣ where the expectation is taken over i.i.d. Rademacher random

variables {σm}Mm=1.
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Lemma EC.4. Let F = {Fk}Kk=1 be a finite set of function classes and consider the weighted sum class

F̄ =
{∑K

k=1 pkfk : fk ∈Fk, pk ∈ [0,1]
}

. Then for every vector of samples ~u∈ UM we have that

RM(F̄ , ~u)≤
K∑
k=1

RM(Fk, ~u) .

Proof. Exchanging the order of the summations and using the triangle inequality we obtain that

RM(F̄ , ~u) =
1

M
E sup
fk∈Fk,pk∈[0,1]

∣∣∣∣∣
M∑
m=1

σm

K∑
k=1

pkfk(um)

∣∣∣∣∣≤ 1

M
E sup
fk∈Fk,pk∈[0,1]

K∑
k=1

pk

∣∣∣∣∣
M∑
m=1

σmfk(um)

∣∣∣∣∣
=

1

M
E sup
fk∈Fk

K∑
k=1

sup
pk∈[0,1]

pk

∣∣∣∣∣
M∑
m=1

σmfk(um)

∣∣∣∣∣= 1

M
E sup
fk∈Fk

K∑
k=1

∣∣∣∣∣
M∑
m=1

σmfk(um)

∣∣∣∣∣
≤

K∑
k=1

1

M
E sup
fk∈Fk

∣∣∣∣∣
M∑
m=1

σmfk(um)

∣∣∣∣∣=
K∑
k=1

RM(Fk, ~u) ,

where the second equality follows from partitioning the supremum and using that the objective is sepa-

rable in the pk’s; the third equality follows because pk = 1 is the optimal weight; and the last inequality

follows from the sub-additivity of the supremum. �

Let ν(q,S) = {v ∈RA : arg maxa∈A0
{γqa− va}= S} the set of dual variables for which the maximum

contract adjusted quality of q ∈Ω is verified by all contracts in the subset S ⊆A0. We refer to ν(q,S) as

the trigger set of q w.r.t. S. The next result shows that with probability one there is no dual variable

that guarantees that, for more than A samples, the maximum contract adjusted quality is verified by

some subset S ∈ Sca , {S ⊆A0 : a∈ S,S 6∈ Sa} for which the probability of a tie occurring is zero.

Lemma EC.5. Let {Qm}Mm=1 be M i.i.d. samples of placement quality. Then, for all a ∈A and M ≥

A+ 1 we have that

P


M⋂
m=1

⋃
S∈Sca

ν(Qm, S) = ∅

= 1 .

Proof. Let BM be the event
⋂M

m=1

⋃
S∈Sca

ν(Qm, S) = ∅. We have that BM ⊆BM+1, which implies that

P{BM} ≤ P{BM+1} and thus it suffices to prove the result for M =A+ 1.

Note that for S ⊆A0 with a ∈ S and S /∈ Sa we have that arg maxa′∈A0
{γqa′ − va′}= S if and only if

(i) γqa′ − va′ = γqa− va for a′ ∈ S \ {a} and (ii) γqa′ − va′ <γqa− va for a′ ∈A0 \S. Let T :RA→RA be a

linear map such that T (z)a =−za and T (z)a′ = za′ − za for a′ ∈A\{a}. Denoting by tm = T (qm), and by

z = T (v) the latter conditions can be equivalently written as (i) γta′ = za′ for a′ ∈ h(S), and (ii) γta′ < za′

for a′ ∈A\h(S), where h(S) = S \ {0} if 0∈ S and h(S) = S \ {a} otherwise.

Therefore the result is equivalent to showing that P
{⋂M

m=1

⋃
S∈Ta ζ(Tm, S) = ∅

}
= 1 where ζ(t,S) =

{z ∈ RA : γta = za∀a ∈ S,γta < za∀a ∈ A \ S} and Ta = {h(S) : S ⊆ A0, a ∈ S,S /∈ Sa}. We have that

∅ 6∈ Ta because {a} 6∈ Sca since P{a= arg maxa′∈A0
{γQa′ − va′}}> 0 for va =Q and va′ = Q̄ for a′ 6= a. The

definition of the set Sa implies that for all S ∈ Ta we have that P
{
z ∈ ζ(Tm, S)

}
= 0 for all z ∈RA.

The result follows from the next claim. �
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Claim EC.1. Let B ⊆A be a subset of contracts. Let ζ(t,S) = {z ∈ RA : γta = za∀a ∈ S,γta < za∀a ∈

A\S} and T =
{
S ⊆A : P

{
z ∈ ζ(T,S)

}
= 0 for all z ∈RA

}
. Suppose that ∅ 6∈ T . Then

P

{|B|+1⋂
m=1

⋃
S∈T ,S⊆B

ζ(Tm, S) = ∅

}
= 1 ,

where {Tm}A+1
m=1 are i.i.d. random vectors with support in RA.

Proof of Claim. We prove the result by induction on the cardinality of B, that is, |B|. For the base

case of |B|= 0 the result is trivial because ∅ 6∈ T .

Suppose that the result is true for sets of cardinality |B| − 1, we need to prove the result for sets

of cardinality |B|. Let ~S = (Sm)
|B|+1
m=1 ∈ T |B|+1 be a vector of subsets and Π(~T , ~S) =

⋂|B|+1

m=1 ζ(Tm, Sm)

the intersection of the trigger sets over the samples ~T for the vector of subsets ~S. We have by the

commutativity of the union and intersection that

|B|+1⋂
m=1

⋃
S∈T ,S⊆B

ζ(Tm, S) =
⋃

~S∈T |B|+1:Sm⊆B

|B|+1⋂
m=1

ζ(Tm, Sm) =
⋃

~S∈T |B|+1:Sm⊆B

Π(~T , ~S) .

The previous equation together with Boole’s inequality imply that

P

{|B|+1⋂
m=1

⋃
S∈T ,S⊆B

ζ(Tm, S) 6= ∅

}
= P

{ ⋃
~S∈T |B|+1:Sm⊆B

{
Π(~T , ~S) 6= ∅

}}
≤

∑
~S∈T |B|+1:Sm⊆B

P
{

Π(~T , ~S) 6= ∅
}
.

We need to show that each summand on the right-hand side is zero.

Fix the vector of subsets ~S = (Sm)
|B|+1
m=1 with Sm ∈ T and Sm ⊆B. Let πB :RA→R|B| be the projection

onto the B-plane, that is, πB(z) = (za)a∈B. Because the projection of a set is empty if and only if the set

is empty, we study whether Π(~T , ~S) is non-empty by considering whether the projection onto B given by

πB

(
Π(~T , ~S)

)
is empty. To this end we study the number of points in the projection onto B of the trigger

sets of the first |B| samples. That is, let C0, C1 and C∞ be the event that πB

(
Π
(

(Tm)
|B|
m=1, (Sm)

|B|
m=1

))
is

empty, has one point or multiple points. Because these events are disjoint we have that

P
{

Π(~T , ~S) 6= ∅
}

= P
{
πB

(
Π(~T , ~S)

)
6= ∅
}

= P
{
C0, πB

(
Π(~T , ~S)

)
6= ∅
}

+P
{
C1, πB

(
Π(~T , ~S)

)
6= ∅
}

+P
{
C∞, πB

(
Π(~T , ~S)

)
6= ∅
}
.

We conclude the proof by showing that each term is zero.

When the event C0 is true (i.e., projection onto B of the trigger sets of the first samples is empty), we

have that Π(~T , ~S) = ∅ because πB

(
Π
(
~T , ~S

))
⊆ πB

(
Π
(

(Tm)
|B|
m=1, (Sm)

|B|
m=1

))
. Thus the first term is zero.

When the event C1 is true (i.e., projection onto B of the trigger sets of the first samples has one

point), we have that πB

(
Π
(

(Tm)
|B|
m=1, (Sm)

|B|
m=1

))
= {z′B} for some point z′B ∈ R|B|. Therefore, the point

z′B is pinned down for the coordinates in B by the first samples {Tm}|B|m=1 and Π(~T , ~S) is non-empty

iff z′B ∈ πB
(
ζ(T|B|+1, S|B|+1)

)
. For S|B|+1 we have that P

{
z ∈ ζ(T|B|+1, S|B|+1)

}
= 0 for all z ∈ RA because
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S|B|+1 ∈ Ta. Because S|B|+1 ⊆ B the coordinates not in B are only bounded from above, so by setting

za =∞ for a 6∈ B we get that P
{
zB ∈ πB

(
ζ(T|B|+1, S|B|+1)

)}
= 0 for all zB ∈ R|B|. Hence, by conditioning

on the value of z′B and using that samples are independent we get that the second term is zero.

When the event C∞ is true (i.e., projection onto B of the trigger sets of the first samples has multiple

points), for every sample there is some coordinate a′ ∈B such that a′ 6∈ Sm for all m= 1, . . . , |B| because for

the coordinates in Sm the values are pinned down by sample Tm. Consider the subset B′ =B\{a′} that sat-

isfies that Sm ⊆B′ for all m= 1, . . . , |B|. We have that Π
(

(Tm)
|B|
m=1, (Sm)

|B|
m=1

)
⊆
⋂|B′|+1

m=1

⋃
S∈T ,S⊆B′ ζ(Tm, S)

because |B′|= |B|+ 1 and Sm ⊆ B′. By the induction hypothesis we have that with probability one the

latter is empty, implying that C∞ is false with probability one. �

EC.6. Incorrect Assignments in the User Type Model

In §5 we introduced a user-type model with good-will penalties to accommodate the fact that advertisers

have specific targeting criteria. If the contracts are feasible, that is, there is enough inventory to satisfy

the targeting criteria; one would expect our policy to assign only impressions within the criteria. In this

section we formalize the concept of a feasible operation, and give sufficient conditions under which the

stochastic control policy does not assign any impressions outside of the targeting criteria.

It is straightforward to state the problem of determining whether contracts can be satisfied or not as

a feasible flow problem on a bipartite graph. The problem can be formulated on a graph with one node

for each user type T with a supply of π(T ), on the left side; one node for each advertisers a∈A0 with a

demand ρa, on the right side; and one arc joining user type T with advertisers a if and only if a∈ T ∪{0}.

Then, we say that the operation is feasible if the user type-advertiser graph admits a feasible flow. That

is, there exists flows yT,a ≥ 0 for a∈A0 and T ∈ T satisfying∑
a∈T∪{0}

yT,a = π(T ), ∀T ∈ T , (EC.8)∑
T∈T :a∈T∪{0}

yT,a = ρa, ∀a∈A0 .

The feasibility of the operation, albeit necessary, does not suffice to guarantee that no impressions

outside the targeting criteria are assigned to the advertisers. When advertisers compete for the same

type, and one of them obtains a potentially unbounded reward for that type; it may be optimal to allow

the latter advertiser to cannibalize the user type, and force the others advertisers to take types outside of

their criteria. This may occur, surprisingly, for all conceivable penalties. However, if qualities are bounded,

and penalties are set high enough, then the optimal policy would not recommend the assignment of

impressions outside the targeting criteria. Even in this case some impressions may be incorrectly assigned

in the left-over regime, but the probability of this event decays exponentially fast. We formalize this

discussion in the following proposition. We prove the result under the additional assumption that qualities

are discrete and with finite support, though we conjecture the result holds for arbitrary distributions.
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Proposition EC.6. Assume that the revenue function is Lipschitz continuous with constant L, place-

ment qualities are bounded by maxaQa ≤ Q̄ almost surely, and that penalties satisfy τa > AQ̄ + 2L/γ

for all a ∈ A. Assume, additionally, that qualities are discrete and with finite support. If the user type-

advertiser graph admits a feasible flow, then the stochastic control policy does not assign any impressions

outside of the targeting criteria, except perhaps for the left-over regime.

Proof of Proposition EC.6. Given an optimal solution that assigns types outside of advertisers’ tar-

geting criteria, we will construct a deviation that achieves a strictly higher yield, thus contradicting the

optimality of the solution. Some definitions are in order. Let ΩT ⊆ Ω be the outcome space associated

with type T ∈ T , which we assume to be a finite subset of RA. The probability of observing a placement

quality q= {qa}Aa=1 ∈ΩT given that the user type is T is denoted by gT (q), that is, gT (q) = P{Q= q | T}.

In this context a solution to the DAP can be written as a vector of functions zT : ΩT → [0,1] and

yT,a : ΩT → [0,1] for a∈A0, where zT (q) gives the total probability that the impression is accepted by AdX

and yT,a(q) the total probability that impression is assigned to contract a when the observed placement

quality is q. The conditional probability that the impression is accepted in AdX given that the type is T

and the quality is q is zT (q)/(π(T )gT (q)), and the expected AdX revenue given total probability z is

rT,q(z) = π(T )gT (q)r

(
z

π(T )gT (q)

)
.

The DAP can be written as the following concave maximum flow problem

max
∑
T∈T

∑
q∈ΩT

rT,q (zT (q)) + γ
∑
a∈T

qayT,a(q)− γ
∑
a 6∈T

τayT,a(q) (EC.9)

zT (q) +
∑
a∈A0

yT,a(q) = π(T )gT (q), ∀q ∈ΩT , T ∈ T ,∑
T∈T

∑
q∈ΩT

yT,a(q) = ρa, ∀a∈A,∑
T∈T

∑
q∈ΩT

zT (q) + yT,0(q) = ρ0,

zT (q)≥ 0, yT,a(q)≥ 0, ∀a∈A, q ∈ΩT , T ∈ T .

The first term in the objective accounts for AdX’s revenue while the second for the contracts’ quality.

The first constraints state that the flow of impressions originating from a given realization of quality is

equal to the probability of that realization occurring, the second guarantee that contracts are fulfilled,

and the third state flow conversation for impressions accepted by AdX together with those discarded.

We construct a solution (z0, y0) to (EC.9) based on a feasible flow y0
a,T from the user type-advertiser

feasibility problem (EC.8) as follows. Put z0
T (q) = 0 so that no impression is sold in the exchange, and

put

y0
T,a(q) =

{
gT (q)y0

a,T , a∈ T ∪{0} ,
0 , a 6∈ T ∪{0}
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Types Advertisers

T1

T2

1

2

ρ1 = 1
2

ρ2 = 1
2

π(T1) = 1
2

π(T2) = 1
2

0

0

−τ Q ∼ exp(1)

Figure EC.5 Example with two user types, and two advertisers.

for all type T ∈ T and advertiser a∈A0. It is straightforward to show that the latter solution is feasible

for the discrete DAP in (EC.9).

Let (z, y) be an optimal solution of the discrete DAP in (EC.9) that assigns types outside of advertisers’

targeting criteria. Take the difference (∆z,∆y) with ∆zT (q) = z0
T (q)− zT (q) and ∆yT,a(q) = y0

T,a(q)−

yT,a(q) which is a circulation in DAP. This circulation may have components of mixed signs. Because

(z0, i0) has no incorrect assignments, if advertiser a is assigned a type T 63 a not in her criteria, then the

circulation verifies that ∆yT,a(q) = −yT,a(q). Hence, the arcs with incorrect assignments have negative

flow.

By the Flow Decomposition Theorem the circulation (∆z,∆y) can be decomposed into at most (A+

2)
∑

T∈T |ΩT | cycles with positive flow. Let (δz, δy) be a cycle containing an arc assigning an impression

outside the targeting criteria with flow ε > 0. Because the right-hand side of the DAP graph has A+

1 nodes this cycle has at most A + 1 positive edges, at most A + 1 negative edges, and at most 2

AdX edges with opposite sign. Let δya+1 ,T
+
1

(q+
1 ), . . . , δya+

K
,T+
K

(q+
K), δzT+(q+) = ε be the positive edges and

δya−1 ,T
−
1

(q−1 ), . . . , δya−
K
,T−
K

(q−K), δzT−(q−) = −ε be the negative edges. Without loss of generality we let

ya−1 ,T
−
1

(q−1 ) be an arc with incorrect assignment, that is, a−1 6∈ T−1 .

Consider the perturbed solution (z + δz, y + δy), which is feasible for the DAP. Using the fact that

incorrect assignments have negative flow we can lower bound the marginal yield by

JD(z+ δz, y+ δy)−JD(z, y) =
[
rT+,q+

(
zT+(q+) + ε

)
− rT+,q+

(
zT+(q+)

)]
+ γ

∑
positive
edges

εqa+
k

+
[
rT−,q−

(
zT−(q−)− ε

)
− rT−,q−

(
zT−(q−)

)]
− γ

∑
negative

edges

ε

{
qa−
k
, a−k ∈ T−k ,

−τa−
k
, a−k 6∈ T−k

≥−εL+ 0− εL+ γετa−1
− γAεQ̄= εγ(τa−1

−AQ̄− 2L/γ)> 0,

where the first inequality follows from discarding the contract assignments with positive flow that con-

tribute positively to the yield, the Lipschitz continuity of the revenue function, and that qualities are

bounded from above by Q̄. Thus, the solution (z+ δz, y+ δy) achieves higher yield in the DAP, contra-

dicting the optimality of (z, y). �
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Note that since the left-over regime is vanishingly small in proportion to the length of the horizon

this implies that the number of unassigned impressions is small. Thus in practice, a publisher may set

C ′a = Ca + ε, discard any impressions assigned by the policy outside the targeting criteria, and ensure

that contracts are filled properly.

Next, we prove by example that the requirement that qualities are bounded is necessary for the previous

result to hold. Consider a publisher who contracts with two advertisers, and agrees to deliver one half of

the arriving impressions to each one of them. Additionally, there are two impression types, denoted by T1

and T2, each occurring 50% of the time. The first advertiser only cares about the first type. She obtains a

reward of zero for T1, and the advertisers pays a positive penalty τ each time a T2 impression is assigned

to her. The second advertisers admits both types, but only obtains a positive reward Q∼ exp(1) for the

first type. The setup is shown in Figure EC.5.

A feasible policy could assign all T1 impressions to the first advertiser, and T2 impressions to the

second advertiser. However, such policy is not optimal. Notice that both advertisers compete for the

T1 impressions, and the first advertiser could extract a potentially high quality from them. It is not

hard to see that the optimal dual variables are v1 =−τ , and v2 = 0; and the optimal objective value is

1
2
E[Q− τ ]+ = 1

2
e−τ . Hence, it is optimal to assign those T1 impressions with quality greater than τ to

the second advertiser. Thus, no matter the value of the penalty, a fraction e−τ of the total impression

assigned to the first advertiser are undesired.

EC.7. Computation

In this section we describe to compute the optimal policy for our data model. The main problem resides

in the computation of the dual objective in (4) and its gradient given a vector of dual variables.

Objective. The first term of the objective can be written as

ER
(

max
a∈A0

{Qa− va}
)

=
∑
∀T

π(T )E
[
R

(
max
a∈A0

{Qa− va}
)
| T
]

=
∑
∀T

π(T )
∑

a∈T∪T c
E [R (Qa− va)1{Qa− va ≥Qa′ − va′ ∀a′ 6= a} | T ]

=
∑
∀T

π(T )

(
IT,0(v) +

∑
a∈T

IT,a(v)

)
where the first equation follows by conditioning on the type, and the second because the events are a

partition of the sample space. Next, we show to compute the expectations IT,a(v).

LetMT (v) = maxa∈A0\T{−τa−va} be the maximum contract adjusted quality of the advertisers (includ-

ing the outside option) that are not in the type, and αT (v) the set of advertisers that verify the maximum.

Then, we have that

IT,0(v) =R (MT (v))P{Qa− va ≤MT (v) ∀a′ ∈ T}

=R (MT (v))GT (MT (v) + vT ),
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where GT (·) is the c.d.f. of QT , and vT is the vector of dual variables for the advertisers in the type.

For a∈ T , we compute the expectation by conditioning on the continuous random variable Qa. Further,

suppose that we partition the mean vector and covariance matrix in a corresponding manner. That is,

µT = (
µa
µ−a ), and ΣT =

(
Σa,a Σa,−a

Σ−a,a Σ−a,−a

)
. For instance, µ−a gives the means for the variables in T \ {a}, and

Σ−a,−a gives variances and covariances for the same variables. The matrix Σ−a,a gives covariances between

variables in T \ {a} and a (as does matrix Σa,−a). Because the marginal distribution of a multivariate

normal is an univariate normal, we have that Qa ∼ lnN (µa,Σa,a). We denote by gT,a(·) the p.d.f. of

Qa. Similarly, let Q−a be the vector of qualities for advertisers in T \ {a}. Conditioning on Qa = qa, the

distribution of Q−a is log-normal with mean vector µ−a −Σ−a,a(qa−µa)/(Σa,a), and covariance matrix

Σ−a,−a− (Σ−a,aΣa,−a)/(Σa,a). We denote its c.d.f. by GT,−a(·). Putting all together, we have that

IT,a(v) =E [R (Qa− va)P{Qa′ − va′ ≤Qa− va ∀a′ 6= a |Qa} | T ]

=

∫ ∞
va+MT (v)

R(qa− va)GT,−a(qa− va + v−a)gT,a(qa) dqa,

where v−a is the vector of dual variables for advertisers in T \ {a}.

Gradient. The forward derivative of the dual objective can be written as

∇aψ(v) =−PR
{
Qa− va > max

a∈A0\a
{Qa′ − v′a}

}
+ ρa

=−
∑
∀T

π(T )E
[
(1− s∗(Qa− va))1

{
Qa− va > max

a∈A0\a
{Qa′ − v′a}

}
| T
]

+ ρa

=−
∑
T :a∈T

π(T )PT,a(v)−
∑
T :a 6∈T

a∈αT (v),|αT (v)|=1

π(T )PT,a(v) + ρa,

where the contributing types for the forward derivative are those where a is in, and those where a is not

in but verifies exclusively the maximum of the types not in (MT (v)). If two or more advertisers verify the

maximum MT (v), then increasing va does not have an impact of the type’s contribution to the objective.

When a 6∈ T , the expectation is given by

PT,a(v) =
(
1− s∗(MT (v))

)
GT (MT (v) + vT ).

Similarly to the objective, when a∈ T we have that

PT,a(v) =

∫ ∞
va+MT (v)

(
1− s∗(qa− va)

)
GT,−a(qa− va + v−a)gT,a(qa) dqa.

The backward derivative is computed in a similar fashion. The only exception is that, when a 6∈ T ,

and a verifies the maximum MT (v),the advertiser always contributes to the derivative regardless of the

number of advertisers that attain the maximum. Hence,

∇−aψ(v) =
∑
T :a∈T

π(T )PT,a(v) +
∑
T :a 6∈T
a∈αT (v)

π(T )PT,a(v)− ρa.
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Ties. For the following, we assume that the instance is not degenerate, that is, the variances within the

types are positive, and no two advertisers are perfectly correlated. Then, within each type, non-trivial ties

can only occur between the advertisers that are not in the type (we refer to the non-trivial ties as those

in which multiple advertisers attain the same contract adjusted quality). Moreover, there can be at most

one tie within each type, and this happens when the maximum MT (v) is verified by many advertisers,

that is |αT (v)|> 1. With some abuse of notation, the probability of such a tie is given by π(T )PT,αT (v)

and it should be split among the advertisers αT (v). Note that the number of non-trivial ties is O(T ), and

the tie-breaking rule can be computed efficiently by solving a feasible flow problem.
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