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Abstract

In the analysis of complex stochastic dynamic programs, we often seek strong theoretical guarantees
on the suboptimality of heuristic policies. One technique for obtaining performance bounds is perfect
information analysis: this approach provides bounds on the performance of an optimal policy by consid-
ering a decision maker who has access to the outcomes of all future uncertainties before making decisions,
i.e., fully relaxed nonanticipativity constraints. A limitation of this approach is that in many problems
perfect information about uncertainties is quite valuable and thus the resulting bound is weak. In this
paper we study the information relaxation duality approach developed in Brown, Smith, and Sun (2010)
to show that by including a penalty that punishes violations of these nonanticipativity constraints, we
can derive stronger analytical bounds on the suboptimality of heuristic policies in stochastic dynamic
programs that are too difficult to solve. The general framework we develop ties the heuristic policy and
the performance bound together explicitly through the use of an approximate value function: heuristic
policies are greedy with respect to this approximation, and penalties are also generated in a specific way
using this approximation. We apply this approach to three challenging problems: stochastic knapsack
problems, stochastic scheduling on parallel machines, and sequential search problems. In each of these
problems, we consider a greedy heuristic policy generated by an approximate value function and a corre-
sponding penalized perfect information bound. We then characterize the gap between the performance of
the policy and the information relaxation bound in each problem; the results imply asymptotic optimality
of the heuristic policy for specific “large” regimes of interest.

Subject classifications: Dynamic programming, greedy heuristic policies, information relaxation duality,
asymptotic optimality, stochastic knapsack problems, stochastic scheduling, sequential search problems.



1 Introduction

Dynamic programming (DP) is a powerful and widely used framework for studying sequential decision-

making in the face of uncertainty. Unfortunately, stochastic dynamic programs are often far too difficult to

solve, as the number of states that need to be considered typically grows exponentially with the problem

size. As a result, we are often relegated to consider suboptimal, heuristic policies. In specific problem

instances, a variety of methods, often employing Monte Carlo simulation, may be used to assess the quality

of heuristic policies. More broadly, we may also seek strong analytical guarantees on the performance of

heuristic policies. Ideally, this analysis will allow us to conclude that a heuristic policy provides a good

approximation to the optimal policy on a broad set of instances, or at least allow us to understand on what

instances the heuristic policy is nearly optimal.

One technique for obtaining performance bounds is “perfect information analysis.” This approach pro-

vides bounds by considering a decision maker (DM) who has advance access to the outcomes of all future

uncertainties, i.e., a problem with fully relaxed nonanticipativity constraints. We refer to this as the perfect

information problem. For each sample path, the DM then solves a deterministic optimization problem, which

is often much easier to analyze than the original, stochastic DP. The typical analysis compares the expected

performance of the heuristic policy under consideration with the expected performance of the perfect in-

formation problem, or the perfect information bound. This approach has been used successfully to analyze

heuristic policies in some applications; we survey a few in Section 1.1. In many problems, however, perfect

information about uncertainties is quite valuable and leads to a weak bound as a result; this limits the

applicability of the approach.

In this paper we study the information relaxation duality approach developed in Brown, Smith and Sun

(2010) (BSS hereafter). The framework in BSS (2010) involves “information relaxations” in which some

(i.e., imperfect information) or all (i.e., perfect information) of the uncertainties are revealed in advance, as

well as a penalty that punishes violations of the nonanticipativity constraints. BSS (2010) show both weak

duality and strong duality: weak duality ensures that any penalty that is dual feasible - in that it does not

impose a positive, expected penalty on any nonanticipative policy - leads to an upper bound on the expected

reward with any feasible policy, including an optimal policy. Strong duality ensures the existence of a dual

feasible penalty such that the upper bound equals the expected reward with an optimal policy. Thus by

including a dual feasible penalty we may be able to improve the perfect information bound. We refer to the

optimization problem in which we relax all nonanticipativity constraints and include a dual feasible penalty

as the penalized perfect information problem, and the associated bound as the penalized perfect information

bound.
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Although the general theory we use closely follows BSS (2010), the primary application of information

relaxation duality to this point has been as a computational method for evaluating heuristic policies in a

variety of applications. In contrast, our objective here is to use the approach to derive theoretical guarantees

on the performance of heuristic policies in complex DPs. The general setup we study considers a given

approximation to the optimal continuation value and a heuristic that selects actions “greedily” with respect

to this approximate continuation value. We then generate a dual feasible penalty using this same approximate

continuation value by taking the penalty to be the sum of the realized approximate continuation values minus

their expectations; this construction follows the recipe for generating “good” penalties from BSS (2010). We

then obtain a bound on the suboptimality of the heuristic policy by analyzing the difference between the

performance of the policy and the penalized perfect information problem in every sample path.

This basic recipe is broadly applicable: every approximate continuation value leads to a corresponding

greedy heuristic policy and a “paired” penalized perfect information bound. It is not hard to show that

with an optimal continuation value (and hence an optimal policy), the penalized perfect information bound

and policy coincide in every sample path; this suggests that with a good approximation to the optimal

continuation value, the penalized perfect information problem will be nearly “aligned” with the heuristic

policy in every sample path and thus close in value, thereby proving that the policy is nearly optimal. We

apply the approach to three challenging problems: (i) stochastic knapsack problems, (ii) stochastic scheduling

on parallel machines, and (iii) sequential search problems. In each problem, the method leads to analytical

bounds on the suboptimality of a particular greedy heuristic policy, and imply asymptotic optimality of the

policy in specific regimes of interest.

(i) Stochastic knapsack. In this problem (due to Dean et al., 2008), there is a set of items available to

be inserted to a knapsack of finite capacity. Each item has a deterministic value and a stochastic

size that is independently distributed. The actual size of an item is unknown until insertion of that

item is attempted. The DM repeatedly selects items for insertion until the capacity overflows, and, at

that moment, the problem ends. The goal is to maximize the expected value of all items successfully

inserted into the knapsack. In this problem, we need to balance choosing items with high values against

items that tend to use little capacity (i.e., have small sizes). We consider an approximate continuation

value that values remaining capacity in a simple linear fashion; the resulting greedy heuristic policy

simply ranks items according to their value per expected size. Using this approximate continuation

value in the penalty, it is nearly optimal to select items according to the greedy policy in the penalized

perfect information problem in every sample path. The resulting gap implies the greedy policy is

asymptotically optimal with many items, provided capacity scales at a particular rate.

(ii) Stochastic scheduling on parallel machines. This is the problem of scheduling a set of jobs on identical

parallel machines when no preemptions are allowed. Job processing times are stochastic and inde-
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pendently distributed, and the processing times of each job are known only after a job is completed.

The goal is to minimize the total expected weighted completion time. We consider an approximate

continuation value from an identical scheduling problem but with a single machine that is M times

faster, where M is the number of machines in the original problem. The resulting greedy heuristic

policy schedules job in decreasing order of the ratio of a job’s weight to its expected processing time

(the “WSEPT” (Weighted Shortest Expected Processing Time first) order). Using this approximate

continuation value in the penalty, it is not hard to show that the greedy policy is nearly optimal in

the penalized perfect information problem in every sample path. The resulting bound implies that the

greedy policy is asymptotically optimal as the number of jobs grows large. The specific performance

result complements existing performance guarantees on the greedy (WSEPT) policy in the scheduling

literature, e.g., in Weiss (1990) and Möhring et al. (1999).

(iii) Sequential search for the best alternatives. We consider a variation of the sequential search problem

studied in Weitzman (1979). In this problem, a DM sequentially searches a given set of alternatives with

unknown rewards, drawn from independent distributions. Search is costly but reveals the rewards of

an alternative. The DM can select previously revealed alternatives and collect the associated rewards.

Weitzman (1979) studies the case when at most one alternative can be selected, and characterizes

the optimal policy in terms of a simple reservation price rule. We study a variation in which the

DM has the capacity to select multiple alternatives, which significantly complicates the problem. We

use an approximate continuation value based on a model with an infinite number of alternatives; the

resulting greedy policy is a simple reservation price rule, with reservation prices depending only on

the remaining capacity. Using this approximate continuation value in the penalty, we can show that

in the penalized perfect information problem the value of each unit of capacity is no larger than the

corresponding reservation price in each sample path. This allows us to conclude that the greedy policy

is asymptotically optimal as the number of alternatives grows large.

As we demonstrate in all three problems, the penalty is essential for obtaining a good bound. In each

problem, we provide a simple example that is easy to solve in closed form, but the perfect information bound

is weak. For example in the stochastic knapsack problem, the perfect information problem involves revealing

all item sizes prior to any item selection decisions, and the DM can avoid inserting items with large realized

sizes. In Section 3 we reproduce a convincing example from Dean et al. (2008) for which these bounds can

be arbitrarily weak. With the inclusion of the penalty we consider, however, we recover a tight bound.

The approach does not circumvent the need for problem-specific insights and some problem-specific anal-

ysis (e.g., in determining the approximate continuation value). We view this as typical of most approximation

schemes used to obtain policies and bounds. For example, in the approximate linear programming approach

to dynamic programming (e.g., de Farias and Roy 2003) one needs to specify appropriate basis functions.
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Similarly, in applying Lagrangian duality to analyze DPs (e.g., Adelman and Mersereau 2008) one needs

to specify the Lagrange multipliers. A potentially attractive feature of our approach, however, is that the

penalized perfect information problem and the heuristic policy are explicitly linked in a way that can be

directly applied to many other problems.

The rest of the paper is organized as follows. Section 1.1 reviews some related work. Section 2 develops

the general theory related to information relaxation duality and provides an overview of the approach. We

study the stochastic knapsack problem in Section 3, the stochastic scheduling problem in Section 4, and the

sequential search problem in Section 5. Each of these sections follows the general theory in Section 2 in self-

contained fashion: in each section we begin by describing the problem and the perfect information bound,

and we then discuss the penalized perfect information bound and present our performance analysis. Section 6

concludes. Most proofs are in Appendix A. Appendices B, C, and D (online) present some extensions.

1.1 Literature Review

In this section we discuss the connection of our work to several streams of literature. First, our paper

naturally relates to the literature on information relaxations. BSS (2010) draw inspiration from a stream of

papers on “martingale duality methods” aimed at calculating upper bounds on the price of high-dimensional,

American options, tracing back to independent developments by Haugh and Kogan (2004) and Rogers (2002).

Rogers (2007) independently developed similar ideas as in BSS (2010) for perfect information relaxations of

MDPs using change of measure techniques.

In terms of applications of information relaxations, there are many other applications to options pricing

problems (Andersen and Broadie, 2004; BSS (2010); Desai et al., 2012); inventory management problems

(BSS (2010); Brown and Smith, 2014); valuation of natural gas storage (Lai et al., 2010; Nadarajah et al.,

2015); integrated models of procurement, processing, and commodity trading (Devalkar et al., 2011); dynamic

portfolio optimization (Brown and Smith, 2011; Haugh et al., 2016); linear-quadratic control with constraints

(Haugh and Lim, 2012); network revenue management problems (Brown and Smith, 2014); and multiclass

queueing systems (Brown and Haugh, 2017). Of central concern in these papers is computational tractability:

the goal is to use an information relaxation and penalty that render the upper bounds sufficiently easy to

compute. A recurring theme in these papers is that relatively easy-to-compute policies are often nearly

optimal, and the bounds computed from information relaxations are essential in showing this. This line

of work has focused on computing numerical bounds for specific problem instances; our focus is on using

information relaxations to derive analytical guarantees on the performance of heuristic policies.

Perfect information bounds (without penalty) have been successfully used in theoretically analyzing
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heuristic policies in several applications in operations research and computer science, and are often referred

to as “hindsight bounds” or “offline optimal bounds.” Talluri and van Ryzin (1998) show that static bid-price

policies are asymptotically optimal in network revenue management when capacities and the length of the

horizon are large; they provide various upper bounds on the performance of the optimal policy, including

perfect information bounds. Feldman et al. (2010) study the online stochastic packing problem in the setting

where the underlying probabilistic model is unknown and show that a training based primal-dual heuristic is

asymptotically optimal when the number of items and capacities are large; they use the perfect information

bound as a benchmark. Manshadi et al. (2012) study the same problem when the underlying probability

distributions are known by the decision maker and present an algorithm that achieves at least 0.702 of the

perfect information bound. Garg et al. (2008) study the stochastic Steiner tree problem where each demand

vertex is drawn independently from some distribution and show that greedy policy is nearly optimal relative

to the perfect information bound. Similarly, Grandoni et al. (2008) study stochastic variants of set cover

and facility locations problems, and show that suitably defined greedy policies perform well with respect to

the expected cost with perfect information. Finally, in computer science there is a large body of work on

competitive analysis, which revolves around studying the performance of online algorithms relative to the

performance of an optimal “offline” algorithm that knows the entire input in advance. In this line of work

there is no underlying probabilistic model for the inputs and instead performance is measured relative to

the offline optimum in the worst-case (see, e.g., Borodin and El-Yaniv (1998) for a comprehensive review).

The knapsack problem has a rich history in operations research, with various applications in areas such

as finance, advertising, transportation, revenue management and scheduling (Martello and Toth, 1990). The

version of the stochastic knapsack problem we study was introduced by Dean et al. (2008), although variants

of this problem have been studied earlier. For example, Papstavrou et al. (1996) study a version in which

items arrive stochastically and in “take-it-or-leave-it” fashion; Dean et al. (2008) provide an overview of

earlier work. Dean et al. (2008) study both nonadaptive policies and adaptive policies for the problem, and

show that the loss for restricting attention to nonadaptive policies is at most a factor of four. In addition,

they provide sophisticated linear programming bounds based on polymatroid optimization. The nonadaptive

policy they consider is a greedy policy that inserts item in decreasing order of the ratio of value to expected

size. When item sizes are small relative to capacity, Dean et al. (2008) show that the greedy policy performs

within a factor of two of the optimal policy. Derman et al. (1978) show that the greedy policy is optimal in

the case of exponentially distributed sizes for a “covering” variation of the problem (we discuss this variation

in Section 3.5). Blado et al. (2016) develop approximate dynamic programming bounds for this problem and

in extensive numerical experiments find that the greedy policy often performs well, especially for examples

with many items. In subsequent work, Blado and Toriello (2016) establish some asymptotic optimality results
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for the greedy policy using a different approach involving approximate linear programming relaxations.

Stochastic scheduling is a fundamental problem in operations research with a vast literature, which we do

not attempt to review here; see Pinedo (2012) for a comprehensive review. Weiss (1990) originally established

the optimality gap of the WSEPT policy for scheduling on parallel machines and proved that this policy

is asymptotically optimal under mild conditions. Möhring et al. (1999) study polyhedral relaxations of the

performance space of stochastic parallel machine scheduling, and provide bounds on the performance of the

WSEPT policy. The result we present in Section 4 is closest to a result in Weiss (1990); in Appendix C,

we provide an alternative and novel proof of the result in Möhring et al. (1999) using penalized perfect

information bounds.

Finally, there is a long literature on sequential search problems, with many applications. The model

we study is similar to that in Weitzman (1979), who describes the problem in terms of opening “boxes”

with a priori unknown rewards and derives an optimal policy. Weitzman calls this reservation price policy

“Pandora’s Rule.” The optimal reservation price rule in Weitzman (1979) is essentially equivalent to a

Gittins index (Gittins and Jones, 1974) policy. Many variations of this problem have been studied, but

it appears that “Pandora’s Rule does not ready generalize” (Weitzman, 1979, pp. 650) in many natural

extensions of the problem. With the ability to select only one alternative (“box”), the problem reduces to

a stopping problem; when the DM can select multiple alternatives, the DM may intermittently recall past

alternatives as opportunities for finding better alternatives dwindle, and optimal policies may need to track

previous search results as part the problem state. The ability to select multiple alternatives also appears to

significantly complicate other versions of sequential search problems - for example, Vanderbei (1980) studies

a version of the secretary problem with the goal of selecting a best subset of the search population.

2 General theory

In describing the basic results related to information relaxations, we will work with a general Markov decision

process (MDP) formulation. We consider a discrete-time, finite-horizon MDP with T periods and decision

periods denoted by t = 1, . . . , T . We let xt denote the MDP state at time t. In each period, a DM must

choose an action a from a set At(xt). After an action at ∈ At(xt) is selected, a random variable εt is realized,

the DM collects reward rt(xt, at, εt), and the state transitions according to xt+1 = χt(xt, at, εt), where the

εt are independent random variables. Feasible policies in this primal DP must be nonanticipative, meaning

the actions selected in period t must be measurable functions of the past actions and states. We will restrict

feasible policies to be deterministic and Markovian and we use α = (αt)
T
t=1 to denote a feasible policy, i.e.,

α is a sequence of deterministic functions αt that map from a state xt to an action in At(xt) for all t and
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xt. We let A denote the set of feasible Markovian policies. For any policy α ∈ A, we denote the expected

performance of the policy by V α , E [r(α)], where r(α) ,
∑T
t=1 rt(xt, αt(xt), εt). The DM’s goal is to select

a feasible policy that maximizes the expected value of the total reward.

We let V ∗ denote the optimal value, and assume there exists at least one feasible policy α ∈ A attaining

V ∗. We can write the primal DP succinctly as

V ∗ = max
α∈A

E [r(α)] . (1)

Under a variety of standard conditions (see, e.g., Puterman 1994), it is well-known that we can equivalently

write (1) as a recursion over value functions; we take V ∗T+1 = 0, and

V ∗t (xt) = max
a∈At(xt)

Eεt
[
rt(xt, a, εt) + V ∗t+1(χt(xt, a, εt))

]
, (2)

with V ∗ = V ∗1 (x1) in the initial state x1. We let Q∗t (x, a, ε) , rt(x, a, ε)+V ∗t+1(χt(x, a, ε)) denote the optimal

continuation value in period t when the current state is x, the action taken is a and the ensuing realized

uncertainty is ε. Equation (2) implies that an optimal action α∗t (xt) should be “greedy” with respect to the

expected value of Qt; specifically, an optimal policy selects actions according to

α∗t (xt) ∈ arg max
at∈At(xt)

Eεt [Q∗t (xt, at, εt)] .

The function Eεt [Q∗t (xt, at, εt)] depends on the state-action pair (xt, at) and is often referred to as the “Q-

factor” in the approximate dynamic programming and reinforcement learning literature (see, e.g., Bertsekas

2000, section 6.4). We modify this definition to also include the uncertainties εt, as these values will be

revealed in the information relaxations.

All of the heuristic policies we study can be interpreted as policies that are “greedy” with respect to a

given approximation of the optimal continuation value. In particular, given an approximation Qt(x, a, ε) of

the optimal continuation value, the heuristic policies select actions according to

αt(xt) ∈ arg max
at∈At(xt)

Eεt [Qt(xt, at, εt)] . (3)

2.1 Duality results

We will work exclusively with the perfect information relaxation, in which all uncertainties are revealed prior

to making decisions. This relaxation can be viewed as one in which all nonanticipativity constraints are
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removed; BSS (2010) consider more general information relaxations that correspond to partial relaxations

of the nonanticipativity constraints.

Formally, we consider a relaxed DP in which the sequence (εt)
T
t=1 is revealed to the DM prior to making

any decisions. Letting ε , (ε1, . . . , εT ), a , (a1, . . . , aT ), and A(ε) , {a : at ∈ At(xt) for all t}, we can

write the perfect information problem given ε as a deterministic optimization problem:

V P(ε) = sup
a∈A(ε)

T∑
t=1

rt(xt, at, εt) , (4)

where states evolve as xt+1 = χt(xt, at, εt). Since selecting actions according to any feasible, nonanticipative

policy is feasible in (4), the perfect information problem provides an upper bound on V ∗ in expectation, i.e.,

V ∗ ≤ Eε [V P(ε)].

Unfortunately, this perfect information upper bound is often quite weak: absent any penalty for the ad-

ditional information, the DM with perfect information may obtain an expected reward much larger than V ∗.

In the problems we study our goal is to show that a simple, heuristic policy performs well in some asymptotic

limit, and we show with explicit examples that the perfect information bound is not an asymptotically tight

bound in each of these problems.

Following BSS (2010), we therefore consider including a penalty that attempts to compensate for the

benefit of the additional information. Like rewards, the penalty is an action-dependent random variable

z(a) ,
∑T
t=1 zt(xt, at, εt) for some sequence of period-t penalty functions (zt)

T
t=1. We say a penalty is dual

feasible if E [z(α)] = 0 for all α ∈ A, i.e., a dual feasible penalty “charges” zero expected penalty for any

nonanticipative policy. The penalty may, however, charge positive expected penalty to policies that “cheat”

by violating the nonanticipativity constraints.

We will use the following version of the “weak duality” result from BSS (2010) to generate performance

bounds on the primal DP. In what follows, we let V αz (ε) =
∑T
t=1 rt(xt, αt(xt), εt)− zt(xt, αt(xt), εt), i.e., the

penalized performance of a given feasible policy α ∈ A; for a dual feasible penalty z, we have E[z(α)] = 0

and hence Eε[V αz (ε)] = V α.

Proposition 2.1 (Weak duality). For any α ∈ A and any dual feasible penalty z,

V α ≤ Eε [V P

z (ε)] , V P

z , (5)

where V P
z (ε) , supa∈A(ε) {r(a)− z(a)}. In particular, we have V ∗ − V α ≤ Eε[V P

z (ε)− V αz (ε)].

Proof. We have V α = E [r(α)] = E [r(α)− z(α)] ≤ Eε

[
sup

a∈A(ε)

{r(a)− z(a)}
]

= V P
z , where the second

equality follows by feasibility of α and dual feasibility of the penalty and the inequality follows by the fact
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that the actions selected by α are feasible in every sample path ε. The last statement follows since V ∗ ≤ V P
z

(take α to be an optimal policy in A with V α = V ∗), and Eε[V αz (ε)] = V α again by dual feasibility of z.

Taking α to be an optimal, nonanticipative policy, Proposition 2.1 implies V ∗ ≤ V P
z for any dual feasible

penalty z. We can think of the upper bound V P
z in terms of Monte Carlo simulation: we randomly simulate

sample paths ε, solve the deterministic “inner problem” V P
z (ε) = max

a∈A(ε)
{r(a) − z(a)} given ε, and average

the resulting optimal values. (In everything that follows, we will assume the sup in (5) is almost surely

attained, justifying the use max in place of sup; this will hold in all of our examples.)

In our analysis of heuristic policies, we will compare the value V P
z (ε) of the penalized perfect information

problem to the value of the heuristic policy in every sample path. To facilitate this comparison, we include

the penalty in the performance of the policy; this does not affect the expected reward of the policy. The

last part of Proposition 2.1 states that the expected value of Eε[V P
z (ε) − V αz (ε)] is an upper bound on the

suboptimality of the policy. The goal in a given problem to show that this upper bound is sufficiently small.

We will use the approximate continuation value Qt that generates the greedy heuristic policy to generate

penalties as well. Specifically, we will use penalties of the form

zt(xt, at, εt) = Qt(xt, at, εt)− Eε̃t [Qt(xt, at, ε̃t)] , (6)

where Qt is the approximation used in (3) for selecting actions in the heuristic policy. By applying the law

of iterated expectations, we see for any α ∈ A, that Eεt [zt(xt, αt(xt), εt)] = 0 for each time period t and

state xt, and hence the penalty from (6) is dual feasible.

Intuitively, the goal of the penalty is to cancel the benefit of perfect information. By taking Qt = Q∗t ,

where Q∗t (x, a, ε) = rt(x, a, ε) + V ∗t+1(χt(x, a, ε)), the penalty in (6) perfectly cancels the benefit of perfect

information, and the optimal value of the penalized perfect information problem in (5) equals V ∗ in every

sample path. To see this, fix a sample path ε, and fix the actions a ∈ A(ε) and states to be optimal actions

and states for the penalized perfect information problem given the sample path. We have

V P

z (ε) = r(a)− z(a) =

T∑
t=1

rt(xt, at, εt) + Eε̃t [Q∗t (xt, at, ε̃t)]−Q∗t (xt, at, εt)

≤
T∑
t=1

V ∗t (xt)− V ∗t+1(xt+1) = V ∗1 (x1)− V ∗T+1 = V ∗ ,

where the inequality follows from the definition of Q∗t , using that V ∗t (xt) = max
a∈At(xt)

Eε̃t [Q∗t (xt, a, ε̃t)] from (2),

and xt+1 = χt(xt, at, εt). Because the actions of an optimal policy α∗t (x
∗
t ), where x∗t is the state induced by

α∗t , are feasible for the penalized perfect information, by a similar argument it follows that V ∗ ≤ V P
z (ε). This
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implies that strong duality holds and that the optimal value of the penalized perfect information problem

equals V ∗ in every sample path.

Overview of approach. As just discussed, we can in principle obtain a tight bound using the “ideal penalty”

based on the optimal continuation value Q∗t . This does not directly help us in problems with large state

spaces, where Q∗t is difficult to determine. Nonetheless, the strong duality result just discussed is suggestive:

a good approximation to the optimal continuation value Q∗t will lead to both a good policy and a good

penalty, and the penalized performance of the policy will be close to the penalized perfect information value

in every sample path.

Our approach works as follows:

1. Design an approximation Qt(x, a, ε) to the optimal continuation value. This determines a heuristic

policy α using equation (3) and a penalty z using equation (6).

2. Establish an error bound ∆(ε) such that for every sample path ε:

V P

z (ε)− V αz (ε) ≤ ∆(ε) . (7)

3. Taking expectations, using Proposition 2.1, and denoting ∆ = Eε[∆(ε)], we obtain

V ∗ − V α ≤ V P

z − V α ≤ ∆ .

A given approximation Qt leads to both a policy and a performance bound, and the task then reduces to

deterministic analysis to obtain a bound on the gap in (7) in each sample path. What constitutes a “good”

value of ∆ depends on the goals of the analysis; in the problems we study, we seek an error bound ∆ that is

(relatively) small in some asymptotic regime of interest, which allows us to conclude that α is asymptotically

optimal in this limit.

3 Stochastic knapsack problem

We consider the version of the stochastic knapsack problem studied in Dean et al. (2008). There is a set

of items, indexed by i ∈ I = {1, . . . , I}, available to be inserted into a knapsack of initial capacity κ. Item

i ∈ I has a deterministic value denoted by vi ≥ 0 and a stochastic size denoted by si ≥ 0. The sizes are

independent random variables with known, arbitrary distributions. The actual size of an item is unknown

until the item is selected for insertion. Random values can be easily accommodated, provided values are

independent and independent of sizes, by replacing each random value with its expectation.
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At each decision epoch, the DM selects an item i and attempts to insert it into the knapsack. After that,

the size si of item i is revealed, and a value of vi is obtained if i is successfully inserted, i.e., if si is no larger

than the remaining capacity. The DM repeatedly selects items for insertion until the capacity overflows.

At that moment, the problem ends and the value of the overflowing item is not collected. The goal is to

maximize the expected value of all items successfully inserted into the knapsack.

A feasible policy α ∈ A is a mapping that determines the next item α(S, c) to attempt to insert into the

knapsack given the set of remaining items S ⊆ I and the remaining knapsack capacity c ∈ [0, κ]. We denote

the decision epochs by t = 1, . . . , I. For a given α ∈ A, we let Sαt denote the items available for insertion

at the beginning of time t, and cαt denote the knapsack’s remaining capacity. To simplify the notation,

we let αt = α(Sαt , cαt ) denote the item to be inserted at time t under policy α. The initial conditions are

Sα1 = I and cα1 = κ. At time t, item αt = α(St, ct) is selected for insertion, and the state is updated as

Sαt+1 = Sαt \ {αt} and cαt+1 = cαt − sαt . If the item fits into the knapsack, i.e. if cαt+1 ≥ 0, the value of vαt is

collected. Otherwise, the problem ends.

We let τα = inf{t ≥ 1 : cαt+1 < 0} denote the stopping time corresponding to the first time capacity

overflows. We can then write the problem as:

V ∗ = max
α∈A

E

I∧(τα−1)∑
t=1

vαt

 .
3.1 Approximate continuation value and greedy policy

We let Qt(c, i, si) denote the approximate continuation value in period t when the remaining knapsack

capacity is c and item i with unknown size si is selected for insertion. We use the approximation:

Qt(c, i, si) = vi + ri(c− si) . (8)

In (8), we use a simple linear approximation for the value of remaining capacity. We consider the specific

choice ri , vi/E[si], i.e., the ratio of the selected item’s value to its expected size; this approximation

naively assumes the currently selected item i appropriately captures the marginal value of remaining capacity,

irrespective of the subset S of remaining items. Because the expected continuation value is Esi [Qt(c, i, si)] =

vi/(E[si])c, equation (3) implies that the greedy policy induced by (8) sorts the items in decreasing order of

ri and inserts items in this order until the knapsack overflows or no items remain.1 Without loss of generality

1Dean et al. (2008) considers an alternate policy that sorts items according to wi/µi where wi = viP{si ≤ κ} denotes the
effective value of item i and µi = E[min{si, κ}] denotes the mean truncated size of item i. This takes into account the fact that
in the event that si > κ, the actual realization of the size is irrelevant because item i certainly overflows the knapsack, and
the DM will never collect the item’s value in this case. In Appendix B we show that our results extend to this effective value
formulation.
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we assume that items are sorted in decreasing order of this ratio, i.e., r1 ≥ r2 ≥ . . . ≥ rI . The expected

performance of the greedy policy is given by

V G = E

I∧(τG−1)∑
t=1

vt

 ,
where τG is the first time that capacity overflows under the greedy policy.

Dean et al. (2008) show that a randomized variant of the greedy policy performs within a factor of 7/32

of the optimal value. It is possible to find simple examples where the greedy policy can perform arbitrary

poorly (see, e.g., a deterministic example of this with I = 2 in §4 of Dean et al. 2008). In general, the greedy

policy performs poorly, even in deterministic examples, when sizes are large relative to capacity: since we

cannot add fractional amounts of items, the ratio of value to size may not be a good proxy for the marginal

value of adding an item.

On the other hand, we might expect the greedy policy to perform well when sizes are small relative to

capacity: with many small items, the problem “smoothes” in a certain sense. We can gain intuition for this

from the deterministic case by considering the LP relaxation of the problem that allows the DM to insert

fractional items. Since the greedy ordering is optimal in the LP relaxation, in the deterministic case we have

V ∗ − V G ≤ V LP − V G ≤ max
i=1,...,I

vi , (9)

where V LP is the optimal objective value of the LP relaxation. In (9), the gap in the last inequality arises

from potential lost value of an overflowing item, which can be included fractionally in the LP relaxation,

but cannot be included by the greedy policy. If we then consider scaling the problem so that capacity

increases by an integer factor θ ≥ 1 and we make θ copies of all items, we conclude from (9) that the relative

suboptimality of the greedy policy goes to zero as θ gets larger. In this sense, in the deterministic problem,

the greedy policy performs well as we consider problems with many items that are small relative to capacity.

We will derive a result analogous to (9) for the stochastic version of the problem where the decision maker

optimizes over all possible nonanticipative policies. The result will then allow us to analyze the performance

of the greedy policy as the number of items grows large - and the problem is thus increasingly difficult to

solve - under certain conditions on the capacity, values, and the distributions of sizes.

3.2 Perfect information bound

Consider a clairvoyant with access to all future realizations of the sizes s = (si)
I
i=1 before selecting any

items. Given a sample path s ∈ RI+, we let V P(s) denote the optimal (deterministic) value for sample path s
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with perfect information about sizes. The expected value V P = Es[V
P(s)] is an upper bound for the optimal

performance, i.e., V ∗ ≤ V P. The perfect information problem is equivalent to the deterministic knapsack

problem

V P(s) = max
x∈{0,1}I

{
I∑
i=1

vixi :

I∑
i=1

sixi ≤ κ

}
,

where xi ∈ {0, 1} indicates whether item i is included in the knapsack.

Unfortunately, the perfect information bound may be quite loose: by knowing the realizations of all sizes

in advance, the DM can avoid inserting potentially large items. Dean et al. (2008) demonstrate this with

the following example: consider the case when all items are symmetric with value one, and each item’s size

is either 0 or κ + ε (for some ε > 0) with probability 1/2. Since the items are symmetric, the problem is

trivial and it is easy to show that V G = V ∗ = 1− (1/2)I ≤ 1. On the other hand, in the perfect information

problem, it is optimal to select every item with a realized size of zero. Since this occurs with probability 1/2

for each item, and items are independent, this leads to the very poor upper bound of V P = I/2.

3.3 Penalized perfect information bound

To improve the upper bound, we impose a penalty that punishes violations of the nonanticipativity con-

straints. Equation (6) implies that the period-t penalty induced by (8) is zt(c, i, si) = ri(E[si]−si). Denoting

by at the item to be inserted at time t, we obtain that the total penalty is given by

z(a) =

I∧τα∑
t=1

rat(E[sat ]− sat) .

Note that we include the penalty terms until τα, i.e., until it is known that an overflow has occurred. This

is required to ensure dual feasibility of the penalty: for any feasible policy α ∈ A, τα is a stopping time, but

τα − 1 is not.

We let V P
z (s) denote the optimal (deterministic) value of the penalized perfect information problem for

sample path s ∈ RI+. From Proposition 2.1, we obtain an upper bound V ∗ ≤ V P
z , where V P

z = Es[V
P
z (s)]

denotes the penalized perfect information bound. In Appendix A.1 we discuss how to calculate V P
z (s) by

solving an integer program with additional variables representing which item, if any, overflows the knapsack.

Recall that the DM with perfect information may “cheat” by selecting items with low realized sizes. The

penalty creates an incentive for the DM with perfect information to resist selecting items with realized sizes

that are small relative to their expected sizes: the penalized value of selecting item i becomes vi + ri(si −

E[si]) = risi. Thus, in the penalized perfect information problem, the DM may “cheat” and select items
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with low realized sizes, but will also receive less value for doing so.

It is instructive to see how this works on the example from Dean et al. (2008) as discussed in Section 3.2,

with I symmetric items of value one and sizes that are either 0 or κ + ε with probability 1/2. Recall that

a greedy policy is (trivially) optimal and the optimal value is V ∗ = 1− (1/2)I , but the perfect information

problem leads to the poor bound of V P = I/2. In the penalized perfect information problem, the value for

selecting an item is risi, which is 0 if si = 0 and 2 if si = κ + ε: in particular, any items with realized

sizes of zero provide zero value as well. Moreover, we can select at most one item with realized positive

size of κ + ε - in particular, an item that overflows the knapsack. Because the penalty for the item that

overflows the knapsack equals 1, we obtain V P
z (s) = 1 if si > 0 for any i, and V P

z (s) = 0 otherwise. Because

P{si = 0 ∀ i} = (1/2)I , the penalized perfect information bound then is

V P

z = 1− (1/2)I = V ∗,

i.e., we recover a tight bound for all values of I.

In general, the penalty aligns the perfect information problem with the greedy policy in that it is “nearly”

optimal for the perfect information policy to select items according to the greedy ordering. The “nearly”

involves quantifying the slack in the upper bound due to value collected from an overflowing item, analogous

to the analysis of LP relaxations in the deterministic case in (9).

3.4 Performance analysis

We now formalize the above discussion in the general case. We show that the greedy policy incurs a small

loss in value compared to the optimal policy when the scale of the problem increases, and in particular,

that the greedy policy is asymptotically optimal under conditions that we make precise. Let V G
z (s) =∑I∧(τG−1)

i=1 vi +
∑I∧τG

i=1 ri(si − E[si]) denote the penalized performance of the greedy policy under sample

path s and x+ = max(x, 0) for x ∈ R. The following result compares, for every sample path, the penalized

performance of the greedy policy to the performance of the penalized perfect information problem.

Proposition 3.1. For every sample path s, the penalized performance of the greedy policy satisfies:

V P

z (s)− V G

z (s) ≤ max
i∈I

vi + max
i∈I

ri(si − E[si])
+ . (10)

We prove (10) by relating the optimal value of the penalized perfect information problem V P
z (s) to the

penalized performance of the greedy policy V G
z (s). Recall that with the penalty, the values for selecting items

with low realized sizes are adjusted downwards and thus the DM with perfect information has less incentive
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to “cheat” by selecting items with low realized sizes. The DM with perfect information, however, can still

“cheat” by choosing a large item to overflow the knapsack since it receives the value of the overflowing

item. We handle this issue by decomposing the penalized perfect information problem into (i) a traditional

deterministic knapsack problem and (ii) another problem in which the DM can choose any item as a candidate

to overflow the knapsack regardless of whether this item actually leads to the overflow. In the LP relaxation

of the first problem the greedy policy is optimal and a loss of at most maxi vi is incurred because the last

item can be included fractionally in the LP relaxation but cannot be included by the greedy policy. This

leads to the first loss term in (10). In the second problem the DM simply chooses the item with largest

penalized value ri(si − E[si]), whenever this value is non-negative, as a candidate to overflow the knapsack,

which leads to the second loss term in (10).

Taking expectations in (10) and using the duality results of Section 2 we obtain the following guarantees

on the performance of the greedy policy.

Corollary 3.2. The performance of the greedy policy satisfies:

(i) Performance guarantee.

V ∗ − V G ≤ V P

z − V G ≤ max
i
vi + E

[
max
i∈I

ri(si − E[si])
+

]
. (11)

(ii) Asymptotic optimality. If lim
I→∞

1
κE [maxi risi] = 0, then

lim
I→∞

1

κ
(V ∗ − V G) = 0 . (12)

Corollary 3.2 shows that the greedy policy is asymptotically optimal when the expected maximum penal-

ized value risi grows more slowly than the capacity of the knapsack; this, in turn, limits the value the penal-

ized perfect information DM can obtain by overflowing the knapsack (the asymptotic regime allows the ca-

pacity κ to scale with the number of items I).2 Note that asymptotic optimality requires 1
κE [maxi risi]→ 0:

this follows from the fact that maxi vi ≤ E[maxi risi] and (si − E[si])
+ ≤ si, as we show in the proof of

the result. The condition given in Corollary 3.2(ii), while general, may be difficult to verify directly. The

next result provides more easily verifiable sufficient conditions for asymptotic optimality. We say an is little

omega of bn or an = ω(bn) if limn=∞ an/bn =∞, that is, an grows asymptotically faster than bn.

Corollary 3.3. Suppose that ri ≤ r̄ for some r̄ <∞ independent of I. Then (12) holds if:

(a) Sizes are uniformly bounded, that is, si ≤ s̄ <∞, and capacity scales as κ = ω(1).

2We present the asymptotic optimality result in absolute form as is customary in the operations research and regret-based
learning literature. It is not hard to derive similar results in relative form by providing a lower bound on the performance of
the greedy policy in terms of the problem parameters. Relative bounds are common in the approximation algorithm literature.
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(b) Sizes have uniformly bounded p > 1 moments, that is, E[spi ] ≤ m < ∞, and capacity scales as κ =

ω(I1/p).

(b) Sizes are uniformly sub-Gaussian, that is, there exist a, b > 0 such that P{si > x} ≤ a exp(−bx2) for

all x ≥ 0, and capacity scales as κ = ω(
√

log I).

Intuitively, the growth of the maximum penalized value maxi risi is governed to a large extent by the

tails of the distributions of sizes. When items are symmetric, roughly speaking, we have that E[maxi si] ≈

F−1(I/(I + 1)) where F is the cumulative distribution function of sizes, and thus we need capacity to grow

at least as F−1(I/(I + 1)) for (12) to hold. Corollary 3.3 makes this intuition precise and provides the

necessary growth rate of capacity for different families of distributions. When sizes are uniformly bounded

(e.g., uniform or Bernoulli), the penalized values are trivially bounded and it suffices that capacity grow

unbounded at any rate. When sizes have p-moments, it suffices that capacity grow at a power-law rate.

When sizes are sub-Gaussian, it suffices that capacity grow at a logarithmic rate.

3.5 Stochastic covering variation

We consider a variation of the stochastic knapsack problem in which a DM needs to select components to

cover certain requirement at minimum cost.3 Following Derman et al. (1978), we consider an application

to equipment maintenance in which a system, requiring a certain component to function, must operate for

a fixed amount of time. The component needs to be replaced each time it fails. There is a set of spare

components, indexed by i ∈ I = {1, . . . , I}, that can be used to operate the system. Component i has a

deterministic cost vi and a random operating life si. The operating lives are independent random variables

with known, arbitrary distributions. The actual operating life of a component is unknown at the time of

replacement. The goal is to minimize the expected cost of operating the system for κ units of time. As in

Derman et al. (1978), we guarantee that the problem is feasible by assuming that there is an infinite supply

of one type of component. These components are indexed by i > I and assumed to have deterministic cost

c̄ and operating life s̄. We let I+ = {1, . . .} denote the indices of all components, with indices 1, . . . , I

corresponding to the I spare components.

As above, a policy α ∈ A is a mapping that determines the next component α(S, c) to be selected

given the set of remaining spare components S ⊆ I and the remaining time c. We denote the decision

epochs by t ≥ 1. To simplify the notation, we let αt denote t-th component used under policy α. We let

τα = inf{t ≥ 1 :
∑t
j=1 sαj ≥ κ} be the total number of components required by policy α to operate the

3We thank an anonymous referee for suggesting this variation.
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system until the finish date. We can then write the problem as:4

V ∗ = min
α∈A

E

[
τα∑
t=1

vαt

]
.

Consider the approximation to the continuation value given in (8). The greedy policy induced by this

approximation sorts the components in increasing order of cost per expected life, ri , vi/E[si], and selects

components for replacement until the target time is reached. Without loss of generality we assume that

components are sorted in increasing order of this ratio. The expected performance of the greedy policy is

denoted by V G = E
[∑τG

t=1 vt

]
, where τG is the total number of components used by the greedy policy to

operate the system until the finish date.

As in the knapsack problem, the perfect information bound may be quite loose: by knowing the real-

izations of all operating lives in advance, the DM with perfect information can avoid selecting components

with short realized operating lives. To improve the lower bound, we impose a penalty that punishes viola-

tions of the nonanticipativity constraints. Equation (6) implies that the period-t penalty induced by (8) is

zt(c, i, si) = ri(E[si] − si). We let V P
z (s) denote the optimal (deterministic) value of the penalized perfect

information problem for sample path s ∈ RI+. By Proposition 2.1, we obtain a lower bound V P
z ≤ V ∗, where

V P
z = Es[V

P
z (s)] denotes the penalized perfect information bound.

Using a similar analysis as in the knapsack problem, we can compare the penalized performance of the

greedy policy, denoted by V G
z (s), to the performance of the penalized perfect information problem in every

sample path. Unlike Proposition 3.1, the bound has a single loss term because the cost of the component

used at termination counts towards the objective.

Proposition 3.4. For every sample path s, the penalized performance of the greedy policy satisfies:

V G

z (s)− V P

z (s) ≤ max
i∈I+

risi . (13)

Taking expectations in (13) and using the duality results of Section 2 we obtain the following guarantees

on the performance of the greedy policy:

V G − V ∗ ≤ V G − V P

z ≤ E
[
max
i∈I+

risi

]
.

Thus, the greedy policy is asymptotically optimal in the sense that (V G − V ∗)/κ → 0 as κ → ∞ when the

4In contrast to the knapsack problem, the cost of the component used at termination counts towards the objective. Derman
et al. (1978) considers the case with rebates, i.e., the cost of the last component used is returned. Our results can be extended
to accommodate rebates.
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expected maximum penalized cost grows more slowly than the finishing date. Because the components i > I

have deterministic operating lives, the conditions provided in Corollary 3.3 on the distributions of si for the

I spare components are sufficient to guarantee asymptotic optimality.

4 Stochastic scheduling on parallel machines

We consider the problem of scheduling a set of jobs on identical parallel machines with the objective of

minimizing the total weighted completion time when no preemptions are allowed. Job processing times

are stochastic and the processing time of each job is not fully known until a job is completed. Formally,

consider a set of jobs, indexed by j ∈ J = {1, . . . , J}, to be scheduled on M identical parallel machines. The

processing time of job j ∈ J is independent of the machine and denoted by the random variable pj . Job

processing times are assumed to be independent (but not necessarily identical) with finite means. We let Cj

denote the completion time of job j ∈ J ; that is, Cj denotes equals the waiting time until processing of j

starts plus the processing time pj of j. Each job has an associated weight wj and the objective is to minimize

the expected total weighted completion time E[
∑J
j=1 wjCj ]. Using “Graham’s notation,” the problem can

be written as PM//E[
∑
j wjCj ] (see Pinedo, 2012).

A policy α ∈ A is a sequence of mappings that determine the job to be processed, denoted by α(t,W,P, s),

at time t given the set of waiting jobs W ⊆ J , the set of jobs P ⊆ J currently in process, and the amount

of processing currently elapsed s ∈ RJ+ on each job in process. We let Wα
t ⊆ J denote the subset of jobs

waiting for service at time t and Pαt ⊆ J denote the subset of jobs under process at time t using policy α.

Denoting the time when all jobs are completed by τα = inf{t ≥ 0 :Wα
t ∪ Pαt = ∅}, the completion time of

job j ∈ J is given by Cαj =
∫ τα

0
1{j ∈ Wα

t ∪ Pαt } dt. We restrict attention to policies satisfying Eτα < ∞.

The problem can be written as

V ∗ = min
α∈A

E

 J∑
j=1

wjC
α
j

 .
Although this problem is perhaps most naturally described as a continuous time DP, we can equivalently

write the problem as a discrete time DP by discretizing all job processing time distributions; decision epochs

then correspond to possible completion times of some job. Discretization can be done with arbitrary precision

and is standard in the scheduling literature (see e.g., Skutella et al. 2016). Nonetheless, weak duality (Prop.

2.1) relies primarily on using relaxed sets of policies (by relaxing the nonanticipativity constraints) and still

leads to valid performance bounds for continuous time problems.
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4.1 WSEPT policy and single machine approximation

It is well-known (Rothkopf, 1966) that the WSEPT policy (Weighted Shortest Expected Processing Time

first) is optimal in the case of a single machine. This policy sorts the jobs in decreasing order of weight

per expected processing time rj , wj/E[pj ] and then schedules the jobs in this order without idling. With

multiple machines, this is no longer true, and it may even be optimal to idle in some states (for examples,

see Uetz, 2003). When there are many jobs relative to machines, we may nonetheless expect the policy that

schedules jobs in WSEPT order in non-idling fashion to perform well (we simply refer to this as the “WSEPT

policy”). In this regime, the system is heavily loaded, machines will nearly always be processing, and we may

expect with an optimal policy that the total processing time will be shared approximately equally across all

M machines. Thus when there are many jobs, the system behavior resembles that of the same problem but

with a single machine that is M times faster.

We consider approximations of the optimal continuation value inspired by this intuition. Assume that

jobs are sorted by decreasing order of weight per expected processing time; that is, r1 ≥ r2 ≥ . . . ≥ rJ . We

consider the following approximate continuation value when the set W ⊆ J of jobs remains to be processed

and we assign job j ∈ W at time t and its realized processing time is pj :

Qt(W, j, pj) =
1

M
wjpj +

1

M

∑
`∈W\{j}

w`

pj +
∑

k∈W\{j}, k≤`

E[pk]

 . (14)

The first term in (14) captures the weighted completion time remaining for the currently selected job j.

The second term captures the expected weighted completion time of the remaining jobs W \ {j} under the

approximation that these jobs are processed optimally by a single machine (hence the processing of these

remaining jobs by label order, which corresponds to WSEPT). We scale the processing times by 1/M to

reflect the fact that the single machine in this approximation is M times faster.

Since (14) is the optimal continuation value for a single machine problem, the heuristic policy that is

greedy with respect to (14) corresponds to the WSEPT policy; in other words, with jobs indexed according to

their WSEPT order, we have min{j ∈ W} ∈ arg min
j∈W

Ep̃j [Qt(W, j, p̃j)] (note that the greedy policy does not

consider the option of idling an available machine, which may be optimal). We let V G denote the expected

performance of this policy, i.e., V G = E[
∑J
j=1 wjC

G
j ] where CG

j denotes the completion time of job j ∈ J

under the WSEPT policy. The goal is to compare the performance V G using the WSEPT policy to the

performance V ∗ using an optimal policy.
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4.2 Perfect information bound

Consider a clairvoyant with access to all future realizations of the processing times p = (pj)
J
j=1. Given a

sample path p ∈ RJ+ we let V P(p) denote the optimal (deterministic) total weighted completion time with

perfect information. The expected value V P = Ep[V P(p)] is the perfect information bound, which in this

problem is a lower bound for the optimal performance, i.e., V P ≤ V ∗.

The perfect information bound may be loose in general because there can be substantial benefit to knowing

the realized processing times in advance. To illustrate this, we consider a simple example with one machine

and J jobs with weight one, and each jobs’s processing time is either ε or 1, each with probability 1/2. Since

the jobs are a priori identical, the problem is trivial and it is easy to show that V G = V ∗ = (1+ε)J(J+1)/4.

On the other hand, in the perfect information problem, it is optimal to first schedule every short job with

a realized processing time of ε. Let It =
∑J
j=1 1{pj = t} denote the number of jobs with processing time

t ∈ {ε, 1}, respectively. The total completion time of the short jobs is εIε(Iε + 1)/2 and the total completion

time of the long jobs is εIεI1 + I1(I1 + 1)/2. Taking expectations and using the fact that Iε + I1 = J

together with the fact that I1 is binomially distributed with J trials and success probability 1/2 since jobs

are independent, leads us to the poor lower bound of V P = J(J + 3 + ε(3J + 1))/8. For J large, this lower

bound is off from V ∗ by nearly a factor of two.

4.3 Penalized perfect information bound

With the single machine approximate continuation value given in (14), the resulting penalty according to

(6) for assigning job j at time t is given by zt(W, j, pj) = 1
M

∑
k∈W wk(E[pj ]− pj). For a given sample path

p, we let A(p) denote the set of feasible deterministic scheduling policies in the perfect information problem.

For a given feasible schedule a ∈ A(p), after rearranging sums, we can write the total penalty as

z(a) =
1

M

∑
j∈J

wj

∑
i�aj

E[pi]− pi

 ,

where we use i ≺a j to denote all jobs i preceding j using a (and i �a j to also include j itself in a

summation). We can then write the penalized perfect information problem as

V P

z (p) = min
a∈A(p)

∑
j∈J

wjC
a
j + z(a) = min

a∈A(p)

1

M

∑
j∈J

wj
∑
i�aj

E[pi] +
∑
j∈J

wj

Ca
j −

1

M

∑
i�aj

pi

 . (15)

The first term represents the expected weighted completion time when jobs are processed in the order given

by a by a single machine that is M times faster. The second term is an error term, which can be interpreted
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as the difference between the weighted completion time in the given sample path in the actual problem (i.e.,

with M machines) and the weighted completion time in the single machine approximation. If only the first

term were present in this objective, the WSEPT policy would be optimal in the penalized perfect information

problem: this follows from the fact that this term corresponds to the expected value for a single machine

scheduling problem. In fact, if we return to the one machine example in Section 4.2, the penalized perfect

information bound is tight in every sample path. In our analysis, we will effectively bound the second (i.e.,

error) term, which will allow us to conclude under mild conditions that the WSEPT policy is asymptotically

optimal in the regime of many jobs.

4.4 Performance analysis

We let V G
z (p) denote the penalized value of the greedy policy given sample path p; following the discussion

in Section 2.1 we have Ep[V G
z (p)] = V G. Using the penalty described above leads us to the following result.

Proposition 4.1. For every sample path p, the WSEPT policy satisfies:

V G

z (p)− V P

z (p) ≤
(
M − 1

M

)∑
j∈J

wj max
i∈J

pi . (16)

We show (16) by bounding from below the second term in the penalized perfect information objective in

(15). We do this by using a known fact from deterministic scheduling: for any perfect information scheduling

policy a ∈ A(p), the start time Sa
j for any job j must satisfy Sa

j ≥ (1/M)
∑
i≺aj

pi− (M − 1)/M ·max
i∈J

pi. This

leads to a lower bound on the second term in (15) that is independent of a; the result then follows from the

fact that the WSEPT policy is optimal for the first term in (15) in isolation.

If we consider a scaling of the number of jobs J where job weights and expected processing times are

bounded away from zero, then the optimal cost V ∗ scales quadratically with J . Under mild conditions,

the gap implied by Proposition 4.1 grows slower than quadratically in J ; for example, if job weights are

uniformly bounded and processing times are bounded, then the gap implied by Proposition 4.1 is linear in

J , which implies that the WSEPT policy is asymptotically optimal as J grows large.

Taking expectations of (16) and using Proposition 2.1 leads to the following.

Corollary 4.2. The performance of the WSEPT policy satisfies:

(i) Performance guarantee.

V G − V ∗ ≤ V G − V P

z ≤
(
M − 1

M

)∑
j∈J

wjE
[
max
i∈J

pi

]
. (17)
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(ii) Asymptotic optimality. If weights are uniformly bounded, that is, wj ≤ w̄ for some w̄ <∞ independent

of the number of jobs J and limJ→∞
1
JE [maxj∈J pj ] = 0, then

lim
J→∞

1

J2
(V G − V ∗) = 0 . (18)

As with the stochastic knapsack problem, we can state conditions on the processing time distributions

similar to those in Corollary 3.3 that would ensure that limJ→∞
1
JE [maxj∈J pj ] = 0 (e.g., this condition

holds provided the mean and variance of the processing times are uniformly bounded). Note that in the

case of M = 1, Corollary 4.2(i) shows that WSEPT is optimal and the penalized perfect information bound

is tight (in every sample path, according to Proposition 4.1). Following the discussion on strong duality

in Section 2.1, this is to be expected: with M = 1 the continuation value (14) is optimal, and hence the

resulting penalty is ideal.

Proposition 3.1 of Weiss (1990) is similar to (17), but (17) is stronger by a factor of two. Using a different

approach involving valid inequalities for the performance space of all feasible scheduling policies, Möhring

et al. (1999) show that the WSEPT policy satisfies:

V G − V ∗ ≤ (M − 1)(1 + ρ)

2M

∑
j∈J

wjE[pj ] , (19)

where ρ is an upper bound on the squared coefficient of variation of job processing times. We show in

the Appendix C that we can also establish (19) using penalized perfect information analysis, albeit with a

different penalty. Although (19) is a tighter bound than (17) in many cases, this is not always true. For

example, when jobs are identical and processing times are Bernoulli with probability q, (17) is tighter than

(19) whenever q ≤ 1− (1/2)1/J .

5 Sequential search for the best alternatives

We consider a variation of the sequential search problem studied by Weitzman (1979). In this problem, a

DM - e.g., a firm wanting to hire new employees or an investor considering real estate options - sequentially

explores a given set of alternatives in an effort to find the most valuable ones. Exploration is costly but

provides information about the value of an alternative. The DM can either stop the search and select a

previously explored alternative or continue searching. The model considered in Weitzman (1979) assumes

the DM can only accept a single alternative. In many applications of this basic model the DM may in fact

may have the ability to accept multiple alternatives, e.g., firms may wish to hire several employees from a

batch of applicants; we consider this variation.
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We formally describe the model with a finite number N of a priori identical alternatives. Associated with

each alternative is an unknown reward; we let rn denote the random reward associated with alternative n,

and assume that rewards are nonnegative, independent, and identically distributed with finite mean. At the

beginning of each time period, the DM can pay a search cost s ≥ 0 to explore an alternative, which reveals the

alternative’s reward. At the end of each time period, the DM can select any available (i.e., previously explored

but not yet selected) alternatives, thereby collecting their associated rewards. Rewards are discounted in

each period according to a discount factor δ ∈ (0, 1]. The DM may explore as many alternatives as desired,

but due to capacity limitations, can select at most K alternatives in total. The problem ends when K

alternatives have been selected or the DM stops exploring (due to choice, or because no capacity remains

or all N alternatives have been explored). To avoid trivialities we assume that δEr[r] ≥ s, as otherwise the

DM has no incentive to explore any alternatives. The goal is to maximize the expected discounted reward,

net of search costs, associated with selecting alternatives.

We denote decision epochs by t = 1, . . . , N . There are two decisions per time period: (i) at the beginning

of the period, whether to explore another alternative or stop the search and (ii) at the end of the period,

which available alternatives, if any, to select. A feasible policy α ∈ A is given by a sequence of functions

(αE
t )Nt=1 and (αS

t )
N
t=1, each taking as input the remaining capacity k and the set of rewards R associated

with available alternatives. The function αE
t maps to {EXPLORE, STOP}, indicating whether the DM explores

another alternative or stops the search at the beginning of period t. The function αS
t maps to a set S ⊆ R,

where |S| ≤ k, of available rewards to select at the end of period t < N ; we assume αS

N maps to a set S

such that |S| = k, since any optimal policy would use any remaining capacity to select the highest remaining

rewards at the end of the horizon.

For a given α ∈ A, we let kαt denote the remaining selection capacity and let Sαt denote the set of rewards

selected at time t. Capacity evolves according to kαt+1 = kαt − |Sαt | with kα1 = K. We let τα denote the

stopping time corresponding to the first time capacity runs out or the DM stops the search. We can then

write the problem as:

V ∗ = max
α∈A

E

N∧τα∑
t=1

δt ∑
r∈Sαt

r − δt−1s

 .
In this problem, alternatives are a priori identical, so which alternative to explore next is irrelevant. In

contrast, selection decisions in each period present a complex tradeoff between (a) immediately selecting

available alternatives and (b) preserving capacity to select potentially more valuable alternatives at the

expense of further discounting and additional search costs.
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5.1 Approximate continuation value and greedy policy

In the case of K = 1, Weitzman (1979) shows that a threshold policy can be used to determine whether

or not to select the best available alternative; specifically, Weitzman (1979) shows that when t < N , it is

optimal to select the highest available reward (and hence stop before searching all alternatives) if and only

if this reward is above a reservation price v∗ given by the solution to v∗ = δEr[max(r, v∗)] − s. The value

v∗ represents the indifference point between immediate selection and continuing the search one more period

and is equivalent to the Gittins index for an unexplored alternative. The problem is more complicated when

K > 1: optimal policies may deplete capacity over time by intermittently recalling previously explored

alternatives, and optimal selection thresholds in general may depend on remaining capacity k, the largest k

available rewards, and time.

We instead consider a greedy policy based on reservation prices that only depend on remaining capacity;

these reservation prices will be nonincreasing with capacity, reflecting a DM who is more discriminating as

capacity diminishes. With this assumption, the greedy policy will either select an alternative immediately

after it is explored or (possibly) at the end of the horizon. We let vj ≥ 0 denote the reservation price

for the jth last unit of capacity (i.e., v1 corresponds to the final unit of capacity) and interpret vj as an

approximation of the marginal value of this unit of capacity with an optimal policy. It is easiest to write

our approximation denoting a selection decision at ∈ {0, 1}, which indicates whether the most recently

explored alternative with reward rt is selected at time t. Letting k denote the capacity remaining prior to

this selection, we approximate the continuation value as

QS

t (k, rt, at) = rtat + (1− at)vk +

k−1∑
j=1

vj . (20)

With the approximation (20), the greedy policy at ∈ arg maxa∈{0,1}Q
S
t (k, rt, a) selects the current alternative

if and only if its reward rt is no smaller than the marginal value (or reservation price) vk.5 The remaining

term
∑k−1
j=1 vj captures the approximate net present value of all remaining capacity. Including the search

cost and discounting, we can thus approximate the continuation value of exploration as

QE

t (k, rt) = δmax (rt, vk) + δ

k−1∑
j=1

vj − s . (21)

Since vj ≥ 0, the assumption δEr[r] ≥ s implies that Er[QE
t (k, r)] ≥ 0. Thus, taking the value of stopping

search equal to zero, the greedy policy will continue exploring as long as some positive capacity remains.

5To simplify notation, we do not include in (20) the effect of previously explored alternatives that are recalled by the greedy
policy at t = N . Our primary analysis of the greedy policy still applies without including these possible rewards.
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Choice of reservation prices. Although we can consider a greedy policy based on any reservation prices,

we will show that with a particular choice of reservation prices, the greedy policy is asymptotically optimal

when the number N of alternatives grows large.

Our main focus is on the case when capacity grows more slowly than the number of alternatives, i.e.,

K = o(N). In this regime, capacity is precious, and good selection policies must balance selecting an

alternative against the net present value of many possible future search opportunities. In Section 5.5 we

consider the regime in which capacity grows proportionally with the number of alternatives. Motivated by

this intuition, we consider an approximation where the number of alternatives is infinite and the DM never

recalls previously explored alternatives. Optimal policies in this approximation use reservation prices vk that

only depend on remaining capacity k and are defined recursively from k = 1 to K as

vk +

k−1∑
j=1

vj = δEr[max(r, vk)]− s+ δ

k−1∑
j=1

vj . (22)

The value
∑k
j=1 vj represents the optimal net present value with k units of capacity in the infinite alternative

model. Given values v1, . . . , vk−1, we can thus interpret (22) as describing the value vk that makes the DM

indifferent between (i) immediate selection of an alternative with reward vk (and using the kth last unit

of capacity) and (ii) exploring another alternative (and preserving the kth last unit of capacity for at least

one more period). The term
∑k−1
j=1 vj is discounted on the right because preserving the kth last unit of

capacity delays use of all remaining capacity by an additional period. Because δEr[r] ≥ s, it is not hard to

see there exist reservation prices vk satisfying (22) that are nonincreasing in k. Since reservation prices are

(weakly) increasing as remaining capacity decreases, it can never be optimal to recall previously explored

alternatives using this approximation. The reservation price v1 for the last alternative to select corresponds

to the reservation price v∗ in Weitzman (1979); when δ = 1, the reservation prices satisfy vk = v∗ for every

k, where v∗ = Er[max(r, v∗)]−s, i.e., again the optimal reservation price in Weitzman (1979) but with δ = 1.

We let V G denote the expected performance of the greedy policy with vk chosen as in (22).

5.2 Perfect information bound

Consider a clairvoyant with access to all future realizations of the rewards r = (rn)Nn=1 before exploring or

selecting any alternatives. Given a sample path r ∈ RN+ , we let V P(r) denote the optimal (deterministic)

value for sample path r with perfect information about rewards. The expected value V P = Er[V
P(r)] is an

upper bound for the optimal performance, i.e., V ∗ ≤ V P.

With perfect information, unexplored alternatives are no longer a priori identical and the DM can “ex-
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plore” and then select alternatives known to have large rewards.6 The DM with perfect information would

always select an alternative immediately after exploring it, and the perfect information problem is equivalent

to the deterministic assignment problem

V P(r) = max
x∈{0,1}N

N∑
t=1

N∑
n=1

δt−1(δrn − s)xn,t

s.t.

N∑
n=1

xn,t ≤ 1 ∀t , (23a)

N∑
t=1

xn,t ≤ 1 ∀n , (23b)

N∑
t=1

N∑
n=1

xn,t ≤ K , (23c)

where xn,t ∈ {0, 1} indicates whether alternative n is selected in period t. Constraint (23a) ensures that at

most one alternative can be selected per time period, (23b) ensures that each alternative can be selected at

most once, and (23c) ensures that the DM can select at most K alternatives.

The perfect information bound may be quite loose, as the DM is free to only select alternatives with large

rewards in every sample path. For example, consider the problem when K = N and δ = 1. The problem

is trivial and V ∗ = N(Er[r] − s) because the optimal policy explores and selects all alternatives. On the

other hand, in the perfect information problem, it is optimal to select only alternatives with realized rewards

greater than the search cost. This leads to the weak upper bound of V P = NEr[(r − s)+].

5.3 Penalized perfect information bound

To improve the upper bound, we impose a penalty that punishes violations of the nonanticipativity con-

straints. We construct penalties according to (6), using the approximate continuation values QS
t and QE

t

inducing the greedy policy. Selection decisions are induced by QS
t (k, rt, at), which is measurable with re-

spect to past actions and states, and thus leads to zero penalty. The approximate continuation value for

exploration, however, does lead to a useful penalty: (6) implies that the period-t penalty induced by (21) is

zt(k, rt) = δmax(rt, vk)− δEr̃[max(r̃, vk)] = δ(rt − vk)+ − δEr̃[(r̃− vk)+]. Using a to represent the vector of

6In the primal DP, we implicitly impose the constraint that the DM must an explore an alternative before selecting it. We
can impose this constraint in the perfect information relaxation as well. Thus, the DM with perfect information still has to
pay a search cost to select an alternative, even if the rewards are all known in advance. Note also that the perfect information
relaxation gives the DM freedom to explore the alternatives in any order; in the case of a priori identical items, we could obtain
tighter upper bounds by fixing the exploration sequence to be the same in every sample path. This variation appears more
difficult to analyze, however, and would not extend to problems with alternatives that are not a priori identical (e.g., as in
Section 5.5).
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exploration and selection decisions and τa to denote the time the search ends with a, the total penalty is

z(a) =

N∧τa∑
t=1

δt
(
(rt − vkat )+ − Er̃[(r̃ − vkat )+]

)
.

We let V P
z (r) denote the optimal (deterministic) value of the penalized perfect information problem for

sample path r ∈ RN+ . From Proposition 2.1, we have V ∗ ≤ V P
z .

As discussed, the DM with perfect information may “cheat” by selecting alternatives known to have large

rewards. The penalty above helps to align the perfect information DM with the greedy policy by “punishing”

the perfect information DM for selecting alternatives with realized rewards (net of reservation prices) that are

large relative to their expected value. Thus, although the DM in the penalized perfect information problem

may still “cheat” and select alternatives with large realized rewards, the penalty reduces the benefit of such

cheating.

It is instructive to see how this works on the example from Section 5.2. Recall that the optimal value

is V ∗ = N(Er[r] − s), but the perfect information bound without penalty provides the bound of V P =

NEr[(r − s)+]. With δ = 1, the reservation prices in (22) reduce to those as in Weitzman (1979), i.e.,

vk = v∗ with Er[(r − v∗)+] = s. In the penalized problem, the penalized reward for selecting alternative

n is rn − s − (rn − v∗)+ + Er[(r − v∗)+] = min(rn, v
∗), while the payoff for exploring but not selecting the

alternative is −s − (rn − v∗)+ + Er[(r − v∗)+] = −(rn − v∗)+. Because v∗ ≥ 0, we conclude that the DM

with perfect information selects all alternatives in every sample path. Since these actions coincide with the

optimal policy in every sample path, we conclude that V P
z = V ∗, i.e., we recover a tight bound.

5.4 Performance analysis

We now formalize the above discussion in the general case. We show that the greedy policy incurs a small

loss in value compared to the optimal policy when the number of alternatives is large, and in particular, that

the greedy policy is asymptotically optimal under conditions that we make precise. We let V G
z (r) denote the

penalized value of the greedy policy for sample path r.

The following result compares the penalized performance of the greedy policy to the performance of the

penalized perfect information problem along each sample path. We let k̄G denote the number of alternatives,

if any, “recalled” by the greedy policy at t = N ; formally, we have k̄G = K −
∑N∧τG

t=1 1{rt ≥ vkGt }, where kG
t

denotes the capacity remaining at the start of period t using the greedy policy.
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Proposition 5.1. For every sample path r, the penalized performance of the greedy policy satisfies:

V P

z (r)− V G

z (r) ≤ δN
k̄G∑
j=1

vj . (24)

Moreover, when δ = 1, we have V P
z (r) = V G

z (r) for every sample path r.

In the proof of Proposition 5.1 we show that in the penalized perfect information problem, the value of

the jth last unit of capacity is no larger than vj in (22) in every sample path, regardless of the specifics

(i.e., which alternatives are selected, and when) of the selection decisions. Intuitively, even if an alternative

with a large realized reward rt is selected for this unit of capacity, the penalty −δ(rt− vj)+ + δEr[(r− vj)+]

compensates for this and prevents the selection value for this unit of capacity from exceeding vj . The

penalized performance of the greedy policy for the jth last unit of capacity also reduces to be vj , unless this

capacity is fulfilled by an alternative that is recalled by the greedy policy at t = N . Combining these results

leads us to (24). We note that (24) applies to the same problem when the DM cannot recall past alternatives

because in proving (24) we drop the value of any alternatives recalled by the greedy policy at t = N .

Another consequence of the proof of Proposition 5.1 is that V P
z (r) ≤

∑K
j=1 vj , i.e., the infinite alternative

model without recall provides an upper bound, and V P
z (r) provides a tighter upper bound in every sample

path. Finally, as noted in Proposition 5.1 in the case of δ = 1, the above arguments can be strengthened

to show that the optimal actions in the penalized perfect information problem in fact coincide with those of

the greedy policy, thus implying the greedy policy is in fact optimal in this case.

Using Proposition 2.1 we then obtain the following guarantees on the performance of the greedy policy.

Corollary 5.2. The performance of the greedy policy satisfies:

(i) Performance guarantee. When δ = 1, V G = V ∗ = V P
z , and, in general, we have

V ∗ − V G ≤ V P

z − V G ≤ δNE

[
k̄G∑
j=1

vj

]
. (25)

(ii) Asymptotic optimality. If either (a) δ is fixed or (b) K = o(N) and lim sup
N→∞

(1− δ)N <∞, then

lim
N→∞

1

K
(V ∗ − V G) = 0 .

Corollary 5.2 states that the greedy policy is asymptotically optimal when the discount factor is fixed

(for any scaling of capacity) or if capacity grows at a slower rate than N and δ → 1. This latter scaling

is arguably more interesting and can be interpreted as a setting with a fixed time horizon in which a large
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number of decisions needs to be made and the time between decisions is small. Intuitively, when the number

of alternatives grows faster than capacity, the greedy policy will tend to exhaust capacity relatively early in

the horizon and the infinite alternative model provides a good approximation, even if the DM is becoming

increasingly patient. In the proof we argue, using a concentration inequality, that the probability that the

greedy policy reaches the end of the horizon with positive capacity converges to zero as N → ∞, and thus

the expected value of the gap in (24) becomes vanishingly small relative to capacity. As a result, with either

condition (a) or (b), the convergence rate to optimality is exponential in the number of alternatives.

5.5 Extensions

In this section we discuss a generalization in which alternatives are not a priori identical, and then discuss how

our results extend to a regime in which initial capacity grows proportionally with the number of alternatives.

Multiple types. In some applications alternatives may not be a priori identical (e.g., an employer may

expect performance levels to vary across applicants with different experiences and backgrounds). We consider

a variant in which there is a set I = {1, . . . , I} of types for the alternatives. An alternative of type i ∈ I has

reward drawn i.i.d. from a type-dependent distribution Fi(·) and search cost si. The DM has N opportunities

to explore alternatives, and each type has an infinite supply of alternatives. In each period t = 1, . . . , N the

DM needs to determine which type of alternative to explore or stop the search.

As before, we consider an approximation of the problem where the number of search opportunities is

infinite and the DM never recalls previously explored alternatives. Reservation prices vk only depend on

remaining capacity k and are defined recursively from k = 1 to K as

vk +

k−1∑
j=1

vj = max
i∈I

{
δEri [max(ri, vk)]− si

}
+ δ

k−1∑
j=1

vj , (26)

where Eri denotes the expectation with respect to the reward distribution Fi for type i. Similar to (22), the

value vk makes the DM indifferent between immediately selecting an alternative of reward vk (and hence

using the kth unit of capacity) and exploring another alternative (an preserving the kth unit of capacity for

at least one more period). At a given level of capacity k, the greedy policy induced by (26) will explore the

same type until an alternative is selected; at that point, capacity is reduced by one and the DM may choose

to explore a different type of alternative.

It is not hard to show that the performance guarantees of Proposition 5.1 and Corollary 5.2 extend to

this setting. In this variation, the greedy policy is again asymptotically optimal when the discount factor is

fixed (for any scaling of capacity) or if capacity grows at a slower rate than N and δ → 1.

29



Large capacity. Our analysis can be extended to a regime in which initial capacity grows proportionally

with the number of alternatives, i.e., K = Θ(N). In this regime the greedy policy induced by the reservation

prices given in (22) is not asymptotically optimal. To see this consider an example with δ = 1 − 1/N and

K = N . Here, the optimal policy explores and selects all alternatives, implying that a greedy policy with

v = 0 is optimal. It is not hard to see that the reservation prices given in (22) are strictly positive during a

non-vanishing fraction of the horizon. Thus, the greedy policy will postpone selecting a significant number

of alternatives until the end of the horizon, which introduces a loss because of discounting; it can be shown

that this loss does not go to zero even though δ → 1 in this case.

In Appendix D we consider reservation prices that depend on time but not capacity; these reservation

prices are based on approximation in which the capacity constraint is satisfied in expectation. This approx-

imation is predicated on the fact that, when the number of alternatives is large, the state trajectories of an

optimal policy tend to concentrate around the expected trajectory. We use reservation prices of the form

vt = λδ−t where λ ≥ 0 can be interpreted as the Lagrange multiplier of the expected capacity constraint.

Because reservation prices are increasing with time, the resulting greedy policy will only select an alternative

immediately after it is explored or at the end of the horizon.

Using these reservation prices within the penalties, we can bound from above the gap between the

penalized perfect information problem and the penalized performance of the greedy policy and again conclude

that the greedy policy is asymptotically as the number of alternatives grows.

6 Conclusion

The general recipe proposed here is broadly applicable to problems where we have an underlying approximate

value function of interest. Although penalized perfect information analysis weaves a common thread in the

problems we study here, problem specific analysis remains: we need to derive a bound between the penalized

perfect information problem and the (penalized) value of the greedy heuristic policy. The upside is that the

analysis for this key step is deterministic.

For the key step described above, we leveraged results from the deterministic version of the problem. In

the stochastic knapsack problem, we applied LP relaxations to the penalized perfect information problem. In

the stochastic scheduling problem, we applied a deterministic scheduling bounds on the job completion times

in the penalized perfect information problem. In the sequential search problem, we viewed the penalized

perfect information problem as a deterministic assignment problem and bounded the value of each unit of

capacity.

Our main goal was to demonstrate the method on different problems. Although the problems we studied
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have some similarities, there are important differences. For example, rewards in the knapsack or sequential

search problems roughly scale linearly with capacity, whereas costs scale quadratically with the number of

jobs in the scheduling problem. The budget constraints in the knapsack and search problems are somewhat

different: in the knapsack problem, values are deterministic but capacity is consumed by stochastic sizes,

whereas in the search problem, capacity consumption is deterministic but rewards are stochastic.

The approximations used in each of the problems were relatively simple, as were the resulting policies. It

would be interesting to see if approximate continuation values with more complex state dependence could lead

to better policies, tighter penalized information relaxation bounds, and perhaps faster rates of convergence

to optimality. Variations of these specific models with more realistic and complex features would also be

interesting to consider. Finally, and most importantly, we are hopeful that this method can be applied

successfully and more broadly in the analysis of heuristic policies for many other stochastic DPs.
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A Proofs

A.1 Proof of Proposition 3.1

We bound the penalized perfect information value from above in terms of the penalized performance of the
greedy policy. Below we write the penalized perfect information problem as an integer program; relaxing
constraints (27b) and (27d) we obtain that problem (27) decouples in terms of the decision variables x and
y. Thus, we obtain the upper bound

V̄ P

z (s) ≤ max
x∈{0,1}I

∑I
i=1 risixi

s.t.
∑I
i=1 sixi ≤ 1 .︸ ︷︷ ︸
♣

+ max
y∈{0,1}I

∑I
i=1 ri(si − E[si])yi

s.t.
∑I
i=1 yi ≤ 1 .︸ ︷︷ ︸
♠

.

We conclude the proof by bounding each term at a time.
For the first problem note that the ratio of value to size of each item is ri, as in the greedy policy. By

considering the continuous relaxation to xi ∈ [0, 1], we obtain that xi = 1 for i < τG and xi ∈ (0, 1] for
i = τG, whenever τG ≤ I (and xi = 1 for all i when τG > I). Rounding up to one the last fractional item
and using that risi = vi + ri(si − E[si]), we obtain the upper bound

♣ ≤
I∧τG∑
i=1

risi =

I∧(τG−1)∑
i=1

vi +

I∧τG∑
i=1

ri(si − E[si]) + vτG1{τG ≤ I}

= V G

z (s) + vτG1{τG ≤ I} ≤ V G

z (s) + max
i∈I

vi .

For the second problem note that the optimal solution selects the item with maximum objective and thus

♠ = max
i∈I

ri(si − E[si])
+ .

The result then follows.

Integer programming formulation for V P
z (s). To calculate V P

z (s), because the item that overflows the
knapsack now counts towards the objective, we need to explicitly account for the overflowing item, whenever
it exists. We obtain an upper bound on the penalized perfect information problem for a fixed sample path
s by solving the integer programming problem

V̄ P

z (s) , max
x,y∈{0,1}I

I∑
i=1

(vi + ri(si − E[si]))xi +

I∑
i=1

ri(si − E[si])yi

s.t.

I∑
i=1

sixi ≤ κ , (27a)

xi + yi ≤ 1 , ∀i ∈ I , (27b)

I∑
i=1

yi ≤ 1 , (27c)

I∑
i=1

si(xi + yi) ≥ κ(1− xi) , ∀i ∈ I , (27d)

where xi ∈ {0, 1} indicates whether the item is selected and fits the knapsack, and yi ∈ {0, 1} indicates if
the item overflows the knapsack. Constraint (27b) imposes that an item either fits the knapsack or overflows
it. Constraint (27c) guarantees that there is at most one overflowing item. Constraint (27d) requires
the overflowing item, if one exists, causes the selected capacity to exceed the capacity of knapsack. This
constraint is vacuous when all items fit the knapsack, i.e., if there is no overflow. Note that we can only be
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sure that V P
z (s) ≤ V̄ P

z (s), because the “overflowing” item yi can be chosen to exactly match the capacity of
the knapsack. In order for item yi to actually overflow the knapsack we need to make inequality (27d) strict.
When the distribution of item sizes are absolutely continuous or lattice (i.e., there exists some h > 0 such

that P
{
si ∈ {0, h, 2h, . . .}

}
= 1 for all i ∈ I), replacing constraint (27d) by

∑I
i=1 si(xi+ yi) ≥ (κ+ ε)(1−xi)

for some ε > 0 in problem (27) gives that V̄ P
z (s) = V P

z (s). The bound given by V̄ P
z (s), however, suffices for

our analysis.

A.2 Proof of Corollary 3.2

(11) follows by taking expectations of (10) and applying Proposition 2.1. Equation (12) follows because
maxi vi = maxi E [risi] ≤ E [maxi risi] from Jensen’s inequality together with the fact that (si−E[si])

+ ≤ si.

A.3 Proof of Corollary 3.3

Because the value-to-size ratios are bounded it suffices to show that EI , 1
κE [maxi=1,...,I si]→ 0 as I →∞.

We prove each case separately.

Case (a). This case follows trivially because EI ≤ s̄/κ and κ = ω(1).

Case (b). Using Lyapunov’s Inequality and linearity of expectations we obtain that

EI ≤
1

κ
E
[
max
i
|si|p

]1/p
≤ 1

κ

(
I∑
i=1

E [|si|p]

)1/p

≤ (mI)1/p

κ
, (28)

which converges to zero because κ = ω(I1/p).

Case (c). Because si is sub-Gaussian, using the tail formula for expectations we obtain that

E [|si|p] =

∫ ∞
0

pxp−1P{si > x}dx ≤ a
∫ ∞

0

pxp−1 exp(−bx2)dx =
p

2bp/2
Γ(p/2) .

Stirling’s approximation implies that there exists a constant c > 0 such that E [|si|p]1/p ≤ c
√
p. Using (28)

and setting p = log(I) we obtain that EI → 0 as I →∞ when κ = ω
(√

log(I)
)
.

A.4 Proof of Proposition 3.4

We bound the penalized perfect information value from below in terms of the penalized performance of the
greedy policy for a fixed sample path s. The penalized perfect information problem can be written as

V P

z (s) = min
x∈{0,1}∞

∞∑
i=1

(vi + ri(si − E[si]))xi

s.t.

∞∑
i=1

sixi ≥ κ ,

where xi ∈ {0, 1} indicates whether the component is selected. Note that the ratio of cost to operating life
of each component is ri, as in the greedy policy. By considering the continuous relaxation to xi ∈ [0, 1], we
obtain that xi = 1 for i < τG and xi ∈ (0, 1] for i = τG. Rounding down to zero the last fractional item and
using that risi = vi + ri(si − E[si]), we obtain the lower bound

V P

z (s) ≥
τG−1∑
i=1

risi = V G

z (s)− rτGsτG ≥ V G

z (s)−max
i∈I+

risi ,
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where the first equality follows because the penalized performance of the greedy policy is V G
z (s) =

∑τG

i=1 risi.
The result then follows.

A.5 Proof of Proposition 4.1

Fix a sample path p and consider any feasible action a ∈ A(p) in the perfect information problem. Letting
Sa
j denote the start time of a given job j using a, we first note that

Sa
j ≥

1

M

∑
i≺aj

pi −
M − 1

M
max
i∈J

pi , (29)

which is a known result from deterministic scheduling (see, e.g., the proof of Proposition 3.1 in Weiss 1990).
From (15), we can then bound the penalized perfect information objective from below:

V P

z (p) = min
a∈A(p)

1

M

∑
j∈J

wj
∑
i�aj

E[pi] +
∑
j∈J

wj

Ca
j −

1

M

∑
i�aj

pi


≥ min

a∈A(p)

1

M

∑
j∈J

wj
∑
i�aj

E[pi] +
M − 1

M

∑
j∈J

wj

(
pj −max

i∈J
pi

)

=
1

M

J∑
j=1

wj
∑
i≤j

E[pi] +
M − 1

M

∑
j∈J

wj

(
pj −max

i∈J
pi

)
,

where the inequality follows from (29) and the fact that Ca
j = Sa

j +pj . The second equality follows from the
fact that the WSEPT policy is optimal for the remaining objective (the only term that depends on a in the
second line is the objective for a single machine scheduling problem) and the fact that the jobs are indexed
according to WSEPT.

The penalized objective of the WSEPT policy V G
z (p) corresponds to (15) with the policy a corresponding

to the WSEPT policy. We note that the completion time CG
j using WSEPT for any job j satisfies CG

j ≤
(1/M)

∑
i<j pi + pj (see, e.g., Lemma 3.3 of Hall et al., 1997). We then have

V G

z (p) =
1

M

J∑
j=1

wj
∑
i≤j

E[pi] +
∑
j∈J

wj

CG

j −
1

M

∑
i≤j

pi

 ≤ 1

M

J∑
j=1

wj
∑
i≤j

E[pi] +
M − 1

M

∑
j∈J

wjpj .

Eq. (16) then follows from the above lower bound on V P
z (p) and this upper bound on V G

z (p).

A.6 Proof of Corollary 4.2

(17) follows from taking expectations in (16) and applying Proposition 2.1. (18) then follows directly given
the assumption that wj ≤ w̄.

A.7 Proof of Proposition 5.1

We first analyze the penalized perfect information problem. In the perfect information problem, the DM must
select exactly K alternatives, and any selected alternative must have been previously explored. Assume that
the rewards are labeled in order that they would be optimally explored in the penalized perfect information
problem (i.e., rt corresponds to the tth alternative that is explored). There is no penalty for selecting
alternatives, and hence the penalized reward for selecting reward rt at time τ ≥ t is given simply by δτrt.
The penalized cost for exploring this alternative, however, is given by

δt−1(−s− zt) = δt−1
(
−s+ δEr̃[(r̃ − vkt)+]− δ(rt − vkt)+

)
= δt min (vkt − rt, 0) + (1− δ)δt−1

kt∑
j=1

vj , (30)
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where we use kt to denote the capacity remaining at the start of time t, and that (1 − δ)
∑k
j=1 vj =

δEr̃[(r̃ − vk)+]− s from (22). Note that any term vj in the sum
∑kt
j=1 vj will continue to be accrued in the

penalized perfect information problem up to and including the period when the jth unit of capacity (counting
down from K to 1) is consumed by some selection. Let τj denote the time when the jth unit of capacity is
consumed or, equivalently, when the (K − j + 1)th alternative is selected, and let tj ≤ τj denote the time at
which the alternative used for this selection is explored. Decomposing the penalized rewards across units of
capacity consumption, we then have

V P

z (r) ≤
K∑
j=1

(
(1− δ)

τj∑
t=1

δt−1vj + δtj min(vktj − rtj , 0) + δτjrtj

)

=

K∑
j=1

(
(1− δτj )vj + δtj min(vktj − rtj , 0) + δτjrtj

)
≤

K∑
j=1

((1− δτj )vj + δτjvj) =

K∑
j=1

vj .

The first inequality follows because we exclude only terms of the form δt min(vkt − rt, 0) ≤ 0 for alternatives
that are explored but never selected. The first equality follows by evaluating the geometric series for the
first term. The second inequality follows from the fact that δtj min(vktj − rtj , 0) + δτjrtj ≤ δτjvj , which we

argue as follows:

δtj min(vktj − rtj , 0) + δτjrtj ≤ δtj min(vj − rtj , 0) + δτjrtj

≤ δτj min(vj − rtj , 0) + δτjrtj = δτj min(vj , rtj ) ≤ δτjvj .

where the first inequality follows from the fact that vj is nonincreasing in j and ktj ≥ j for every j. The
second inequality follows since τj ≥ tj , δ ∈ (0, 1], and the term in the minimization is no larger than zero.

We next analyze the penalized performance of the greedy policy. Notice that the reservation prices vk
are non-increasing in k. Because capacity decreases monotonically, the greedy policy will only select an
alternative immediately after it is explored or at t = N . Since the greedy policy selects an alternative
immediately whenever rt ≥ vkt , using (30) we obtain that the penalized payoff at time t < N is given by

δt−1 (δrt1{rt ≥ vkt} − s− zt) = δtvkt1{rt ≥ vkt}+ (1− δ)δt−1
kt∑
j=1

vj .

In period N , if any positive capacity remains, the greedy policy will explore the final alternative and then
select the kN highest rewards. Since rewards are nonnegative, the total reward selected in period N is no
smaller than δNvkN1{rN ≥ vkN }+ (1− δ)δN−1

∑kN
j=1 vj .

As in the analysis above, let τj denote the time when the (K − j + 1)th alternative is selected by the
greedy policy. We can then bound the penalized performance of the greedy policy as

V G

z (r) ≥
N∧τG∑
t=1

(
δtvkt1{rt ≥ vkt}+ (1− δ)δt−1

kt∑
j=1

vj

)
=

K∑
j=k̄G+1

δτjvj + (1− δ)
K∑
j=1

vj

N∧τj∑
t=1

δt−1

=

K∑
j=k̄G+1

δτjvj +

K∑
j=1

vj(1− δN∧τj ) =

K∑
j=1

vj − δN
k̄G∑
j=1

vj ,

where the inequality follows by the observation that the total reward selected in period N is no smaller than
vkN1{rN ≥ vkN }, the first equality follows since the penalized reward of the alternative selected at time τj
is vj , the second equality from the formula for geometric series, and the last because τj = N for j ≤ k̄G. The

result then follows because V P
z (r) ≤

∑K
j=1 vj as argued above.

When δ = 1, the reservation prices vk equal a constant value v∗ for each k = 1, . . . ,K with Er̃[(r̃ −
v∗)+] = s. In this case, in the penalized perfect information problem, the value for exploring and selecting
alternative t is given by min(rt, v

∗), and the value for exploring but not selecting an alternative is given by
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min(0, rt − v∗) ≤ 0. Thus, in the perfect information problem, it is optimal to explore and select the K

alternatives with the largest realized rewards and the optimal value is given by V P
z (r) =

∑K
k=1 min(r(k), v

∗),

where r(k) denotes the kth largest value of r, i.e., r(1) ≥ r(2) ≥ · · · ≥ r(N). For the greedy policy, the
penalized reward for selecting the alternative explored at time t is given by v∗1{rt ≥ v∗}. If the greedy
policy explores all N alternatives and capacity k̄G > 0 remains, then the largest k̄G remaining alternatives
are selected. We can then write the penalized performance of the greedy policy as

V G

z (r) = (K − k̄G)v∗ +

K∑
k=K−k̄G+1

r(k) =

K∑
k=1

min(r(k), v
∗) = V P

z (r) .

A.8 Proof of Proposition 5.2

(25) follows from taking expectations in (24) and applying Proposition 2.1.
We now prove the second part of the result. We first assume condition (a), i.e., the discount factor is

fixed. It is not hard to see that the reservation prices are non-decreasing in δ. Let v̂ be the reservation price
when δ = 1, i.e, the solution of the equation Er̃[(r̃ − v̂)+] = s. Using the fact that the reservation prices vk
are non-increasing in k, it follows that the loss term in (25) is bounded above by δNKv̂. Then we have

1

K
(V ∗ − V G) ≤ δNKv̂

K
= δN v̂

N→∞−−−−→ 0 .

We now consider condition (b). Using the fact that δ ∈ (0, 1) and the fact that vk ≤ v̂ as before, it follows
that the loss term in (25) is bounded from above by v̂E[k̄G]. We next bound k̄G from above. Because reser-

vation prices satisfy vk ≤ v̂, we obtain that k̄G = K −
∑N∧τG

t=1 1{rt ≥ vkt} ≤ max
(

0,K −
∑N
t=1 1{rt ≥ v̂}

)
.

Since rewards are independent and identically distributed, we have
∑N
t=1 1{rt ≥ v̂} ∼ Bin(N, p̂), i.e., the

sum is distributed as a binomial random variable with N trials and probability p̂ = P{r̃ ≥ v̂}. We next argue
that p̂ > 0. Because E[r̃] <∞, for every ε > 0 there exists some r̄ > 0 such that E[r̃1{r̃ ≥ r̄}] < ε. Without
loss we can assume that r̄ ≥ v∗. Using that (r − v∗)+ ≤ (r̄ − v∗)1{r ≥ v∗}+ (r − r̄)+ we obtain by taking
expectations over r̃ that s ≤ (r̄− v∗)p̂+E[(r̃− r̄)+] ≤ r̄p̂+ ε because r̄, v̄∗ ≥ 0. Therefore, p̂ ≥ (s− ε)/r̄ and
the result follows because ε is arbitrary.

Since K = o(N), we know that for any ε ∈ [0, p̂) it holds that K ≤ (p̂− ε)N for sufficiently large N . This
leads us to:

E[k̄G] ≤ E [max(0,K − Bin(N, p̂))] ≤ KP {Bin(N, p̂) ≤ K} ≤ K exp
(
−2ε2N

)
,

where the second inequality follows because max(0,K − a) ≤ K1{a ≤ K} for a,K ≥ 0 and the second
inequality from Hoeffding’s inequality.

Putting this together with (25), we conclude

1

K
(V ∗ − V G) ≤ 1

K
v̂E[k̄G] ≤ v̂ exp

(
−2ε2N

) N→∞−−−−→ 0 .
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Approximations to Stochastic Dynamic Programs via
Information Relaxation Duality
(Online Appendix)

A



B Effective value formulation for stochastic knapsack

In this section we show that all our results extend to the effective value formulation of Dean et al. (2008)
in which wi = viP{si ≤ κ} denotes the effective value of item i and µi = E[min{si, κ}] denotes the mean
truncated size of item i. This formulation takes into account the fact that, in the event that si > κ, the
actual realization of the size is irrelevant because item i certainly overflows the knapsack, and the DM will
never collect the item’s value in this case. Let s̃i = s̃i denote the truncated size of item i. The corresponding
approximation to the continuation value is

Qt(c, i, s̃i) = wi +
wi
µi

(c− s̃i) , (31)

Because the expected continuation value is Es̃i [Qt(c, i, s̃i)] = wi/µic, equation (3) suggests that the
greedy policy induced by (31) sorts the items in decreasing order of effective value per expected size, wi/µi,
and inserts items in this order until the knapsack overflows or no items remain. We refer to this policy as
the effective-value greedy policy. Without loss of generality we assume that items are sorted in decreasing
order of this ratio, i.e., w1/µ1 ≥ w2/µ2 ≥ . . . ≥ wI/µI . The expected performance of this greedy policy is
given by

V G̃ , E

I∧(τ G̃−1)∑
t=1

vt

 ,
where τ G̃ is the first time that capacity overflows under the effective-value greedy policy.

Before proceeding, we first discuss a variation of the problem that will be helpful. Specifically, the effective
greedy policy ranks items using their effective values, so it will be useful for us to work with a variation of
the problem in which the values vi are replaced by the effective value wi. In this variation, we also need to
include the value of the overflowing item. This leads us to the formulation

W ∗ = max
α∈A

E

[
I∧τα∑
t=1

wαt

]
,

where the stopping time τα is defined as before. We first show that this formulation provides an upper
bound.

Proposition B.1. V ∗ ≤W ∗.

Proof. Let Sα be the (stochastic) set of items that policy α attempts to insert into the knapsack and let cαi
be the capacity remaining before policy α attempts to insert an item i ∈ Sα into the knapsack. For any
α ∈ A,

V α = E

I∧(τα−1)∑
t=1

vαt

 =

I∑
i=1

viP{i ∈ Sα, si ≤ cαi }

≤
I∑
i=1

viP{i ∈ Sα, si ≤ κ} =

I∑
i=1

wiP{i ∈ Sα} = E

[
I∧τα∑
t=1

wαt

]
= Wα ,

where the inequality follows because si ≤ cαi implies si ≤ κ since cαi ≤ κ. The third equality follows because
the events i ∈ Sα and si ≤ κ are independent (for nonanticipative policies, recall that the size is not revealed
until after an item is selected), and because wi = viP{si ≤ κ}. Since this holds for all α ∈ A, this variation
provides an upper bound on the optimal value in original formulation, i.e., V ∗ ≤W ∗.

We now return to the penalty, which we apply to this effective value formulation. Equation (6) implies
that the penalty induced by (31) is zt(c, i, s̃i) = wi/µi(µi − s̃i). Using the effective value formulation, we
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can write the problem with penalties included as

W ∗z = max
α∈A

E

[
I∧τα∑
t=1

wαt + zαt(s̃αt − µαt)

]
.

Because the penalty is dual feasible as described above, W ∗z = W ∗. We let W P
z (s) denote the optimal

(deterministic) value of the penalized perfect information problem for sample path s ∈ RI+. Since the set of
perfect information policies includes the set A of nonanticipative policies, and the penalty is dual feasible,
we obtain an upper bound W ∗ ≤ W P

z , where W P
z = Es[W

P
z (s)] denotes the penalized perfect information

bound. Below we discuss how to calculate W P
z (s) by solving an integer program that includes additional

variables representing which item, if any, overflows the knapsack.
It is instructive to see how this works on the example from Dean et al. (2008) as discussed in Section

3.2, with I symmetric items of value one and sizes that are Bernoulli with probability 1/2, scaled by κ+ ε.
Recall that a greedy policy is (trivially) optimal and the optimal value is V ∗ = 1 − (1/2)I , but the perfect
information bound without penalty provides the poor bound of V P = I/2. In this example, wi = 1/2,
µi = κ/2, and s̃i is either 0 or κ, each with probability 1/2. In the penalized perfect information problem,
the value for selecting an item is (wi/µi)s̃i, which is 0 if s̃i = 0 and 1 if s̃i = κ: in particular, any items
with realized sizes of zero provide zero value as well. Moreover, we can select at most one item with realized
positive size of κ+ ε - in particular, an item that overflows the knapsack. Thus, W P

z (s) = 1 if si > 0 for any
i, and W P

z (s) = 0 otherwise. Because P{si = 0 ∀ i} = (1/2)I , the penalized perfect information bound then
is

W P

z = 1− (1/2)I = V ∗,

i.e., we recover a tight bound for all values of I.
In the following, we denote the penalized performance of the effective-value greedy policy by

V G̃

z (s) =

I∧(τ G̃−1)∑
i=1

vi +

I∧τ G̃∑
i=1

wi/µi(s̃i − µi) .

We now provide an upper bound on the penalized perfect information value in terms of the penalized
performance of the effective-value greedy policy.

Proposition B.2. For every sample path s, the performance of the effective value greedy policy satisfies:

W P

z (s)− V G

z (s) ≤ max
i∈I

wi + max
i∈I

wi/µis̃i .

Proof. Let ui = wi/µi. Relaxing constraints (32b) and (32d) we obtain that problem (32) decouples in terms
of the decision variables x and y. Thus, we obtain the upper bound

W̄ P

z (s) ≤ max
x∈{0,1}I

∑I
i=1 uis̃ixi

s.t.
∑I
i=1 s̃ixi ≤ 1 .︸ ︷︷ ︸
♣

+ max
y∈{0,1}I

∑I
i=1 uis̃iyi

s.t.
∑I
i=1 yi ≤ 1 .︸ ︷︷ ︸
♠

,

where we also relaxed the knapsack constraint (32a) to
∑I
i=1 s̃ixi ≤ 1 because s̃i ≤ si. We conclude the

proof by bounding each term at a time.
For the first problem note that the ratio of value to (truncated) size of each item is ui, as in the greedy

policy. By considering the continuous relaxation to xi ∈ [0, 1], we obtain that xi = 1 for i ≤ τ G̃ and xi ∈ (0, 1]
for i = τ G̃ whenever τ G̃ ≤ I (and xi = 1 for all i when τ G̃ > I). Rounding up to one the last fractional item
and using that uis̃i = wi + ui(s̃i − µi), we obtain the upper bound

♣ ≤
I∧τ G̃∑
i=1

uis̃i =

I∧(τ G̃−1)∑
i=1

wi +

I∧τ G̃∑
i=1

ui(s̃i − µi) + wτ G̃1{τ G̃ ≤ I} ≤ V G

z (s) + max
i∈I

wi ,
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where the last inequality follows from wi = viP{si ≤ κ} ≤ vi and wτG ≤ maxi∈I wi.
For the second problem note that the optimal solution selects the item with maximum objective and thus

♠ = max
i∈I

uis̃i .

The result then follows.

Proposition B.2 implies the following chain of inequalities

V G ≤ V ∗ ≤W ∗ ≤W P

z ≤ V G + max
i
wi + E[max

i
wis̃i/µi] .

The first inequality in the chain follow trivially, the second inequality was argued previously and the third
inequality follows because the penalty z is dual feasible.

Integer programming formulation for W P
z (s). To calculate W P

z (s), because the item that overflows the
knapsack now counts towards the objective, we need to explicitly account for the overflowing item, whenever
it exists. We obtain an upper bound on the penalized perfect information problem for a fixed sample path
s by solving the integer programming problem

W̄ P

z (s) , max
x,y∈{0,1}I

I∑
i=1

(wi + ui(s̃i − µi))(xi + yi)

s.t.

I∑
i=1

sixi ≤ κ , (32a)

xi + yi ≤ 1 , ∀i ∈ I , (32b)

I∑
i=1

yi ≤ 1 , (32c)

I∑
i=1

si(xi + yi) ≥ κ(1− xi) , ∀i ∈ I . (32d)

where xi ∈ {0, 1} indicates whether the item is selected and fits the knapsack, and yi ∈ {0, 1} indicates if
the item overflows the knapsack. Constraint (32b) imposes that an item either fits the knapsack or overflows
it. Constraint (32c) guarantees that there is at most one overflowing item. Constraint (32d) requires
the overflowing item, if one exists, causes the selected capacity to exceed the capacity of knapsack. This
constraint is vacuous when all items fit the knapsack, i.e., if there is no overflow. Note that we can only be
sure that W P

z (s) ≤ W̄ P
z (s), because the “overflowing” item yi can be chosen to exactly match the capacity of

the knapsack. In order for item yi to actually overflow the knapsack we need to make inequality (32d) strict.
When the distribution of item sizes are absolutely continuous or lattice (i.e., there exists some h > 0 such

that P
{
si ∈ {0, h, 2h, . . .}

}
= 1 for all i ∈ I), replacing constraint (32d) by

∑I
i=1 si(xi+ yi) ≥ (κ+ ε)(1−xi)

for some ε > 0 in problem (32) gives that W̄ P
z (s) = W P

z (s). The bound given by W̄ P
z (s), however, suffices for

our analysis.

C Alternative performance guarantee for stochastic scheduling

In this section, we show how to obtain Corollary 4.1 from Möhring et al. (1999) using penalized perfect
information analysis. For a given sample path of processing times p and scheduling decisions a, we consider
the penalty

z(a) =
∑
j∈J

rjS
a
j (pj − E[pj ]) , (33)
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where Sa
j denotes the start time of job j using a. Dual feasibility of this penalty follows because, for any

nonanticipative policy, the start time of a job is independent of the job’s processing time.

Proposition C.1. The performance of the WSEPT policy satisfies

V G − V ∗ ≤ V G − V P

z ≤
M − 1

2M
(ρ+ 1)

∑
j∈J

wjE[pj ] ,

with the penalty z in (33) and ρ is an upper bound on the squared coefficient of variation of all jobs.

Proof. The only inequality we need to show is the last inequality in (33), which we argue using three steps.
First, we upper bound the performance of the WSEPT policy. Second, we lower bound the objective value
of the penalized perfect information problem for a fixed realization of processing times. Finally, we combine
the previous bounds to bound the performance of the WSEPT policy in terms of the expected penalized
perfect information bound.

Step 1. We first upper bound the performance of the WSEPT policy. For any list scheduling policy α
that sequences jobs according to α1, α2, . . . , αJ , it is well known that the completion time of job Cααj satisfies
that

Cααj ≤
1

M

j−1∑
`=1

pα` + pαj .

See for example, Lemma 3.3 of Hall et al. (1997) for a proof. As a result we obtain that the performance of
the WSEPT policy satisfies that

V G = E

 J∑
j=1

wjC
G

j

 ≤ E

 J∑
j=1

wj

(
pj +

1

M

j−1∑
i=1

pi

) =

J∑
j=1

wjE [pj ] +
1

M

J∑
j=1

j−1∑
i=1

wjE [pi] , (34)

where the inequality follows from the fact that WSEPT sequences jobs according to 1, . . . , n because jobs are
assumed to be sorted in decreasing order w.r.t the ratio of weight to expected processing time ri = wi/E[pi].

Step 2. We next lower bound the objective value of the penalized perfect information problem for a
fixed realization of processing times. Using the penalty in (33) and the fact that the completion times Ca

j

satisfy Ca
j = Sa

j + pj , the perfect information problem can be lower bounded by

V P

z (p) ≥ V P

z (p) +

J∑
j=1

wjpj − rjp2
j , (35)

where V P

z (p) is the objective value of the deterministic scheduling problem PM//
∑
j w

z
jCj with weights

wzj = wj + rj(pj − E[pj ]) = rjpj . Using a know result from deterministic parallel machine scheduling,
(Lemma C.2), we obtain the following lower bound on the objective value of the previous scheduling problem

V P

z (p) ≥
J∑
j=1

rj

(
1

M
pj

j−1∑
i=1

pi +
M + 1

2M
p2
j

)
. (36)

Step 3. We conclude by combining our previous results to bound the performance of the WSEPT policy
in terms of the expected penalized perfect information bound. Taking expectations w.r.t. the sample path p
we obtain that

V P

z = Ep [V P

z (p)] ≥ Ep[V P

z (p)] +

J∑
j=1

wjE[pj ]− rjE[p2
j ]

≥
J∑
j=1

wjE[pj ] +
1

M

J∑
j=1

rjE

[
pj

j−1∑
i=1

pi

]
− M − 1

2M

J∑
j=1

rjE[p2
j ]
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=

J∑
j=1

wjE[pj ] +
1

M

J∑
j=1

j−1∑
i=1

wjE [pi]−
M − 1

2M

J∑
j=1

wj
E[p2

j ]

E[pj ]

≥ V G − M − 1

2M

J∑
j=1

wj
E[p2

j ]

E[pj ]
≥ V G − M − 1

2M
(ρ+ 1)

J∑
j=1

wjE[pj ] ,

where the first inequality follows from (35); the second inequality from (36); the second equation from
the fact that rj = wj/E[pj ] and using that the processing times are independent; the third inequality
from the bound on the performance of the WSEPT policy given in (34); and the last inequality because
E[p2

j ]/E[pj ]
2 = Var[pj ]/E[pj ]

2 + 1 ≤ ρ+ 1.

The following result is a strengthened version of Lemma 3.2 from Hall et al. (1997) and provides a lower
bound on the objective value of the deterministic scheduling problem PM//

∑
j rjpjCj . We reproduce the

result for the sake of completeness.

Lemma C.2. The objective value of the deterministic scheduling problem PM//
∑
j rjpjCj, denoted by

V P

z (p), is lower bounded by

V P

z (p) ≥
J∑
j=1

rj

(
1

M
pj

j−1∑
i=1

pi +
M + 1

2M
p2
j

)
.

Proof. A lower bound on the objective value can be obtained from the observation that for any feasible
schedule on M machines the completion times should satisfy the following inequalities

∑
j∈A

pjCj ≥
1

2M

∑
j∈A

pj

2

+
1

2

∑
j∈A

p2
j ,

for every subset A ∈ J (see, e.g., Hall et al. (1997)). Lemma 3.2 from Hall et al. (1997) proves a similar
result under a weaker class of valid inequalities.

Optimizing over the completion times we obtain that the latter deterministic scheduling problem can be
lower bounded by the following linear program

V P

z (p) ≥ min
C∈RJ

J∑
j=1

rjpjCj

s.t.
∑
j∈A

pjCj ≥ f(A) , ∀A ⊆ J , (37)

Cj ≥ 0 ,

where the set function f : 2J → R is given by f(A) = 1
2M p(A)2+ 1

2p
2(A), where we denote by p(A) =

∑
j∈A pj

and p2(A) =
∑
j∈A p

2
j . It is not hard to see that the set function is super-modular, that is, for every k, ` 6∈ A

we have that

f(A+ k) + f(A+ `) = f(A) + f(A+ k + `)− 2pkp` ≤ f(A) + f(A+ k + `) .

Setting yj = pjCj we obtain that the feasible set of problem (37) is a polymatroid. Because the objective
is linear in yj , we can apply the greedy algorithm of Edmonds to characterize its optimal solution. Since
the objective’s coefficients satisfy r1 ≥ r2 ≥ . . . ≥ rJ , we obtain that the optimal solution is given by
y∗j = f({1, . . . , j})− f({1, . . . , j − 1}), or equivalently that

y∗j = f({1, . . . , j})− f({1, . . . , j − 1})

=
1

2M
(p({1, . . . , j − 1}) + pj)

2 − 1

2M
p({1, . . . , j − 1})2 +

1

2
p2
j

=
1

M
pjp({1, . . . , j − 1}) +

M + 1

2M
p2
j .
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As a result the objective value is given by
∑J
j=1 rjy

∗
j , implying that

V P

z (p) ≥
J∑
j=1

rjy
∗
j =

J∑
j=1

rj

(
1

M
pj

j−1∑
i=1

pi +
M + 1

2M
p2
j

)
.

D Sequential search with large capacity

To obtain reservation prices, we consider a Lagrangian relaxation in which we relax the constraint that
the decision maker can select at most K alternatives. Introducing a dual variable λ ≥ 0 for the capacity

constraint
∑N∧τα
t=1 |Sαt | ≤ K we obtain the Lagrangian:

Lα(λ) = λK + E

N∧τα∑
t=1

∑
r∈Sαt

δtr − λ

− δt−1s

 .
Note that, in the absence of a capacity constraint, every explored alternative with “adjusted” reward δtr−λ ≥
0 should be immediately selected. Using the fact that alternatives are a priori identical we obtain that the
dual function is given by:

Ψ(λ) = max
α∈A
Lα(λ) = λK + max

α∈A
E

[
N∧τα∑
t=1

(
δtrt − λ

)+ − δt−1s

]

= λK +

N∑
t=1

δt−1
(
δEr̃

[(
r̃ − λδ−t

)+]− s)+

, (38)

where the last equality follows because DM should continue exploring alternatives while the expected profit

of exploring is positive, i.e., δE
[
(rt − λδ−t)

+
]
− s > 0, since the expected profit is non-increasing with

time. Weak duality implies that V ∗ ≤ Ψ(λ) for all λ ≥ 0. The previous derivation suggests time-dependent
reservation prices vt = λ∗δ−t with λ∗ ∈ arg minλ≥0 Ψ(λ), i.e., the Lagrange multiplier is chosen to minimize
the upper bound. Because the dual function is convex, the best Lagrange multiplier can be computed
efficiently.

The following result compares, for every sample path, the penalized performance of the greedy policy
to the performance of the penalized perfect information problem. In the following results we adopt the
convention that

∑b
i=a xi = 0 if b < a.

Proposition D.1. For every sample path r and λ ≥ 0, the penalized performance of the greedy policy with
vt = λδ−t satisfies:

V P

z (r)− V G

z (r) ≤ λk̄G +

N(λ)∑
t=1

δt−1πt(λ)−
N∧τG∑
t=1

δt−1πt(λ) , (39)

where πt(λ) = δEr̃
[
(r̃ − λδ−t)+

]
− s is the adjusted expected payoff at time t and N(λ) = sup

{
t ∈

{1, . . . , N} : πt(λ) ≥ 0
}

is the (deterministic) last time period in which it is profitable to explore an al-
ternative in the Lagrangian relaxation.

Although we use a Lagrangian relaxation in this derivation, as we show in the proof below, the penalized
perfect information value is tighter (smaller) than Ψ(λ) for every sample path r for all λ ≥ 0.

Proof. We first analyze the penalized perfect information problem. Recall that, because of discounting, the
DM with penalized perfect information never delays the selection of an explored alternative. Using (30), we
can write the penalized payoff of the alternative explored and selected at time t as

δrt − s+ zt = δmin(rt, vt) + δEr̃[(r̃ − vt)+]− s ≤ δvt + δEr̃[(r̃ − vt)+]− s ,
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where we used that min(rt, vt) ≤ rt. Similarly, we can write the penalized payoff of an alternative explored,
but not selected, at time t as

−s+ zt = δmin(rt, vt)− δrt + δEr̃[(r̃ − vt)+]− s ≤ δEr̃[(r̃ − vt)+]− s ,

where we used that min(rt, vt) ≤ vt. Therefore, for every sample path r, we can upper bound V P
z (r) by

the objective value of an alternative problem in which the reward of selecting an alternative is r̂t = vt and
the cost of exploring an alternative is ŝt = s − δEr̃[(r̃ − vt)+]. Because this adjusted cost of exploring an
alternative can be negative for some periods, the DM may choose to explore but not select alternatives.
Therefore, the total cost incurred from exploring alternatives is at most

−
N∑
t=1

min(ŝt, 0) =

N∑
t=1

δt−1
(
δEr̃

[
(r̃ − vt)+

]
− s
)+

.

Letting xt ∈ {0, 1} indicate whether an alternative is selected at time t, we can bound the total rewards
from selected alternatives by

N∑
t=1

δtr̂txt = λ
N∑
t=1

xt ≤ λK .

where we used that rt = vt = λδ−t and
∑N
t=1 xt ≤ K from the capacity constraint. Combining both bounds

and using (38) we conclude that V P
z (r) ≤ Ψ(λ) and thus V P

z (r) is tighter than Ψ(λ) in every sample path.
We next analyze the penalized performance of the greedy policy. Using that the greedy policy selects an

alternative whenever rt ≥ vt, we obtain that the penalized payoff at time t is given by

δrt1{rt ≥ vt} − s+ zt = δvt1{rt ≥ vt}+ δEr̃
[
(r̃ − vt)+

]
− s = δvt1{rt ≥ vt}+ πt(λ) .

Since the reservation prices vt are nondecreasing in t, we obtain, by discarding the rewards of alternatives
potentially recalled at time t = N , that the performance of the greedy policy is

V G

z (r) ≥
N∧τG∑
t=1

δtvt1{rt ≥ vt}+

N∧τG∑
t=1

δt−1πt(λ) = λ

N∧τG∑
t=1

1{rt ≥ vt}+

N∧τG∑
t=1

δt−1πt(λ)

= Ψ(λ)− λk̄G +

N∧τG∑
t=1

δt−1πt(λ)−
N(λ)∑
t=1

δt−1πt(λ) ,

where the second equality follows from vt = λδ−t and the last because
∑N∧τG

t=1 1{rt ≥ vt} = K − k̄G is the
number of alternatives selected.

Unlike the optimal policy in the Lagrangian relaxation, the greedy policy continues exploring alternatives
even when the expected payoff of exploring an alternative is negative. A stronger performance guarantee
can be provided for a modified greedy policy that stops exploring at time N(λ) and, at that point, selects all
available alternatives that were not previously collected. Both policies turn out to be asymptotically optimal
in the regime we consider.

To simplify exposition, we will use the following assumption in the asymptotic result that follows; the
boundedness assumption can be relaxed (e.g., by instead assuming boundedness of appropriate tail moments)
at the expense of additional notation and lengthier arguments.

Assumption D.2. We have δ ∈ (0, 1), δE[r̃] > s, and the distribution of rewards is absolutely continuous
and has bounded support [0, x̄] with x̄ <∞.

Taking expectations in (39) and using the duality results of Section 2 we can provide the following
guarantees on the performance of the greedy policy.

Corollary D.3. The performance of the greedy policy satisfies:
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(i) Performance guarantee. For every λ ≥ 0,

V ∗ − V G ≤ V P

z − V G ≤ E

[
λk̄G +

N(λ)∑
t=1

δt−1πt(λ)−
N∧τG∑
t=1

δt−1πt(λ)

]
.

(ii) Asymptotic optimality. If K = Θ(N), lim sup
N→∞

(1 − δ)N < ∞, and λ∗ ∈ arg minλ≥0 Ψ(λ), and

Assumption D.2 holds, then

lim
N→∞

1

K
(V ∗ − V G) = 0 .

Proof. Part (i) follows directly taking expectations of (39) and applying Proposition 2.1.
For part (ii), we use the following lemma, which establishes some useful properties of λ∗, an optimal

solution to the Lagrangian dual problem.

Lemma D.4. If Assumption D.2 holds, then λ∗ ∈ [0, x̄], p , min
N(λ∗)
i=1 P{r̃ ≥ λ∗δ−i} ≥ s/x̄, and

K ≤
N(λ∗)∑
t=1

P{r̃ ≥ λ∗δ−t} ≤ K + 1.

Proof. We write πt(λ) = E
[
(r̃ − λδ−t)+

]
− s = h(λδ−t) − s, where h(x) = E

[
(r̃ − x)

+
]

=
∫ x̄
x
F̄ (y)dy is

continuous and strictly decreasing for x ∈ [0, x̄]. The left and right derivative of the dual function are

∂−Ψ(λ) = K −
∑N
t=1 P{r̃ ≥ λδ−t}1{πt(λ) ≥ 0} and ∂+Ψ(λ) = K −

∑N
t=1 P{r̃ > λδ−t}1{πt(λ) > 0},

respectively.
First note that for t ≤ N(λ∗), we have πt(λ

∗) ≥ 0. Because (x̃ − vt)+ ≤ x̄{x̃ ≥ vt}, we obtain that
πt(λ) ≤ x̄P{x̃ ≥ vt} − s and thus P{x̃ ≥ vt} ≥ s/x̄. This implies that p ≥ s/x̄. Because ∂−Ψ(x̄) = K, we
obtain that λ∗ ≤ x̄.

We first consider the case K = N . Note that ∂+Ψ(0) = K −N because δE[r̃] > s and rewards have no
atom at zero. Because Ψ(λ) is convex, we have that λ∗ = 0. The result follows trivially.

We now consider the case when 1 ≤ K < N . Because ∂+Ψ(0) > 0, we have that λ∗ > 0. Since the
dual function is convex, at an optimal solution, it holds that ∂+Ψ(λ∗) ≥ 0 and ∂−Ψ(λ∗) ≤ 0. Therefore,

∂−Ψ(λ∗) ≤ 0 implies that K ≤
∑N(λ∗)
t=1 P{r̃ ≥ λ∗δ−t}because πt(λ

∗) < 0 for t > N(λ∗). Since rewards are

absolutely continuous, we get that ∂+Ψ(λ∗) = K −
∑N
t=1 P{r̃ ≥ λ∗δ−t}1{πt(λ∗) > 0}. If πt(λ

∗) = 0 for

t = N(λ∗) we have that ∂+Ψ(λ∗) = K −
∑N(λ∗)−1
t=1 P{r̃ ≥ λ∗δ−t} because πt(λ

∗) is strictly decreasing in t

for t ≤ N(λ∗) since δ ∈ (0, 1), λ∗ > 0, and p > 0. Because ∂+Ψ(λ∗) ≥ 0, this implies that
∑N(λ∗)
t=1 P{r̃ ≥

λ∗δ−t} ≤ K + 1 since the summands are at most one. If πt(λ
∗) > 0 for t = N(λ∗), then πt(λ

∗) < 0 for
t = N(λ∗) + 1 by definition and ∂+Ψ(λ∗) = ∂−Ψ(λ∗). The result follows.

We now prove part (ii) of Proposition D.3. Note that for t ≤ N(λ) we have that πt(λ) ≤ E[r̃] because
λ ≥ 0, while for t > N(λ) we have that πt(λ) ≥ −s ≥ −δE[r̃] because δE[r̃] ≥ s by assumption. Therefore,
we can write the loss term as

N(λ)∑
t=1

δt−1πt(λ)−
N∧τG∑
t=1

δt−1πt(λ) =

N(λ)∑
t=N∧τG+1

δt−1πt(λ)−
N∧τG∑

t=N(λ)+1

δt−1πt(λ)

≤ E[r̃]

(
N(λ)∑

t=N∧τG+1

δt−1

︸ ︷︷ ︸
(I)

+

N∧τG∑
t=N(λ)+1

δt

︸ ︷︷ ︸
(II)

)
.
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For the first term, by taking expectations over τG, we have that

E [(I)] =

N(λ)−1∑
i=1

P{τG = i}
N(λ)∑
t=i+1

δt−1 =

N(λ)∑
t=2

δt−1
t−1∑
i=1

P{τG = i} =

N(λ)−1∑
t=1

δtP{τG ≤ t} ,

where the second equality follows from exchanging the order of summations. Set λ = λ∗ and vt = λ∗δ−t.
Using that Mt =

∑t
i=1 1{ri ≥ vi} − F̄ (vi) with F̄ (x) = P{r̃ ≥ x} is a martingale with differences bounded

by |Mt+1 −Mt| ≤ 1, we obtain from Azuma’s inequality that for t ≤ N(λ∗)− 1:

P {τG ≤ t} = P

{
t∑
i=1

1{ri ≥ vi} ≥ K

}
= P

{
Mt ≥ K −

t∑
i=1

F̄ (vi)

}
≤ P

Mt ≥
N(λ∗)∑
i=t+1

F̄ (vi)− 1


≤ P

{
Mt ≥ (N(λ∗)− t− p−1)p

}
≤ exp

(
−(N(λ∗)− t− p−1)2p2/(2t)

)
, (40)

where the first inequality follows because
∑N(λ∗)
i=1 F̄ (λ∗δ−i) ≤ K + 1 from Lemma D.4 and t + 1 ≤ N(λ∗),

and the second inequality because
∑N(λ∗)
i=t+1 F̄ (λ∗δ−i) ≥ (N(λ∗) − t)p where p = min

N(λ∗)
i=1 F̄ (λ∗δ−i). This

implies that

N(λ∗)−1∑
t=1

δtP{τG ≤ t} ≤
N(λ∗)−1∑
t=1

exp
(
−(N(λ∗)− t− p−1)2p2/(2t)

)
≤
∫ N(λ∗)

1

exp
(
−(N(λ∗)− t− p−1)2p2/(2t)

)
dt

≤
∫ ∞
−∞

exp
(
−(t−N(λ∗) + p−1)2p2/(2N(λ∗))

)
dt =

(
(πN(λ∗))/(2p2)

)1/2
,

where the first inequality follows from (40) and δ ≤ 1, the second inequality follows from the integral
bound for summations since the summand in non-decreasing in t, the third inequality because t ≤ N(λ∗)
and the fact that the integrand is positive, and the last equality from integrating the density of a normal
distribution with mean N(λ∗) + p−1 and variance N(λ∗)/p2. We can use Lemma D.4 to bound N(λ∗) as

follows: K + 1 ≥
∑N(λ∗)
t=1 P {r̃ ≥ λ∗δ−t} ≥ pN(λ∗). Therefore,

E[(I)] ≤
(
π(K + 1)

2p3

)1/2

.

For the second term we have that

E [(II)] =

N∑
i=N(λ)+1

P{τG = i}
i∑

t=N(λ)+1

δt =

N∑
t=N(λ)+1

δt
N∑
i=t

P{τG = i} =

N−1∑
t=N(λ)

δt+1P{τG > t} ,

where the second equality follows from exchanging the order of summations. From Azuma’s inequality for
t ≥ N(λ∗) we obtain:

P {τG > t} = P

{
t∑
i=1

1{ri ≥ vi} < K

}
= P

{
Mt < K −

t∑
i=1

F̄ (vi)

}
≤ P

Mt < −
t∑

i=N(λ∗)+1

F̄ (vi)


≤ P {Mt < −(t−N(λ∗))} ≤ exp

(
−(t−N(λ∗))2/(2t)

)
, (41)

where the first inequality follows because
∑N(λ∗)
i=1 F̄ (λ∗δ−i) ≥ K from Lemma D.4 and t ≥ N(λ∗), and the
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second inequality because
∑t
i=N(λ∗)+1 F̄ (vi) ≤ t−N(λ∗) since F̄ (vi) ≤ 1. This implies that

N−1∑
t=N(λ∗)

δt+1P{τG > t} ≤
N−1∑

t=N(λ∗)

exp
(
−(t−N(λ∗))2/(2t)

)
≤
∫ N

N(λ∗)

exp
(
−(t−N(λ∗))2/(2t)

)
dt

≤
∫ ∞
−∞

exp
(
−(t−N(λ∗))2/(2N(λ∗))

)
dt = (πN(λ∗)/2)

1/2
,

where the first inequality follows from (41) and δ ≤ 1, the second inequality follows from the integral bound
for summations since the summand in non-decreasing in t, the third inequality because t ≥ N(λ∗) and the
fact that the integrand is positive, and the last equality from integrating the density of a normal distribution
with mean N(λ∗) and variance N(λ∗). Therefore,

E[(II)] ≤
(
π(K + 1)

2p

)1/2

.

Finally, by setting λ = λ∗ and vt = λ∗δ−t we have that

k̄G =

(
K −

∑N

t=1
1{rt ≥ vt}

)+

≤
(∑N(λ∗)

i=1

(
F̄ (λ∗δ−i)− 1{rt ≥ vt}

))+

=
(
−MN(λ∗)

)+
,

where the first inequality follows because the summands are positive together with N(λ∗) ≤ N and K ≤∑N(λ∗)
i=1 F̄ (λ∗δ−i) from Lemma D.4, and the last equality from our definition of Mt. Taking expectations

and using that Mt is a martingale, we obtain that

E
[(
−MN(λ∗)

)+]
=

1

2
E[|MN(λ∗)|] ≤

1

2

(
E[M2

N(λ∗)]
)1/2

=
1

2

(∑N(λ∗)

t=1
Var[1{rt ≥ vt}]

)1/2

≤ 1

4
N(λ∗)1/2 ,

where the first equality follows because E[X+] = E|X|/2 for any mean-zero random variable, the inequality
from Lyapunov’s inequality, the next equality because martingale differences are orthogonal, and the last
inequality because the variance of a Bernoulli random variable is at most 1/4. Therefore,

E[k̄G] ≤ 1

4

(
K + 1

p

)1/2

.

Putting everything together, we conclude by Lemma D.4 that there exists a constant C independent of
K such that K−1(V ∗ − V G) ≤ CK−1/2.
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