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1 Approximation

In this technical report we show that the FMFE provides a good approximation to the rational behavior

of agents when the markets are large and the number of bidding opportunities per advertiser are also

large. More specifically, we show that when all advertisers implement the FMFE strategy, the relative

increase in payoff of any unilateral deviation to a strategy that keeps track of all information available to

the advertiser in the market becomes negligible as the market scale increases. Hence, FMFE strategies

become asymptotically optimal. Before stating the result, we proceed by formalizing the scaling under

consideration.

We consider a sequence of markets indexed by a positive parameter κ, referred to as the scaling;

such that the higher the scaling, the larger the market “size”. On the demand side, a θ-type advertiser

matching probability decreases as ακθ ∝ κ−1, while the budget increases as bκθ ∝ log κ. Additionally,

the arrival rate of advertisers increases as λκθ ∝ κ; and both the distribution of values and the length of

the campaign are invariant to the scaling. On the supply side, the arrival rate of impressions increases

as ηκ ∝ κ log κ. Hence, the mean number of auctions an advertiser participates in, ακθη
κsθ ∝ log κ,

grows at the same rate that the budget. The scaling is such that auctions occur more frequently, but

the expected number of matching bidders in each auction, ακθλ
κ
θsθ, remains constant. Additionally,

the FMFE is invariant to the scaling, because advertisers aim to satisfy the budget constraints in

expectation and strategies are state-independent (see Eq. (1) and (2) in the main paper). Thus,

irrespectively of the scaling, the FMFE strategy is given by βF = {βF
θ }θ∈Θ and is described by a vector

of multipliers.
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We denote the kth advertiser history up to time t by hk(t). The history encapsulates all available

information up to time t including the advertiser’s arrival time to the system; her initial budget; length

of stay in the exchange; the realizations of her values up to that time; her bids; and whether she won or

not the auctions, and in the cases she did win, the payments made to the publisher. We define a pure

strategy β for advertiser k as a mapping from histories to bids. A strategy specifies, given an history

hk(t) and assuming the advertiser participates in an auction at time t, an amount to bid β(hk(t)). We

denote by B be the space of strategies that are non-anticipating and adaptive to the history.

For a fixed scaling κ, we study the expected payoff of a fixed advertiser, referred to as the zeroth

advertiser, from the moment she arrives to the exchange until her departure, when she implements

a strategy β ∈ B and all other advertisers follow the FMFE strategies βF. This expected payoff is

denoted by Jκθ (β,βF), where the expectation is taken over the actual market process, with the initial

market state drawn at random from an appropriate distribution. In this notation, Jκθ (βF
θ ,β

F) measures

the actual expected payoff of the FMFE strategy for the advertisers in the exchange.1 We have the

following result.

Theorem 1. Suppose that r ∈ (0, V ) and that there are at most two bidders’ types. Consider a market

with scaling κ in which all bidders, except the zeroth bidder, follow the FMFE strategy βF. Suppose

that a θ-type advertiser (the zeroth bidder), upon arrival to the market, deviates and implements a non-

anticipating and adaptive strategy βκ ∈ B. The relative expected payoff of this deviation with respect to

the FMFE strategy βF
θ satisfies

lim sup
κ→∞

Jκθ (βκ,βF)

Jκθ (βF
θ ,β

F)
≤ 1,

when the initial states of the advertisers in the market are drawn from an appropriately pre-specified

distribution.2

The result establishes that the payoff increase of a deviation to a strategy that keeps track of all

available information, relative to the payoff of the FMFE strategy, becomes negligible as the scale of

the system increases. Therefore, FMFE approximates well the rational behavior of advertisers, in the

sense that unilateral deviations to more complex strategies do not yield significant benefits.

The key simplifications in the FMFE were that: i.) All advertisers present in the market were

allowed to bid and the possibility of them running out of budget was only taken into account to

compute an appropriate shading parameter in the fluid optimization problem, but not when sampling

competitors’ bids; and ii.) The mean field model assumes that the actions of an advertiser do not affect

1Note that this performance metric may differ from the FMFE value function, given by the objective value of the
approximation problem JF

θ (Fd) given in (1) in the main paper.
2We discuss the nature of this distribution in Section 3 of this report and we show that this distribution gets close

to the FMFE steady-state distribution as the market scale increases. In addition, we show that the assumption on the
maximum number of types can be relaxed under further technical conditions.
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the competitors in the market, and that competitors’ states and the number of matching bidders in

successive auctions are independent.

The first step of the proof consists of addressing i.). To that end, we introduce a new mean field

model, referred to as budget-constrained mean-field model (BMFM), that is similar to the original

fluid model, but that accounts explicitly for the fact that advertisers may run out of budget, and not

participate in some auctions. We establish that in the BMFM, when the scale increases, the expected

fraction of time that any bidder has positive budget during her campaign converges to one. Using this

result and techniques borrowed from revenue management (see, e.g., Talluri and van Ryzin (1998)),

we show that the FMFE strategy is near-optimal when an advertiser faces the competition induced by

the BMFM. This result justifies our initial assumption in the FMFE that advertisers present in the

market do not run out of budgets.

The second step of the proof consists of addressing ii.) above. Given our scaling, we show that

with high probability an advertiser interacts throughout her campaign with distinct advertisers who

do not share any past common influence, and that the same applies recursively to those advertisers

she competes with. This implies that, in this regime, the states of the competitors faced by the

zeroth advertiser are essentially independent, and that her actions have negligible impact on future

competitors. Additionally, we show that the impact of the queueing dynamics on the number of

matching bidders may be appropriately bounded, and that the number of matching bidders in successive

auctions are asymptotically uncorrelated. These steps combine a propagation of chaos argument for

the interactions (similar to that used in Graham and Méléard (1994) and Iyer et al. (2011)) and a fluid

limit for the advertisers’ queue. Thus, as the scaling increases the real market behaves like the BMFM.

We note that Theorem 1 is proved for a given family of scalings. We conjecture, however, that the

family of scalings under which our approximation result is valid is broader. In fact, the first step above

generalizes to other scalings. On the other hand, the second step relies quite heavily on the nature of

the scaling. For this step, our scaling and techniques are similar to those present in the papers using a

propagation of chaos argument mentioned in the previous paragraph. An interesting technical avenue

for future research is the generalization of these techniques and the family of scalings under which

the second step above (and ultimately Theorem 1) holds. This generalization is likely to have other

applications in mean-field models beyond the one presented in this paper.

Preliminaries. In the rest of this report, we drop the dependence on the scaling κ when clear

from the context. Throughout this report we assume that the reserve price is positive, that is, r > 0.

The latter excludes the possibility of an advertiser winning an impression for free.

As a preamble to proving the steps, we argue that the FMFE is invariant to the scaling. Define

the budget-per-auction as the ratio of budget to expected number of matching auctions during the

campaign length, given by gθ = bθ/(αθηsθ). Clearly, the budget-per-auction is invariant to the scaling.
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From optimization problem (1) of the main paper, it is not hard to see that strategies depend solely

on the budget-per-auction. Moreover, for all θ, both the expected number of matching bidders αθλsθ

and the probability that a matching bidder is of that type PΘ̂{θ} are invariant to the scaling. Hence,

the scaling does not impact the equilibrium distribution of the maximum bid. These two facts imply

that the FMFE is invariant to the scaling.

Outline. Theorem 1 is proven in two main steps, as outlined following the statement of the

result. We first analyze the Budget-constrained Mean Field Model and the performance of the FMFE

strategies in the latter. We then justify the mean field assumption through a propagation of chaos and

fluid limit arguments. The required definitions and intermediary results are first presented in § 2 and

§ 3. The proof of the main result, Theorem 1 is provided in § A.1 and the proofs of the intermediary

results are then presented in § A.2 and § A.3.

2 Budget-constrained Mean Field Model

In this section, we study a budget-constrained mean-field model (BMFM) in which advertisers are only

allowed to bid when they have positive budgets. The main distinction between the real and the BMFM

system is that, in the latter, all interactions are assumed to be independent.

BMFM Model. We study the performance of a fixed θ-type advertiser in the following mean-field

system. We assume all advertisers (including the one in consideration) employ the FMFE strategy

profile βF. We refer to the advertiser in consideration as the zeroth advertiser. We assume that the

zeroth bidder will participate in a random number of independent auctions over the course of his

campaign, and the states of the competing matching bidders are independent across bidders, across

auctions, and of the evolution of the zeroth advertiser’s process. Let XMF
θ (t) = (bθ(t), sθ(t)) ∈ R2

+

denote the state of the zeroth advertiser at time t as given by the remaining budget bθ(t) and the

remaining time in system sθ(t) = sθ − t. The mean-field assumption implies that one need not keep

track of the evolution of the market, and thus the process XMF
θ = {XMF

θ (t)}t∈[0,sθ] is Markov.

We next describe the evolution of the continuous time Markov process XMF
θ . Initially, we have that

XMF
θ (0) = (bθ, sθ). The arrival of matching impressions corresponds to the jumps of a Poisson process

{Nθ(t)}t≥0 with intensity αθη. We denote the sequence of jump times by {tθ,n}n≥1. The number of

competing matching bidders at the n-th auction, denoted byMn, is drawn independently from a Poisson

random variable with mean λE[αΘsΘ]. We denote by en,k = (bn,k, sn,k, θn,k) ∈ R3
+×Θ the extended state

of the k-th competing bidder in the n-th auction, which includes the relevant information to determine

the agent’s bid. The first component bn,k denotes the remaining budget, the second component sn,k

denotes the remaining campaign length, and the last component θn,k denotes the type. The extended

states of all competing bidders are drawn independently from a given distribution Pe. Once the states
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are revealed the realization of the values for the impression, are determined by vn,k = F−1
θn,k

(un,k), where

un,k are independent draws from a Unifrom distribution with support [0, 1] and Fθn,k is the valuation

distribution of type θn,k. Then, competing bids are determined by wn,k = βF
θn,k

(vn,k)1{bn,k > 0},
that is, bidders are allowed to bid only when they have a positive budget.3 Using these bids together

with the bid of the zeroth advertiser wn,0 = βF
θ (vn,0)1{b(t−θ,n) > 0}, the exchange runs a second-price

auction with reserve price r, and determines the allocation vector xn,k and payments dn,k. The zeroth

advertiser’s budget is updated as bθ(tθ,n) = bθ(t
−
θ,n)− xn,0dn,0.

In order to determine the evolution of the process XMF
θ one needs to specify the distribution of

the extended states Pe. To make the dependence explicit we write the Markov process when extended

states are drawn from Pe as XMF
θ (Pe) = {XMF

θ (t;Pe)}t∈[0,sθ]. Recall that in our model, the dynamics of

the advertisers campaigns are governed by an M/G/∞ queue. Then, the probability that a matching

advertiser is of type θ is proportional to the arrival rate pθλ, matching probability αθ and campaign

length sθ. The latter implies that the steady-state probability that a competing advertiser is of type

θ is P{Θ̂ = θ} = (pθαθsθ)/
∑

θ′ pθ′αθ′sθ′ . Additionally, given that the randomly sampled competing

advertiser is of type θ, the advertiser can be at any point of her campaign with uniform probability,

because arrivals are governed by a Poisson process. Thus motivated, we impose the following consis-

tency requirement in the BMFM model: the distribution of a uniform sampling in time of the resulting

mean-field process XMF
θ (Pe) of an advertiser of type θ competing against bidders sampled according

to Pe should be consistent with the distribution initially postulated Pe. More formally, we define the

notion of a consistent BMFM.

Definition 1 (Consistent BMFM). A BMFM is said to be consistent if for any Borel-measurable set

of states X ⊂ R2
+, and type θ, the extended state measure Pe satisfies

Pe{X , θ} = P{XMF
θ (U [0, sθ];Pe) ∈ X ; Θ̂ = θ} (1)

with U [0, sθ] an independent uniform random variable with support [0, sθ], and Θ̂ denoting the steady-

state distribution of types in the system.

2.1 Existence of a consistent BMFM

The consistency equation (1) can be simplified by recognizing that the fluid-based strategies are in-

dependent of the state, and solely dependent on the realization of the values and the type. Thus, it

suffices to know whether the competing bidders have a positive budget to determine their bids. Denote

3In this model a bidder’s total expenditure may exceed her budget if at some point the payment exceeds the remaining
budget. This assumption has a small impact on the performance of the system, but simplifies the analysis. The actual
bid would be given by wn,k = min{bn,k, βF

θn,k
(vn,k)}.
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by an,k = 1{bn,k > 0} the active indicator, which is one when the k-th advertiser of the n-th auction

has a positive budget and zero otherwise. For our purpose here, we can reduce the extended state to

{an,k, vn,k, θn,k}. In this formulation the distribution of the active indicator given a type θ is Bernoulli

with success probability qθ. Intuitively, the active probability qθ denotes the likelihood that a θ-type

bidder has positive budget at a uniformly random time of her campaign. Let q = {qθ}θ∈Θ be a vector

of active probabilities. Since values and types are independent, equation (1) implies the consistency of

active probabilities, i.e., qθ = P{bθ(U [0, sθ]; q) > 0}. Moreover, using the fact that U [0, sθ] is uniform

and independent of the process one may write qθ as the expected fraction of time that the advertiser

has positive budget. Indeed,

qθ = P{bθ(U [0, sθ]; q) > 0} =
1

sθ

∫ sθ

0
P{bθ(t; q) > 0}dt = E

[
1

sθ

∫ sθ

0
1{bθ(t; q) > 0}dt

]
. (2)

The next result establishes that the κth mean-field model is well defined in the sense that there always

exists a consistent vector of probabilities qκ satisfying the fixed-point equation (2).

Proposition 1. For every scaling κ, there exists a vector of active probabilities qκ satisfying the

consistency equation (2). Moreover, the consistent probability distribution of extended states is given

by Pκe{X , θ} = P{XMF(κ)
θ (U [0, sκθ ]; qκ) ∈ X ; Θ̂ = θ}.

To prove this proposition we first show that the right-hand side of equation 2 is continuous in q,

by using a coupling argument; and then conclude by invoking Brouwer’s Fixed-Point Theorem. The

previous result, however, does not exclude the existence of multiple distinct active probability vectors

consistent with the BMFM.

2.2 Active Bidders

As the number of opportunities in the horizon increases, one would expect that advertisers deplete

their budgets closer to the end of their campaign, and that the fraction of time bidders are active

gets close to one. The next result shows that this conjecture is asymptotically correct, that is, as the

scaling increases the vector of active probabilities converges to one. Additionally, we show that the

distribution of the maximum competing bid in the κth consistent BMFM, denoted by Dκ, converges

in distribution to the steady-state maximum bid D of the FMFE.4

Proposition 2. Suppose that r > 0 and that there are at most two bidders’ types. Every sequence

of consistent active probability vectors {qκ}κ satisfies limκ→∞ ‖1 − qκ‖∞ = 0. Additionally, the dis-

4We note that this result and the results in Subsection 2.3 only require that the number of auctions advertiser
participates on and the budgets grow to infinity at the same rate; they do not require the arrival rate increases to infinity.
The latter part of the scaling is required for the results in Section 3.
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tribution of the maximum competing bid in the κth consistent BMFM, denoted by Dκ, converges in

distribution to the steady-state maximum bid D of the FMFE.

The latter result justifies the underlying assumption of the FMFE that all bidders were active

throughout their stay. We prove the result under the assumption that there are at most two types.

This assumption is needed to show that q = 1 is the unique consistent active probability in the limiting

case. The argument in the proof of the result shows, however, how this assumption can be weakened

under further technical conditions; in particular, by imposing that an appropriately defined Jacobian

matrix is a P-matrix.

2.3 Payoff Evaluation in the BMFM

In this section we study the expected payoff of the zeroth advertiser in the budget-constrained mean-

field model when all competing bidders follow the FMFE strategy. Let J
MF(κ)
θ (β;βF) be the expected

payoff of a θ-type advertiser when the market evolves according to the BMFM when she implements

strategy β, and the competing bidders implement the FMFE strategies βF.

First, we provide an asymptotic lower bound for the normalized expected payoff of the FMFE

strategy in any consistent BMFM. To do so, we define the normalized objective value of the fluid

problem (1) of the main paper as J̄F
θ (Fd) , JF

θ (Fd)/(αθηsθ). We also define Fd as the distribution of

the maximum bid in the FMFE.

Proposition 3. (Lower Bound). Consider any consistent BMFM with scaling κ in which all competitor

bidders follow the FMFE strategy βF. Suppose that the zeroth advertiser of type θ implements the FMFE

strategy βF
θ . The expected payoff of the zeroth advertiser in the BMFM, denoted by J

MF(κ)
θ (βF;βF), is

lower bounded by

lim inf
κ→∞

1

ακθη
κsθ

J
MF(κ)
θ (βF

θ ;βF) ≥ J̄F
θ (Fd).

The intuition underlying the proof of this result relies heavily on Proposition 2. By the latter,

in any consistent BMFM, advertisers will be active for most of their campaign as the scale of the

system increases. Given the latter, the proof revolves around lower bounding the zeroth advertiser’s

performance by its performance in an alternative system where it may bid when it runs out of budget,

but pays a penalty of V̄ for any such bid. It is possible to show that the first result of Proposition 2

implies that as the scale κ increases, the penalties paid will be relatively “small”, and hence the

advertiser’s performance, when normalized, is close to J̄F
θ (F κd ), which itself is close to J̄F

θ (Fd) (by the

second part of Proposition 2).

Next, we upper bound the normalized expected payoff of any strategy in a consistent BMFM.
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Proposition 4. (Upper Bound). Consider any consistent BMFM with scaling κ in which all competitor

bidders follow the FMFE strategy βF. Suppose that the zeroth advertiser of type θ implements an

alternative strategy βκ. The expected payoff of the zeroth advertiser, denoted by J
MF(κ)
θ (βκ;βF), is

upper bounded by

lim sup
κ→∞

1

ακθη
κsθ

J
MF(κ)
θ (βκ;βF) ≤ J̄F

θ (Fd).

To prove the result, we first upper bound the performance of an arbitrary strategy by that of a

strategy with the benefit of hindsight (which has complete knowledge of the future realizations of bids

and values). This is akin to what is typically done in revenue management settings (see, e.g., Talluri

and van Ryzin (1998)), with the exception that here, the competitive environment (which is the coun-

terpart of the demand environment in RM settings) is endogenous and determined through the BMFM

consistency requirement. In turn, we upper bound (asymptotically) the normalized performance of

the hindsight strategy by the objective value of the normalized value of the fluid problem when D has

the FMFE distribution. Here, the second part of Proposition 2 is once again key to ensure that the

distribution of the maximum bid in a consistent BMFM converges to that postulated in the FMFE.

The conjunction of the two propositions above imply that the FMFE strategy is near-optimal when

an advertiser faces the competition induced by the BMFM.

3 Propagation of Chaos in the BMFM

The critical assumptions of the BMFM are that the actions of an advertiser do not affect the market,

that the states of competitors are independent, and that the number of matching bidders in successive

auctions is independent. However, in the actual system there are two effects that undermine the

independence assumption. The first is an interaction effect. Because advertisers may interact between

themselves more than once directly, their states and bids in the same and in successive auctions may

be correlated. Even when two advertisers meet for the first time, their states may be correlated if

both were influenced by a third advertiser in the past. The second is a queueing effect. Because of the

queueing dynamics of the advertisers’ arrival and departure process, the total number of advertisers

in the exchange exhibits temporal correlation. As a consequence, the number of matching bidders in

successive auctions may also be correlated.

The next result compares the expected performance of a strategy βκ in the real system when all

other advertisers implement the FMFE strategy, denoted by Jκθ (βκ;βF), to the performance of the

same strategy in the BMFM, denoted by J
MF(κ)
θ (βκ;βF). The comparison is conducted under the

assumption that, in the actual system, the initial states of the advertisers in the market are drawn

independently from a consistent BMFM probability distribution. This initial conditions differ from the

steady-state of the actual system, though one would expect them to be close as the scaling increases.
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The initial conditions are as follows: (i) the number of bidders Q(0) is Poisson with mean λκE[sΘ]; and

(ii) the state of each advertisers is drawn independently from the measure Pκe of a consistent BMFM.

Proposition 5. Consider a κ−scaled market in which competitor bidders follow the FMFE strategy

βF . Initially, the number of advertisers is drawn from a Poisson distribution with mean λκE[sΘ], and

the state of each one of them is drawn independently from a consistent BMFM probability distribution

Pκe . Suppose that the zeroth advertiser of type θ arrives to the market at time zero, and implements a

non-anticipating and adaptive strategy βκ ∈ B. The difference between the expected payoffs verifies

lim
κ→∞

1

ακθη
κsθ

∣∣∣Jκθ (βκ;βF)− JMF(κ)
θ (βκ;βF)

∣∣∣ = 0.

The result revolves around establishing that i.) with high probability an advertiser interacts with

distinct advertisers during her campaign, and that the same applies recursively with those advertisers

she competes with; and ii.) the queueing dynamics and their temporal correlation have little impact

on the number of matching bidders, which intuitively follows from the fact that advertisers match at

random with an impression. Thus, as the scaling increases the impact of the interaction effect and the

queueing effect become negligible, the real system behavior is “close” to that in the BMFM, and the

predictions in the BMFM carry over, in an appropriate sense, to the real system.

A difficulty in establishing the previous result is that in the AdX market the number of agents in the

system is not fixed. Instead, advertisers arrive and depart from the market according to the dynamics

of a M/G/∞ queue; resulting in an open system. In order to analyze this system during a fixed time

horizon [0, T ], we consider an alternate closed system in which all advertisers are present at time 0,

but they are allowed to bid only during their campaigns, which start at a uniformly random time in

the horizon. In this system, the number of advertisers originally present is random and equates to the

number of arrivals during the horizon plus the number of advertisers currently running a campaign at

time zero. For this purpose, in Section B we study a general mean-field model for closed systems with

a random number of agents; an analysis that may be of independent interest. This construction allow

us to appropriately extend previous propagation of chaos arguments by Graham and Méléard (1994)

and Iyer et al. (2011) for closed systems with a fixed number of agents. In Section C we formally show

that our AdX market can be modeled as such system.
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A Proofs

A.1 Proof of Theorem 1

Write the relative expected payoff of the deviation as

Jκθ (βκ,βF)

Jκθ (βF
θ ,β

F)
=
Jκθ (βκ,βF)− JMF(κ)

θ (βκ,βF) + J
MF(κ)
θ (βκ,βF)

Jκθ (βF
θ ,β

F)− JMF(κ)
θ (βF

θ ,β
F) + J

MF(κ)
θ (βF

θ ,β
F)

=
(ακθη

κsθ)
−1
(
Jκθ (βκ,βF)− JMF(κ)

θ (βκ,βF)
)

+ (ακθη
κsθ)

−1J
MF(κ)
θ (βκ,βF)

(ακθη
κsθ)−1

(
Jκθ (βF

θ ,β
F)− JMF(κ)

θ (βF
θ ,β

F)
)

+ (ακθη
κsθ)−1J

MF(κ)
θ (βF

θ ,β
F)

Proposition 5 gives the convergence of the expected payoff under the real system to the expected payoff

under the BMFM, which implies that the first term of the numerator and denominator converge to

zero. Proposition 4 implies that the limsup of the second term of the numerator is bounded from above

by J̄F
θ (Fd) and Proposition 3 implies that the liminf of the second term of the denominator is bounded

from below by J̄F
θ (Fd). The result follows.

A.2 Proofs of Propositions 1 - 4

A.2.1 Proof of Proposition 1

The second part of the statement is direct. We prove the first one. Let f : [0, 1]|Θ| → [0, 1]|Θ| be a

mapping such that fθ(q) determines the fraction of time that a zeroth θ-type bidder is active when

the competing advertisers are active a fraction q of their campaign. Like in equation (2) we have that

fθ(q) = E
[

1

sθ

∫ sθ

0
1{bθ(t; q) > 0}dt

]
.
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Notice that the domain of f is compact, and coincides with its codomain. To show that the consistency

equation f(q) = q admits a solution, it suffices to show that the functions fθ(q) are continuous in q

and invoke Brouwer’s Fixed-Point Theorem.

Next, we show that for each type θ the function fθ(q) is Lipschitz continuous using a coupling

argument. Fix θ ∈ Θ, and let q and q′ be two distinct vectors of active probabilities. Let XMF
θ and

X ′MF
θ be the state processes in the BMFM when competing bidders are drawn according to q and q′,

respectively. Consider a coupling Yθ and Y ′θ of the processes in a common probability space such that

both processes coincide in (i) the number of impressions, (ii) the realization of values of the zeroth

advertisers, (iii) the number of matching bidders in each auction, and (iv) the types and values of the

competing matching bidders. The processes only differ in the realization of the active indicators, which

are distinct Bernoulli random variables coupled through a common uniform distribution. That is, for

the k-th bidder of the n-th auction the active indicator in Yθ is an,k = 1{Un,k ≤ qθn,k}, while for Y ′θ is

q′n,k = 1{Un,k ≤ q′θn,k}, with Un,k uniform in [0, 1].

Notice that, by construction, the laws of the coupled processes coincide with the original ones, i.e.,

L(XMF
θ ) = L(Yθ) and L(X ′MF

θ ) = L(Y ′θ). Let A =
{
∪Nθ(sθ)
n=1 ∪Mn

k=1 an,k 6= a′n,k

}
be the event that some

pair of active indicator differs, where Nθ(sθ) denoted the number of matching auctions for the zeroth

advertiser during her campaign, and Mn denoted the number of matching bidders in the n-th auction.

We have that the coupled processes coincide in the complement event Ā, and thus the difference in

total variation of the two processes satisfies

∥∥L(XMF
θ )− L(XMF′

θ )
∥∥
TV
≤ P{Yθ 6= Y ′θ} ≤ P{A}.

To bound the probability of the event A, note that for the (n, k)-bidder with type θn,k the active indica-

tor differs only if the uniform distribution lies within the interval
(

min{qθn,k , q′θn,k},max{qθn,k , q′θn,k}
]
,

an event occurring with probability |qθn,k − q′θn,k |. Taking expectations over the types, we have that

P{an,k 6= a′n,k} =
∑

θ∈Θ P{Θ̂n,k = θ}|qθ − q′θ| ≤ ‖q − q′‖∞. Using a union bound together with the

independence assumption on the primitives, one may bound the probability of the event A by

P{A} ≤ ENθ(sθ),M

Nθ(sθ)∑
n=1

Mn∑
k=1

P{an,k 6= a′n,k}

 ≤ ‖q− q′‖∞E

Nθ(sθ)∑
n=1

Mn


= ‖q− q′‖∞(αθηsθ)(λE[αΘsΘ]).

We conclude by noting that fθ(·) ∈ [0, 1] to get that |fθ(q)−fθ(q′)| ≤ |1−0|·‖L(XMF
θ )− L(XMF′

θ )‖TV ≤
C‖q− q′‖∞, with C = (αθηsθ)(λE[αΘsΘ]) <∞.

11



A.2.2 Proof of Proposition 2

We prove the results in four steps. First, we show that the sequence of functions {fκ}κ converges point-

wise to a continuous function f∞. Second, we show that the unique fixed point of the function f∞ is

1, that is, in the limit all advertisers are active. Third, we prove that all fixed-points of the functions

{fκ}κ converge to the unique fixed point of f∞. Fourth, we prove the convergence in distribution of

the maximum bid.

Step 1 (The point-wise convergence). Fix a type θ, and the active probability vector q.

Consider a coupled process Y κ
θ (q) = {Y κ

θ (t; q)}t∈[0,∞) in which the advertiser is allowed to bid beyond

the length of her campaign so that the laws of X
MF(κ)
θ (q), and Y κ

θ (q) coincide for t ∈ [0, sθ]. Notice

that fκθ (q) = E
[
min{S̃κθ (q)/sθ, 1}

]
, where S̃κθ (q) = inf{s ≥ 0 : bκθ (s) ≤ 0} is the first time that the

budget is non-positive (defined with respect to the process Y κ
θ (q)).

In order to study the hitting time S̃κ(q) we consider the sequence {Zθ,n(q)}n≥1 of expenditures of

the zeroth advertiser in each auction when the active probability vector is q. In view of our mean-field

assumption the sequence of expenditures is i.i.d. and independent of the impressions’ inter-arrival

times. Before proceeding we characterize the maximum bid and the expenditure in the BMFM as a

function of the active probability vector. The maximum competing bid at the n-th auction is given by

Dθ,n(q) = max

({
{βθ(Vn,k)}

Ma
θ,n(q)

k=1

}
θ∈Θ

, r

)
, where Ma

θ,n(q) denotes the number of matching bidders

of type θ with positive budget, which is distributed as a Poisson random variable with mean pθqθαθλsθ

(where pθ = PΘ{θ}) since each advertiser is active independently with probability qθ, and type θ

advertisers arrive to the exchange with rate pθλ. In this notation we have that the expenditure of the

zeroth bidder in the n-th auction is Zθ,n(q) = 1{Dθ,n(q) ≤ βθ(Vθ,n)}Dθ,n(q), where Vθ,n is a drawn of

the zeroth advertiser value. Notice that, for a fixed active probability vector, both the distribution of

the maximum bid and of the zeroth advertiser’s expenditure are invariant to the scaling.

In the following we drop the dependence on q. Let Cθ,n =
∑n

j=1 Zθ,j denote the cumulative

expenditure incurred after the n-th auction, and let Ñκ
θ = inf{n ≥ 1 : Cθ,n ≥ bκθ} be the number

of auctions until the cumulative expenditure exceeds the budget bκθ , which is a stopping time for the

sequence. Since expenditures are bounded, Zθ,j ≤ V̄ < ∞ a.s., the cumulative expenditure at the

stopping time can be bounded from below and above by

bκθ ≤ Cθ,Ñκ
θ
≤ bκθ + V̄ .

Dividing by the expected number of impressions on the campaign ακθη
κsθ we obtain that

gθ ≤
Ñκ
θ

ακθη
κsθ

1

Ñκ
θ

Ñκ
θ∑

j=1

Zθ,j ≤ gθ +
V̄

ακθη
κsθ

.
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Note that limκ→∞ Ñ
κ
θ = ∞ almost surely since bκθ ≤ Cθ,Nκ

θ
≤ Ñκ

θ V̄ , and limκ→∞ b
κ
θ = ∞. Hence,

taking the limit as κ → ∞ and using the Strong Law of Large Numbers (SLLN), one obtains that

(1/Ñκ
θ )
∑Ñκ

θ
j=1 Zθ,j converges to EZθ a.s. In turn, we obtain that Ñκ

θ /(α
κ
θη

κsθ)→ gθ/EZθ a.s.

Next, notice that S̃κθ is a sum of a random number Ñκ
θ of exponential random variables. More

formally, S̃κθ = tκ
θ,Ñκ

θ

=
∑Ñκ

θ
n=1(tκθ,n − tκθ,n−1), where tκθ,n − tκθ,n−1 is the inter-arrival time of the n-th

matching impression for the zeroth advertiser. Since inter-arrival times are independent of Ñκ
θ and

exponentially distributed with rate ακθη
κ, we may invoke the SLLN again to obtain that

S̃κθ
sθ

=
Ñκ
θ

ακθη
κsθ

1

Ñκ
θ

Ñκ
θ∑

n=1

ακθη
κ(tκθ,n − tκθ,n−1)→ gθ

EZθ
, a.s. as κ→∞.

The Dominated Convergence Theorem enables to conclude that

f∞θ = lim
κ→∞

fκθ = lim
κ→∞

E
[
min{S̃κθ /sθ, 1}

]
= E

[
min{ lim

κ→∞
S̃κθ /sθ, 1}

]
= min

{
gθ
EZθ

, 1

}
,

point-wise in all active probability vectors q.

Step 2 (Fixed-points of f∞). In this section we study the fixed-points of the limit function

f∞, and show that 1 is the unique fixed-point of the mapping. We proceed by considering the related

functions Hθ(q) = qθE[Zθ(q)], and using the fact that the set of fixed-points of the function f∞θ (q) =

min {gθ/E[Zθ(q)], 1} coincide with the solutions of the NCP

Hθ(q) ≤ gθ ⊥ 0 ≤ qθ ≤ 1, ∀θ ∈ Θ, (3)

where the complementary condition is with the inequality qθ ≤ 1. Note further that Gθ(µ) = Hθ(1),

and thus from the equilibrium condition of the FMFE we get that 1 is a solution of (3). Additionally,

it is not hard to show that the functions

Hθ(q) = qθE[Zθ(q)] = qθrF̄v((1 + µθ)r)Fd(r; q) + qθ

∫ V̄

r
xF̄v((1 + µθ)x) dFd(x; q),

are differentiable. Also, by Lemma 1 (stated and proved in Appendix D), the Jacobian of H is a

P-matrix. Then, by Facchinei and Pang (2003, Proposition 3.5.10) we conclude that 1 is the unique

vector of active probabilities that solves (3), and thus the unique fixed-point of f∞.

Step 3 (Convergence of the fixed-points). Let {qκ}κ be a sequence of fixed-points of the

sequence of functions {fκ}κ, i.e., fκ(qκ) = qκ for every scaling κ. If the convergence of the sequence of

functions to f∞ is uniform, together with the continuity of the mapping, one would be able to invoke

Lemma 2 (stated and proved in Appendix D) to conclude that these fixed-points converge to the unique
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fixed-point of f∞, i.e., limκ→∞ ‖1−qκ‖ = 0. Next, we prove that the mappings converge uniformly by

showing that the sequence of functions is uniformly Cauchy.

Fix a vector of active probabilities q, and let κ, κ′ be two different scalings. We may bound the

difference between two different scalings as follows

|fκθ (q)− fκ′θ (q)| =
∣∣∣E [min{S̃κθ (q)/sθ, 1}

]
− E

[
min{S̃κ′θ (q)/sθ, 1}

]∣∣∣
≤ E

∣∣∣min{S̃κθ (q)/sθ, 1} −min{S̃κ′θ (q)/sθ, 1}
∣∣∣

≤ E
∣∣∣S̃κθ (q)/sθ − S̃κ

′
θ (q)/sθ

∣∣∣
≤ 1

sθ
E
∣∣∣S̃κθ (q)− E

[
S̃κθ (q)

]∣∣∣+
1

sθ
E
∣∣∣S̃κ′θ (q)− E

[
S̃κ
′
θ (q)

]∣∣∣+
1

sθ

∣∣∣E [S̃κθ (q)
]
− E

[
S̃κ
′
θ (q)

]∣∣∣
≤ 1

sθ

√
Var[S̃κθ (q)] +

1

sθ

√
Var[S̃κ

′
θ (q)] +

1

sθ

∣∣∣E [S̃κθ (q)
]
− E

[
S̃κ
′
θ (q)

]∣∣∣ , (4)

where the first inequality follows from the convexity of the absolute value and Jensen’s inequality,

the second from the fact that min{x, 1} is Lipschitz continuous with constant 1, the third from the

triangular inequality; and the fourth from Lyaponov’s inequality. We next turn to the problem of

bounding the mean and variance of the hitting time S̃κθ .

Note that with positive probability the advertiser spends at least r > 0 and thus EÑθ < ∞.

Hence, we may employ Wald’s identities to bound the mean and variance of the stopping time Ñθ.

First, Wald’s first identity implies that E[Cθ,Ñθ ] = EÑθEZθ. Using the fact that Cθ,Ñθ ≥ bθ, one

obtains that the mean is bounded from below by E[Ñθ] ≥ bθ/E[Zθ]. Using the fact that Cθ,Ñθ ≤
bθ + V̄ , one may also bound the mean from above by E[Ñθ] ≤ (bθ + V̄ )/E[Zθ]. Second, the variance is

bounded from above by Var(Ñθ) ≤ (bθ + V̄ )Var(Zθ)/E[Zθ]
3 + V̄ 2/E[Zθ]

2 (use Wald’s second identity

to get E[Cθ,Ñθ − ÑθEZθ]2 = Var(Zθ)EÑθ). Next, recall that S̃θ is a sum of a random number Ñθ of

independent exponential random variables. Thus, we obtain by taking conditional expectations that

E[S̃θ] = (αθη)−1E[Ñθ], and Var[S̃θ] = (αθη)−2(E[Ñθ] + Var[Ñθ]) (see, e.g., Ross (1996, pp.22)).

Thus, we have that the mean of the hitting time is bounded as follows

gθ
E[Zθ(q)]

≤
E[S̃κθ (q)]

sθ
≤ gθ

E[Zθ(q)]

(
1 +

V̄

bκθ

)
where gθ = bκθ/(α

κ
θη

κsθ) is the budget-per-auction for type θ, which is invariant to the scaling. Simi-
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larly, the variance can be upper bounded by

Var[S̃κθ (q)]

s2
θ

=
1

(ακθη
κsθ)2

(
E[Ñκ

θ (q)] + Var[Ñκ
θ (q)]

)
≤

bκθ + V̄

(ακθη
κsθ)2

Var[Zθ(q)] + E[Zθ(q)]2

E[Zθ(q)]3
+

V̄ 2

(ακθη
κsθ)2

1

E[Zθ(q)]2
≤ K

bκθ

for some K > 0 independent of the scaling, the vector of active probabilities, and the type. The last

follows from the facts that (i) Var[Zθ(q)] ≤ V̄ 2/4 and E[Zθ(q)] ≤ V̄ because 0 ≤ Zθ(q) ≤ V̄ almost

surely; (ii) for sufficiently large scaling we have that V̄ ≤ bκθ ; and (iii) because the reserve price is

strictly positive and there is a positive probability that the advertiser wins the auction the expected

expenditure can never drop to zero, i.e., inf0≤q≤1 E[Zθ(q)] > 0.

Combining the last bounds we obtain that the difference is (4) is bounded by

|fκθ (q)− fκ′θ (q)| ≤

√
K

bκθ
+

√
K

bκ
′
θ

+
V̄ gθ

E[Zθ(q)]

∣∣∣∣ 1

bκθ
− 1

bκ
′
θ

∣∣∣∣
≤

√
K

bκθ
+

√
K

bκ
′
θ

+
K ′

bκθ
+
K ′

bκ
′
θ

,

where the second bound follows from the triangle inequality and property (iii) from above. Since the

Cauchy difference converges to zero as κ, κ′ →∞ uniformly in q, we get that the sequence of functions

is uniformly convergent.

Step 4 (Convergence in distribution of the maximum bid.) Let qκ be a consistent prob-

ability vector of the κ-th mean field system. The cumulative distribution function of D(qκ) for any

x ≥ r is given by

F κd (x) = P{D(qκ) ≤ x} = exp

(
−λκ

∑
θ∈Θ

pθq
κ
θα

κ
θsθF̄vθ ((1 + µθ)x)

)

which converges to the FMFE distribution of the maximum bid for all continuity points, since ‖1 −
qκ‖ → 0, and λκακθ is invariant to the scaling.

A.2.3 Proof of Proposition 3

Fix a type θ and the scaling κ. Let qκ be a consistent vector of active probabilities for the κ-th scaling

(which exists according to Proposition 1). As in the proof of Proposition 2 we consider the coupled

process Y κ
θ (qκ) in which the zeroth advertiser is allowed to bid beyond the length of her campaign.

Let {(Zθ,n(q), Uθ,n(q))}n≥1 be the sequence of realized expenditures and utilities of the zeroth
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advertiser in each auction when the vector of active probabilities is q, which in view of our mean-

field assumption in the BMFM is i.i.d. The zeroth advertiser’s utility in the n-th auction is Uθ,n(q) =

1{Dθ,n(q) ≤ βθ(Vθ,n)}(Vn−Dθ,n(q)). Again, it is the case that, for a fixed active probability vector, the

distribution of the utility is invariant to the scaling. Moreover, using the fact that βF
θ (x) = x/(1 +µθ)

we get that,

Uθ,n(q) = (Vn − (1 + µθ)Dθ,n(q))+ + µθZθ,n(q),

which after taking expectations implies that E[Uθ(q)] = Ψ̄θ(µθ;Fd(q)) + µθ(E[Zθ(q)]− gθ), where the

normalized dual function is defined as Ψ̄θ(µ;Fd) , Ψθ(µ;Fd)/(αθηsθ) = E[V − (1 + µ)D]+ + µgθ,

and Fd(q) is the distribution of the maximum of the competitors’ bids for a given vector q of active

probabilities.

Next, we lower bound the expected payoff of the zeroth advertiser. Recalling that Nκ
θ (sθ) is the

number of auctions the zeroth advertiser participates during her campaign, and Ñκ
θ (qκ) is the number

of auctions until the cumulative expenditure exceeds the budget, we have that

J
MF(κ)
θ (βF;βF) = E

Ñκ
θ (qκ)∧Nκ

θ (sθ)∑
n=1

Uθ,n(qκ)

 ≥ E

Nκ
θ (sθ)∑
n=1

Uθ,n(qκ)

− V̄ E[Nκ
θ (sθ)− Ñκ

θ (qκ)]+

≥ E

Nκ
θ (sθ)∑
n=1

Uθ,n(qκ)

− V̄ E[Nκ
θ (sθ)− ακθηκsθ]+ − V̄ E[ακθη

κsθ − Ñκ
θ (qκ)]+,

where the first inequality follows from the fact that 0 ≤ Uθ,n(q) ≤ V̄ ; and the second from the fact

that for every a, b, c ∈ R we have that (a− c)+ ≤ (a− b)+ + (b− c)+. In the remainder of the proof we

will show that, the first term on the right-hand side, normalized by the expected number of auctions,

converges to J̄F
θ (Fd), and the second and last terms to zero. We study one term at a time.

For the first term, notice that the number of matching impressions is independent of the utility,

and thus

1

ακθη
κsθ

E

Nκ
θ (sθ)∑
n=1

Uθ,n(qκ)

 = E[Uθ(q
κ)] = Ψ̄θ(µθ;F

κ
d ) + µθ(E[Zθ(q

κ)]− gθ).

Notice that Ψ̄θ(µθ;F
κ
d ) → Ψ̄θ(µθ;Fd) as κ → ∞, since F κd ⇒ Fd from Proposition 2, and Ψ̄θ is

continuous w.r.t. the distribution of the maximum bid from the proof of Theorem 1 of the main

paper. Furthermore, since µθ is an optimal dual variable we get that Ψ̄θ(µθ;Fd) = J̄F
θ (Fd), in view

of Proposition 1 of the main paper. Additionally, from Proposition 2 we have E[Zθ(q)] is continuous

in q, and thus E[Zθ(q
κ)] → E[Zθ(1)] as κ → ∞. From the complementarity condition between the

equilibrium multiplier µθ and the expected expenditure E[Zθ(1)] of the FMFE, we get that last term
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goes to zero.

For the second term, note that for any random variable X and constant x, we have that E(X−x)+ ≤
(EX − x)+ +

√
Var(X)/2, by the upper bound on the maximum of random variables given in Aven

(1985). Since Nκ
θ (sθ) is Poisson with mean ακθη

κsθ we get that

1

ακθη
κsθ

E[Nκ
θ (sθ)− ακθηκsθ]+ ≤ (2ακθη

κsθ)
−1/2,

with the right-hand side converging to zero as the scaling increases.

For the third term, we use a similar bound on the expected value of the maximum together with

the bounds on the mean and variance of the hitting time Ñκ
θ (q) developed in Proposition 2 to get

1

ακθη
κsθ

E[ακθη
κsκθ − Ñκ

θ (qκ)]+ ≤

(
1−

E[Ñκ
θ (qκ)]

ακθη
κsθ

)+

+

√
Var[Ñκ

θ (qκ)]

2(ακθη
κsθ)2

≤
(

1− gθ
E[Zθ(qκ)]

)+

+

√
gθ

Var[Zθ(qκ)] + V̄ E[Zθ(qκ)]

E[Zθ(qκ)]3
(ακθη

κsθ)
−1/2.

The first term of the right-hand side converges to (1−gθ/E[Zθ(1)])+ ≤ 0, since the expected expenditure

in the FMFE never exceeds the budget, that is, E[Zθ(1)] ≤ gθ. The last term of the right-hand side

follows by the previous bound on Var[Ñκ
θ (qκ)] and the fact that V̄ ≤ bκθ for large enough κ, and it

converges to zero.

A.2.4 Proof of Proposition 4

Fix an arbitrary policy βκ. The result is proven in two steps. First, we upper bound the performance

of the policy βκ by the performance of a policy with the the benefit of hindsight, denoted by βH, which

assumes complete knowledge of the future realizations of bids and values. Second, we upper bound the

performance of βH by the dual objective function.

Fix a type θ and a scaling κ. Let J
MF(κ)
θ (βH,βF) denote the expected payoff under perfect hindsight,

which is obtained by looking at the optimal expected payoff when the realization of the number of

impressions, the competing bids and values for the whole horizon is revealed up-front. No strategy can

perform better than the perfect hindsight strategy βH and we have that

J
MF(κ)
θ (β;βF) ≤ JMF(κ)

θ (βH;βF).

Given a sample path ω, which determines the number of matching impressions Nκ
θ (sθ)(ω) = nθ and

the realization of the competing bids and values {(Dn,0(ω), Vn,0(ω))}N
κ
θ (sθ)(ω)

n=1 = {(dn,0, vn,0)}nθn=1, the

advertiser only needs to determine which auctions to win (since bidding an amount ε > 0 larger than
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the maximum bid guarantees her winning the auction). Let the decision variable xn,0 ∈ {0, 1} indicate

whether the zeroth advertisers decides to wins the auction or not. In hindsight, the zeroth advertiser

needs to solve, for each realization ω, the following knapsack problem

J
H(κ)
θ (ω) = max

xn,0∈{0,1}

nθ∑
n=1

xn,0(vn,0 − dn,0) (5a)

s.t.

nθ∑
n=1

xn,0dn,0 ≤ bθ. (5b)

The perfect hindsight bound is obtained by averaging over all possible realizations consistently with

the strategy of the other bidders and the BMFM, or equivalently J
MF(κ)
θ (βH,βF) = Eω

[
J

H(κ)
θ (ω)

]
.

Consider the continuous relaxation of the hindsight program (5) in which we replace the integrality

constraints by 0 ≤ xn,0 ≤ 1. Let µθ be the equilibrium multiplier of the FMFE for type θ. Introducing

dual variables µ ≥ 0 for the budget constraint and zn ≥ 0 for the constraints xn,0 ≤ 1, we get by weak

duality that

J
H(κ)
θ (ω) ≤ min

µ≥0,zn≥0

{
nθ∑
n=1

zn + µbθ s.t. zn ≥ vn,0 − (1 + µ)dn,0, ∀n = 1, . . . , nθ

}

= min
µ≥0

{
nθ∑
n=1

[vn,0 − (1 + µ)dn,0]+ + µbθ

}

≤
nθ∑
n=1

[vn,0 − (1 + µθ)dn,0]+ + µθbθ

where the equality follows from the fact that in the optimal solution of the dual problem it is either

the case that zn = 0 or zn = vn,0 − (1 + µ)dn,0, and the second inequality from the fact that µθ is

not necessarily optimal for the hindsight program. Taking expectations and using the fact that the

number of matching impressions is Poisson with mean ακθη
κsθ independently of values and competing

bids, we get that
1

ακθη
κsθ

J
MF(κ)
θ (βH;βF) ≤ Ψ̄θ(µθ;F

κ
d ).

We conclude by noting that limκ→∞ Ψ̄θ(µθ;F
κ
d ) = J̄F

θ (Fd) as in the proof of Proposition 3.

A.3 Proof of Proposition 5

Section C shows that the AdX market may be modeled as a closed system with a random number of

agents. Furthermore, Proposition 7 shows that when the initial conditions are set according to the

BMFM, we obtain a consistent distribution for the mean-field model of the closed market, in which
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the evolution of an advertiser during her campaign coincides with that given by the BMFM.

Next, we should compare an agent’s evolution in the closed system to the evolution of the same

agent in the mean-field model. That is, suppose that we “attach” a new agent to the real system with

its own initial condition and its own strategy, referred as the zeroth agent, independently of everything

else. When the number of agents is large, one would expect that presence of this extra agent and

the arbitrary strategy that she implements would not affect considerably the evolution of the system.

Corollary 1 shows that the law of the state of the zeroth agent in the closed system is close to the law

of her state in the closed mean-field model, in a total variation sense. This result uses a propagation of

chaos argument to show that the interaction effects in the real system become negligible as the scale

increases. We conclude by noting that the law of the zeroth advertiser in the closed mean-field model

is equal to the law of an advertiser in the BMFM.

Next, we show that the bound on the total variation of the laws g′(η, Fk, α, T ), as defined in

Corollary 1, converges to zero as κ goes to infinity. Let Y κ = ᾱκKκ, and T = s̄, where ᾱκ = maxθ α
κ
θ

and s̄ = maxθ sθ. Then the bound can be written as EY κ [gκ(Y κ)],

gκ(y) =

(
Aκ(y) +

(ᾱκ)2ηκs̄

2
Cκ(y)

)
e2ᾱκηκs̄B(y) − 1

2B(y)
,

with Aκ(y) = 2ᾱκ +
√

VarY κ + |y − E[Y κ]|, B(y) = y, and Cκ(y) = (y)(2 + y − ακ). Using Cauchy-

Schwartz inequality, together with Minkowski’s inequality, and denoting by ‖X‖2 =
√

E[X2] the L2

norm we obtain that

EY κ [gκ(Y κ)] ≤
(
‖Aκ(Y κ)‖2 +

(ᾱκ)2ηκs̄

2
‖Cκ(Y κ)‖2

)∥∥∥∥e2ᾱκηκs̄Y κ − 1

2Y κ

∥∥∥∥
2

.

The first term in parenthesis can be bounded as

‖Aκ(Y κ)‖2 ≤ 2ᾱκ +
√

VarY κ + ‖Y κ − E[Y κ]‖2

= 2ᾱκ + 2
√

VarY κ ≤ 2ᾱκ + 2
√
ᾱκ
√

2ᾱκλκs̄ = O(κ−1/2),

where the first inequality follows from Minkowski’s inequality, the equality from the variance formula,

the second inequality from the fact that the variance of Kκ is at most 2ᾱκλκs̄, and the last from the

fact that the number of matching bidders is invariant to the scaling, i.e., ακλκs̄ = O(1). For the second

term in parenthesis we obtain

(ᾱκ)2ηκs̄

2
‖Cκ(Y κ)‖2 ≤

(ᾱκ)2ηκs̄

2

(∥∥(Y κ)2
∥∥

2
+ 2 ‖Y κ‖2

)
= O(κ−1 log κ),

since ‖Y κ‖2 and
∥∥(Y κ)2

∥∥
2

are O(1). For the last factor we use the fact that (eξy − 1)/y ≤ ξeξy for
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y, ξ ≥ 0 to obtain∥∥∥∥e2ᾱκηκs̄Y κ − 1

2Y κ

∥∥∥∥
2

≤ ᾱκηκs̄
∥∥e2ᾱκηκs̄Y κ

∥∥
2

= ᾱκηκs̄

√
E
[

exp(2ᾱκηκs̄Y κ)2
]

= ᾱκηκs̄

√
E
[

exp(4(ᾱκ)2ηκs̄Kκ)
]

= ᾱκηκs̄ exp
(
λκs̄

(
e4(ᾱκ)2ηκs̄ − 1

))
= ᾱκηκs̄ exp

(
4(ᾱκλκs̄)(ᾱκηκs̄)

e4(ᾱκ)2ηκs̄ − 1

4(ᾱκ)2ηκs̄

)
= O(κε),

where the second equality follows from Y κ = ακKκ, third equality from the moment generating function

of the Poisson random variable; and the last from the fact that (ex−1)/x = O(1) around zero and that

ᾱκηκs̄ = O(log κ). Note that the exponent ε > 0 can be made arbitrarily small by choosing a suitable

large base in the logarithmic growth of number of opportunities as given by ηκ and bκ. Choosing the

scaling so that ε < 1/2 we obtain that the bound converges to zero.

Define the extended state of the zeroth advertiser as the budget remaining, campaign remaining

and last realization of her value. Let H0(t) denote the entire history of the extended states for the

zeroth agent until time t (note that is a proper subset of the history defined in Section B.5, which

includes the histories of the competing agents). The zeroth advertiser’s strategy βκ maps a history

H0(t) to a bid βκ(H0(t)). The total payoff-per-auction of the zeroth advertiser for a given sample path

is defined by

1

ακθη
κsθ

N(sθ)∑
n=1

1{βκ(H0(tn)) > dn,0, b0(t−n ) > 0}(vn,0 − dn,0)An,0,

=
1

ακθη
κsθ

N(sθ)∑
n=1

1{b0(t−n )− b0(tn) > 0}
(
vn,0 − (b0(t−n )− b0(tn))

)
An,0,

where An,0 = 1 whenever the zeroth advertiser participates in the nth auction, and the second equation

follows from the fact that the zeroth advertiser’s payment is b0(t−n )− b0(tn). Note that the payoff-per-

auction function is measurable and bounded. Measurability follows from the fact that the strategies

are non-anticipating and adaptive w.r.t. the history H0(t). Boundedness follows from the fact that the

utility per auction is bounded by V̄ , an advertiser can win at most bθ/r auctions, and thus that the

ratio of total utility to number of auctions is bounded by gθV̄ /r. Thus, the convergence of the payoff

functions follows from the convergence in total variation of the processes’ laws given by Corollary 1 for

the extended states.
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B Mean-field Model for Systems with a Random Number of Agents

In this section we consider a general mean-field model for a system in which the number of agents

is random and determined up-front when the system is created. We present our model and results

in full generality, since these may be of independent interest. We start by considering a model with

homogeneous agents and then we move on to generalize it to heterogeneous agents.

B.1 Real System

Let K ∈ Z+ be the number of agents, which is drawn from some discrete distribution Fk(·). After the

number of agents in the system is drawn, it remains fixed for the whole time horizon. We denote the

state of agent k at time t by Xk(t) ∈ X where X ⊂ Rd.
The dynamics of the system are as follows. First, the number of agents in the system is drawn.

Then, the initial states of the agents {Xk(0)}Kk=1 are determined as i.i.d. draws from a random variable

X0. The evolution of the states of the agents is governed by a deterministic drift, and a stochastic jump

process that determines the agents’ interactions. The deterministic drift depends exclusively on the

agent’s own state and is oblivious to the other agents’ states. That is, the drift is given by a function

v : X × R → X, which determines the instantaneous change in an agent’s state v(x, t) at time t when

the current state is x. The drift is assumed to be uniformly bounded, and Borel-measurable in its first

argument.

Before defining the interactions we need some notation. Let XN be the space of finite length

sequences on X. For a sequence ~x =
〈
x1, x2, . . . , x|~x|

〉
we denote by |~x| the length of the sequence. Given

two sequences ~x and ~y we define the concatenation of these sequences as ~x·~y =
〈
x1, . . . , x|~x|, y1, . . . , y|~y|

〉
.

The concatenation operator is similarly defined for an element of the space X and a sequence.

The interactions are governed by the jumps of a Poisson process N(t) with intensity η, where we

denote by {tn}n≥1 the sequence of jump times. Each agent participates in the interaction randomly

and independently of other agents with probability α. We denote by Ak,n a Bernoulli random variable

with success probability α indicating whether the kth agent participates in the nth interaction or not.5

The indices of the participating agents is given by the set Mn = {k = 1, . . . ,K : Ak,n = 1}, and

the total number of agents in the interaction by Mn = |Mn|. We allow some random noise term

ξk,n ∈ E to be associated to each agent participating in the interaction. These noise terms are drawn

independently from some common distribution Fξ(·).
Once the identities of the participating agents is determined the states are updated according to

an interaction function f : XN×EN×R→ XN, such that f(~x, ~ξ, t) = ~y gives an additive change in the

5As we will later see, in the context of our Ad Exchange, this Bernoulli random variable will be equal to one if both
the bidder is “alive” in its campaign and if it matches the targeting criteria.
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participating agents’ states at time t when their states before the interaction are ~x and the noise terms

are ~ξ. The interaction function is defined whenever |~x| = |~ξ| and satisfies the following properties. First,

the length of the input and output state sequences should be consistent, that is, |~y| = |~x|. Second,

the interaction functions is symmetric in its arguments, that is, for every permutation π of the indices

{1, . . . , |~x|} we have that f(~xπ, ~ξπ, t) = ~yπ. Third, the interaction function is uniformly bounded and

Borel-measurable.

The dynamics of the agents in the system can be informally defined in terms of the following system

of coupled stochastic differential equations (SDE)

dXk(t) = v(Xk(t), t)dt+ f1

(
Xk(t) · ~X−k(t), ξk(t) · ~ξ−k(t), t

)
Ak(t)dN(t), (6)

for all agent k = 1, . . . ,K. In the previous equation we denote by Ak(t) , Ak,N(t) the indicator that

agent k participates in the last event before time t, ξk(t) , ξk,N(t) her noise terms, M(t) , MN(t)

the set of indices of agents interacting at the event before time time t, the sequence of states of the

agents interacting with k by ~X−k(t) = 〈Xi(t)〉i∈M(t)\k, and the sequence of noise terms associated to

the agents interacting with k by ~ξ−k(t) = 〈ξi(t)〉i∈M(t)\k. All terms in the right-hand side of the SDE

are evaluated at time t− to preserve predictability. The symmetry of the interaction function f allows

one to write the system dynamics as if the agent in consideration was the first argument.

B.2 Mean-field Model

Next, we study the evolution of a fixed agent in a mean-field model associated with the previous system.

In the mean-field model the agent in consideration (i) interacts with a random number of agents that

is independent of the total number of agents in the system, and (ii) the states of the interacting agents

are independent draws from a time-dependent distribution.

We refer to the agent in consideration as the zeroth agent. Let X̃0(t) be the state of the agent in

consideration in the mean-field model. As in the real system, the initial state of the agent is drawn

from the random variable X0. At the nth interaction the number of agents in the system K̃n is drawn

independently from the distribution Fk(·), and the number of participating agents (excluding 0) is

given by M̃n, which is a Binomial random variable with success probability α and K̃n trials. Note

that, in the mean-field model, the number of agents in the system is re-drawn at each interaction. In

order to determine the evolution of the process X̃0 = {X̃0(t)}t≥0 one needs to specify the distribution

of the interacting agents. In the following, we assume that the states of the agents interacting are

drawn from some distribution Pc : B(X)×R→ [0, 1], where Pc(X , t) gives the probability that, at time

t, the state of an interacting agent lies in the Borel set X .

The dynamics of the agent in the mean-field model are governed by the following stochastic differ-
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ential equation

dX̃0(t) = v(X̃0(t), t)dt+ f1

(
X̃0(t) · ~̃X−0(t), ξ0(t) · ~̃ξ−0(t), t

)
A0(t)dN(t). (7)

In the previous equation the sequence of states of the agents interacting with 0 in the nth event at

time t are given by ~̃X−0,n =
〈
X̃1,n, . . . , X̃M̃n,n

〉
, with X̃k,n drawn i.i.d. from the distribution Pc(·; t).

Similarly, the sequence of noise terms associated to the agents interacting with 0 are given by
~̃
ξ−0,n =〈

ξ1,n, . . . , ξM̃n,n

〉
. These noise terms are drawn from the same distribution as in the real system, with

the exception that now the noise vector has M̃n components.

We emphasize that in order to determine the evolution of the process X̃0 one needs to specify the

distribution of the interacting agents’ states Pc. For the system to be consistent this distribution should

be endogenously determined from the model itself. That is, suppose that one postulates a candidate

distribution Pc, and let the mean-field system evolve with interacting agents’ states drawn from that

distribution. It should be the case that the state at time t of the zeroth advertiser in the mean-field

model is distributed as Pc(·, t). We formalize this concept next.

Definition 2. A distribution Pc : B(X)×R→ [0, 1] is T-consistent if for any Borel-measurable set of

states X and time t

Pc(X , t) = P
{
X̃0(t) ∈ X | interacting agents states drawn from Pc

}
.

Note that at both sides of the previous fixed point equation the distribution Pc is time-dependent.

Uniqueness of a T-consistent distribution for problems with a bounded jump rate can be proved using

a contraction argument on probability measures (see, e.g., Graham (1992)).

B.3 Boltzmann Tree

Given a distribution for the initial conditions, a T-consistent distribution for the mean-field model can

be constructed by considering the associated Boltzmann tree, which we detail next. We shall construct

the tree in two steps. In the first step we move backwards from time T until time 0 to determine

all the interactions in the horizon. Here we are not concerned about the states; instead, we focus

on determining the time in which interactions occur and the agents involved in these interactions.

In the second step, we move forwards in time to determine the evolution of the states. We start by

specifying the initial conditions and the noise terms for the interactions, and then the state processes

are computed deterministically using the system dynamics.

We partition the lifetime of an agent in the system during time [0, T ] into a countable sequence of

slices, where one slice is the lifetime of the agent between two consecutive interactions. We shall label
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each slice by a finite sequence of indices ~k ∈ ZN
+, denoted as ~k = 〈k1, k2, . . .〉.

Step 1. We construct a tree rooted in the zeroth agent by moving backwards in time. Let 〈0〉
be the first slice for the zeroth agent from the time of the last interaction until time T . We associate

to each slice ~k a Poisson process N~k(t). The slice ends at the time T+
~k

and begins at a time T−~k
that

corresponds to the last jump of the Poisson process N~k(t) before the time T+
~k

. At time T−~k
the agent

interacts with an independent random number of agents, denoted by M̃~k
. To determine the number

of agents competing we first draw the number of agents in system K̃~k
from Fk(·), and then draw

M̃~k
as a Binomial random variable with success probability α and K̃~k

trials (all quantities are drawn

independently). This event corresponds to the branching of the tree. At this point M̃~k
+ 1 new slices

are constructed and attached to the tree. The new slices area labeled i · ~k with i from 0 to M̃~k
. Here,

the first slice 0 · ~k corresponds to the previous slice of the incumbent agent ~k, which is referred as the

creator of the interaction. The remaining slices correspond to the other agents interacting with ~k at

that point. These slices i ·~k end at time T+

i·~k
= T−~k

. These steps are repeated recursively until all slices

reach time 0.

Each time a slice ~k reaches time 0, we associate to it an agent whose lifetime would extend until

she participates in an interaction in which she is not the creator. From that point on, we are not

concerned about the state of the agent since it is not relevant to determine the evolution of the zeroth

agent. That is, if ~k = 〈0, . . . , 0, kn+1, kn+2 . . . , k|~k|〉 with kn+1 6= 0, then the agent participated in n

different events in which she was the creator, and was created by interacting with slice 〈kn+2, . . . , k|~k|〉
in the n+ 1th event. Let K be the set of slices that reach time 0.

Step 2. Once the tree is constructed, we assign a state process X̃~k , {X̃~k(t)}t∈[T−
~k
,T+
~k

] to each

slice. The evolution of the state are determined by following the SDE forward in time. First, for the

each slice ~k ∈ K, we set X̃~k(0) according to i.i.d. draws from the initial distribution X0. Then, the

states evolve deterministically according to the drift v during the slice [T−~k
, T+
~k

]. At the point of an

interaction, noise terms ξ~k are drawn independently for each slice, and the state of the creator after

the interaction is determined using the interaction function f . That is, if agents i ·~k participate in the

interaction, we have that

X̃~k(T
−
~k

) = f1

(〈
X̃
i·~k(T

+

i·~k
)
〉M̃~k

i=0
,
〈
ξ
i·~k

〉M̃~k

i=0
, T−~k

)
.

We proceed in this manner until slice 〈0〉 is reached, which corresponds to the last slice of the zeroth

agent.

Once we conclude with the forward evolution, the state process for the whole lifetime of the zeroth

agent can be reconstructed by concatenating the slices 〈0, 0, . . . , 0〉, 〈0, . . . , 0〉, and so forth until slice

〈0〉. The state process is just the concatenation of the state processes of each slice {X̃0(t)}t∈[0,T ] =
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⋃
~k:ki=0

X~k.

In the Boltzmann tree agents evolve without self-interactions since each agent interacts with agents

whom themselves evolve independently within trees. Thus, each agent in the tree evolves as in the

mean-field model, and the law of the process {X̃0(t)}t∈[0,T ] constructed above using the Boltzman

tree is T-consistent for the mean-field model (Definition 2). This is proved formally in, for example,

Chauvin and Giroux (1990).

B.4 Propagation of Chaos

Let L(Xk|K ≥ k) be the law for the process of the kth agent’s state in the real system conditioning on

the number of agents being greater or equal than k (that is, under the condition that the kth agent is

in the system). The next result shows that the law of that agent is close, in total variation norm, to

the law of an agent in the mean-field model.

Proposition 6. Let Pc be a T-consistent distribution for the mean-field model. Then

‖L(Xk|K ≥ k)− Pc‖[0,T ] ≤ g(η, Fk, α, T, k),

where ‖ · ‖[0,T ] denotes the total variation norm over the time horizon [0, T ], and

g(η, Fk, α, T, k) = EK
[(
A+

α2ηT

2
C

)
e2αηTB − 1

2B

∣∣∣K ≥ k] ,
with A = α+ α

√
VarK + α|K − E[K]|, B = α(K − 1), and C = (αK − α)(2 + αK − 2α)/2.

Proof: The proof follows from the combination of a propagation of chaos argument for the

interactions (such as that used in Graham and Méléard (1994) and Iyer et al. (2011)) and a fluid limit

for the number in system. The result is proven in four steps. In the first step, we present a path-wise

construction of the real system with the minimal information necessary to determine all interactions

that occur in the system. In the analysis we are not concerned about the evolutions of the states, and

thus we shall not describe the draws of the noise terms and outcomes of the interactions. Indeed, we

shall restrict our attention to the interaction times and the identity of agents interacting in each event.

In the second step, we present some sufficient conditions under which the evolution of the k−th agent

in the real system is “close” to that of the same agent in a Boltzmann tree. Namely, that (i) an agent

interacts with distinct agents who do not share any past common influence, and that the same applies

recursively to those agents she interacts with; and (ii) the stochastic deviations in number of agents

initially in the system do not affect significantly the number of agents interacting in the successive

events. In the third step, we show that the complement of condition (i) occurs with low probability;

in the last step we show that that the same holds for condition (ii).
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Step 1: Path-wise construction of the real system. Here we present a path-wise construction

of the real system with the minimal information necessary to determine all interactions that occur in

the system during time [0, T ]. The initial conditions are as follows. First, the initial number of agents

is drawn from K|K ≥ k. Second, the state of each agents is drawn independently from the initial

distribution X0.

Independently, we have that events occur according to the jumps of the Poisson process {N(t)}t≥0

with rate η. Recall that the jump times were denoted by tn. At the time of the nth event we need

to determine which agents participate in the event. We do so by assigning independent Bernoulli

coins to the agents currently in the system so that agents interact whenever the coin is one. Let

M = {mn,i}i∈N,n∈N be an infinite matrix of independent Bernoulli random variables with success

probability α, which act as the indicators of whether the agent interact in each event. More formally,

in our construction the kth agent participates in the nth event if her associated coin mn,k is one. We

refer to these at the interacting coins. LetM(tn) and M(tn) denote the indices and number of agents

interacting in the events. This information suffices to determine all the interactions of the real system.

Step 2: Interaction Graphs and Coupling. The evolution of the state of an agent is directly

affected by other agents that interact with her in the events, and indirectly influenced by other agents

who recursively affect the agents she interacts with. Graham and Méléard (1994) introduced the

interaction graph construction to summarize the past history of an agent, including all the agents that

have influenced her evolution of the state. If we prove that all agents that may have influenced the

one in consideration share no common influence we will be able to prove that the real system evolved

as the mean-field model.

We define the interaction graphs as follows. Let Γk(t) ∈ P(R+ × P(N0)) be the interaction graph

of agent k at time t, where P(X) denotes the power set of X. The interaction graph is a set of

pairs (t′,M′) indicating that at time t′ agents with indices in the set M′ interacted in an event, and

we shall see that it records all events that may affect directly or indirectly the state of this agent.

The interaction graphs are built recursively as follows. First, at time zero the interaction graph is

Γk(0) = {(0, {k})}. Afterwards, the interaction graph of the agent in consideration remains unchanged

until she participates in an event. If her interacting coin for the event at time t is one, the interaction

graph is extended to include the interaction graphs of all agents that participate in the event, that is,

Γk(t) =
⋃

k′∈M(t)

Γk′(t
−) ∪ {(t,M(t))}

where Γk(t
−) denotes the interaction set just before the event. As a consequence, after an event the

histories of all participants are appended in the graph; the current state of the agent may have been

influenced by them. Note that the interaction graphs are deterministically determined once we fix the
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path-wise construction of the system.

If at time t we have that interaction graphs of two agents k and k′ are disjoint, that is Γk(t)∩Γk′(t) =

∅, then there is no common agent that had influenced them in the past, and these agents have evolved

independently. We say that the interaction graph Γk(t) is a tree if for all (t′,M′) ∈ Γk(t) we have that

Γk′(t
′−)∩Γk′′(t

′−) = ∅ for all pairs of agents k′ 6= k′′ ∈M′. This implies that the agent k evolved until

time t without self interactions, that is, the agent interacts throughout her campaign with distinct

agents who do not share any past common influence, and that the same applies recursively to those

agents she competes with.

The fact that for the kth agent its graph Γk(T ) is a tree guarantees that the interaction effect is

not present in the evolution of the process. However, it can still be the case that the branching of the

tree is correlated inter-temporally due to the fact that the number of agents in the real system is fixed

while in the mean-field model this quantities are independently drawn at each event. For example, if

the initial number of agents is large, one would expect that the tree would have more branches. For

the correlation effect to be absent one needs that the number of interacting agents in the successive

events in the graphs are uncorrelated.

From the perspective of one agent, in the real system the number of agents in system is K − 1,

and the number of interacting agents is Binomial with success probability α and K − 1 trials. Now,

let {K̃n}n∈N be a sequence of independent random variables drawn from Fk(·). We compare, using a

coupling argument, the real system with an alternate system in which the number of interacting agents

in each event is determined by the independent sequence K̃n instead of the fixed amount K − 1, but

keeping the same interacting coins.

Let Mn,k be the number of interacting agents competing in the nth event against the kth agent

(excluding the agent in consideration). Assuming that the kth agent participates in the event, this

quantity can be written as Mn,k =
∑K

i=1mn,i − 1. For the real system to evolve as in the mean-field,

one needs that: (i) the number of agents competing is independent across events, and (ii) the number

of competing agents is Binomial with success probability α and a random number of trials drawn from

Fk(·). Keeping the same interacting coins, for the latter conditions to hold one needs that the number

of interacting agents in each event coincides with M̃n,k =
∑K̃n+1

i=1 mn,i − 1, whenever the kth agent

participates in the event. The extra term in the summation guarantees that the number of interacting

agents coincides with that of the mean-field model, which excludes the agent in consideration. Indeed,

the random variable M̃n,k is distributed as a Binomial with success probability α and a random number

of trials drawn from Fk(·), which coincides with number of competing interacting agents of the mean-

field model.

Let ∆(Γk(t)) =
∣∣∣MNk(t),k − M̃Nk(t),k

∣∣∣ be the maximum difference between the actual and mean-field

model number of interacting agents competing with the kth agent in the last event before time t; where
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we denoted by Nk(t) = sup{n ≤ N(t) : mn,k = 1} the index of the last event before time t in which the

kth agent participated. Note that if ∆(Γk(t)) = 0, the number of interacting agents in the last event

is identical to that of the mean-field model. We say that a interaction graph Γk(t) is uncorrelated if

∆(Γk(t)) = 0 and for all pairs (t′,M′) ∈ Γk(t) we have that ∆(Γk′(t
′−)) = 0 for all k′ ∈M′. The latter

condition guarantees that all events that may have influenced the state at time t of agent k have an

independent number of interacting agents which coincides with that of the mean-field model.

Now, we are ready to state the conditions under which the evolution of the real system coincides

with that of the Boltzmann tree, and therefore, with Pc by the argument at the end of Section B.3.

Recall that in the Boltzmann tree agents evolve without self-interactions since each agent interacts

with agents whom themselves evolve independently within trees. Therefore, the evolution of the state

of an agent k until time t in the real system coincides with that of the Boltzmann tree in the event

that her interaction graph Γk(t) is a tree and uncorrelated. In particular, using a coupling argument,

we can show that the difference of the laws of both processes is bounded in total variation by

‖L(Xk|K ≥ k)− Pc‖TV,[0,T ] ≤ 1− P{Γk(T ) is a tree and uncorrelated}

≤ P{Γk(T ) not a tree}+ P{Γk(T ) not uncorrelated},

where the second inequality follows from a union bound. In the remainder of the proof, we bound each

term on the right-hand side.

Step 3: Correlation effect. In this step we shall bound the probability that an interaction graph

is not correlated by conditioning on the number of agents, and then taking expectations with respect

to the number of agents in the system.

Let U(t;K) be a bound on the probability that the interaction graph Γk(t) of an agent picked at

random at time t is not uncorrelated, given that the number of agents in the system is K. We can

obtain such bound by conditioning on the time of the last interacting event before t, and exploiting the

recursive nature of the interactions graphs. In the process we shall obtain a functional inequality of

the renewal kind. Indeed, by conditioning on the time x ≤ t of the last event before time t we obtain

U(t;K) ≤
∫ t

0
P {∆(Γk(x)) 6= 0 | K, k ∈M(x)}︸ ︷︷ ︸

(I)

+ P
{⋃

k′∈M(x)Γk′(x
−) not uncorrelated | K, k ∈M(x)

}
︸ ︷︷ ︸

(II)

dF̄αη(t− x) (8)

where Fαη(·) is the cumulative distribution function of the events inter-arrival time, which is exponential
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with rate αη. The first term of the integrand can be bounded as follows

(I) =
(
P
{
MNk(x),k 6= M̃Nk(x),k | K, k ∈M(x)

})
≤ αE

[
|K̃n + 1−K|

∣∣K] ≤ α+ αE
∣∣∣K̃n − E[K̃n]

∣∣∣+ α|K − E[K]|

≤ α+ α
√

VarK + α|K − E[K]| = A,

where the second inequality follows from observing that the interacting number of agents differ if at

least one the interacting coins in (K, K̃n+ 1] or (K̃n+ 1,K] is one, the second follows from the triangle

inequality, the third from Lyapunov’s inequality and the variance formula. Thus, we obtain that the

probability that the number of interacting agents in the real system differs from that of the mean-field

model is bounded uniformly over time by A that is a function of the random variable K.

For the second term on the rhs of (8), use that the expected number of agents in the interaction is

α(K − 1), and a union bound to estimate the probability that each of the sub-interaction graphs are

not correlated to obtain

(II) ≤ (1 + α(K − 1))U(x;K) = (1 +B)U(x;K)

where the second inequality follows the triangle inequality. In the latter, B, also a function of the

random variable K, is a bound uniform over time on the expected number of competing interacting

agents.

Using the two previous bounds in conjunction with equation (8), one obtains the functional equation

U(t;K) ≤ AFαη(t) + (1 + B)
(
U(·;K) ∗ Fαη

)
(t); where we denoted the Stieltjes convolution by (F ∗

G)(x) =
∫
F (x−u) dG(u). Iterating the functional equation we obtain the following exponential bound

on the probability that the tree is not uncorrelated

U(t;K) ≤ A
∞∑
i=0

(1 +B)iF (i+1)
αη (t) = A

∞∑
i=0

(1 +B)i
∫ t

0

(αη)i+1xi

i!
e−αηx dx

= A

∫ t

0
αηe−αηx

∞∑
i=0

(αηx(1 +B))i

i!
dx = A

∫ t

0
αηeαηxB dx

= A
eαηtB − 1

B
≤ Ae

2αηtB − 1

2B
(9)

where F
(i)
αη (t) =

∫ t
0

(αη)ixi−1

(i−1)! e−αηx dx denotes the ith convolution of the distribution of inter-arrival

times, which is Erlang with shape i and rate αη; the second equation follows from non-negativity and

Tonelli’s Theorem; the third from the power series definition of the exponential function; and the last

inequality from the fact that (ex − 1)/x ≤ (e2x − 1)/(2x) for x ≥ 0.
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Step 4: Interaction effect. We bound the probability that an interaction graph is not a tree

by following closely the developments in Graham and Méléard (1994). Let Q(t;K) be a bound on

the probability that the interaction graphs of two distinct agents i and j drawn at random from the

system at time t are not disjoint when K bidders are in the system, that is, Γi(t) ∩ Γj(t) 6= ∅. When

these interactions graphs are not disjoint there is at least one interaction (t′,M′) that belongs to both

graphs. It may be the case that neither of these agents participate in that interaction, but instead

some other agents participated who later influenced indirectly the agents in considerations.

Given an interaction graph Γ and two agents i and j we define the interaction distance of these two

agents, denoted by dist(i, j; Γ), as the minimum number of agents in the chain of influence between i

and j. The distance is zero whenever there is some event in which both i and j directly interacted, that

is, dist(i, j; Γ) = 0 if there is some event (t,M) ∈ Γ such that i, j ∈M. If there is no direct interaction,

it is defined recursively as one plus the minimum distance between j and all k that interacted with i

in some event. That is, dist(i, j; Γ) = 1 + min {dist(k, j; Γ) : i, k ∈M and (t,M) ∈ Γ}. The distance

is ∞ if there is no chain of influence between i and j in the graph.

We have that two interaction graphs are not disjoint, Γi(t)∩Γj(t) 6= ∅, whenever there is some chain

of influence between agents i and j in the union of their interaction graphs, that is, dist(i, j; Γi(t) ∪
Γj(t)) <∞. We provide the estimate on the probability that the interaction graphs of two agents are

not disjoint by considering the probability that two agents drawn at random from the system at time t

are at interaction distance of d, which we denote by Qd(t;K). Then, the total bound can be obtained

as Q(t;K) =
∑

d≥0Qd(t;K).

When the distance is zero there is a direct interaction between i and j between time 0 and T , an

event occurring with rate α2η. Thus,

Q0(t;K) = 1− e−α2ηt ≤ α2ηt.

Next, we proceed by induction on d. Suppose that we have a bound for Qd−1(t;K) for all time t ∈ [0, T ].

For a chain reaction of distance d to happen between some i and j, we first need that either of them

interacts with a third agent k such that the distance from k and the interacting agent is d − 1. The

first interaction occurs at rate 2αη (the minimum of two exponentials with rate αη), and the expected

number of agents she interacts is bounded by B = α(K − 1). Thus, we obtain that

Qd(t;K) ≤
∫ t

0
BQd−1(x;K) dF̄2αη(t− x)

≤ B
(
Qd−1(·;K) ∗ F2αη

)
(t) ≤ Bd

(
Q0(·;K) ∗ F (d)

2αη

)
(t),

where F2αη(·) is the cumulative distribution function of an exponential with rate 2αη, and the third
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inequality follows from iterating the function equation as done previously. Summing over all non-

negative distances d we obtain the following estimate on the probability that two interaction graphs

are connected

Q(t;K) =

∞∑
d=0

Qd(t;K) ≤
∞∑
d=0

Bd
(
Q0(·;K) ∗ F (d)

2αη

)
(t)

≤ Q0(t;K) +B

∞∑
d=0

(1 +B)d
(
Q0(·;K) ∗ F (d+1)

2αη

)
(t)

= Q0(t;K) +B

∫ t

0
Q0(t− x;K)2αηe2αηxB dx =

α

2B

(
e2αηtB − 1

)
, (10)

where the second inequality follows from partitioning the sum, the non-negativity of the terms and

using that B ≤ B + 1; the second equation from the third equation from Tonelli’s Theorem and the

power series definition of the exponential function; and the last equality from integrating.

Now, let L(t;K) be a bound on the probability that the interaction graph of an agent drawn at

random at time t is not a tree. For this to hold we need that the agent interacts with other agents,

whose interaction graphs are themselves trees, and that these interactions graphs are disjoint. The

expected number of agents she interacts with is B = α(K − 1), and the expected number of pairs of

agents is C = (αK − α)(2 + αK − 2α)/2, both functions of the random variable K. Thus,

L(t;K) ≤
∫ t

0
(CQ(x;K) + (1 +B)L(x;K)) dF̄αη(t− x)

= C
(
Q(·;K) ∗ Fαη

)
(t) + (1 +B)

(
L(·;K) ∗ Fαη

)
(t)

≤ C
∞∑
i=0

(1 +B)i
(
Q(·;K) ∗ F (i+1)

αη

)
(t)

= C

∫ t

0
Q(t− x;K)αηeαηxB dx

≤ αC

2

e2αηtB + 1− 2eαηtB

B2
≤ α2ηtC

2

e2αηtB − 1

2B
, (11)

where the second inequality follows from iterating the functional equation; the second equality from

Tonelli’s Theorem and the power series definition of the exponential function; and the third inequality

from the bound (10), integrating and discarding negative terms; and the last inequality from the fact

that (e2x − ex − 1)/x2 ≤ (e2x − 1)/(2x) for x ≥ 0.

Step 5: Putting it all together. We conclude by taking expectations with respect to the

initial number of agents in the system K to obtain bounds U(T ) = EK [U(T ;K)|K ≥ k], and L(T ) =
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EK [L(T ;K)|K ≥ k]. Thus, we have that

U(T ) + L(T ) ≤ EK
[(
A+

α2ηT

2
C

)
e2αηTB − 1

2B

∣∣∣K ≥ k] .
♦

B.5 Evaluating Deviations

The previous result allows one to compare an agent’s evolution in the real-system to the evolution in

the mean-field model. Now, consider a real system in which we “attach” a new agent with its own

initial condition, referred as the zeroth agent, independently of everything else. Let X ′0(t) ∈ X′ denote

the state of the zeroth bidder at time t in the new real system, where the state space X′ ⊂ Rd′ may be

different to that of the other agents. Whenever this agent interacts the dynamics are governed by a

new interaction function f ′ which is not symmetric w.r.t. the zeroth agent. Moreover, this function is

allowed to depend on the entire history of the agent’s states and noise terms for all interactions until

time t, which we denote by H ′0(t) =
{
X ′0(t−n ), ~X ′−0(t−n ), ξ0(tn), ~ξ−0(tn)

}
tn≤t

. In the case that the zeroth

agent does not participate in the interaction, the dynamics remain unchanged.

When the number of agents is large, one would expect that the arbitrary interaction function f ′

and the presence of an extra agent would not affect considerably the evolution of the system. As

such, in order to study the performance of the zeroth agent in this new system, one can consider an

alternative mean-field model for the zeroth agent in which interactions are governed by f ′ and the

states of the interacting agents drawn from the T-consistent distribution Pc of the original system’s

mean-field model. Let X̃ ′0(t) be the state of the zeroth agent in the alternate mean-field model. This

would satisfy the SDE

dX̃ ′0(t) = v(X̃ ′0(t), t)dt+ f ′1

(
H̃ ′0(t)

)
A0(t)dN(t), (12)

with the interacting agents’ states drawn from Pc, and H̃ ′0(t) the history of the zeroth agent in the

mean-field model as defined before. Let P′c denote the law of the zeroth agent in the alternative

mean-field model. That is, for any Borel-measurable set of states X and time t:

P′c(X , t) = P
{
X̃ ′0(t) ∈ X | interacting agents states drawn from Pc and f ′ is used

}
.

Using a similar argument that in the previous result we can show that the law of the zeroth agent

in the alternative system is close to the law of in the mean-field model, in a total variation sense.
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Corollary 1. We have that ∥∥L(X ′0)− P′c
∥∥

[0,T ]
≤ g′(η, Fk, α, T )

where

g′(η, Fk, α, T ) = EK
[(
A+

α2ηT

2
C

)
e2αηTB − 1

2B

]
,

with A = 2α+ α
√

VarK + α|K − E[K]|, B = αK, and C = (αK)(2 + αK − α).

Proof: The proof follows as in Proposition 6, but considering instead a Boltzmann tree in

which states are updated using the interaction function f ′ whenever the zeroth agent is involved.

The evolution of the state of the zeroth agent in the Boltzmann tree and in the real system coincide

whenever her interaction graphs is a tree and uncorrelated. The probability of these events, given the

number of agents in the system, may be bounded as in the proof of Proposition 6. We conclude by

taking expectation w.r.t. the number of agents in the system, which is now equal to K + 1. ♦

B.6 Heterogeneous interaction probabilities

Our model can be extended to accommodate heterogeneous interaction probabilities which are depen-

dent on the agent’s state and time. Consider an interaction probability function α : X × R → [0, 1],

such that α(x, t) gives the probability that an agent interacts in an event at time t when her state is

x. In the following we assume that this function is uniformly bounded from above by ᾱ.

In this context, the real system is defined as before, with the only exception that the indicator

that the kth agent interacts in the nth event as given by Ak,n is now Bernoulli with success probability

α(Xk(tn), tn)). In the mean-field model, the number of interacting agents at the nth event at time tn

is set to be

M̃n =

K̃n∑
k=1

Ãk,n, (13)

where Ãk,n is Bernoulli with success probability α̃(tn), and α̃(t) =
∫
X α(x, t) dPc(x, t) is the expected

probability that an agent interacts at time t. Thus, M̃n is Binomial with success probability α̃(tn)

and a random number of trials K̃n. Some states for an agent might be more likely, conditional on her

interacting in the event. Indeed, an agent’s state conditional on interacting is distributed as

P̃c(X , t) ,
1

α̃(t)

∫
X
α(x, t) dPc(x, t). (14)
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Note that in this case Definition 2 of a T-consistent distribution can be extended to

Pc(X , t) = P
{
X̃0(t) ∈ X | interacting agents states drawn from P̃c

}
,

where P̃c is given by equation (14).

We conclude this section by describing how to reduce the heterogeneous interaction probability

model to the homogenous one. To perform the reduction we consider an homogenous model in which

agents decide to interact in two rounds. In the first round, an agent interacts with a common probability

ᾱ independently of her state and the time. In the second round, an agent with state x at time t interacts

with probability α(x, t)/ᾱ. The first round is performed as in the homogenous model, and the second

round is performed within a new interaction function f̄ . We formalize this next.

For the first round, let the interaction indicators Āk,n be Bernoulli with success probability ᾱ.

For the second round, we extend the noise terms by ξ̄k,n = (ξk,n, uk,n) with uk,n distributed as a

Uniform random variable with support [0, 1]. Letting ~x the states and ~u the uniform noise terms

of the agents that pass the first round, we denote the set of agents that pass the second round by

M̄(~x, ~u, t) = {i = 1, . . . , |~x| : ui ≤ α(xi, t)/ᾱ}. The previous construction guarantees that agents

interact with their correct state and time-dependent probability. Then, the new interaction function

is defined as f̄i

(
~x, (~ξ, ~u), t

)
= 0 for i 6∈ M̄(~x, ~u, t) and

f̄
(
~x, (~ξ, ~u), t

)∣∣∣
M̄(~x,~u,t)

= f
(
~x|M̄(~x,~u,t),

~ξ|M̄(~x,~u,t), t
)
,

where ~x|I = 〈xi〉i∈I is a slice of ~x restricted to the set of indices I.

The previous results extend to the heterogenous interaction model by considering the homogenous

model with interacting probability ᾱ, noise terms ξ̄ and interaction function f̄ .
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C Ad Exchange Market as a Closed System

In this section we model our Ad Exchange market as a system with a random number of agents and

heterogeneous interaction probabilities. In this context, advertisers are the agents, auctions correspond

to the events, and matchings to interactions. A key characteristic of the exchange is that the market

is open, that is, advertisers arrive at random points in time, run their campaigns for a fixed amount

of time, and then depart. We can model arrival and departures by considering a closed market in

which advertisers are present for the whole time horizon but are “alive” only during their campaign.

In this system, the number of advertisers originally present is random and corresponds to the number

of arrivals during the time horizon. We refer to this as the closed system.

We consider a time horizon [0, T ]. The state of advertiser k at time t in the closed system is

given by XC
k (t) ∈ R3 × Θ; where given a state xC

k (t) = (bk(t), sk(t), τk, θk), we denote by bk(t) the

budget remaining, by sk(t) the remaining campaign length, τk the campaign start time, and by θk the

advertiser’s type (we adhere to the convention that capital letters denote random variable and lower

case letters denote realizations). The last two quantities are time-invariant. Advertisers are alive only

during their campaign, that is, they are only allow to match in an auction if τk ≤ t ≤ τk + sθk . The

model is as follows:

• The initial number of advertiser K is Poisson with mean
∑

θ λ
T
θ , where λTθ = λθ(T + sθ) is the

number of advertisers originally in the market plus the arrivals during the horizon [0, T ].

• The interaction probability function is α
(
(b, s, τ, θ), t

)
= αθ1{τ ≤ t ≤ τ + s}, that is, advertisers

match with their type-dependent probability only during their campaign.

• The deterministic drift is given by v
(
(b, s, τ, θ), t

)
= −es1{τ ≤ t ≤ τ + s}, where es is a unit

vector that is one for the remaining campaign length coordinate and zero elsewhere. That is, the

advertisers remaining campaign length decreases uniformly during their campaign.

• The noise terms ξk,n are Uniform with support [0, 1] and determine the realization of values

through the mapping F−1
θk

(·).

• The interaction function f(~x, ~ξ, t) = ~y gives the expenditure ~y when advertisers with states ~x and

noise terms ~ξ participate in a second-price auction with reserve price t. Let xk = (bk, sk, τk, θk)

be the state of the kth matching bidder. Her value is given vk = F−1
θk

(ξk), and her bid is

wk = βθk(vk)1{bk > 0}. The competing bid observed by the advertiser is dk = max (r,maxi 6=k wi),

while her payment is pk = dk1{wk > dk}. Finally, the output additive change is such that the

budget is decreased by the payment, i.e., yk = (−pk, 0, 0, 0).
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A few remarks are in order. First, note that the interaction function is symmetric and uniformly

bounded by V̄ , while the probability interaction function is uniformly bounded by ᾱ = maxθ αθ. Also,

the dynamics guarantee that the budgets and campaign length remaining remain unchange before

and after the campaign. Finally, interaction function is independent of the matching bidders’ time in

system and campaign start time; since matching bidders are, by definition, alive at the time of the

auction.

Until now we have specified the dynamics in the exchange, which together with the initial conditions

would give the complete evolution of the advertisers in the exchange. Before specifying the initial

conditions we define a distribution for the states of the agents interacting in the closed market based

on a consistent distribution for the BMFM. In the following, let PBMFM
e (B,S|θ, t) , PBMFM

e (B ∈ B, S ∈
S|Θ = θ, t) be the time-dependent consistent distribution for the BMFM that gives the probability

that budget and campaign remaining at time t of a θ-type advertiser in the BMFM lie in the Borel-sets

B and S, respectively. Note that PBMFM
e is constructed from the distribution specified in Definition 1

before considering the uniform sampling in the campaign length. That is, denoting by Pe the time-

invariant consistent distrusting of the BMFM, we have that the time-dependent distribution satisfies

the equation

p̂θ

∫ sθ

0
PBMFM
e

(
B, sθ − u

∣∣∣θ, u)1{sθ − u ∈ S}
1

sθ
du = Pe(B,S, θ). (15)

Note that in the BMFM, the time is relative to the start of the advertiser’s campaign, as opposed to

the time in the closed system, which is relative to the system creation.

Definition 3. Let PBMFM
e (B,S|θ, t) be a time-dependent consistent distribution for the BMFM. The

induced distribution for the closed market, denoted by PBMFM
c (B ∈ B, S ∈ S,T = τ,Θ = θ, t), is given

as follows. First, the probability that an advertiser is of type θ ∈ Θ is

PBMFM
c (Θ = θ, t) =

λTθ∑
θ′ λ

T
θ′

= pθ
sθ + T

EsΘ + T
.

Second, conditional on an advertiser being of type θ, the advertiser’s campaign start time is Uniform

with support [−sθ, T ], that is,

PBMFM
c (T ∈ T |θ = θ, t} =

|[−sθ, T ] ∩ T |
T + sθ

.

Finally, the budgets and campaign remaining conditional on an arrival time and type are distributed as

PBMFM
c {B ∈ B, S ∈ S|Θ = θ,T = τ, t} = PBMFM

e

(
B,S

∣∣∣θ,Proj[0,sθ](t− τ)
)
,
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where Proj[a,b](x) = min(max(a, x), b) is the projection of x to the interval [a, b].

When we specify the initial conditions X0 as drawn from PBMFM
c at time t = 0 we get that (i) the

initial number of advertisers and their remaining campaign lengths are drawn as from the steady-state,

and (ii) departures and arrivals during the horizon [0, T ] follow the queue dynamics. Additionally, in

the case that the advertiser arrives after the system is created (the campaign starts after time zero)

the budgets and campaign remaining are set to the initial values as given by the type. In the case that

the advertiser arrived before the system is created, the initial states are drawn form the consistent

distribution of the BMFM. We have the following result.

Proposition 7. Let PBMFM
e be a time dependent consistent distribution for the BMFM, and PBMFM

c the

induced distribution for the closed market, as given by Definition 3. Then, PBMFM
c is T-consistent for

the mean-field model of the closed market. Moreover, the law of the state of an advertiser in the closed

mean-field model during her campaign coincides with that of an advertiser in the BMFM.

Proof: In order to prove the result we look at the mean-field model associated to the closed

system when the states of the competing advertisers are drawn from the distribution PBMFM
c , which

is determined from a consistent distribution of the BMFM through Definition 3. First, we show that

the number of matching bidders in the closed mean-field model is time-invariant and distributed as

in the BMFM. Second, we show that the distribution of the states of the matching advertisers in the

closed mean-field model is time-invariant and coincides with that of the BMFM. Finally, we show the

latter two points, together with the consistency of the BMFM, imply the consistency for the closed

mean-field model.

First, note that the probability that an advertiser matches in the closed mean-field model is given

α̃(t) =

∫
X
α(x, t) dPBMFM

c (x, t) =

∫
X
αθx1{τx ∈ [t− sθx , t]} dPBMFM

c (x, t)

=

∫
X
αθx

sθx
T + sθx

dPBMFM
c (x, t) =

∑
θ

pθαθ
sθ

E[sΘ] + T
=

E[αΘsΘ]

E[sΘ] + T
, (16)

where the second equality follows from the definition of the matching probability function, the third

from conditioning on the type and taking expectation w.r.t. campaign arrival time, and the fourth from

taking expectations w.r.t. the types. The resulting matching probability is time-invariant. Additionally,

since K̃n is Poisson with mean
∑

θ λ
T
θ we get from (13) that the number of advertisers matching in the

closed mean-field model M̃n is Poisson with mean α̃(t)E[K] = λE[αΘsΘ]. The latter coincides with the

number of competing advertisers in the BMFM.

Second, in the AdX market the remaining campaign length is determined by the campaign starting

time, as given by s = Proj[0,sθ](τ + sθ − t), and conditioning on the campaign being active at time t it
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should be the case that s = τ+sθ− t. Therefore, using (14) we obtain that an agent’s state conditional

on interacting at time t is distributed as:

P̃BMFM
c (B,S, [−sθ, T ], θ, t)

=
1

α̃(t)

∫
X
α(x, t)1{bx ∈ B, sx ∈ S, τx ∈ [−sθ, T ], θx = θ} dPBMFM

c (x, t)

=
1

α̃(t)

∫
X
αθx1{bx ∈ B, sx ∈ S, τx ∈ [t− sθ, t], θx = θ} dPBMFM

c (x, t)

=
1

α̃(t)

∫
X
αθxPBMFM

e

(
B, τx + sθ − t

∣∣∣θx, t− τx) . . .
1{τx + sθ − t ∈ S, τx ∈ [t− sθ, t], θx = θ} dPBMFM

c (x, t)

=
sθ + T

E[αΘsΘ]
pθαθ

∫ t

t−sθ
PBMFM
e

(
B, τ + sθ − t

∣∣∣θ, t− τ)1{τ + sθ − t ∈ S}
1

sθ + T
dτ

=
pθαθsθ
E[αΘsΘ]

∫ sθ

0
PBMFM
e

(
B, sθ − u

∣∣∣θ, u)1{sθ − u ∈ S}
1

sθ
du

= p̂θ

∫ sθ

0
PBMFM
e

(
B, sθ − u

∣∣∣θ, u)1{sθ − u ∈ S}
1

sθ
du = Pe(B,S, θ)

where the second equality follows from the definition of the matching probability function; the third

from conditioning on the type and campaign start time, taking expectations w.r.t. the budgets and

campaign length remaining, using Definition 3, and using that at point t − τ of the campaign the

campaign length remaining is τ+sθ−t; the fourth from taking expectations w.r.t. the type and campaign

starting time that is Uniform with support [−sθ, T ] and equation (16); the fifth from performing the

change of variables u = t− τ ; the sixth from our formula for the probability that a matching advertiser

is steady-state is of type θ; and the last from equation (15). Note that the distribution of the states of

the matching advertisers in the closed mean-field model is time-invariant, and coincides with that of

the BMFM.

The previous results show that the number of competing bidders and the distribution of their states

in both mean-field model coincide. Therefore, the dynamics of the closed mean-field model and the

BMFM are the same during an advertiser’s campaign. Moreover, one can observe that the initial

conditions in both models coincide. In the case that the campaign starts after time zero, τ ≥ 0, the

projection operator guarantees that the campaign starts with the initial budgets and campaign length

of the BMFM. In the case that the campaign is already active at time zero, τ < 0, the starting budget

is drawn from the time-dependent BMFM. Thus, the law of the state of an advertiser in the closed

mean-field model during her campaign coincides with that of an advertiser in the BMFM. Finally,

T-consistency for the closed mean-field model follows from the consistency of the BMFM. ♦
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D Auxiliary Results

Lemma 1. Fix a vector of multipliers µ and consider the differentiable vector function H : [0, 1]|Θ| →
R|Θ|+ given by

Hθ(q) = qθE[Zθ(q)] = qθrF̄v((1 + µθ)r)Fd(r; q) + qθ

∫ V̄

r
xF̄v((1 + µθ)x) dFd(x; q).

Suppose that there are at most two types. Then, the Jacobian of H is a P-matrix.

Proof. We prove the result in two steps. First, we characterize the entries of the Jacobian JH. Second,

we show that the Jacobian JH is a P-matrix.

Step 1. Since the cumulative distribution of values are differentiable, the distribution of the

maximum bid is differentiable w.r.t. x and q. Indeed, its partial derivatives are given by ∂Fd/∂qθ =

−Fd(x; q)E[αΘλsΘ]p̂θF̄vθ((1 + µθ)x), and ∂Fd/∂x = Fd(x; q)E[αΘλsΘ]
∑

θ p̂θqθ(1 + µθ)fvθ((1 + µθ)x).

Moreover, the second derivatives of the distribution of the maximum bid are continuous because den-

sities fvθ(·) are continuously differentiable.

The partial derivative of one type’s expenditure w.r.t. her active probability is

∂Hθ

∂qθ
= E[Zθ(q)] + qθ

∂

∂qθ
E[Zθ(q)]

where

∂

∂qθ
E[Zθ(q)] = rF̄vθ((1 + µθ)r)

∂Fd
∂qθ

(q; r) +
∂

∂qθ

∫ V̄

r
xF̄vθ((1 + µθ)x)

∂Fd
∂x

dx

= rF̄vθ((1 + µθ)r)
∂Fd
∂qθ

(q; r) +

∫ V̄

r
xF̄vθ((1 + µθ)x)

∂2Fd
∂qθ∂x

dx

= −
∫ V̄

r

∂

∂x

(
xF̄vθ((1 + µθ)x)

) ∂Fd
∂qθ

dx

where the second equality follows from exchanging integration and differentiation, which holds because

[V , V̄ ] × U is bounded and integrand is continuously differentiable; and the third from exchanging

partial derivatives by Clairaut’s theorem, integrating by parts, canceling terms, and using the fact that

F̄vθ((1 + µθ)V̄ ) = 0. Using the same notation that in the proof of Lemma 2 of the main paper and

canceling terms we can write

∂Hθ

∂qθ
=
∑
θ′ 6=θ

p̂θ′(1 + µθ′)qθ′〈fθ′ , F̄θ〉+ p̂θqθ〈F̄θ, F̄θ〉+ rF̄vθ((1 + µθ)r)Fd(x; q). (17)
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Similarly, the partial derivative of one type’s expenditure w.r.t. another type’s active probability is

∂Hθ

∂q′θ
= qθ

∂

∂q′θ
E[Zθ(q)] = −qθ

∫ V̄

r

∂

∂x

(
xF̄vθ((1 + µθ)x)

) ∂Fd
∂q′θ

dx

= −p̂θ′(1 + µθ)qθ〈fθ, F̄θ′〉+ p̂θ′qθ〈F̄θ, F̄θ′〉. (18)

Step 2. Next, we show that the Jacobian matrix of H is a P-matrix. We denote by 1 the low-type

and by 2 the high-type. The Jacobian is given by

JH =

(
∂H1
∂q1

∂H1
∂q2

∂H2
∂q1

∂H2
∂q2

)
.

From (17) one concludes that the principal minors J |{1} and J |{2} have positive determinant (they are,

in fact, positive scalars). The determinant of the remaining minor J |{1,2} is that of the whole Jacobian,

which is given by

det(J) =
∂H1

∂q1

∂H2

∂q2
− ∂H1

∂q2

∂H2

∂q1

= (p̂2q2)2(1 + µ2)〈f2, F̄1〉〈F̄2, F̄2〉+ (p̂1q1)2(1 + µ1)〈F̄1, F̄1〉〈f1, F̄2〉

+ p̂1q1(1 + µ1)p̂2q2〈f1, F̄2〉〈F̄2, F̄1〉+ p̂1q1p̂2q2(1 + µ2)〈F̄1, F̄2〉〈f2, F̄1〉

+ p̂1q1p̂2q2〈F̄1, F̄1〉〈F̄2, F̄2〉 − p̂1q1p̂2q2〈F̄1, F̄2〉〈F̄2, F̄1〉

where the third equation follows from substituting the expressions for the partial derivatives and

canceling two terms (here we assumed, without loss of generality, that r = 0 since the sum of a positive

diagonal matrix with a P-matrix is a P-matrix). Notice that all terms are positive with the exception

of the last one. We conclude that the determinant is positive by invoking Cauchy-Schwartz inequality

to show that the fifth term dominates the last one.

Lemma 2. Consider a sequence of continuous mappings {gn}n≥1 with gn : [0, 1]d → [0, 1]d converging

uniformly to a continuous mapping g. Let Xn = {x ∈ [0, 1]d : gn(x) = x} be the set of fixed points of

gn, and X = {x ∈ [0, 1]d : g(x) = x} be the set of fixed points of g. Then limn→D∞(Xn, X) = 06.

Proof. We argue by contradiction. Suppose that D∞(Xn, X) does not converge to zero. Since the set

[0, 1]d is compact, by passing to a subsequence if necessary, we can assume that there exists xn ∈ Xn

such that dist(xn, X) ≥ ε for some ε > 0 and that xn converges to a point x∗ ∈ [0, 1]d. It follows that

6We denote the deviation of two sets A and B by D(A,B) = supx∈A dist(x,B), and the distance between a point x
and a set B as dist(x,B) = infy∈B ‖x− y‖∞.
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x∗ 6∈ X. But notice that

‖x∗ − g(x∗)‖ ≤ ‖x∗ − xn‖+ ‖gn(xn)− g(xn)‖+ ‖g(xn)− g(x∗)‖

≤ ‖x∗ − xn‖+ sup
x
‖gn(x)− g(x)‖+ ‖g(xn)− g(x∗)‖,

where we used the fact that xn = gn(xn) together with the triangle inequality. We have that the first

term of the right-hand side converges to zero from compactness, the second from uniform convergence,

and the last from continuity of g. Thus, we obtain that x∗ = g(x∗), a contradiction.
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