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TR.1 Introduction

In this technical report, we present several results that complement the exposition in the main paper.

In Section TR.2, we prove a general minimax theorem and an “asymmetric” minimax theorem using

a topological approach for the single-round problem. In Section TR.3, we prove a multi-round saddle-

point theorem via an equivalent formulation of the multi-round problem involving distributions over

distributions. In Section TR.4, we consider welfare maximization in the single-good case and rev-

enue/welfare maximization in the multiple-goods case of the dynamic selling problem in Section 4.1

of the main paper. In Section TR.5, we apply our results to a repeated resource allocation problem

without monetary transfers. Section TR.6 extends our results in the main paper in several directions:

alternative benchmarks, serially correlated shock processes, a multiplicative performance guarantee,

and a stronger notion of regret. Finally, in Section TR.7, we show equivalence-type connections be-

tween the minimax regret and maximin utility objectives for revenue maximization in the dynamic

selling mechanism design problem.

Before presenting the results, we provide some preliminaries below.

Single-Round Problem. Using the outcome distribution representation of single-round direct

mechanisms and Lemma 1 in the main paper, we can equivalently write the single-round problem (2)

as the optimization problem (3) with the alternative objective given in the lemma. For ease of

notations, we define R̂egret(S, F ) :=
∫

Θ OPT(δθ, 1)dF (θ) −
∫

Θ

∫
Ω u(θ, ω)dSθ(ω)dF (θ) for a single-
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round direct mechanism S and distribution F and write the optimization problem as

inf
S∈∆(Ω)Θ:
(IC),(IR)

sup
F∈∆(Θ)

R̂egret(S, F ) ,

where S can be any single-round direct IC/IR mechanism. In this technical report, we interchange-

ably refer to the above formulation as the single-round problem and to
∫

Θ OPT(δθ, 1)dF (θ) as the

single-round benchmark. We let R̂egret be the corresponding optimal value, i.e., the minimax regret

of the single-round problem. As we will be presenting and leveraging saddle-point results (via min-

imax duality theory), the above formulation with the inner supremum as a convex program will be

frequently used.

Saddle-Point Results. Both multi-round and single-round minimax regret problems can be viewed

as sequential-move zero-sum games in which the principal first chooses a mechanism and then nature

selects a worst-case distribution to maximize the principal’s regret. When appropriate saddle-point

theorems hold, these problems are respectively equivalent to ones in which nature chooses first and

then the principal optimizes his performance given nature’s choice. This provides a framework for

establishing the existence of optimal mechanisms and explicitly characterizing them and, also, a

direct connection between our robust formulation and a more classical Bayesian formulation in the

multi-round problem.

In particular, we can cast the single-round problem as a simultaneous-move zero-sum game between

the principal and nature and show it admits an optimal solution via a saddle-point result that says

1) the saddle-point property (or, the duality gap of 0) holds, i.e.,

inf
S∈∆(Ω)Θ:
(IC),(IR)

sup
F∈∆(Θ)

R̂egret(S, F ) = sup
F∈∆(Θ)

inf
S∈∆(Ω)Θ:
(IC),(IR)

R̂egret(S, F ) , (TR-1)

and 2) there exists a saddle point (S∗, F ∗), which is a single-round direct IC/IR mechanism S∗ and

a distribution F ∗ such that R̂egret(S∗, F ) ≤ R̂egret(S∗, F ∗) ≤ R̂egret(S, F ∗) for any S ∈ ∆(Ω)Θ

satisfying the IC/IR constraints and F ∈ ∆(Θ). Note that 2) implies 1) but does not necessarily hold

when 1) does. If a saddle point or, equivalently, a Nash equilibrium exists, the minimax regret of the

single-round problem is exactly the value of the zero-sum game, i.e., R̂egret = R̂egret(S∗, F ∗), and

S∗ is an optimal single-round solution.
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A saddle point can be shown to exist either through topological arguments (see Section TR.2) or

by construction. For several applications treated in the main paper and this technical report, we

use the optimality conditions for the inner optimization problems in (TR-1) to explicitly construct a

saddle point and, with it, an optimal single-round mechanism. It is possible that saddle points do not

exist in the single-round problem; see the resource allocation problem without monetary transfers in

Section TR.5.

TR.2 Single-Round Saddle-Point Theorems under Sufficient Con-

ditions

For the single-round problem, we prove a general minimax theorem and an “asymmetric” minimax

theorem under general sufficient conditions. Establishing a saddle-point result for the single-round

problem in full generality is challenging, and the resource allocation problem without monetary trans-

fers (in Section TR.5) hints at the difficulty, because saddle points do not exist even for this simple

game. We can still establish a general saddle-point result under general conditions and the assump-

tion of a finite shock space, and an asymmetric saddle-point result when the game has a continuous

shock space. Our approach is topological in nature and involves endowing the space of (randomized)

single-round direct mechanisms ∆(Ω)Θ with the right topology and then leveraging existing minimax

theorems from the literature.

Under the assumption to follow, we show a general saddle-point result for the single-round problem:

Assumption TR.1. The game satisfies:

(i) The outcome space Ω ⊂ Rm is compact and the shock space Θ is finite.

(ii) The principal’s utility function u(θ, ω) is upper semi-continuous in ω for all θ.

(iii) The agent’s utility function v(θ, ω) is continuous in ω for all θ.

Assumption TR.1 guarantees that the single-round benchmark is well-defined. Parts of the assumption

may be relaxed as long as the benchmark is well-defined in applications. In most cases including those

considered in the main paper and this technical report, this assumption is satisfied, at least, for an

approximate result, because the outcome space can be suitably restricted without loss by imposing
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large bounds (which can be shown to be not binding at an optimal solution) and the shock space can be

discretized. Parts (ii) and (iii) are typical in the mechanism design literature. Note Assumption TR.1

holds trivially for finite discrete games and may be dropped. We can show the following:

Theorem TR.1. Suppose the game satisfies Assumption TR.1. The minimax regret of the single-

round problem satisfies:

R̂egret = min
S∈∆(Ω)Θ:
(IC),(IR)

max
F∈∆(Θ)

R̂egret(S, F ) = max
F∈∆(Θ)

min
S∈∆(Ω)Θ:
(IC),(IR)

R̂egret(S, F ) .

Moreover, there exists a (randomized) single-round direct IC/IR mechanism S∗ and a distribution

F ∗ such that R̂egret = R̂egret(S∗, F ∗) and R̂egret(S∗, F ) ≤ R̂egret(S∗, F ∗) ≤ R̂egret(S, F ∗) for any

S ∈ ∆(Ω)Θ satisfying the IC/IR constraints and F ∈ ∆(Θ).

Theorem TR.1 shows that the minimax regret is equivalent to the maximin regret for the single-round

problem and the minimax regret is achieved by a single-round mechanism. In the maximin regret

formulation, nature first chooses the agent’s private distribution and then the principal chooses an

optimal mechanism based on nature’s choice. The result shows there is a distribution that is uniformly

challenging for all possible single-round mechanisms. We prove the result in Section TR.2.1 using the

well-known von Neumann-Fan minimax theorem (see, e.g., Fan 1953).

The assumption that the shock space is finite appears critical for the existence of a saddle point. In

Section TR.5, we exhibit a simple game with a continuous, even compact, shock space that does not

admit a worst-case distribution that is uniformly challenging for all mechanisms. When the shock

space is arbitrary and the same conditions in Assumption TR.1 otherwise hold, it is possible to show

an “asymmetric” minimax theorem, i.e., the saddle-point property holds, the minimax regret problem

admits an optimal single-round mechanism, but the maximin regret problem does not necessarily have

an optimal worst-case distribution. We prove such an asymmetric minimax result in Section TR.2.2.

TR.2.1 Proof of Theorem TR.1

We prove the result in three steps. First, we endow the space of randomized single-round direct

mechanisms with a topology. Second, we show that an optimization problem corresponding to the

single-round benchmark Eθ∼F [OPT(δθ, 1)] admits an optimal solution and the single-round bench-

mark is upper semi-continuous in F . The single-round benchmark is equivalently the value of the
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following optimization problem:

∫
Θ

OPT(δθ, 1)dF (θ) = sup
S∈∆(Ω)Θ

∫
Θ

∫
Ω
u(θ, ω)dSθ(ω)dF (θ)

s.t.

∫
Ω
v(θ, ω)dSθ(ω) ≥ 0 , ∀θ ∈ Θ .

That the above optimization problem admits an optimal solution and the single-round benchmark is

the objective value will be useful in showing the upper semi-continuity of the single-round benchmark.

Finally, we prove the minimax result using the von Neumann-Fan minimax theorem.

Step 1. We endow the space of distributions over outcomes ∆(Ω) with the weak∗ topology. Namely,

for a sequence of probability distributions in ∆(Ω), we have Gk ⇀ G if and only if
∫

Ω ψ(ω)dGk(ω)→∫
Ω ψ(ω)dG(ω) for all ψ in the space of continuous functions C(Ω,R) from Ω to R with the sup-norm

topology. The space ∆(Ω) is weak∗ compact because Ω is compact (see Aliprantis and Border, 2006,

Theorem 15.11 in p. 513). We endow the space of randomized single-round direct mechanisms ∆(Ω)Θ

with pointwise convergence, i.e., for a sequence of mechanisms in ∆(Ω)Θ, we have Sk → S if and only

if Skθ ⇀ Sθ for all θ ∈ Θ. By Tychonoff Product Theorem (see Aliprantis and Border, 2006, Theorem

2.61 in p. 52), the product space ∆(Ω)Θ is compact because each factor is compact. Because the

shock space is finite, the space of distributions over shocks ∆(Θ) =
{
f ∈ R|Θ|+ :

∑
θ∈Θ fθ = 1

}
is a

compact subset of the Euclidean space. We have F k → F if and only if fkθ → fθ for all θ ∈ Θ.

Step 2. Let U : ∆(Ω)Θ×∆(Ω)→ R be the principal’s utility functional which is given by U(S, F ) =∫
Θ

∫
Ω u(θ, ω)dSθ(ω)dF (θ) for S ∈ ∆(Ω)Θ and F ∈ ∆(Θ). Because Θ is finite, we have U(S, F ) =∑

θ∈Θ

∫
Ω u(θ, ω)dSθ(ω)fθ. A similar definition holds for the agent’s utility functional V : ∆(Ω)Θ ×

∆(Ω)→ R, that is, V (S, F ) =
∫

Θ

∫
Ω v(θ, ω)dSθ(ω)dF (θ) for S ∈ ∆(Ω)Θ and F ∈ ∆(Θ). We denote by

C(F ) =
{
S ∈ ∆(Ω)Θ : V (S, δθ) ≥ 0,∀θ ∈ Θ

}
the set of interim individually rational mechanisms when

the distribution is F . The single-round benchmark is given by Eθ∼F [OPT(δθ, 1)] = supS∈C(F ) U(F, S).

The following holds:

• The principal’s utility functional U(S, F ) is jointly upper semi-continuous: Consider sequences

F k → F and Sk → S. Fix θ ∈ Θ. Let ukθ =
∫

Ω u(θ, ω)dSkθ (ω) and uθ =
∫

Ω u(θ, ω)dSθ(ω).

Because u(θ, ω) is upper semi-continuous in ω, we have lim supk→∞ u
k
θ ≤ uθ. Because the shock

space is finite we obtain, using the multiplication rule for limits, that lim supk→∞ U(Sk, F k) =
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∑
θ∈Θ lim supk→∞ u

k
θf

k
θ ≤

∑
θ∈Θ uθfθ = U(S, F ).

• The agent’s utility functional V (S, F ) is jointly continuous: This follows from repeating the

same reasoning steps above for the principal’s utility functional.

• The feasible set correspondence C(F ) is compact-valued and non-empty: For any fixed dis-

tribution F , the set
{
S ∈ ∆(Ω)Θ : V (S, F ) ≥ 0

}
is closed because upper level sets of upper

semi-continuous functions are closed (see Aliprantis and Border, 2006, Corollary 2.60 in p. 52).

In particular,
{
S ∈ ∆(Ω)Θ : V (S, δθ) ≥ 0

}
is closed for each θ ∈ Θ. Since the intersection of a

finite number of closed sets is closed, C(F ) is closed. Because ∆(Ω)Θ is compact, compactness

follows because the intersection of a closed set and a compact set is compact. Non-emptiness fol-

lows because the trivial mechanism that always determines the no-interaction outcome satisfies

the interim IR constraint and is feasible.

• The feasible set correspondence C(F ) is upper hemi-continuous in F : In fact, the feasible set

C(F ) is the same closed set for all distributions F ∈ ∆(Θ) since it is defined in terms of the

point-mass distributions δθ for θ ∈ Θ. Clearly, the feasible set correspondence is upper hemi-

continuous.

Berge’s Maximum Theorem implies that the optimization problem corresponding to the single-round

benchmark admits an optimal solution and the single-round benchmark Eθ∼F [OPT(δθ, 1)] is upper

semi-continuous in F (see Aliprantis and Border, 2006, Lemma 17.30 in p. 569).

Step 3. Let Vθ,θ′ : ∆(Ω)Θ → R be the agent’s utility functional when his shock is θ and his report

is θ′, which is given by Vθ,θ′(S) =
∫

Ω v(θ, ω)dSθ′(ω) for S ∈ ∆(Ω)Θ. We need to show a minimax

result for the following problem:

inf
S∈∆(Ω)Θ:
(IC),(IR)

sup
F∈∆(Ω)

{Eθ∼F [OPT(δθ, 1)]− U(S, F )}

where (IR) is given by Vθ,θ(S) ≥ 0 for all θ ∈ Θ and (IC) is given by Vθ,θ(S) ≥ Vθ,θ′(S) for all θ, θ′ ∈ Θ.

The following hold:

• The space of feasible mechanisms Ŝ := {S ∈ ∆(Ω)Θ : (IC) and (IR)} is compact: Note that

Vθ,θ(S) = V (S, δθ) where we denote by δθ the point-mass distribution that takes the value θ
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with probability one in the expression V (S, ·). Joint continuity of V implies that V (S, δθ) is

continuous in S for all θ. The IR constraint is closed because upper level sets of continuous

functions are closed (see Aliprantis and Border, 2006, Corollary 2.60 in p. 52). A similar

argument follows for the IC constraint by considering the functionals Ṽθ,θ′ : ∆(Ω)Θ → R given

by Ṽθ,θ′(S) = Vθ,θ(S)− Vθ,θ′(S) for θ, θ′ ∈ Θ. The result follows because ∆(Ω)Θ is compact and

the intersection of a finite number of closed sets with a compact set is compact.

• The objective is convex on Ŝ := {S ∈ ∆(Ω)Θ : (IC) and (IR)}, concave on ∆(Θ), and lower

semi-continuous on Ŝ, and upper semi-continuous on ∆(Θ): The convexity in S and concavity

in F follows because the objective is bilinear since we allow for randomized mechanisms and

the feasible sets are convex. Lower semi-continuity in S follows because U(S, F ) is upper semi-

continuous. We next prove the upper semi-continuity in F . From the previous step, we know

that the single-round benchmark Eθ∼F [OPT(δθ, 1)] is upper semi-continuous in F . Moreover,

U(S, F ) is continuous in F for any fixed S because all linear functionals are continuous in finite

dimensional spaces. The result follows because the sum of a continuous function and an upper

semi-continuous function is upper semi-continuous.

• The feasible set is non-empty: This follows because the trivial mechanism that always determines

the no-interaction outcome, i.e., the outcome ∅ such that v(θ, ∅) = 0 for all θ, satisfies the IC/IR

constraints and is feasible.

The theorem then follows from the von Neumann-Fan minimax theorem (Fan, 1953).

TR.2.2 An Asymmetric Saddle-Point Theorem for Arbitrary Shock Spaces

We discuss how to extend our saddle-point result, Theorem TR.1, to arbitrary shock spaces under

the following assumption. More specifically, we show an asymmetric saddle-point result where the

saddle-point property holds and the minimax regret formulation admits an optimal solution. We

adapt the same notations from Section TR.2.1:

Assumption TR.2. The game satisfies:

(i) The outcome space Ω is normed and compact, and the shock space Θ is a topological space.

(ii) The principal’s utility function u(θ, ω) is upper semi-continuous in ω for all θ and uniformly

bounded.
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(iii) The agent’s utility function v(θ, ω) is continuous in ω for all θ.

We shall prove that:

R̂egret = min
S∈S:

(IC),(IR)

sup
F∈∆(Θ)

R̂egret(S, F ) = sup
F∈∆(Θ)

min
S∈S:

(IC),(IR)

R̂egret(S, F ) ,

where S :=
{
S ∈ ∆(Ω)Θ : S is Borel measurable in Θ

}
. Moreover, there exists a (randomized)

single-round direct IC/IR mechanism S∗ such that R̂egret = supF∈∆(Θ) R̂egret(S∗, F ).

As in the proof of Theorem TR.1, we endow the space of distributions over outcomes ∆(Ω) with

the weak∗ topology. We endow the space S of measurable randomized single-round mechanisms with

pointwise convergence. By Tychonoff Product Theorem (see Aliprantis and Border, 2006, Theorem

2.61 in p. 52), the product space ∆(Ω)Θ is compact and Hausdorff. The space of measurable single-

round mechanisms is closed with respect to the pointwise-convergence topology because ∆(Ω) is

metrizable (see Aliprantis and Border, 2006, Lemma 4.29 in p. 142). In turn, the space ∆(Ω) is

metrizable because Ω is a compact and normed (see Aliprantis and Border, 2006, Theorem 15.11 in

p. 513). Because the intersection of a compact set and a closed set is compact, we obtain that S is

compact.

From Theorem 2 in Fan (1953), it suffices to show that (i) the space of feasible mechanisms Ŝ :=

{S ∈ S : (IC) and (IR)} is compact, and (ii) the objective is convex in S, concave in F , and lower

semi-continuous in S. For (i), it suffices to show that Vθ,θ(S) is continuous in S for all θ. Consider

a sequence of mechanisms Sk → S, which is equivalent to Skθ ⇀ Sθ for all θ. Because Vθ,θ(S) =∫
Ω v(θ, ω)dSθ(ω), the result follows from weak∗ convergence in ∆(Ω) since v(θ, ω) is continuous in ω

for all θ. For (ii), it suffices to show that U(S, F ) is upper semi-continuous in S. We equivalently

write U(S, F ) =
∫

Θ Uθ(S)dF (θ) with Uθ(S) =
∫

Ω u(θ, ω)dSθ(ω). Consider a sequence of mechanisms

Sk → S. From weak∗ convergence in ∆(Ω), we obtain that lim supk→∞ Uθ(S
k) ≤ Uθ(S) for all

θ because u(θ, ω) is upper semi-continuous in ω. Because Uθ(S) is uniformly bounded, the result

follows from the reverse Fatou’s lemma.
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TR.3 A Multi-Round Saddle-Point Theorem and Connections to

Bayesian Mechanism Design

In the formulation presented in Section 2 of the main paper, the multi-round problem does not

admit a saddle-point result in that there is no worst-case distribution for the agent that is uniformly

challenging for all possible dynamic mechanisms. This is because for each possible distribution F ,

there are mechanisms tailored to the distribution that achieve OPT(F, T ) arbitrarily closely and,

hence, incur regret arbitrarily close to 0. Interestingly, a saddle-point result can be recovered if

nature is allowed to use mixed strategies and randomize over distributions in F , and this leads to a

Bayesian mechanism design interpretation of the multi-round problem in which the principal has a

Bayesian prior over the space of possible distributions.

Thus motivated, we introduce the space ∆(F) of all possible distributions over distributions in F ,

i.e., Bayesian priors, and the following equivalent formulation of the multi-round problem:

inf
A∈A

sup
G∈∆(F)

EF∼G [Regret(A,F, T )] .

This is equivalent to the original formulation, infA∈A supF∈F Regret(A,F, T ), because nature cannot

benefit from randomizing over distributions with respect to the objective EF∼G [Regret(A,F, T )]. The

corresponding dual problem is

sup
G∈∆(F)

inf
A∈A

EF∼G [Regret(A,F, T )] ,

where the inner infimum of the maximin regret can be equivalently written as the difference

EF∼G[OPT(F, T )]− sup
A∈A

EF∼G[PrincipalUtility(A,F, T )] ,

where the first quantity is the optimal performance achievable, when F is known, averaged according

to G and the second quantity is the principal utility under an optimal Bayesian mechanism where

the principal knows the agent’s unknown distribution F is drawn from the known prior G.

In the maximin regret formulation, nature adversarially chooses a Bayesian prior over F and then

the principal responds by choosing a Bayesian optimal mechanism based on the prior. Given any

G ∈ ∆(F), minimizing regret over mechanisms is equivalent to maximizing the principal utility. This
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problem – where the agent’s distribution F itself is unknown to the principal but is drawn from a

known prior G – is known in the literature as sequential screening. When a saddle point exists in the

above formulation, our minimax regret problem is equivalent to a sequential screening problem under

the least-favorable prior, giving a direct connection to Bayesian mechanism design.

The next result shows connections between the modified formulation of the multi-round problem and

the single-round problem in terms of the saddle-point properties and saddle points.

Theorem TR.2. Suppose Assumptions 1 and 2 of the main paper hold. The saddle-point property

holds for the single-round minimax regret problem if and only if the saddle-point property holds for the

multi-round minimax regret problem. Moreover, if a saddle point (S∗, F ∗) exists in the single-round

problem, then the repeated mechanism (S∗)×T and the distribution over distributions G∗ that assigns

probability F ∗(θ) to point-mass distribution δθ for all θ ∈ Θ form a saddle point ((S∗)×T , G∗) in the

multi-round problem. Conversely, if a saddle point exists in the multi-round problem, then a saddle

point exists in the single-round problem (see the proof for a construction).

Note (·)×T denotes T repetitions of a single-round mechanism. This means that we can similarly cast

our multi-round problem as a simultaneous-move zero-sum game between the principal and nature

and solve for a Nash equilibrium, assuming a saddle-point result holds for the single-round problem.

More importantly, the above theorem shows that the multi-round minimax regret problem reduces to

the Bayesian mechanism design problem where the objective is the expected regret and the principal

implements a Bayesian optimal mechanism against a worst-case prior, that is, a distribution over

distributions. To prove the result, we use our general results from Theorem 1 of the main paper,

a classical result in the analysis of online algorithms known as Yao’s principle (Yao, 1977), and an

extension of the classical false-dynamics results of Baron and Besanko (1984) in a Bayesian setting.

We prove it in Section TR.3.1.

TR.3.1 Proof of Theorem TR.2

We first prove that the single-round saddle-point property implies the multi-round saddle-point prop-

erty and then prove the converse. Then, we prove the statements about the saddle points. Following

the discussion in Section TR.3, we write the multi-round saddle-point property in terms of both

infA∈A supF∈F Regret(A,F, T ) and infA∈A supG∈∆(F) EF∼G [Regret(A,F, T )].
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Only-If Direction for Saddle-Point Properties. We prove the result by showing first that the

minimax regret is at least the maximin regret and then that the minimax regret is at most the

maximin regret in the multi-round problem. For any incentive compatible mechanism A ∈ A and

distribution over distributions G ∈ ∆(F), we have

sup
F∈F

Regret(A,F, T ) = EF∼G
[

sup
F ′∈F

Regret(A,F ′, T )

]
≥ EF∼G [Regret(A,F, T )] ,

because supF ′∈F Regret(A,F ′, T ) ≥ Regret(A,F, T ). Taking the infimum over A ∈ A on both sides,

we obtain

inf
A∈A

sup
F∈F

Regret(A,F, T ) ≥ inf
A∈A

EF∼G [Regret(A,F, T )] .

Taking the supremum over G ∈ ∆(F) on the right-hand side, we obtain

inf
A∈A

sup
F∈F

Regret(A,F, T ) ≥ sup
G∈∆(F)

inf
A∈A

EF∼G [Regret(A,F, T )] .

We next prove that the minimax regret is at most the maximin regret. Fix an arbitrary distribution

F ′ ∈ ∆(Θ) and take G′ to be the corresponding distribution over atomic distributions (i.e., point-mass

distributions) induced by F ′ as in the statement of the theorem. That is, for every measurable set

E ⊆ F , we have G′(E) = F ′({θ ∈ Θ : δθ ∈ E}) where δθ ∈ F is the point-mass distribution that

assigns probability 1 to θ. This is possible under Assumption 1 of the main paper. We have

sup
G∈∆(F)

inf
A∈A

EF∼G [Regret(A,F, T )]

≥ inf
A∈A

EF∼G′ [Regret(A,F, T )]

= inf
A∈A

Eθ∼F ′ [Regret(A, δθ, T )]

= inf
A∈A

Eθ∼F ′ {OPT(δθ, T )− PrincipalUtility(A, δθ, T )}

= Eθ∼F ′ [OPT(δθ, T )]︸ ︷︷ ︸
(I)

− supA∈A Eθ∼F ′ [PrincipalUtility(A, δθ, T )]︸ ︷︷ ︸
(II)

,

where the first inequality follows because G′ is feasible; the first equality from the definition of G′;

and the last equality from extracting the constant term (independent of A) from the infimum over

A ∈ A and flipping the direction of the optimization. For the first term in the last expression, we

have

(I) = Eθ∼F ′ [OPT(δθ, T )] = T · Eθ∼F ′ [OPT(δθ, 1)] ,
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where we used Proposition 1 of the main paper. The second term corresponds to a Bayesian mecha-

nism design problem in which the agent’s shock is constant throughout the rounds and the realization

of the shock is private and drawn according to F ′. Note Lemma A.1 of the main paper implies that,

when the agent’s shock is constant, any incentive compatible dynamic mechanism can be reduced to

a single-round direct IC/IR mechanism. Therefore, we obtain

(II) = sup
A∈A

Eθ∼F ′ [PrincipalUtility(A, δθ, T )]

= sup
A∈A

Eθ∼F ′ [T · PrincipalUtility(S(A), σTR, δθ, 1)]

≤ sup
S∈∆(Ω)Θ:
(IC),(IR)

Eθ∼F ′ [T · PrincipalUtility(S, σTR, δθ, 1)]

= T · sup
S∈∆(Ω)Θ:
(IC),(IR)

∫
Θ

∫
Ω
u(θ, ω)dSθ(ω)dF ′(θ) ,

where the second equality follows from Lemma A.1 of the main paper and S(A) is the single-round

direct IC/IR mechanism corresponding to an incentive compatible dynamic mechanism A; the second-

to-last step follows because the set of direct IC/IR mechanisms is a superset of {S(A) | A ∈ A}; and

the last step follows from explicitly writing the principal’s utility and using that S is direct and

incentive compatible. Putting these two expressions together, we obtain

sup
G∈∆(F)

inf
A∈A

EF∼G [Regret(A,F, T )] ≥ (I)− (II)

≥ T · Eθ∼F ′ [OPT(δθ, 1)]− T · sup
S∈∆(Ω)Θ:
(IC),(IR)

∫
Θ

∫
Ω
u(θ, ω)dSθ(ω)dF ′(θ)

= T · inf
S∈∆(Ω)Θ:
(IC),(IR)

{
Eθ∼F ′ [OPT(δθ, 1)]−

∫
Θ

∫
Ω
u(θ, ω)dSθ(ω)dF ′(θ)

}

= T · inf
S∈∆(Ω)Θ:
(IC),(IR)

R̂egret(S, F ′) .

tr 12



Note F ′ ∈ ∆(Θ) was an arbitrary distribution. Taking a supremum over ∆(Θ), we conclude that

sup
G∈∆(F)

inf
A∈A

EF∼G [Regret(A,F, T )] ≥ T · sup
F∈∆(Θ)

inf
S∈∆(Ω)Θ:
(IC),(IR)

R̂egret(S, F )

= T · inf
S∈∆(Ω)Θ:
(IC),(IR)

sup
F∈∆(Θ)

R̂egret(S, F )

= inf
A∈A

sup
F∈F

Regret(A,F, T ) ,

where the first equality follows from the saddle-point property for the single-round problem and the

second equality from Theorem 1 of the main paper, which holds since Assumptions 1 and 2 of the

main paper hold.

If Direction for Saddle-Point Properties. The max-min inequality implies that the minimax

regret is at least the maximin regret in the single-round problem and it remains to show that the

minimax regret is at most the maximin regret. To do so, it suffices to show that for every ε >

0, there exists some F ∈ ∆(Θ) such that R̂egret ≤ ε + infS∈∆(Ω)Θ:
(IC),(IR)

R̂egret(S, F ) where R̂egret =

infS∈∆(Ω)Θ:
(IC),(IR)

supF∈∆(Θ) R̂egret(S, F ).

Fix ε > 0. From the multi-round saddle-point property, that is,

Regret(T ) = inf
A∈A

sup
F∈F

Regret(A,F, T ) = sup
G∈∆(F)

inf
A∈A

EF∼G [Regret(A,F, T )] ,

we know that there exists some G ∈ ∆(F) such that

Regret(T ) ≤ T · ε+ inf
A∈A

EF∼G [Regret(A,F, T )] . (TR-2)

Consider the distribution F̂ ∈ ∆(Θ) obtained from marginalizing over G, i.e., F̂ (E) = EF∼G [F (E)]

for any measurable set E ⊆ Θ. We have that

EF∼G [OPT(F, T )] ≤ EF∼G,θ∼F [OPT(δθ, T )] = Eθ∼F̂ [OPT(δθ, T )] = T · Eθ∼F̂ [OPT(δθ, 1)] , (TR-3)

where the inequality follows from Assumption 2 of the main paper and the law of total expectation;

the first equality from the definition of the compounded distribution F̂ ; and the last equality from

Proposition 1 of the main paper. For any single-round direct IC/IR mechanism S ∈ ∆(Ω)Θ, consider
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the direct mechanism S×T obtained from T repetitions of S. In turn, the principal’s utility satisfies

EF∼G
[
PrincipalUtility(S×T , F, T )

]
= T · EF∼G [PrincipalUtility(S, σTR, F, 1)]

= T · PrincipalUtility(S, σTR, F̂ , 1) , (TR-4)

where the first step follows from Lemma A.2 of the main paper, and the second step follows from that

the mechanism S is static and does not screen the agent for his distribution and from the definition

of F̂ . Theorem 1 of the main paper implies Regret(T ) = T · R̂egret and, consequently,

T · R̂egret ≤ T · ε+ inf
S∈∆(Ω)Θ:
(IC),(IR)

EF∼G
[
Regret(S×T , F, T )

]
= T · ε+ inf

S∈∆(Ω)Θ:
(IC),(IR)

EF∼G
[
OPT(F, T )− PrincipalUtility(S×T , F, T )

]
≤ T · ε+ T · inf

S∈∆(Ω)Θ:
(IC),(IR)

{
Eθ∼F̂ [OPT(δθ, 1)]− PrincipalUtility(S, σTR, F̂ , 1)

}
= T · ε+ T · inf

S∈∆(Ω)Θ:
(IC),(IR)

R̂egret(S, F̂ ) ,

where the first inequality follows from (TR-2) and using that the space of static mechanisms repeating

a single-round direct IC/IR mechanism is a subset of all possible incentive compatible multi-round

mechanisms A; the first equality from the definition of Regret; the second inequality from (TR-3)

and (TR-4); and the last equality from the definition of R̂egret. The result follows from dividing both

sides by T ≥ 1.

First Statement on Saddle Points. Let (S∗, F ∗) be a saddle point for the single-round problem

such that

R̂egret(S∗, F ) ≤ R̂egret(S∗, F ∗) ≤ R̂egret(S, F ∗)

for any S ∈ ∆(Ω)Θ satisfying the IC/IR constraints and F ∈ ∆(Θ). Note that the existence of the

saddle point implies that R̂egret = R̂egret(S∗, F ∗) and the single-round saddle-point property holds

and that S∗ and F ∗ are optimal solutions in respective single-round problems achieving the objective
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value of R̂egret. To see this, the existence of the saddle point implies

inf
S∈∆(Ω)Θ:
(IC),(IR)

sup
F∈∆(Θ)

R̂egret(S, F ) ≤ sup
F∈∆(Θ)

R̂egret(S∗, F )

≤ R̂egret(S∗, F ∗)

≤ inf
S∈∆(Ω)Θ:
(IC),(IR)

R̂egret(S, F ∗) ≤ sup
F∈∆(Θ)

inf
S∈∆(Ω)Θ:
(IC),(IR)

R̂egret(S, F ) ,

and the max-min inequality implies all the above relations are equalities. By the first statement of

the theorem which we proved above, the multi-round saddle-point property holds. By Theorem 1 of

the main paper, (S∗)×T is an optimal solution to the multi-round minimax regret problem since S∗

is an optimal solution to the single-round problem; note (·)×T denotes T repetitions of a single-round

mechanism.

To show that ((S∗)×T , G∗), for G∗ constructed as in the theorem statement, is a saddle point in the

multi-round problem, it suffices to show that G∗ is an optimal solution to the multi-round maximin re-

gret problem, i.e., supG∈∆(F) infA∈A EF∼G [Regret(A,F, T )] = infA∈A EF∼G∗ [Regret(A,F, T )]. Then,

we would have

EF∼G∗
[
Regret((S∗)×T , F, T )

]
≥ inf

A∈A
EF∼G∗ [Regret(A,F, T )]

= sup
G∈∆(F)

inf
A∈A

EF∼G [Regret(A,F, T )]

= inf
A∈A

sup
G∈∆(F)

EF∼G [Regret(A,F, T )]

= sup
G∈∆(F)

EF∼G
[
Regret((S∗)×T , F, T )

]
≥ EF∼G∗

[
Regret((S∗)×T , F, T )

]
,

where the first equality would follow if G∗ is an optimal solution to the multi-round maximin regret

problem; the second equality is from the multi-round saddle-point property; and the last equality is

from that (S∗)×T is an optimal solution to the multi-round minimax regret problem. Since the first

and last expressions are the same, all the above relations would be equalities and we would have

sup
G∈∆(F)

EF∼G
[
Regret((S∗)×T , F, T )

]
= EF∼G∗

[
Regret((S∗)×T , F, T )

]
= inf

A∈A
EF∼G∗ [Regret(A,F, T )] ,

which would imply that ((S∗)×T , G∗) is a saddle point in the multi-round problem, as desired.
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We now show that G∗ is an optimal solution to the multi-round maximin regret problem. Let A ∈ A

be an arbitrary incentive compatible dynamic mechanism. Then, we have

EF∼G∗ [Regret(A,F, T )] = Eθ∼F ∗ [Regret(A, δθ, T )]

= Eθ∼F ∗ [OPT(δθ, T )− PrincipalUtility(A, δθ, T )]

= Eθ∼F ∗ [T ·OPT(δθ, 1)− T · PrincipalUtility(S(A), σTR, δθ, 1)]

= T · R̂egret(S(A), F ∗)

≥ T · R̂egret

= sup
G∈∆(F)

inf
A∈A

EF∼G [Regret(A,F, T )] ,

where the first equality is by the construction of G∗; the second by the definition of Regret; the third

by Proposition 1 and Lemma A.1 of the main paper where S(A) is the single-round direct IC/IR

mechanism corresponding to the dynamic mechanism A; the fourth by the definition of R̂egret; the

second-to-last step is from that (S∗, F ∗) is a saddle point in the single-round problem and R̂egret =

R̂egret(S∗, F ∗); and the last step is because Theorem 1 of the main paper and the multi-round

saddle-point property implies

T · R̂egret = Regret(T ) = inf
A∈A

sup
F∈F

Regret(A,F, T ) = sup
G∈∆(F)

inf
A∈A

EF∼G [Regret(A,F, T )] .

As A ∈ A was arbitrary,

inf
A∈A

EF∼G∗ [Regret(A,F, T )] ≥ sup
G∈∆(F)

inf
A∈A

EF∼G [Regret(A,F, T )] ,

and G∗ is an optimal solution to the multi-round maximin regret problem. This completes the proof.

Second Statement on Saddle Points. Let the pair (A∗, G∗) of an incentive compatible dynamic

mechanism A∗ ∈ A and a distribution over distributions G∗ ∈ ∆(F) be a saddle point for the multi-

round problem. As in the proof for the first statement on saddle points, the existence of the saddle

point implies that the saddle-point property holds in the multi-round problem and, furthermore,

that A∗ is an optimal dynamic mechanism in the multi-round minimax regret problem and G∗ is

an optimal solution in the multi-round maximin regret problem, both with the objective value of

Regret(T ). By the first part of the theorem, the single-round saddle-point property holds. Given

this, it suffices to show that the single-round minimax regret problem admits an optimal solution S∗
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and that the single-round maximin regret problem admits an optimal solution F ∗, or equivalently,

the worst-case distribution. Then, the pair (S∗, F ∗) would form a saddle point in the single-round

problem, as desired. This is because if S∗ and F ∗ are optimal solutions in respective single-round

problems, we would have

inf
S∈∆(Ω)Θ:
(IC),(IR)

sup
F∈∆(Θ)

R̂egret(S, F ) = sup
F∈∆(Θ)

R̂egret(S∗, F )

≥ R̂egret(S∗, F ∗)

≥ inf
S∈∆(Ω)Θ:
(IC),(IR)

R̂egret(S, F ∗) = sup
F∈∆(Θ)

inf
S∈∆(Ω)Θ:
(IC),(IR)

R̂egret(S, F ) ,

where the equalities would follow from the optimality of S∗ and F ∗. The single-round saddle-point

property would imply that all the relations in the above sequence are equalities and R̂egret =

R̂egret(S∗, F ∗). In particular,

sup
F∈∆(Θ)

R̂egret(S∗, F ) = R̂egret(S∗, F ∗) = inf
S∈∆(Ω)Θ:
(IC),(IR)

R̂egret(S, F ∗) ,

and this would imply that (S∗, F ∗) is a saddle point.

The existence of an optimal single-round direct IC/IR mechanism S∗ in the single-round problem

follows from the existence of an optimal dynamic mechanism, in particular, A∗, by Theorem 1 of the

main paper. We can construct such an optimal mechanism S∗ from A∗ as discussed in the proof of

Theorem 1 of the main paper.

We now show there exists an optimal distribution F ∗ in the single-round maximin regret problem.

Consider the distribution F ∗ constructed from G∗ such that F ∗(Q) = Pr(θ ∈ Q | F ∼ G∗, θ ∼ F ) for

any Q ⊆ Θ and, in particular, Pr(θ̂ = θ | θ̂ ∼ F ∗) = Pr(θ̂ = θ | F ∼ G∗, θ̂ ∼ F ) for any θ ∈ Θ. Note

Regret(T ) ≤ inf
A∈A

EF∼G∗ [Regret(A,F, T )] ≤ inf
S∈∆(Ω)Θ:
(IC),(IR)

EF∼G∗ [Regret(S×T , F, T )] , (TR-5)

where the first inequality is by the optimality of G∗ and the second is because the set of static

mechanisms that repeat a single-round direct IC/IR mechanism is a subset of incentive compatible

dynamic mechanisms A. Furthermore, note that, for any single-round direct IC/IR mechanism S and
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distribution F ∈ ∆(Θ),

Regret(S×T , F, T ) = OPT(F, T )− PrincipalUtility(S×T , σTR, F, T )

= OPT(F, T )− T · PrincipalUtility(S, σTR, F, 1)

≤ T (Eθ∼F [OPT(δθ, 1)]− PrincipalUtility(S, σTR, F, 1))

= T R̂egret(S, F ) ,

where σTR is the agent’s truthful reporting strategy, the second step follows from Lemma A.2 of the

main paper, and the second-to-last step follows from Assumption 2 and Proposition 1 of the main

paper. Combining with (TR-5), we obtain

Regret(T ) ≤ T · inf
S∈∆(Ω)Θ:
(IC),(IR)

EF∼G∗ [R̂egret(S, F )] .

In the last expression, we can equivalently write the expected quantity inside the infimum as, for any

single-round direct IC/IR mechanism S,

EF∼G∗ [R̂egret(S, F )] = EF∼G∗
[∫

Θ
OPT(δθ, 1)dF (θ)−

∫
Θ

∫
Ω
u(θ, ω)dSθ(ω)dF (θ)

]
= EF∼G∗,θ∼F

[
OPT(δθ, 1)−

∫
Ω
u(θ, ω)dSθ(ω)

]
= Eθ∼F ∗

[
OPT(δθ, 1)−

∫
Ω
u(θ, ω)dSθ(ω)

]
= R̂egret(S, F ∗) ,

where the first step is by the definition of R̂egret notion; the second step is by the total law of

expectation; the third step is by the construction of F ∗; and the last step is by the definition of

R̂egret notion. Hence, it follows that

Regret(T ) ≤ T · inf
S∈∆(Ω)Θ:
(IC),(IR)

R̂egret(S, F ∗) .

Since Regret(T ) = T ·R̂egret by Theorem 1 of the main paper, which holds since Assumptions 1 and 2

of the main paper hold, and the single-round saddle-point property holds, we have

R̂egret = sup
F∈∆(Θ)

inf
S∈∆(Ω)Θ:
(IC),(IR)

R̂egret(S, F ) ≤ inf
S∈∆(Ω)Θ:
(IC),(IR)

R̂egret(S, F ∗) .
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Then, F ∗ is an optimal solution in the single-round maximin regret problem. This completes the

proof.

TR.4 Additional Materials on Dynamic Selling Mechanisms

We consider other versions of the dynamic selling problem presented in Section 4.1 of the main paper.

In Section TR.4.1, we consider welfare maximization in the single-good case. In Section TR.4.2, we

consider both revenue and welfare maximization in the multiple-goods case where the principal sells

identical copies of n goods, one per good, in each round.

TR.4.1 Welfare Maximization

For welfare maximization in the single-good case, the principal’s utility function is u(θ, ω) = θ ·

x̂ for outcome ω = (x̂, p̂). The single-round benchmark is Eθ∼F [OPT(δθ, 1)] = Eθ∼F [θ] because

OPT(δθ, 1) = θ which is achieved by choosing the outcome (1, 0) or, equivalently, always allocating

the item at no cost. Since we have F = ∆([0, 1]) as in the revenue maximization version, Assumption 1

of the main paper holds. Assumption 2 also holds because we always have the per-round allocation

x̂ ∈ [0, 1] and, hence, OPT(F, T ) ≤ TEθ∼F [θ] = Eθ∼F [OPT(δθ, T )], where we used Proposition 1 of

the main paper. Therefore, Theorem 1 of the main paper applies. We show that the minimax regret

for the single-round problem for direct IC/IR mechanisms is 0 and, thus, that for the multi-round

problem is 0 because Regret(T ) = T · R̂egret.

We formally state the minimax regret result as follows:

Proposition TR.1. For welfare maximization in the dynamic selling mechanism design problem

with one good, the minimax regret is 0 and an optimal solution is allocating items for free, which is

T repetitions of the same strategy.

Clearly, allocating items for free satisfies the IC/IR constraints when considered as a single-round

direct mechanism. This is a degenerate result with a trivial solution but we think it is interesting

that our general result captures it. Note the optimal multi-round solution of allocating for free is still

optimal if the private shock distribution is known to the principal. In this sense, no dynamic/adaptive

strategy with sophisticated learning was necessary to begin with and the distributional information
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of the agent’s private distribution was not needed.

Proof of Proposition TR.1. We solve the single-round minimax regret problem for direct IC/IR mech-

anisms which is

inf
S∈∆(Ω)Θ:
(IC),(IR)

sup
F∈∆(Θ)

{∫
Θ
θdF (θ)−

∫
Θ

∫
Ω
u(θ, ω)dSθ(ω)dF (θ)

}
.

The trivial single-round mechanism S∗ that always allocates the item for free, i.e., S∗ is the deter-

ministic mechanism π∗ for which π∗(θ) = (1, 0) for all θ ∈ Θ, satisfies the IC/IR constraints and is

an optimal solution because it achieves Eθ∼F [θ] for any agent’s distribution F . It is easy to see that

we can take any distribution F and (S∗, F ) is a saddle point for the single-round problem. Hence,

R̂egret = 0. By Theorem 1 of the main paper, we obtain Regret(T ) = 0 and repeating S∗ over T

rounds is an optimal solution with the minimax regret of Regret(T ) = 0.

TR.4.2 Multiple Goods

Building on Section 4.1 of the main paper and Section TR.4.1, we consider the multiple-goods version

of the dynamic selling mechanism design problem where the principal has n goods and sells indepen-

dent copies (or units) of these goods, one per good, in each round. In particular, this is an application

where the agent’s private shock is multidimensional. For welfare maximization, it is straightforward

to see that the same strategy from the single-good case of giving away for free is an optimal solu-

tion and achieves the minimax regret of 0 in both the single-round and multi-round problems. For

revenue maximization, we show below that repeatedly selling each good separately according to the

randomized posted pricing mechanism given in Proposition 3 of the main paper for the single-good

case is optimal.

In each round, the agent sees n goods (that is, copies of) and realizes his value for each good in the

range [0, 1] according to a private shock distribution F . The values of the goods can be arbitrarily

correlated but are drawn from the joint distribution independently across rounds. The shock space is

Θ = [0, 1]n and the agent’s private shock distribution F ∈ F is a distribution over Θ where F = ∆(Θ).

The outcome space is Ω = {0, 1}n × R. Using superscript i to denote the coordinate corresponding

to the i-th good, an outcome ω = (x̂, p̂) ∈ Ω is given by allocations (x̂1, . . . , x̂n) of the goods and

payment p̂. Given an outcome ω = (x̂, p̂), the agent’s utility function is v(θ, ω) =
∑n

i=1 θ
i · x̂i− p̂. For

revenue maximization, the principal’s utility function is u(θ, ω) = p̂, and for welfare maximization,
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the principal’s utility function is u(θ, ω) =
∑n

i=1 θ
i · x̂i.

The main result is as follows.

Proposition TR.2. For revenue maximization in the dynamic selling mechanism design problem

with n goods, the minimax regret is n
eT and an optimal solution is T repetitions of selling each good

separately via the randomized posted pricing mechanism S∗ given in Proposition 3 of the main paper.

For welfare maximization, the minimax regret is 0 and an optimal solution is allocating goods for free,

which is T repetitions of the same strategy.

The proof for the welfare maximization part is almost identical to the single-good case in Sec-

tion TR.4.1 and thus omitted. Henceforth, we discuss the revenue maximization part. In each round,

we implement the single-good solution (x∗, p∗) for each good to determine x̂i = x∗(θi) and p̂i = p∗(θi).

Then, the overall allocation and payment are (x̂1, . . . , x̂n) and p̂ =
∑

i p̂
i. Note OPT(δθ, 1) =

∑n
i=1 θ

i

because the principal can extract the full surplus of the agent by allocating all the goods and charging∑n
i=1 θ

i. Hence, the single-round benchmark is Eθ∼F [OPT(δθ, 1)] = Eθ∼F [
∑n

i=1 θ
i]. Since F = ∆(Θ),

Assumption 1 of the main paper holds. For Assumption 2 of the main paper, we follow the same

reasoning steps as in the single-good case in the main paper.

As in the single-good case, the general result (Theorem 1 of the main paper) applies. To show

the claimed dynamic mechanism is an optimal solution to the multi-round problem, we show that

the single-round solution of selling each good separately is an optimal solution to the single-round

minimax regret problem, via a saddle-point formulation. Note Kocyigit et al. (2018) have recently

shown the same single-round result. We prove it for completeness below.

Proposition TR.3. Let S∗,n denote the single-round direct IC/IR mechanism that separately imple-

ments S∗ = (x∗, p∗) for each good and F ∗,n denote the agent’s distribution with F ∗,n(θ) = F ∗(mini θ
i)

for any θ ∈ Θ (i.e., perfectly correlated values) where S∗ and F ∗ are as given in Propositions 3 and B.1

of the main paper. Then, R̂egret = R̂egret(S∗,n, F ∗,n) = n
e and

R̂egret(S∗,n, F ) ≤ R̂egret(S∗,n, F ∗,n) ≤ R̂egret(S, F ∗,n) ,

for any S ∈ ∆(Ω)Θ satisfying the IC/IR constraints and F ∈ ∆(Θ).
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Proof. First, we show that F ∗,n is a solution to

max
F∈∆(Θ)

R̂egret(S∗,n, F ) .

The above expression is equivalent to

max
F∈∆(Θ)

Eθ∼F

[
n∑
i=1

(θi − p∗(θi))

]
= max

F∈∆(Θ)

n∑
i=1

Eθi∼F i
[
θi − p∗(θi)

]
,

where F i is the marginal distribution of F for the i-th good. Interchanging the maximum and

summation, the last expression is upper bounded by

n∑
i=1

max
F i∼∆(Θi)

Eθi∈F i
[
θi − p∗(θi)

]
,

where we can independently choose distributions Fi over Θi := [0, 1] as one-dimensional distributions.

By Proposition B.1 of the main paper, an optimal one-dimensional distribution F i in each summand

is F ∗ which yields the value of 1
e and the upper bound evaluates to n

e . Since F ∗,n is a distribution with

marginal distributions equal to F ∗ for each good, we have Eθ∼F [
∑

i(θ
i− p∗(θi))] = n

e and, hence, the

distribution is a solution to the original maximization we started out with. Furthermore, it follows

that R̂egret(S∗,n, F ∗,n) = n
e .

Second, we show that S∗,n is a solution to

min
S∈∆(Ω)Θ:
(IC),(IR)

R̂egret(S, F ∗,n) .

Substituting in F ∗,n, the above optimization problem reduces to

min
S=(x,p)∈∆(Ω)Θ:

(IC),(IR)

Eφ∼F ∗ [nφ− p(φ, . . . , φ)]

where (x, p) are the interim allocation and payment rules. We relax the IC/IR constraints by restrict-

ing to the one-dimensional space where the agent’s per-good shocks are the same. Recall:

θᵀ · x(θ)− p(θ) ≥ θᵀ · x(θ′)− p(θ′) , ∀θ, θ′ ∈ [0, 1]n . (IC)

θᵀ · x(θ)− p(θ) ≥ 0 , ∀θ ∈ [0, 1]n . (IR)
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The relaxed IC/IR constraints are:

φ ·
n∑
i=1

xi(φ · ~1)− p(φ · ~1) ≥ φ ·
n∑
i=1

xi(φ′ · ~1)− p(φ′ · ~1) , ∀φ, φ′ ∈ [0, 1] . (IC’)

φ ·
n∑
i=1

xi(φ · ~1)− p(φ · ~1) ≥ 0 , ∀φ ∈ [0, 1] . (IR’)

Note ~1 is the all-ones vector (1, . . . , 1). Then, the value of the optimization problem is lower bounded

by

min
S=(x,p)∈∆(Ω)Θ:

(IC’),(IR’)

Eφ∼F ∗ [nφ− p(φ, . . . , φ)] . (TR-6)

We can transform a single-round mechanism S = (x, p) for multiple goods to S̃ = (x̃, p̃) for a single

good by taking x̃(φ) = 1
n

∑n
i=1 x

i(φ · ~1) and p̃(φ) = 1
np(φ · ~1) for report φ ∈ [0, 1]. For any multi-

good single-round mechanism S satisfying the relaxed IC/IR constraints, the transformation yields

a single-good single-round mechanism satisfying the original IC/IR constraints for the single-good

case. Furthermore, note that the multi-good mechanism implementing a single-good single-round

direct IC/IR mechanism separately for each good satisfies the relaxed IC/IR constraints and yields

the same single-good mechanism via the transformation. Hence, (TR-6) is equal to the following in

terms of the objective value:

min
S̃=(x̃,p̃)∈S̃:
(IC”),(IR”)

n · Eφ∼F ∗ [φ− p̃(φ)] ,

where S̃ denotes the single-round direct mechanisms for the single-good case and the IC/IR constraints

are for the single-good case. This is equal to n
e from the single-round minimax regret determined for

the single-good case in Section 4.1 of the main paper.

To complete, we note S∗,n is an optimal solution to (TR-6) and, hence, the original optimiza-

tion problem because it is a feasible solution and achieves the lower bound n
e . More specifically,

R̂egret(S∗,n, F ∗,n) is equal to

n · Eφ∼F ∗ [φ− p∗(φ)] = n · R̃egret =
n

e
,

where R̃egret is the single-good single-round minimax regret (so, it is equal to R̂egret = 1
e in Sec-

tion 4.1 of the main paper).
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TR.5 Resource Allocation without Monetary Transfers

In this section, we consider a dynamic resource allocation problem without monetary transfers. In

particular, a social planner is repeatedly allocating a costly resource in settings where monetary

transfers may not be practical for legal, ethical and various other reasons. Real-life applications

include an organization or government allocating an internal resource and a nurse attending a patient.

This problem has been recently studied by Guo and Hörner (2015), Balseiro et al. (2019), and Gorokh

et al. (2019). These papers assume that the principal has access to samples or knows the agents’

distributions. In comparison, here we consider a setting in which the principal does not know the

agent’s distribution. We show that the minimax regret of the multi-round problem is linear in T and

an optimal solution simply repeats a single-round mechanism.

Our model is closely related to Guo and Hörner (2015). The principal repeatedly allocates an indepen-

dent and identical unit of a resource in each round over the time horizon. In each round, the agent

privately observes his current value for the resource which is drawn independently and identically

from an underlying distribution known to him. The principal does not know the agent’s distribution

nor per-round values but knows that the per-round values are in the range [0, 1]. The outcome is a

singleton ω = x̂ where x̂ is the allocation, i.e., whether or not the resource is allocated to the agent.

The principal incurs an opportunity cost c ∈ (0, 1) when allocating the resource.1 Equivalently, the

principal wants to allocate the resource only when the value exceeds the cost, but the agent wants to

be allocated always.

In the formal language of Section 2 of the main paper, the agent’s shock is his value for the resource

and Θ = [0, 1]. The agent’s distribution F ∈ F can be any distribution over Θ, i.e., F = ∆(Θ). The

outcome space is Ω = {0, 1} and an outcome ω = x̂ ∈ Ω is the allocation x̂. When the outcome is

ω = x̂ in a round, the agent’s utility function is v(θ, x̂) = θ · x̂ and the principal’s utility function is

u(θ, x̂) = (θ − c) · x̂ where c is the fixed opportunity cost. For notational convenience, we represent

a decision rule in terms of the corresponding allocation rule for a single-round direct mechanism and

represent the interim allocation rule with x : Θ→ [0, 1], with the understanding that when the agent

reports θ, the probability of allocation is x(θ).

Since F = ∆(Θ), Assumption 1 of the main paper holds. Since the principal would want to allocate

1Instead of a fixed opportunity cost c, we can alternatively think the cost per allocation to be a random Bernoulli
variable with the average of c and the principal only observes the cost after an allocation decision and reasons in terms
of the average cost c. Furthermore, we focus on the cases where c ∈ (0, 1) because there exists a trivial optimal solution
when c = 0 or c = 1. If c = 0, always allocating is optimal. If c = 1, not allocating is optimal.
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only if θ ≥ c when the agent’s shock is θ, OPT(δθ, 1) = max{θ − c, 0} for any θ ∈ Θ. The known-

distribution benchmark for distribution F can be bounded as follows:

OPT(F, T ) = sup
A∈A

Eπ,σ

[
T∑
t=1

(θt − c)x̂t

]
≤

T∑
t=1

Eθt [max{θt − c, 0}] = TEθ∼F [OPT(δθ, 1)] ,

where the second step follows from relaxing the incentive compatibility constraint and noting x̂t ∈

[0, 1], and the last step follows because shocks are identically distributed. The last expression is equal

to Eθ∼F [OPT(δθ, T )] by Proposition 1 of the main paper and, hence, Assumption 2 of the main paper

holds. Our general results from Section 3 of the main paper apply and we obtain the following:

Proposition TR.4. For the dynamic resource allocation problem without monetary transfers, the

minimax regret of the multi-round problem is c(1 − c)T and an optimal solution is T repetitions of

the probabilistic allocation rule x∗ where x∗(θ) = 1− c for θ ∈ (0, 1] and x∗(0) can be any probability

in the range [0, 1− c].

We can show that the probability allocation rule x∗ is an optimal solution to the single-round problem,

but not by finding a saddle point. Interestingly, saddle points do not exist for the corresponding single-

round minimax regret problem, in contrast to other applications considered in the main paper and

the previous section of this technical report. We instead show an asymmetric saddle-point result. See

the proof and details in Appendix A.

TR.6 Extensions

In this section, we extend our results in the main paper in several directions. First, we show our results

still hold for other alternative benchmarks that are considered in the learning literature. Second, we

consider serially correlated shock processes and show our results still apply. Third, we consider

multiplicative performance guarantees and prove analogous results connecting the multi-round and

single-round problems. Fourth, we explore a stronger notion of regret in which the agent plays a

utility-maximizing strategy that is the least favorable for the principal.
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TR.6.1 Two Alternative Benchmarks

Instead of the optimal performance achievable OPT(F, T ), we consider two different alternative bench-

marks and show our results in the main paper still hold for the minimax regret defined with respect

to these benchmarks. The first one is T · ū(F ) (with ū(F ) as defined in Section 5.2 of the main paper)

which can be thought of as a stronger benchmark than OPT(F, T ) since T · ū(F ) ≥ OPT(F, T ) by

Proposition E.1 of the main paper. It is equivalently the first-best performance that the principal

can achieve in the full-information version of the multi-round problem. The second one is T · ũ(F )

where ũ(F ) is the performance of an optimal single-round incentive compatible and individually ra-

tional mechanism in the single-round problem. This benchmark has been studied previously in the

literature and can be thought of as a weaker benchmark as we will show T · ũ(F ) ≤ OPT(F, T ).

Interestingly, the same general results from Section 3 of the main paper hold for these benchmarks

under a stronger assumption than Assumption 2 of the main paper. The main observation is that the

alternative benchmarks and OPT(F, T ) coincide for point-mass distributions which form the worst

cases in so far as determining the minimax regret.

For the agent’s distribution F , we define

ũ(F ) := sup
S∈∆(Ω)Θ:
(IC),(IR)

∫
Θ

∫
Ω
u(θ, ω)dSθ(ω)dF (θ) ,

which can be thought of as the “second-best” benchmark in the single-round problem when F is known

to the principal. We have ũ(F ) ≤ ū(F ), because we can relax the IC constraint in the definition of

ũ(F ) and solve for the best outcome distribution for each shock separately. This leads to an upper

bound of Eθ∼F [ū(δθ)] which is at most ū(F ), by Proposition E.1 of the main paper. The multi-round

benchmark T · ũ(F ) is a weaker benchmark in the sense that T · ũ(F ) ≤ OPT(F, T ), because the

principal can repeat the single-round solution (or approximately optimal) to the optimization problem

defining ũ(F ) and realize the performance of T · ũ(F ) since a utility-maximizing strategy for the agent

is to participate and then truthfully report in each round. In the case of revenue maximization in

the dynamic selling mechanism design problem with one good, ū(F ) evaluates to the average shock,

equivalently, the full surplus of the agent, and ũ(F ) evaluates to the optimal revenue achievable, say,

by posting the Myerson’s price, i.e., maxx≥0 x · Prθ∼F (θ ≥ x) (Myerson, 1981).

To distinguish the regret notions with respect to different benchmarks for an incentive compatible
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mechanism A, we use RegretOPT to denote

RegretOPT(A,F, T ) := OPT(F, T )− PrincipalUtility(A,F, T )

which is the original regret notion as defined in Section 2 of the main paper and RegretFB (FB for

“first-best”) and RegretSB (SB for “second-best”) to denote, respectively,

RegretFB(A,F, T ) := T · ū(F )− PrincipalUtility(A,F, T ) , and

RegretSB(A,F, T ) := T · ũ(F )− PrincipalUtility(A,F, T ) .

We distinguish RegretOPT(T ), RegretFB(T ) and RegretSB(T ) similarly.

Of the three variants, the RegretSB(T ) notion is closely related to the standard regret notion in the

learning literature that considers the best fixed “action” in hindsight, which naturally corresponds to

the best fixed single-round mechanism in our setting, which is repeated across the time horizon. Since

a dynamic mechanism can potentially do better, this regret can be negative sometimes. In particular,

Amin et al. (2013) and subsequent works studied the RegretSB(T ) notion (what they call “strategic

regret”) for the restricted class of dynamic posted pricing strategies for the problem of repeatedly

selling a single good.

As the following theorem shows, we obtain identical results as Theorem 1 of the main paper with

respect to above alternative benchmarks with the same minimax regret and structural characterization

of an optimal dynamic mechanism. We still have the same single-round minimax regret problem as

defined in Section 2 of the main paper. Instead of Assumption 2 of the main paper, we assume

a stronger assumption in terms of ū(F ) for the stronger benchmark T · ū(F ); this is stronger by

Proposition 7 of the main paper. See Appendix B.1 for its proof and further details.

Theorem TR.3. Suppose Assumption 1 of the main paper holds and ū(F ) = Eθ∼F [ū(δθ)] for all

F ∈ F . Using Regret(·) to denote both RegretFB and RegretSB notions, the following statements hold

with respect to both notions: Regret(·)(T ) = T · infS∈S×1 supθ∈Θ RegretOPT(S, δθ, 1). For any ε ≥ 0, if

a single-round direct mechanism S ∈ S×1 satisfies

sup
θ∈Θ

RegretOPT(S, δθ, 1) ≤ inf
S′∈S×1

sup
θ∈Θ

RegretOPT(S′, δθ, 1) +
ε

T
,
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then,

sup
F∈F

Regret(·)(S×T , F, T ) ≤ Regret(·)(T ) + ε .

In addition, arg minA∈A supF∈F Regret(·)(A,F, T ) is empty if and only if arg minS∈S×1 supθ∈Θ RegretOPT(S, δθ, 1)

is empty.

TR.6.2 Arbitrary Shock Processes

We consider more general arbitrary shock processes under which the agent’s private shocks may be

correlated across rounds. For example, in the dynamic selling mechanism design problem, the agent’s

private value may be given by permanent and transitory components. His permanent component v0

is drawn from a privately known distribution and transitory components εt are drawn from separate

privately known distributions over the rounds such that his private shock in Round t is θt = v0 + εt.

For comparison, Carrasco et al. (2015) considered arbitrary shock processes for the maximin utility

objective; we further discuss Carrasco et al. (2015) in Section TR.7. The repeated i.i.d. setting

described in Section 2 of the main paper and considered throughout the paper is a special case where

the shocks are independently and identically drawn from a fixed underlying distribution. In this

section, we show that the same general results from Section 3 of the main paper still hold in the

general shock process setting.

To distinguish the shock processes, we use superscript T . We use FT to denote the set of possible

T -round shock processes for the agent with the support of each per-round marginal distribution

contained in Θ, i.e., FT ⊆ ∆(ΘT ), and F T to denote a particular T -round shock process. The

minimax regret value of the multi-round problem is, using the same Regret notation,

Regret(T ) = inf
A∈A

sup
FT∈FT

Regret(A,F T , T ) , (TR-7)

where function Regret explicitly takes a T -round shock process. Generalizing OPT(F, T ), the multi-

round benchmark is OPT(F T , T ) which is the optimal performance achievable when the principal

knows the agent’s private shock process F T :

OPT(F T , T ) = sup
A∈A

PrincipalUtility(A,F T , T ) .

Hence, the regret for an incentive compatible dynamic mechanism A ∈ A when the agent’s T -round
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shock process is F T is the difference between the optimal performance achievable and the actual

performance achieved:

Regret(A,F T , T ) = OPT(F T , T )− PrincipalUtility(A,F T , T ) .

As in the repeated i.i.d. setting, the agent plays the utility-maximizing strategy that is recommended

under A. The corresponding single-round problem in the general shock process setting is still the

same problem as in the repeated i.i.d. setting (in Section 2 of the main paper).

We use the same notations from the main paper to refer to the repeated i.i.d. setting such that

F without superscript T denotes a single-round distribution and Regret(A,F, T ) is the regret of an

incentive compatible dynamic mechanism A when the agent’s private distribution is F in the repeated

i.i.d. setting. We use both F×T and (F )×T to denote the shock process in which the per-round shocks

are drawn i.i.d. from F in the general shock process setting. Whether the Regret notation refers to

the repeated i.i.d. setting or the general shock process setting will be clear from the context and the

parameters; in particular, Regret(A,F, T ) = Regret(A,F×T , T ) for A ∈ A and F ∈ ∆(Θ).

We have the following result:

Theorem TR.4. Suppose that δ×Tθ ∈ FT for all θ ∈ Θ and that OPT(F T , T ) ≤ Et∼[T ],θ∼(FT )t [OPT(δ×Tθ , T )]

for all F T ∈ FT , where t ∼ [T ] means we draw a round uniformly at random and θ ∼ (F T )t means we

draw a shock from the marginal shock distribution of F T in Round t. Then, the following statements

hold in the general shock process setting: Regret(T ) = T · infS∈S×1 supθ∈Θ Regret(S, δθ, 1). For any

ε ≥ 0, if a single-round direct mechanism S ∈ S×1 satisfies

sup
θ∈Θ

Regret(S, δθ, 1) ≤ inf
S′∈S×1

sup
θ∈Θ

Regret(S′, δθ, 1) +
ε

T
,

then,

sup
FT∈FT

Regret(S×T , F T , T ) ≤ Regret(T ) + ε .

In addition, arg minA∈A supFT∈FT Regret(A,F T , T ) is empty if and only if arg minS∈S×1 supθ∈Θ Regret(S, δθ, 1)

is empty.

Instead of Assumptions 1 and 2 of the main paper, we have analogous assumptions in terms of

OPT(F T , T ). The right-hand side of the second assumption can be equivalently written as
∑T

t=1 Eθ∼(FT )t [OPT(δθ, 1)],

by Proposition 1 of the main paper. We defer the proof of Theorem TR.4 and further details to Ap-
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pendix B.2. In the same appendix, we also prove analogous results to Propositions 7, 8 and E.1 of

the main paper in terms of a generalization of ū(F ) in the general shock process setting. Therefore,

Theorem TR.4 holds for all games with payments that enter linearly into the utility functions of the

principal and agent or with a nonnegative utility function for the agent. In particular, it holds for

all applications considered in Section 4 of the main paper and in Sections TR.4 and TR.5. Similar

to the repeated i.i.d. setting, the class of constant shock processes, which are equivalently point-mass

distributions in the repeated i.i.d. setting, form the worst cases in the general shock process setting;

we refer to Proposition 2 of the main paper and note the same proof still works.

TR.6.3 Multiplicative Guarantees

We show that our results and analyses of the main paper extend to analogous results for a multi-

plicative performance metric. In particular, the best multiplicative guarantee for the multi-round

problem is equal to the best multiplicative guarantee for the corresponding single-round problem and

the principal can achieve the best multiplicative guarantee arbitrarily closely by repeating a single-

round mechanism and exactly by repeating, if it exists, an optimal single-round mechanism to the

single-round problem.

The minimax regret and regret are standard performance metrics in the sequential learning literature.

If a learning algorithm has the minimax regret of o(T ), the worst-case regret when averaged over

the rounds diminishes towards 0 as the time horizon T increases and the algorithm achieves the

optimal performance (or some suitable benchmark) asymptotically. Alternatively, we can consider

multiplicative guarantees in terms of a ratio, similar to the approximation and competitive ratios that

are common in the theoretical computer science literature. This is a reasonable performance metric

that is scale-free and may be more interpretable than a difference in absolute terms; at least 50% of

the benchmark versus at most $50 less than the benchmark.

Suppose there exist some constants 0 < L < U < ∞ such that OPT(δθ, 1) ∈ [L,U ] for all shocks

θ ∈ Θ and OPT(F, T ) ∈ [LT,UT ] for all distributions F ∈ F , i.e., bounded from above and away from

0. We define the multi-round multiplicative guarantee Ratio(T ) and the corresponding multi-round

problem as

Ratio(T ) := sup
A∈A

inf
F∈F

Ratio(A,F, T ) , (TR-8)

where the multiplicative ratio is defined as Ratio(A,F, T ) := PrincipalUtility(A,F,T )
OPT(F,T ) for any incentive
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compatible mechanism A and distribution F . As for the regret objective, we assume the agent

follows the recommended strategy that is given as part of the incentive compatible mechanism A.

Note Ratio(T ) ≤ 1 since the realized performance of an incentive compatible dynamic mechanism is

upper bounded by the optimal performance achievable with the knowledge of the agent’s distribution.

It is also at least 0 because the principal can guarantee the total utility of 0 via the trivial mechanism

that always forces the no-interaction outcome.

Similarly, we define the corresponding single-round problem for direct IC/IR mechanisms as

sup
S∈S×1

inf
θ∈Θ

Ratio(S, δθ, 1) , (TR-9)

with the value (i.e., the single-round multiplicative guarantee) in the interval [0, 1]. The upper bound

of 1 and lower bound of 0 follow by the same argument as above.

Similar to the general minimax regret result, Theorem 1 of the main paper, we can show the following.

We defer its proof to Appendix B.3.

Theorem TR.5. Suppose Assumptions 1 and 2 of the main paper hold. Suppose there exist some

constants 0 < L < U < ∞ such that OPT(δθ, 1) ∈ [L,U ] for all θ ∈ Θ and OPT(F, T ) ∈ [LT,UT ]

for all F ∈ F . Then, Ratio(T ) = supS∈S×1 infθ∈Θ Ratio(S, δθ, 1). Moreover, for any ε ≥ 0, if a

mechanism S ∈ S×1 satisfies

inf
θ∈Θ

Ratio(S, δθ, 1) ≥ sup
S′∈S×1

inf
θ∈Θ

Ratio(S′, δθ, 1)− εL

U
,

then,

inf
F∈F

Ratio(S×T , F, T ) ≥ Ratio(T )− ε .

Finally, arg maxA∈A infF∈F Ratio(A,F, T ) is empty if and only if arg maxS∈S×1 infθ∈Θ Ratio(S, δθ, 1)

is empty.

We remark that for the same game, the minimax regret and multiplicative guarantee are, in general,

different. For example, in the case of revenue maximization in the dynamic selling problem with one

good (Section 4.1 of the main paper), the minimax regret is T
e while the multiplicative guarantee is

unbounded whenever zero is the lowest value for the shock.
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TR.6.4 Principal Pessimism

We consider a stronger notion of minimax regret under which the agent can choose to play any utility-

maximizing strategy. We analyze in terms of what we call the principal pessimism constraint and

show most of our results of the main paper continue to hold with respect to the stronger notion of

minimax regret. Throughout the main paper, we assumed the agent plays the recommended strategy

that is given as part of the principal’s incentive compatible mechanism. Essentially, the agent plays

a best-response strategy chosen in the principal’s favor and the uncertainty that the principal faces

is in terms of the agent’s distribution only. Alternatively, we can allow for a different kind of “tie-

breaking” possibility in which the agent plays any utility-maximizing strategy and, in particular, one

that minimizes the principal utility among such utility-maximizing strategies. This leads to a stronger

and more robust notion of minimax regret under which guarantees hold for any shock distribution

and any best-response strategy for the agent.

Going back to the main paper where an optimal dynamic mechanism repeats a single-round direct

IC/IR mechanism, truthful reporting is one utility-maximizing strategy and the regret guarantees

hold for this strategy and, also, for any utility-maximizing strategy chosen in the principal’s favor.

As far as the regret notion is concerned, if there are multiple utility-maximizing strategies for the

agent, the agent plays one that also maximizes the principal utility. But it is possible that different

utility-maximizing strategies lead to different total expected utilities for the principal and, hence,

that the regret is greater for other utility-maximizing strategies.2

Departing from the main paper’s exposition, we drop the recommended strategy from dynamic mech-

anisms’ specification and use A to denote the set of dynamic mechanisms given by tuple (M, π).

For a dynamic mechanism A = (M, π), let B(A, T ) be the set of all utility-maximizing strategies for

the agent in the sense that if σ ∈ B(A, T ), then AgentUtility(A, σ, F, T ) ≥ AgentUtility(A, σ̃, F, T )

holds for every probability distribution F over Θ and every feasible agent strategy σ̃. The minimax

regret of the main paper that corresponds to the agent playing a utility-maximizing strategy that

2Different selections of the agent’s utility-maximizing strategies lead to different principal utilities and, hence, regrets.
Consider a principal selling a single good to an agent where the agent’s value for the good is θ = 1

2
. Assume the principal’s

mechanism is as follows: given the agent’s report θ̂, 1) charge 1
2

and allocate with probability 1 if θ̂ > 1
2
; 2) charge 1

4
and

allocate with probability 1
2

if θ̂ = 1
2
; and 3) do not allocate if θ̂ < 1

2
. This mechanism satisfies the IC/IR constraints. For

the agent, truthful reporting is a utility-maximizing strategy and leads to the agent utility of 0 and the principal utility
of 1

4
. But other reporting strategies are also utility-maximizing and can lead to a different principal utility. Reporting

some θ̂ < 1
2

leads to a smaller principal utility of 0 and reporting some θ̂ > 1
2

leads to a greater principal utility of 1
2
,

while both lead to the same agent utility of 0 as truthful reporting.

tr 32



also maximizes the principal utility can be equivalently written as

Regret(T ) = inf
A∈A

inf
σ̃∈B(A,T )

sup
F∈F

Regret(A, σ̃, F, T ) ,

where Regret(A, σ̃, F, T ) = OPT(F, T )−PrincipalUtility(A, σ̃, F, T ). For the stronger minimax regret

notion, the inner infimum becomes a supremum as in

inf
A∈A

sup
σ̃∈B(A,T )

sup
F∈F

Regret(A, σ̃, F, T ) ,

and the uncertainty that the principal faces is both in terms of the agent’s distribution and best-

response strategy in the worst-case sense.

In what follows, for any principal’s mechanism A and time horizon T , let σ∗(A, T ) be a utility-

maximizing strategy that, if multiple ones exist, minimizes the principal utility among such utility-

maximizing strategies for any distribution F ∈ ∆(Θ). That is, PrincipalUtility(A, σ∗(A, T ), F, T ) ≤

PrincipalUtility(A, σ̃, F, T ) holds for every F ∈ ∆(Θ) and σ̃ ∈ B(A, T ). We refer to such strategy

as a principal-pessimistic utility-maximizing strategy. The multi-round problem with respect to the

stronger regret notion is equivalently

inf
A∈A

sup
F∈F

Regret(A, σ∗(A, T ), F, T ) .

When clear from the context, we suppress the principal-pessimistic utility-maximizing strategy and

use the same notations as introduced in Section 2 of the main paper for the stronger notions of regret

and minimax regret. Note we keep the same optimal performance achievable OPT(F, T ) from the

main paper. This is what the principal can achieve when he knows the agent’s distribution F and the

agent plays a utility-maximizing strategy in the principal’s favor; this is the best-case scenario from

the principal’s perspective.3

We use S×T ⊂ A to denote repeated single-round direct mechanisms for which truthful reporting

(i.e., reports CONTINUE in Round 0 and then truthfully reports shocks) is a principal-pessimistic

utility-maximizing strategy. More specifically, these are IC/IR mechanisms because truthful report-

ing is a utility-maximizing strategy for the agent and they satisfy the additional constraint, which we

3Note the set B(A, T ) and the strategy σ∗(A, T ) may not be well-defined. For ease of presentation, we assume these
are well-defined for any dynamic mechanism A and time horizon T . Without the assumption, we can instead reason
with sequences of “approximately” utility-maximizing strategies and define AgentUtility, PrincipalUtility and Regret
using limit superior and inferior.
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call the principal pessimism constraint (PP), that truthful reporting is a principal-pessimistic utility-

maximizing strategy. In the same manner for IC/IR constraints, we say a direct IC/IR mechanism is

principal-pessimistic (PP) if it satisfies the PP constraint. The mechanisms in S×T are uniquely iden-

tified by single-round direct mechanisms S×1 that they repeat and we let S×T denote the mechanism

that repeats S over T rounds for a single-round direct IC/IR/PP mechanism S ∈ S×1.

The corresponding single-round problem is

inf
S∈S×1

sup
θ∈Θ

Regret(S, σ∗(S, 1), δθ, 1) , (TR-10)

where we take σ∗(S, 1) to be the truthful reporting strategy σTR without loss in terms of the agent

utility, principal utility and regret. In the outcome distribution representation form, the analogue of

(3) of the main paper is

inf
S∈∆(Ω)Θ

sup
θ∈Θ

{
OPT(δθ, 1)−

∫
Ω
u(θ, ω)dSθ(ω)

}
s.t. (IC), (IR), (PP) , (TR-11)

with the same IC/IR constraints and where PP is formulated as:∫
Ω
u(θ, ω)dSθ(ω) ≤

∫
Ω
u(θ, ω)dSθ′(ω) , ∀θ ∈ Θ, θ′ ∈ B∗(S, θ)∫

Ω
u(θ, ω)dSθ(ω) ≤ 0 , ∀θ ∈ Θ0

(PP)

where B∗(S, θ) = {θ′ ∈ Θ |
∫

Ω v(θ, ω)dSθ′(ω) =
∫

Ω v(θ, ω)dSθ(ω)} is the set of utility-maximizing re-

ports for the agent when his shock is θ given the IC constraint holds, and Θ0 = {θ ∈ Θ |
∫

Ω v(θ, ω)dSθ(ω) =

0} is the set of shocks for which truthful reporting leads to the agent utility of 0. The first part of

PP constraint, given the IC constraint holds, stipulates that truthful reporting leads to the lowest

principal utility among all best responses for the agent. The second part stipulates that the principal

utility is at most 0 if truthful reporting leads to the agent utility of 0. Note if S satisfies the IC/IR

constraints, we have θ ∈ B∗(S, θ) for all θ ∈ Θ. The IC/IR/PP constraints together imply that

truthful reporting is an interim principal-pessimistic utility-maximizing strategy.

Our main general result (Theorem 1 of the main paper) still holds with suitable changes in the proof

(in choosing a utility-maximizing strategy) to show that the multi-round minimax regret is T times the

single-round minimax regret and we can achieve this minimax regret arbitrarily closely by repeating

a single-round mechanism. We provide the formal statement below and refer to Appendix B.4.1 for

proof details.
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Theorem TR.6. Suppose Assumptions 1 and 2 of the main paper hold. The following statements hold

with respect to the stronger notion of regret and minimax regret where the agent plays a principal-

pessimistic utility-maximizing strategy: Regret(T ) = T · infS∈S×1 supθ∈Θ Regret(S, δθ, 1). For any

ε ≥ 0, if a single-round direct IC/IR/PP mechanism S ∈ S×1 satisfies

sup
θ∈Θ

Regret(S, δθ, 1) ≤ inf
S′∈S×1

sup
θ∈Θ

Regret(S′, δθ, 1) +
ε

T
,

then,

sup
F∈F

Regret(S×T , F, T ) ≤ Regret(T ) + ε .

Finally, arg minA∈A supF∈F Regret(A,F, T ) is empty if and only if arg minS∈S×1 supθ∈Θ Regret(S, δθ, 1)

is empty.

For the single-round problem, we also prove the analogue of Lemma 1 of the main paper in Ap-

pendix B.4.2. By the analogue, we can equivalently solve the following version for single-round direct

IC/IR/PP mechanisms:

inf
S∈∆(Ω)Θ:

(IC),(IR),(PP)

sup
F∈∆(Θ)

R̂egret(S, F ) ,

where R̂egret(S, F ) :=
∫

Θ OPT(δθ, 1)dF (θ)−
∫

Θ

∫
Ω u(θ, ω)dSθ(ω)dF (θ) for a single-round direct mech-

anism S and distribution F .

One way to find an optimal solution to the above single-round problem is to solve the relaxed version

without the PP constraint and show the solution to the relaxed version satisfies the PP constraint

and, thus, is also a solution to the original version. Note we already have optimal solutions to the

relaxed versions for the applications in Section 4 of the main paper and Sections TR.4–TR.5. We can

characterize the PP constraint in these applications and show the optimal single-round direct IC/IR

mechanisms found already satisfy the PP constraint. For instance, for the dynamic selling mechanism

design problem with a single good, the if-and-only-if condition for the PP constraint is roughly that

any flat part of the interim allocation rule, if exists, is closed on the right side. The optimal single-

round direct IC/IR mechanism in Proposition 3 of the main paper has an interim allocation rule that

is continuous and indeed satisfies the PP constraint. Consequently, Propositions 3 and 4 of the main

paper and Propositions TR.1, TR.2, and TR.4 (when we let x∗(0) = 1 − c) of this technical report

still hold the same with respect to the stronger notion of minimax regret. We defer further details to

Appendix B.4.3.
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In the most general setting, it is not clear how to mathematically formalize the PP constraint in a

tractable way and we do not have an explicit characterization. We believe other results still hold with

respect to the stronger notions of regret and minimax regret.

TR.7 Connections to Maximin Utility Objective

We show equivalence-type connections between the minimax regret and maximin utility objectives

for revenue maximization in the single-good case of the dynamic selling mechanism design problem

(considered in Section 4.1 of the main paper). Similar connections hold more generally for other

robust mechanism design problems as long as a saddle-point result exists for the minimax regret

objective and a corresponding saddle-point result exists for the maximin utility objective (with the

known mean). Carrasco et al. (2015) recently showed a similar false-dynamics result for the multi-

round dynamic selling problem with respect to the maximin utility objective where the principal

maximizes the minimum utility achieved in the worst-case sense and only the mean of the agent’s shock

distribution is known a priori. More specifically, we show the minimax regret criterion and maximin

utility criterion with a known mean share the same single-round saddle-point problem involving direct

IC/IR mechanisms. For the principal-agent model with hidden costs, we are not aware of a multi-

round false-dynamics result but our analysis of the single-round minimax regret problem is, again,

similar to Carrasco et al. (2018) that considered a single-round utility-maximization problem subject

to a nonlinear quality cost function with respect to the other robust objective.

In contrast to the minimax regret objective, the maximin utility objective without any additional

distributional information (other than the shock space Θ) leads to a trivial answer in the case of

revenue maximization in the dynamic selling mechanism design problem. The worst case is when

the agent has the lowest possible value and the principal will accordingly price the good at this

value always. If the lowest possible value is 0, then the maximin utility would be 0. The maximin

utility objective leads to more meaningful solutions with additional fixed-moment-type distributional

information. In particular, Carrasco et al. (2015) considered a dynamic setting where the agent’s

values within [0, 1] follow an unknown arbitrary value process over T rounds with the property that

each per-round marginal distribution has the same mean known a priori to the principal. They

showed a saddle-point result where the optimal dynamic mechanism is T repetitions of a single-round

mechanism and the worst-case value process is one where a value is drawn once from a specified

distribution and is fixed across all rounds. Interestingly, the worst-case value process is such that T
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repetitions of a single-round mechanism is still optimal even when the value process is known to the

principal.

In Section 4.1 of the main paper, we considered the same multi-round problem with respect to the

minimax regret objective without any additional distributional information (other than the shock

space Θ) and value processes were such that per-round value distributions are identical and indepen-

dent. Our version of the multi-round problem does not allow the above worst-case value process in

which values are not drawn independently from the same marginal shock distribution. Furthermore,

there is no saddle-point result for the multi-round problem in our setting.

Despite these differences, our results and Carrasco et al. (2015) have similar analyses and solution

structures. This is because both papers rely on essentially the same single-round saddle-point problem

involving direct IC/IR mechanisms. Strictly speaking, the single-round problem with the maximin

utility objective and a known mean is “finer-grained” in the sense that we can use the solutions to

this problem to find a solution to the single-round problem with the minimax regret objective. This

is assuming we have saddle-point results with respect to both objectives which were indeed proved,

independently, in Carrasco et al. (2015) and in Section 4.1 of the main paper. The saddle-point results

allow us to change the order of the infimum and supremum in the single-round problems.

In the remainder, we describe the connection via single-round problems. Recall F = ∆(Θ) in the

dynamic selling mechanism design problem. We start with the saddle-point result for the single-

round problem for direct IC/IR mechanisms with respect to the minimax regret objective using the

formulation given in Section TR.1. Recall the single-round benchmark Eθ∼F [OPT(δθ, 1)] is equal to

Eθ∼F [θ] from Section 4.1 of the main paper. Denoting by Ŝ =
{
S ∈ ∆(Ω)Θ : (IC), (IR)

}
the set of

single-round direct IC/IR mechanisms, we have

R̂egret = inf
S∈Ŝ

sup
F∈∆(Θ)

R̂egret(S, F ) = sup
F∈∆(Θ)

inf
S∈Ŝ

R̂egret(S, F )

= sup
F∈∆(Θ)

inf
S∈Ŝ
{Eθ∼F [θ]− PrincipalUtility(S, σTR, F, 1)} ,

where σTR denotes the truthful reporting strategy. Let Fµ = {F ∈ ∆(Θ) | Eθ∼F [θ] = µ}, i.e.,
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distributions with the mean equal to µ. The optimization problem can be equivalently written as

R̂egret = sup
µ∈[0,1]

sup
F∈Fµ

inf
S∈Ŝ
{µ− PrincipalUtility(S, σTR, F, 1)}

= sup
µ∈[0,1]

{
µ− inf

F∈Fµ
sup
S∈Ŝ

PrincipalUtility(S, σTR, F, 1)

}

= sup
µ∈[0,1]

{
µ− sup

S∈Ŝ
inf
F∈Fµ

PrincipalUtility(S, σTR, F, 1)

}
,

where the second equation follows by extracting the mean µ from the objective and accounting for

the negative sign in front of the principal utility expression, and the last by the saddle-point result

for the maximin utility objective with a known mean from Carrasco et al. (2015). Now, assume

we have saddle-point solutions (S∗µ, F
∗
µ) for this problem for all possible µ ∈ [0, 1]. We arrive at a

saddle-point solution for the single-round problem with respect to the minimax regret objective by

choosing (S∗µ, F
∗
µ) for µ that maximizes the quantity

µ− PrincipalUtility(S∗µ, σ
TR, F ∗µ , 1) .

Note the connection holds when the saddle-point results exist with respect to both objectives, which

we indeed have.
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A Missing Proofs from Section TR.5

We prove Proposition TR.4. By Theorem 1 of the main paper, it suffices to show the following:

Proposition TR.5. Let S∗ be the single-round direct IC/IR mechanism with the allocation rule given

in Proposition TR.4. Then, R̂egret = c · (1 − c) and S∗ is an optimal solution to the single-round
minimax problem, i.e.,

R̂egret = sup
F∈∆(Θ)

R̂egret(S∗, F ) .

Furthermore, there exist no saddle points but the following asymmetric saddle-point result holds:

sup
F∈∆(Θ)

R̂egret(S∗, F ) = sup
F∈∆(Θ)

inf
S∈∆(Ω)Θ:
(IC),(IR)

R̂egret(S, F ) .

Before proving Proposition TR.5, we will argue that the IC/IR constraints restrict the allocation rule
x to be constant on (0, 1] and x(0) to be at most the constant value. This reduces the single-round
problem to optimizing over two decision variables and Proposition TR.5 would follow from a case-by-
case analysis. For intuition on the non-existence of a worst-case distribution in the supremum-infimum
problem supF∈∆(Θ) infS∈∆(Ω)Θ:

(IC),(IR)

R̂egret(S, F ), we note that the IC constraint allows for allocation

probabilities that are discontinuous at θ = 0. In order to achieve a regret of R̂egret = c(1− c), nature
would like the agent’s distribution F to be θ = 1 with probability c and θ = ε with probability 1− c
for some small value ε ∈ (0, c). In this case, the single-round benchmark would coincide with c(1− c)
and the principal’s maximum utility would be Eθ∼F [θ− c] = (1− c)c+ (ε− c)(1− c) = ε(1− c), which
is achieved by always allocating, and the corresponding regret would be (c− ε)(1− c). Letting ε ↓ 0
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would yield the optimal regret R̂egret. The regret, however, has a discontinuity at ε = 0 because in
this case, the principal can respond by not allocating when θ = 0 to obtain an expected utility of
E[(θ − c)1{θ > 0}] = c(1− c) and, hence, a regret of 0 at ε = 0.

Recall we represent single-round direct mechanisms with the interim allocation rule x : Θ → [0, 1]
with the understanding that when the agent reports θ, the probability of allocation is x(θ). Note

OPT(δθ, 1) =

{
θ − c , if θ ≥ c
0 , otherwise

for any θ ∈ Θ and for any distribution F , the single-round bench-

mark is
Eθ∼F [OPT(δθ, 1)] = Eθ∼F [1{θ ≥ c} · (θ − c)] ,

where 1{θ ≥ c} is the indicator that is 1 if θ ≥ c, and 0 otherwise. Then, the single-round minimax
regret problem is:

R̂egret = inf
x:(IC),(IR)

sup
F∈∆(Θ)

{Eθ∼F [1{θ ≥ c} · (θ − c)]− Eθ∼F [(θ − c) · x(θ)]} ,

and the IC/IR constraints for single-round direct mechanisms are:

θ · x(θ) ≥ θ · x(θ′) , ∀θ, θ′ ∈ Θ (IC)

θ · x(θ) ≥ 0 , ∀θ ∈ Θ . (IR)

The IR constraint is always satisfied. From the IC constraint, we show x is constant on (0, 1] and
x(0) is at most the constant value. For θ and θ′ arbitrarily chosen in (0, 1], the IC constraint implies
θ · x(θ) ≥ θ · x(θ′) and, dividing θ on both sides, x(θ) ≥ x(θ′). Changing the roles of θ and θ′, we
also have x(θ) ≤ x(θ′). Hence, x is constant on (0, 1]. Assume θ ∈ (0, 1] and θ′ = 0. Then, the IC
constraint implies θ · x(θ) ≥ θ · x(0) and, consequently, x(θ) ≥ x(0). It follows that x(0) is at most
the constant value. Note the IC constraint is always satisfied when θ = 0. Hence, in what follows, we
parametrize single-round direct IC/IR mechanisms in terms of 0 ≤ x0 ≤ x1 ≤ 1 such that x(0) = x0

and x(θ) = x1 for θ ∈ (0, 1].

We now prove Proposition TR.5. For ease of presentation, we present the proof for the first part
below and the second part on the nonexistence of saddle points and the third part on the asymmetric
saddle-point result in Appendices A.1 and A.2, respectively.

Proof of the First Part of Proposition TR.5. Let F = F−+F (0) where F (0) is the point-mass, which
may have the zero mass, at θ = 0 and F− is the rest of the distribution over (0, 1]. Then, the objective
of the single-round minimax regret problem is

R̂egret((x0, x1), F ) = Eθ∼F− [1{θ ≥ c} · (θ − c)]− Eθ∼F− [(θ − c) · x1] + c · x0 · F (0)

= Eθ∼F− [1{θ ≥ c} · (θ − c)− θ · x1] + c · x1 · (1− F (0)) + c · x0 · F (0) .

Let g(θ) = 1{θ ≥ c} · (θ− c)− θ ·x1 be the expression inside the expectation with c and x1 fixed. For
θ ∈ (0, c), g(θ) = −θ · x1. For θ ∈ [c, 1], g(θ) = θ · (1− x1)− c.

For each possible pair (x0, x1) such that 0 ≤ x0 ≤ x1 ≤ 1, we compute supF∈∆(Θ) R̂egret((x0, x1), F )
and find the corresponding worst-case distributions.
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Case 1) 1− x1 − c ≥ 0 (Equivalently, 1− c ≥ x1.)

Whether x1 = 0 or x1 > 0, g(1) > g(θ) for θ ∈ (0, 1). That is, g(θ) achieves the unique maximum
at θ = 1 over the interval (0, 1]. If x1 = 0, g(θ) = 0 for θ ∈ (0, c) and g(θ) = θ − c for θ ∈ [c, 1]. If
x1 > 0, g(θ) = −θ ·x1 < 0 for θ ∈ (0, c) and g(θ) = θ · (1−x1)−c for θ ∈ [c, 1], which is maximized
at θ = 1 and at least 0 at that point.

Then, the worst-case partial distribution F− over (0, 1] given F (0) is the probability mass of
1− F (0) at θ = 1. It follows that

sup
F∈∆(Θ)

R̂egret((x0, x1), F )

= sup
F (0)∈[0,1]

{(1− x1 − c) · (1− F (0)) + c · x1 · (1− F (0)) + c · x0 · F (0)}

= sup
F (0)∈[0,1]

{(1− x1 − c+ c · x1) · (1− F (0)) + c · x0 · F (0)} .

We further analyze the simplified expression in the following cases. In all cases, we show

sup
F∈∆(Θ)

R̂egret((x0, x1), F ) = 1− c− x1 + c · x1.

Case a) 1− x1 − c > 0

Note 1− x1 − c+ c · x1 > c · x0 since c · x1 ≥ c · x0. The worst-case distribution F is uniquely
determined to be the point-mass of 1 at θ = 1, i.e., F (0) = 0. Then,

sup
F∈∆(Θ)

R̂egret((x0, x1), F ) = 1− c− (1− c) · x1 .

Case b) 1− x1 − c = 0 and x0 < x1

Since 1− x1 − c = 0, the maximization problem further simplifies to

sup
F (0)∈[0,1]

{c · x1 · (1− F (0)) + c · x0 · F (0)} .

The worst-case distribution F is uniquely determined to be the point-mass of 1 at θ = 1, i.e.,
F (0) = 0. Then,

sup
F∈∆(Θ)

R̂egret((x0, x1), F ) = c · x1 .

Case c) 1− x1 − c = 0 and x0 = x1

As in Case 1b), the maximization problem becomes

sup
F (0)∈[0,1]

{c · x1 · (1− F (0)) + c · x0 · F (0)} .

The worst-case distribution F is not uniquely determined. Any split between θ = 0 and θ = 1
is a worst-case, i.e., any F (0) ∈ [0, 1]. Then,

sup
F∈∆(Θ)

R̂egret((x0, x1), F ) = c · x1 = c · x0 .

Case 2) 1− x1 − c < 0 (Equivalently, 1− c < x1.)

tr 41



Whether x1 = 1 or x1 < 1, g(θ) < 0 for all θ ∈ (0, 1]. For θ ∈ (0, c), g(θ) = −θ·x1 < −θ·(1−c) < 0.

For θ ∈ [c, 1], g(θ) = θ · (1 − x1) − c ≤ 1 − x1 − c < 0. Note R̂egret((x0, x1), F ) ≤ c · x1 · (1 −
F (0)) + c · x0 · F (0) for any distribution F . Then,

sup
F∈∆(Θ)

R̂egret((x0, x1), F ) ≤ sup
F (0)∈[0,1]

{c · x1 · (1− F (0)) + c · x0 · F (0)}

= c · x1 .

In fact, supF∈∆(Θ) R̂egret((x0, x1), F ) = c · x1. For any arbitrarily small ε ∈ (0, c), let F ε be the

point-mass distribution such that θ = ε with probability 1. Then, R̂egret((x0, x1), Fε) = (c−ε)·x1.
As ε was arbitrary, we indeed have

sup
F∈∆(Θ)

R̂egret((x0, x1), F ) = c · x1 .

In the following cases, we determine corresponding worst-case distributions.

Case a) x0 < x1

There exists no worst-case distribution that achieves the supremum exactly, because while the
expression c · x1 · (1 − F (0)) + c · x0 · F (0) in the regret objective is maximized by putting
probability mass over (0, 1], the remainder Eθ∼F− [1{θ ≥ c} · (θ− c)−θ ·x1] is strictly negative.
We can achieve the supremum arbitrarily closely by point-mass distribution Fε for which θ = ε
with probability 1 for arbitrarily small ε ∈ (0, c).

Case b) x0 = x1

The worst-case distribution F is uniquely determined to be the point-mass of 1 at θ = 0, i.e.,
F (0) = 1. To see this, we note the regret objective reduces to

R̂egret((x0, x1), F ) = Eθ∼F− [1{θ ≥ c} · (θ − c)− θ · x1] + c · x0 .

Since Eθ∼F− [1{θ ≥ c} · (θ− c)− θ ·x1] is strictly negative for any probability mass placed over
(0, 1], the maximum regret is realized for F (0) = 1.

Then, we choose x∗1 = 1− c such that 1− x1 − c+ c · x1 = c · x1 and let x∗0 be any number in [0, x∗1].

Any mechanism of this form is optimal and achieves the minimax regret of R̂egret = c ·(1−c). Hence,
the first part of the proposition follows. Note x∗1 is uniquely determined. If x1 < x∗1, we have

sup
F∈∆(Θ)

R̂egret((x0, x1), F ) = 1− c− (1− c) · x1 > 1− c− (1− c) · x∗1 = c · (1− c) .

If x > x∗1, then

sup
F∈∆(Θ)

R̂egret((x0, x1), F ) = c · x1 > c · x∗1 = c · (1− c) .
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A.1 Second Part of Proposition TR.5: Nonexistence of Saddle Points

First, we consider the implications from the existence of a saddle point. Note it is always true that

inf
S∈∆(Ω)Θ:
(IC),(IR)

sup
F∈∆(Θ)

R̂egret(S, F ) ≥ sup
F∈∆(Θ)

inf
S∈∆(Ω)Θ:
(IC),(IR)

R̂egret(S, F ) ,

which is the max-min inequality. If there exists a saddle point (S∗, F ∗) such that

R̂egret(S∗, F ) ≤ R̂egret(S∗, F ∗) ≤ R̂egret(S, F ∗)

for any single-round direct IC/IR mechanism S and distribution F , it follows that

inf
S∈∆(Ω)Θ:
(IC),(IR)

sup
F∈∆(Θ)

R̂egret(S, F ) ≤ sup
F∈∆(Θ)

R̂egret(S∗, F )

≤ R̂egret(S∗, F ∗)

≤ inf
S∈∆(Ω)Θ:
(IC),(IR)

R̂egret(S, F ∗)

≤ sup
F∈∆(Θ)

inf
S∈∆(Ω)Θ:
(IC),(IR)

R̂egret(S, F ) .

Combining with the max-min inequality, it follows that all the inequalities are actually equalities.
In particular, the existence of a saddle point (S∗, F ∗) implies that 1) S∗ is an optimal solution to

the infimum-supremum problem (i.e., infS∈∆(Ω)Θ:
(IC),(IR)

supF∈∆(Θ) R̂egret(S, F )) and achieves the objective

value of R̂egret(S∗, F ∗) and F ∗ is a worst-case distribution for S∗; and 2) F ∗ is an optimal solution to

the supremum-infimum problem (i.e., supF∈∆(Θ) infS∈∆(Ω)Θ:
(IC),(IR)

R̂egret(S, F )) and achieves the objective

value of R̂egret(S∗, F ∗) and S∗ is an optimal mechanism against F ∗.

Given the above discussion, it suffices we show that there exists no optimal solution F ∗ to the infimum-
supremum problem that achieves the objective value of R̂egret = c(1− c), or, mathematically,

inf
S∈∆(Ω)Θ:
(IC),(IR)

R̂egret(S, F ∗) = R̂egret = c(1− c) . (TR-12)
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We prove it by contradiction. Let F ∗ be such distribution that satisfies (TR-12). We have

inf
S∈∆(Ω)Θ:
(IC),(IR)

R̂egret(S, F ∗) = inf
x:(IC),(IR)

{Eθ∼F ∗ [OPT(δθ, 1)]− Eθ∼F ∗ [(θ − c) · x(θ)]}

= Eθ∼F ∗ [OPT(δθ, 1)]− sup
x:(IC),(IR)

Eθ∼F ∗ [(θ − c) · x(θ)]

= Eθ∼F ∗ [OPT(δθ, 1)]− sup
0≤x0≤x1≤1

{x1Eθ∼F ∗ [(θ − c)1{θ > 0}]− cx0F
∗(0)}

= Eθ∼F ∗ [OPT(δθ, 1)]−max{Eθ∼F ∗ [(θ − c)1{θ > 0}]︸ ︷︷ ︸
(∗)

, 0} , (TR-13)

where the second equality follows from extracting the constant term Eθ∼F ∗ [OPT(δθ, 1)] and flipping
the direction of the infimum; the third equality because single-round direct IC/IR mechanisms can
be parametrized in terms of 0 ≤ x0 ≤ x1 ≤ 1 such that x(0) = x0 and x(θ) = x1 for θ ∈ (0, 1]; and
the last equality because it is optimal to set x0 = 0 and x1 = 1 if Eθ∼F ∗ [(θ − c)1{θ > 0}] ≥ 0 and
x1 = 0 otherwise.

We claim that F ∗ satisfies (∗) = 0. First, note that the single-round benchmark satisfies

Eθ∼F ∗ [OPT(δθ, 1)] = Eθ∼F ∗ [max{θ − c, 0}]
= Eθ∼F ∗ [max{θ − c, 0} · 1(θ > 0)]

≤ (1− c)Eθ∼F ∗ [θ1{θ > 0}] , (TR-14)

where the second equality follows because c ∈ (0, 1), and the inequality because max{θ−c, 0} ≤ (1−c)θ
since θ ∈ [0, 1] and c ∈ (0, 1). Suppose (∗) < 0. Combining (TR-12), (TR-13) and (TR-14), we obtain

c(1− c) ≤ (1− c)Eθ∼F ∗ [θ1{θ > 0}] < c(1− c)(1− F ∗(0)) ≤ c(1− c) ,

where the strict inequality follows because c ∈ (0, 1) and (∗) < 0 implies Eθ∼F ∗ [θ1{θ > 0}] <
Eθ∼F ∗ [c1{θ > 0}] = c(1− F ∗(0)), and the last inequality because F ∗(0) ∈ [0, 1]. This is a contradic-
tion.

Similarly, suppose (∗) > 0. Combining (TR-12), (TR-13), and (TR-14), we obtain

c(1− c) ≤ c(1− F ∗(0))− cEθ∼F ∗ [θ1(θ > 0)] < c(1− c)(1− F ∗(0)) ≤ c(1− c) ,

where the strict inequality follows because c ∈ (0, 1) and (∗) > 0 implies Eθ∼F ∗ [θ1{θ > 0}] >
Eθ∼F ∗ [c1{θ > 0}] = c(1− F ∗(0)), and the last inequality because F ∗(0) ∈ [0, 1]. Again, a contradic-
tion. Hence, we have (∗) = 0.

We now argue that (∗) = 0 implies that F ∗(0) = 1. Combining (TR-12), (TR-13), and (TR-14)
together with (∗) = 0 implies that c(1 − c) ≤ c(1 − c)(1 − F ∗(0)) ≤ c(1 − c); to see this, we follow
the same argument above under the assumption (∗) < 0 where the strict inequality becomes an
equality. That is, c(1 − c)(1 − F ∗(0)) = c(1 − c). Because c ∈ (0, 1), we can divide both sides by
c(1− c) and obtain that F ∗(0) = 1. Hence, the only possible candidate distribution F ∗ is the point-
mass distribution under which the shock is 0 with probability 1. For this particular distribution F ∗,
Eθ∼F ∗ [OPT(δθ, 1)] = 0 and the IC/IR mechanism that always does not allocate (i.e., x0 = x1 = 0)

is such that Eθ∼F ∗ [(θ − c) · x(θ)] = 0. This means infS∈∆(Ω)Θ:
(IC),(IR)

R̂egret(S, F ∗) can be at most 0 and
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cannot be equal to R̂egret = c(1 − c) > 0. We, thus, conclude there exists no such distribution F ∗

satisfying (TR-12).

A.2 Third Part of Proposition TR.5: an Asymmetric Result

While saddle points do not exist, we can still show an asymmetric saddle-point result, that is, the
saddle-point property holds and the single-round minimax regret problem admits an optimal solution.
In Part 1, we showed that S∗ is an optimal solution to the single-round minimax regret problem and
achieves R̂egret. In what follows, we show the saddle-point property holds:

inf
S∈∆(Ω)Θ:
(IC),(IR)

sup
F∈∆(Θ)

R̂egret(S, F ) = sup
F∈∆(Θ)

inf
S∈∆(Ω)Θ:
(IC),(IR)

R̂egret(S, F ) .

From Part 1, we know the left-hand side is equal to R̂egret = c(1− c).

For an arbitrary ε ∈ (0, c), consider the distribution Fε under which θ = ε with probability 1− c and
θ = 1 with probability c. Then,

R̂egret((x0, x1), F ) = Eθ∼F− [1{θ ≥ c} · (θ − c)− θ · x1] + c · x1 · (1− F (0)) + c · x0 · F (0)

= −ε · x1 · (1− c) + (1− c− x1) · c+ c · x1

= −ε · (1− c) · x1 + c · (1− c) .

It follows that
inf

x:(IC),(IR)
R̂egret((x0, x1), Fε) = −ε · (1− c) + c · (1− c) ,

where the infimum is achieved by the single-round mechanism with x1 = 1 and x0 ∈ [0, 1]. As ε was
arbitrary,

sup
F∈∆(Θ)

inf
x:(IC),(IR)

R̂egret((x0, x1), Fε) = c · (1− c) ,

as desired.

B Additional Materials for Section TR.6

B.1 Two Alternative Benchmarks

Before proving Theorem TR.3, we prove the following proposition relating ū(F ) and ũ(F ) which will
be used in proving Theorem TR.3.

Proposition TR.6. We have the following relations:

1. For any distribution F ∈ ∆(Θ), ũ(F ) ≤ ū(F ).

2. For any point-mass distribution θ ∈ Θ, ũ(δθ) = ū(δθ).
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Proof. We prove the first part. Let F be any arbitrary distribution. We equivalently write ũ(F ) as

ũ(F ) = sup
S∈∆(Ω)Θ

∫
Θ

∫
Ω
u(θ, ω)dSθ(ω)dF (θ)

s.t.

∫
Ω
v(θ, ω)dSθ(ω) ≥

∫
Ω
v(θ, ω)dSθ′(ω) , ∀θ, θ′ ∈ Θ∫

Ω
v(θ, ω)dSθ(ω) ≥ 0 , ∀θ ∈ Θ .

(TR-15)

Relaxing the IC constraint, we obtain the optimization problem in Section 5.2 of the main paper that
defines Eθ∼F [ū(δθ)] (also (E-4) in Appendix E of the main paper). Hence, ũ(F ) ≤ Eθ∼F [ū(δθ)]. By
Part 3 of Proposition E.1 in Appendix E of the main paper, it follows that ũ(F ) ≤ ū(F ).

For the second part, we now show that ũ(δθ) is equal to ū(δθ) for any θ ∈ Θ. Fix an arbitrary θ. Let
Gθ be an arbitrary outcome distribution over Ω that is feasible for the following equivalent form of
the optimization problem defining ū(δθ):

ū(δθ) = sup
G∈∆(Ω)

∫
Ω
u(θ, ω)dG(ω)

s.t.

∫
Ω
v(θ, ω)dG(ω) ≥ 0 .

Consider the single-round direct IC/IR mechanism S that given report θ′ returns a random outcome
drawn from Gθ if Eω∼Gθ [v(θ′, ω)] ≥ 0, and the no-interaction outcome otherwise. Mechanism S
provides two possibilities and chooses the better possible outcome (or a distribution of outcomes) for
each θ′ if the agent’s private shock was θ′. Hence, by construction, S satisfies the IC/IR constraints
and is a feasible solution in the optimization problem defining ũ(δθ). Furthermore, Eω∼Sθ [u(θ, ω)] =
Eω∼Gθ [u(θ, ω)] and Gθ and S obtain the same objectives in respective optimization problems. As Gθ
was arbitrary, it follows that ũ(δθ) ≥ ū(δθ). Combined with the observation that ũ(F ) ≤ ū(F ) for
any distribution F ∈ ∆(Θ), it follows that ũ(δθ) = ū(δθ).

We now prove Theorem TR.3 below:

Proof of Theorem TR.3. We show that Lemmas 2 and 3 of the main paper hold for the RegretFB

and RegretSB notions in the multi-round problem (and with the same RegretOPT notion in the single-
round problem). Then, the theorem statements would follow for these notions by the same reasoning
steps used in the proof of Theorem 1 of the main paper for the RegretOPT notion in Appendix A.1
of the main paper. The assumptions of the theorem are similar to those of Theorem 1 of the main
paper. The second part, the linearity assumption of ū(F ), is more stringent and needed for our
false-dynamics results.

We start by showing Lemma 2 of the main paper holds with respect to the alternative benchmarks.
We use the same reasoning used for when we start with the RegretOPT notion for the multi-round
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problem. Fix an arbitrary incentive compatible dynamic mechanism A ∈ A. Then,

sup
F∈F

RegretFB(A,F, T ) ≥ sup
θ∈Θ

RegretFB(A, δθ, T )

= sup
θ∈Θ
{T · ū(δθ)− PrincipalUtility(A, σ, δθ, T )}

= T · sup
θ∈Θ
{ū(δθ)− PrincipalUtility(S(A), σTR, δθ, 1)}

= T · sup
θ∈Θ
{OPT(δθ, 1)− PrincipalUtility(S(A), σTR, δθ, 1)}

= T · sup
θ∈Θ

RegretOPT(S(A), δθ, 1) ,

where the first step is because point-mass distributions are a subset of F under Assumption 1 of
the main paper; the second step is by the definition of the RegretFB notion and where σ is the
recommended agent strategy under A; the third step is by Lemma A.1 of the main paper and S(A) is
the single-round direct IC/IR mechanism derived from A as described in the proof of the lemma; the
second-to-last step is because OPT(δθ, 1) = ū(δθ) which is by Proposition E.1 of the main paper; and
the last step is by the definition of the RegretOPT notion. Hence, Lemma 2 holds for the RegretFB

notion.

For the RegretSB notion, we follow the same reasoning with RegretSB and ũ(F ) in places of RegretFB

and ū(F ), respectively. The second-to-last step in the above sequence still follows from Proposition E.1
of the main paper and Proposition TR.6 which imply that OPT(δθ, 1) = ū(δθ) = ũ(δθ) for θ ∈ Θ.

We now show Lemma 3 of the main paper holds with respect to the alternative benchmarks. Let S
be an arbitrary single-round direct IC/IR mechanism and consider the direct static mechanism S×T

which is T repetitions of S. Note S×T is incentive compatible by Lemma A.2 of the main paper.
Then,

sup
F∈F

RegretFB(S×T , F, T ) = sup
F∈F

{
T · ū(F )− PrincipalUtility(S×T , σTR, F, T )

}
= sup

F∈F

{
T · Eθ∼F [OPT(δθ, 1)]− PrincipalUtility(S×T , σTR, F, T )

}
= T · sup

F∈F
{Eθ∼F [OPT(δθ, 1)]− PrincipalUtility(S, σTR, F, 1)}

≤ T · sup
θ∈Θ

RegretOPT(S, σTR, δθ, 1) ,

where the first step is by the definition of the RegretFB notion and the truthful reporting strat-
egy σTR (i.e., the agent reports CONTINUE in Round 0 and truthfully reports his shocks in future
rounds) which is the recommended strategy for direct mechanisms; the second step is because for any
distribution F ∈ F ,

T · ū(F ) = T · Eθ∼F [ū(δθ)] = T · Eθ∼F [OPT(δθ, 1)] ,

by the linearity assumption on ū(F ) and Proposition E.1 of the main paper; the second-to-last step
is by Lemma A.2 of the main paper; and the last step is by Lemma A.3 of the main paper. Hence,
Lemma 3 holds for the RegretFB notion.

Similarly, we follow the same reasoning for the RegretSB notion in terms of ũ(F ). The second step in
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the above sequence will be an inequality and it follows because

T · ũ(F ) ≤ T · ū(F ) = T · Eθ∼F [ū(δθ)] = T · Eθ∼F [OPT(δθ, 1)] ,

where we used Proposition TR.6, the linearity assumption on ū(F ) and Proposition E.1 of the main
paper, in that order.

B.2 Arbitrary Shock Processes

We first prove Theorem TR.4. We then introduce a generalization of ū(F ) and prove analogous results
to Propositions 7, 8 and E.1 of the main paper in the general shock process setting.

Proof of Theorem TR.4. Note the two assumptions of the theorem are the analogues of Assump-
tions 1 and 2 of the main paper, respectively, in the general shock process setting. We prove the
analogues of Lemmas 2 and 3 of the main paper for the general shock process setting. Then, the
theorem statements would follow directly from the analogues via the same reasoning steps in the
proof of Theorem 1 of the main paper.

For an analogue of Lemma 2 of the main paper, we proceed as follows. Note that for any incentive
compatible dynamic mechanism A ∈ A, we have

sup
FT∈FT

Regret(A,F T , T ) ≥ sup
θ∈Θ

Regret(A, δ×Tθ , T )

= sup
θ∈Θ
{OPT(δθ, T )− PrincipalUtility(A, σ, δθ, T )}

= sup
θ∈Θ
{OPT(δθ, T )− T · PrincipalUtility(S(A), σTR, δθ, 1)}

= T · sup
θ∈Θ
{OPT(δθ, 1)− PrincipalUtility(S(A), σTR, δθ, 1)}

= T · sup
θ∈Θ

Regret(S(A), δθ, 1) ,

where the first step is because the set of shock processes where per-round shocks are some fixed
constant is a subset of FT under the first assumption; the second step is by the definition of the Regret
notion and where σ is the recommended agent strategy under A; the third step is by Lemma A.1 of
the main paper and S(A) is the single-round direct IC/IR mechanism derived from A as described in
the proof of the lemma; the second-to-last step is by Proposition 1 of the main paper; and the last
step is by the definition of the Regret notion. This is an analogous lower bound to Lemma 2 of the
main paper for the general shock process setting.

We now show an analogous upper bound to Lemma 3 of the main paper. Let S ∈ S×1 be an arbitrary
single-round direct IC/IR mechanism. Let S×T be the direct static mechanism that is T repetitions
of S, which is incentive compatible by Lemma A.2 of the main paper. For any F T ∈ FT , we have

Regret(S×T , F T , F ) = OPT(F T , T )− PrincipalUtility(S×T , σTR, F T , T ) ,

where the truthful reporting strategy σTR (i.e., the agent reports CONTINUE in Round 0 and truthfully
reports his shocks in future rounds) is the recommended strategy for direct mechanisms. We can upper
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bound OPT(F T , T ) as follows:

OPT(F T , T ) ≤ Et∼[T ],θ∼(FT )t [OPT(δ×Tθ , T )] =
1

T

T∑
t=1

Eθ∼(FT )t [OPT(δθ, T )]

=

T∑
t=1

Eθ∼(FT )t [OPT(δθ, 1)] ,

where the first step is by the second assumption of the theorem and the last step is by Proposition 1
of the main paper. Then,

Regret(S×T , F T , T ) ≤
T∑
t=1

Eθ∼(FT )t [OPT(δθ, 1)]− PrincipalUtility(S×T , σTR, F T , T )

=
T∑
t=1

(
Eθ∼(FT )t [OPT(δθ, 1)]− PrincipalUtility(S, σTR, (F T )t, 1)

)
≤

T∑
t=1

sup
F ′∈∆(Θ)

{Eθ∼F ′ [OPT(δθ, 1)]− PrincipalUtility(S, σTR, F ′, 1)}

≤ T · sup
θ∈Θ

Regret(S, δθ, 1) ,

where the second step follows from that since the principal repeats S and the agent repeats the same
strategy of truthful reporting, the rounds become independent and the principal utility in each round
can be written in terms of the marginal shock distributions; the third step is by taking the supremum
over ∆(Θ) for the marginal distribution in each summand; and the last step is by upper bounding
each summand via Lemma A.3 of the main paper (which also holds for F = ∆(Θ)). As F T was
arbitrary, it follows that

sup
FT∈FT

Regret(S×T , F T , T ) ≤ T · sup
θ∈Θ

Regret(S, δθ, 1) ,

which is the upper bound analogue of Lemma 3 of the main paper.

We now define a generalization of ū(F ) for T -round shock processes and prove analogous results
to Propositions 7, 8 and E.1 of the main paper. We still use the same notation and extend it to
F T ∈ ∆(ΘT ). For T -round shock processes F T ∈ ∆(ΘT ), we define ū(F T ) as follows:

ū(F T ) := sup
S1,...,ST

Eθ∼FT ,ω∼∏T
t=1 St,θt

[
T∑
t=1

u(θt, ωt)

]

s.t. Eθ∼FT ,ω∼∏T
t=1 St,θt

[
T∑
t=1

v(θt, ωt)

]
≥ 0 ,

(TR-16)

where the supremum is over sequences of single-round direct mechanisms {St}t∈[T ] where each mech-
anism St is a collection of outcome distributions {St,θ}θ∈Θ and the expectation is with respect to the
shocks θ = (θ1, . . . , θT ) determined according to the T -round shock process F T and the outcomes
ω = (ω1, . . . , ωT ) where the t-th round outcome ωt is determined according to the t-th single-round
mechanism St and the t-th shock θt, i.e., ωt ∼ St,θt , in the product notation. Similar to ū(F ) in the
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repeated i.i.d. setting, we can think of ū(F T ) as the first-best performance that the principal can
achieve subject to the ex-ante IR constraint when the shock process and per-round shocks are known.
Correspondingly, the linearity property for ū(F T ) can be stated as ū(F T ) =

∑T
t=1 Eθ∼(FT )t [ū(δθ)] for

F T ∈ FT . This is a generalization of the linearity property for ū(F ) considered in the main paper in
the following sense:

Proposition TR.7. For any F ∈ F , if ū(F×T ) =
∑T

t=1 Eθ∼(F×T )t [ū(δθ)] then ū(F ) = Eθ∼F [ū(δθ)].

Proof. Fix any F ∈ F . Note ū(F×T ) ≥ T · ū(F ) because the right-hand side is the supremum value
of (TR-16) for F×T when the IR constraint is imposed in each round instead of once over all rounds.
We also have ū(F×T ) ≤ T · ū(F ) because any feasible solution {St} to (TR-16) for F×T can be
aggregated by uniformly randomizing over {St} into a feasible solution in the optimization problem
defining ū(F ) that achieves 1

T times the objective value achieved by {St} in (TR-16). Then, we have
ū(F×T ) = T · ū(F ). By the linearity assumption of ū(F×T ),

ū(F×T ) =

T∑
t=1

Eθ∼F [ū(δθ)] = T · Eθ∼F [ū(δθ)] .

Combining the above two observations, it follows that ū(F ) = Eθ∼F [ū(δθ)].

The following proposition shows analogous results similar to those in Propositions 7 and E.1 of the
main paper. It relates ū(F T ) and the optimal performance achievable OPT(F T , T ).

Proposition TR.8. The following hold:

1. For any F T ∈ ∆(ΘT ), OPT(F T , T ) ≤ ū(F T ).

2. For any F T ∈ ∆(ΘT ), ū(F T ) ≥
∑T

t=1 Eθ∼(FT )t [ū(δθ)].

3. For any F T ∈ FT , if ū(F T ) =
∑T

t=1 Eθ∼(FT )t [ū(δθ)] then OPT(F T , T ) ≤ Et∼[T ],θ∼(FT )t [OPT(δ×Tθ , T )].

Proof. Part 1): Fix an arbitrary T -round shock process F T ∈ ∆(ΘT ). Assume the principal commits
to any arbitrary incentive compatible dynamic mechanism A and the agent plays the recommended
strategy σ (given as part of A). Let {ωt}Tt=1 be the resulting random sequence of realized outcomes.
If the agent reports QUIT in Round 0 and does not participate, the sequence is the sequence of the
no-interaction outcome. For each t ∈ [T ] and θ ∈ Θ, we define measure µt,θ(Q) = Pr(ωt ∈ Q | θt = θ)
for any Q ⊆ Ω and let St,θ be the corresponding distribution over Ω such that ω ∼ St,θ means an
outcome ω is realized with probability µt,θ(ω).

For each t ∈ [T ], we define a single-round direct mechanism St = {St,θ}θ∈Θ that given a report θ
returns an outcome ω ∼ St,θ. Consider the sequence of single-round direct mechanisms {St}t∈[T ] thus
constructed. We show that {St} is a feasible solution to (TR-16) and achieves the objective value
that is equal to PrincipalUtility(A, σ, F T , T ). As the incentive compatible dynamic mechanism A was
arbitrarily chosen, the proposition statement would follow.
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First, we note that

AgentUtility(A, σ, F T , T ) = E

[
T∑
t=1

v(θt, ωt)

]

=

T∑
t=1

Eθt∼(FT )t [E[v(θt, ωt)|θt]]

=

T∑
t=1

Eθt∼(FT )t

[
Eωt∼St,θt [v(θt, ωt)]

]
= Eθ∼FT ,ω∼∏T

t=1 St,θt

[
T∑
t=1

v(θt, ωt)

]
,

where the second equality follows from the linearity of expectations and the tower rule, the third from
that the t-th round idiosyncratic shock can be thought to be drawn independently from the marginal
distribution (F T )t, and the last from the construction of {St}t∈[T ]. Since the agent’s recommended
strategy σ is a utility-maximizing strategy and the agent can achieve the aggregate utility of 0 by
not participating, it must be that AgentUtility(A, σ, F T , T ) ≥ 0. Hence, {St} is a feasible solution to
(TR-16).

Similarly, we have

PrincipalUtility(A, σ, F T , T ) = Eθ∼FT ,ω∼∏T
t=1 St,θt

[
T∑
t=1

u(θt, ωt)

]
.

It follows that {St} is a feasible solution to (TR-16) and achieves the objective value of PrincipalUtility(A,
σ, F T , T ). This completes the proof.

Part 2): This is because the right-hand side is the supremum value of (TR-16) with the IR constraint
for each shock in each round which is a more constrained version of (TR-16).

Part 3): Let F T ∈ FT be an arbitrary T -round shock process. Then,

OPT(F T , T ) ≤ ū(F T ) =
T∑
t=1

Eθ∼(FT )t [ū(δθ)] =
T∑
t=1

Eθ∼(FT )t [OPT(δθ, 1)] ,

where the first step is by the first part, the second step is by the linearity assumption on ū(F T ) and
the last step is by Proposition E.1 of the main paper. The last expression is equivalently

T∑
t=1

Eθ∼(FT )t [OPT(δθ, 1)] = T · Et∼[T ],θ∼(FT )t [OPT(δθ, 1)] = Et∼[T ],θ∼(FT )t [OPT(δθ, T )] ,

where we used Proposition 1 of the main paper.

The following is the analogue of Proposition 8 of the main paper in the general shock process setting.
It holds for games with payments that enter linearly into the utility functions of the principal and
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agent or with a nonnegative utility function for the agent:

Proposition TR.9. Assume the game satisfies either conditions of Proposition 8 of the main paper.
Then, ū(F T ) =

∑T
t=1 Eθ∼(FT )t [ū(δθ)] for all F T ∈ FT .

Proof. By the second part of Proposition TR.8, it remains to show ū(F T ) ≤
∑T

t=1 Eθ∼(FT )t [ū(δθ)]. It

suffices to show that ū(F T ) ≤
∑T

t=1 ū((F T )t). It then would follow that

ū(F T ) ≤
T∑
t=1

ū((F T )t) =
T∑
t=1

Eθ∼(FT )t [ū(δθ)] ,

where the equality is by the linearity condition in the repeated i.i.d. setting which holds by Proposi-
tion 8 of the main paper.

Recall that the optimization problem (TR-16) is

sup
S1,...,ST

Eθ∼FT ,ω∼∏T
t=1 St,θt

[
T∑
t=1

u(θt, ωt)

]

s.t. Eθ∼FT ,ω∼∏T
t=1 St,θt

[
T∑
t=1

v(θt, ωt)

]
≥ 0 .

Note
∑T

t=1 ū((F T )t) in the value of the following optimization problem which is a modified version
of (TR-16) with the nonnegativity constraint for each round:

sup
S1,...,ST

Eθ∼FT ,ω∼∏T
t=1 St,θt

[
T∑
t=1

u(θt, ωt)

]
s.t. Eθ̂∼(FT )t,ω̂∼St,θ̂

[
v(θ̂, ω̂)

]
≥ 0 , ∀t ∈ [T ] .

(TR-17)

Part 1: We use the same representation used in the statement of Proposition 8 of the main paper for
separating out the payment from the outcome, outcome space and utility functions of the principal
and agent. We refer to the statement of Proposition 8 of the main paper for further details of the
representation.

Fix an arbitrary T -round shock process F T ∈ FT . Let {St} be an arbitrary sequence of single-round
direct mechanisms that is a feasible solution to (TR-16). For t ∈ [T ] and θ̂ ∈ Θ, let the payment
offset be defined as

qt,θ̂ =
1

β

(
Eω̂∼St,θ̂ [v(θ̂, ω̂)]− 1

T
· Eθ∼FT ,ω∼∏T

t=1 St,θt

[
T∑
t=1

v(θt, ωt)

])
.

Note the second term in the payment offset is a constant that does not depend on t or θ̂. By
construction, Eθ∼FT [

∑T
t=1 qt,θt ] = 0.

Consider the sequence of single-round direct mechanisms {S′t} constructed as follows. For each t ∈ [T ],
S′t is the single-round direct mechanism where for each θ̂ ∈ Θ, S′

t,θ̂
is the outcome distribution St,θ̂
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modified with the fixed offset qt,θ̂ such that to realize an outcome ω̂ ∼ S′
t,θ̂

, we draw (ω̂0, p̂) ∼ St,θ̂
and set ω̂ = (ω̂0, p̂+ qt,θ̂). Note qt,θ̂ is the same constant adjustment for every realized outcome.

Note, for each t ∈ [T ],

Eθ̂∼(FT )t
ω̂∼S′

t,θ̂

[
v(θ̂, ω̂)

]
= E θ̂∼(FT )t

(ω̂0,p̂)∼St,θ̂

[
v(θ̂, (ω̂0, p̂+ qt,θ̂))

]
= Eθ̂∼(FT )t

ω̂∼St,θ̂

[
v(θ̂, ω̂)

]
− β · Eθ̂∼(FT )t

[qt,θ̂]

= Eθ̂∼(FT )t
ω̂∼St,θ̂

[
v(θ̂, ω̂)

]
−

Eθ̂∼(FT )t
ω̂∼St,θ̂

[
v(θ̂, ω̂)

]
− 1

T
· E θ∼FT

ω∼
∏T
t=1 St,θt

[
T∑
t=1

v(θt, ωt)

]
=

1

T
· E θ∼FT

ω∼
∏T
t=1 St,θt

[
T∑
t=1

v(θt, ωt)

]
≥ 0 ,

where the second step follows because

v(θ̂, (ω̂0, p̂+ qt,θ̂)) = v0(θ̂, ω̂0)− β(p̂+ qt,θ̂) = v(θ̂, (ω̂0, p̂))− βqt,θ̂

and the payment offset can be separated out, the third step follows by substituting in the payment
offsets, and the last step is because {St} is a feasible solution to (TR-16). Hence, {S′t} is a feasible
solution to (TR-17).

Furthermore, note that

E θ∼FT
ω∼

∏T
t=1 S

′
t,θt

[
T∑
t=1

u(θt, ωt)

]
=

T∑
t=1

Eθ̂∼(FT )t
ω̂∼S′

t,θ̂

[
u(θ̂, ω̂)

]

=
T∑
t=1

E θ̂∼(FT )t
(ω̂0,p̂)∼St,θ̂

[
u(θ̂, (ω̂0, p̂+ qt,θ̂))

]

=
T∑
t=1

E θ̂∼(FT )t
(ω̂0,p̂)∼St,θ̂

[
u(θ̂, (ω̂0, p̂))

]
+ α ·

T∑
t=1

E θ̂∼(FT )t
(ω̂0,p̂)∼St,θ̂

[qt,θ̂]

=
T∑
t=1

Eθ̂∼(FT )t
ω̂∼St,θ̂

[
u(θ̂, ω̂)

]
+ α ·

T∑
t=1

Eθ̂∼(FT )t
[qt,θ̂]

= E θ∼FT
ω∼

∏T
t=1 St,θt

[
T∑
t=1

u(θt, ωt)

]
+ α · Eθ∼FT

[∑
t

qt,θt

]

= E θ∼FT
ω∼

∏T
t=1 St,θt

[
T∑
t=1

u(θt, ωt)

]
,

where the third step follows by separating out the payment offset and the last step follows because
Eθ∼FT [

∑
t qt,θt ] = 0. It follows that {S′t} is a feasible solution to (TR-17) that achieves the same
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objective value as {St} in (TR-16).

As {St} was arbitrarily chosen, it follows that (TR-16) ≤
∑T

t=1 ū((F T )t). Since F T was arbitrary,
the proposition follows.

Part 2: Assume the utility function of the agent is always nonnegative. Let F T ∈ FT be an arbitrary
T -round shock process. Any feasible solution to (TR-16) satisfies the nonnegativity constraint in
each round, because the agent’s utility function is nonnegative, and, hence, is a feasible solution
to (TR-17). In addition, note that the objective functions of (TR-16) and (TR-17) are identical.
Therefore, (TR-16) ≤ (TR-17) for any F T ∈ FT and the proposition follows.

B.3 Multiplicative Guarantees

Suppose there exist some constants 0 < L < U < ∞ such that OPT(δθ, 1) ∈ [L,U ] for all θ ∈
Θ and OPT(F, T ) ∈ [LT,UT ] for all distributions F ∈ F . Recall that Ratio(T ) ∈ [0, 1] and
supS∈S×1 infθ∈Θ Ratio(S, δθ, 1) ∈ [0, 1]. We introduce a parametrized notion of regret suitable for
our analysis of the multiplicative guarantee. For any λ ∈ [0, 1], we define

Regret(T, λ) := inf
A∈A

sup
F∈F

Regret(A,F, T, λ) ,

where
Regret(A,F, T, λ) := λ ·OPT(F, T )− PrincipalUtility(A,F, T ) ,

for an incentive compatible mechanism A. Note Regret(T, λ) is monotonically increasing in λ.

We first prove the following proposition relating the multiplicative guarantees and the parametrized
regret notion.

Proposition TR.10. We have the following relations:

1. Ratio(T ) = sup {λ ∈ [0, 1] | infA∈A supF∈F Regret(A,F, T, λ) ≤ 0}.

2. supS∈S×1 infθ∈Θ Ratio(S, δθ, 1) = sup {λ ∈ [0, 1] | infS∈S×1 supθ∈Θ Regret(S, δθ, 1, λ) ≤ 0}.

Proof. We prove the first relation. The second relation follows similarly and we omit the proof.

Note that by the definition of infimum, for any ε > 0, there exists an incentive compatible dynamic
mechanism Aε such that infF∈F Ratio(Aε, F, T ) ≥ Ratio(T)−ε, or

PrincipalUtility(Aε, F, T )

OPT(F, T )
≥ Ratio(T)−ε ,

for all distributions F ∈ F . The above expression can be rearranged:

ε ·OPT(F, T ) ≥ Ratio(T ) ·OPT(F, T )− PrincipalUtility(Aε, F, T ) .
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Since OPT(F, T ) ≤ UT , we then have

Regret(T,Ratio(T )) ≤ sup
F∈F
{Ratio(T ) ·OPT(F, T )− PrincipalUtility(Aε, F, T )}

≤ εUT .

As ε > 0 was arbitrary, it follows that Regret(T,Ratio(T )) ≤ 0 and Ratio(T ) is in the set {λ ∈
[0, 1] | Regret(T, λ) ≤ 0}.

We now show there cannot be a λ > Ratio(T ) in the set because reversing the above reasoning leads
to a contradiction. Assume there exists λ > Ratio(T ) for which

inf
A∈A

sup
F∈F
{λ ·OPT(F, T )− PrincipalUtility(A,F, T )} ≤ 0 .

Then, for any ε > 0, there exists an incentive compatible dynamic mechanism Aε for which the inner
supremum is at most εLT , or

εLT ≥ λ ·OPT(F, T )− PrincipalUtility(Aε, F, T ) ,

for any distribution F ∈ F . After rearranging and using OPT(F, T ) ≥ LT , we have

Ratio(Aε, F, T ) =
PrincipalUtility(Aε, F, T )

OPT(F, T )
≥ λ− εLT

OPT(F, T )
≥ λ− ε ,

for any distribution F ∈ F . Taking the infimum over F ∈ F on the leftmost expression, we obtain

inf
F∈F

Ratio(Aε, F, T ) ≥ λ− ε ,

and as ε was arbitrary, this would mean Ratio(T ) ≥ λ, a contradiction. Hence, the first relation
follows.

We now prove Theorem TR.5:

Proof of Theorem TR.5. Similar to the proof of Theorem 1 of the main paper, we prove using ana-
logues of Lemmas 2 and 3 of the main paper in terms of the parametrized regret notions. Since λ is
a scalar multiplier in front of the benchmarks, all the propositions and lemmas used to prove these
analogues still apply with the same proofs and the analogues of Lemmas 2 and 3 of the main paper
follow with little changes in their proofs but with the multiplier λ. Omitting the proofs, we state
and use the following analogues of Lemmas 2 and 3 of the main paper. For the lower bound, for
any λ ∈ [0, 1] and incentive compatible dynamic mechanism A ∈ A, there exists a single-round direct
IC/IR mechanism S ∈ S×1 such that

sup
F∈F

Regret(A,F, T, λ) ≥ T · sup
θ∈Θ

Regret(S, δθ, 1, λ) . (TR-18)

For the upper bound, for any λ ∈ [0, 1] and single-round direct IC/IR mechanism S ∈ S×1,

sup
F∈F

Regret(S×T , F, T, λ) ≤ T · sup
θ∈Θ

Regret(S, δθ, 1, λ) . (TR-19)
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(First Part): Fix an arbitrary λ ∈ [0, 1]. Taking the infimum over all single-round direct IC/IR
mechanisms S on the right-hand side of the lower bound (TR-18), we have for any incentive compatible
dynamic mechanism A,

sup
F∈F

Regret(A,F, T, λ) ≥ T · inf
S∈S×1

sup
θ∈Θ

Regret(S, δθ, 1, λ) .

Taking the infimum over all incentive compatible dynamic mechanisms A on the left-hand side of the
above, we obtain

Regret(T, λ) = inf
A∈A

sup
F∈F

Regret(A,F, T, λ) ≥ T · inf
S∈S×1

sup
θ∈Θ

Regret(S, δθ, 1, λ) .

Then, for any λ ∈ [0, 1],

Regret(T, λ) ≥ T · inf
S∈S×1

sup
θ∈Θ

Regret(S, δθ, 1, λ) .

This implies whenever Regret(T, λ) ≤ 0, we have infS∈S×1 supθ∈Θ Regret(S, δθ, 1, λ) ≤ 0. By Propo-
sition TR.10, it follows that Ratio(T ) ≤ supS∈S×1 infθ∈Θ Ratio(S, δθ, 1).

Again, fix an arbitrary λ ∈ [0, 1]. Let ε > 0 be arbitrary and S be a single-round direct IC/IR
mechanism satisfying

sup
θ∈Θ

Regret(S, δθ, 1, λ) ≤ inf
S∈S×1

sup
θ∈Θ

Regret(S, δθ, 1, λ) +
ε

T
.

Note that such mechanism S exists by the definition of infimum. By the upper bound (TR-19) and
the property of S,

sup
F∈F

Regret(S×T , F, T, λ) ≤ T · sup
θ∈Θ

Regret(S, δθ, 1, λ) ≤ T · inf
S∈S×1

sup
θ∈Θ

Regret(S, δθ, 1, λ) + ε .

Since S×T is incentive compatible by Lemma A.2 of the main paper, it follows that

Regret(T, λ) ≤ sup
F∈F

Regret(S×T , F, T, λ) ≤ T · inf
S∈S×1

sup
θ∈Θ

Regret(S, δθ, 1, λ) + ε .

As ε > 0 was arbitrary and can be made arbitrarily small, it follows that

Regret(T, λ) ≤ T · inf
S∈S×1

sup
θ∈Θ

Regret(S, δθ, 1, λ) .

As λ ∈ [0, 1] was arbitrary, the above holds for any λ ∈ [0, 1]. In particular, infS∈S×1 supθ∈Θ Regret(S, δθ, 1, λ) ≤
0 implies Regret(T, λ) ≤ 0. By Proposition TR.10, we have Ratio(T ) ≥ supS∈S×1 infθ∈Θ Ratio(S, δθ, 1).
Combining with the earlier observation that Ratio(T ) ≤ supS∈S×1 infθ∈Θ Ratio(S, δθ, 1), we have the
first part.

(Second Part): For any ε ≥ 0, let S be a single-round direct IC/IR mechanism satisfying

inf
θ∈Θ

Ratio(S, δθ, 1) ≥ sup
S′∈S×1

inf
θ′∈Θ

Ratio(S′, δθ′ , 1)− εL

U
.

Then, for any θ ∈ Θ, we have PrincipalUtility(S,δθ,1)
OPT(δθ,1) ≥ supS′∈S×1 infθ′∈Θ Ratio(S′, δθ′ , 1) − εL

U . After
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rearranging terms and upper bounding OPT(δθ, 1) by U , we obtain that for any θ ∈ Θ,

sup
S′∈S×1

inf
θ′∈Θ

Ratio(S′, δθ′ , 1) ·OPT(δθ, 1)− PrincipalUtility(S, δθ, 1) ≤ εL

U
·OPT(δθ, 1) ≤ εL .

Then, supθ∈Θ Regret(S, δθ, 1, supS′∈S×1 infθ′∈Θ Ratio(S′, δθ′ , 1)) ≤ εL and by the upper bound (TR-19)
for λ = supS′∈S×1 infθ′∈Θ Ratio(S′, δθ′ , 1),

sup
F∈F

Regret(S×T , F, T, λ) ≤ T · sup
θ∈Θ

Regret(S, δθ, 1, λ) ≤ εLT .

Substituting Ratio(T ) = supS′∈S×1 infθ′∈Θ Ratio(S′, δθ′ , 1) which is by Part 1 into the leftmost ex-
pression, we obtain for any F ∈ F ,

Ratio(T ) ·OPT(F, T )− PrincipalUtility(S×T , F, T ) ≤ εLT .

After rearranging terms and lower bounding OPT(F, T ) by LT , we have that for any F ∈ F ,

PrincipalUtility(S×T , F, T )

OPT(F, T )
≥ Ratio(T )− εLT

OPT(F, T )
≥ Ratio(T )− ε .

Taking the infimum of the leftmost expression over F ∈ F , we obtain

inf
F∈F

Ratio(S×T , F, T ) ≥ Ratio(T )− ε .

(Third Part): Equivalently, we show that arg maxA∈A infF∈F Ratio(A,F, T ) is non-empty if and only
if arg maxS∈S×1 infθ∈Θ Ratio(S, δθ, 1) is non-empty. For the if direction, assume there exists an optimal
single-round direct IC/IR mechanism S∗ in the single-round problem. The optimal mechanism S∗

satisfies
inf
θ∈Θ

Ratio(S∗, δθ, 1) ≥ sup
S∈S×1

inf
θ∈Θ

Ratio(S, δθ, 1) .

Then, by Part 2 with ε = 0, it follows that

inf
F∈F

Ratio((S∗)×T , F, T ) ≥ Ratio(T ) .

This implies that the static mechanism (S∗)×T that repeats S∗ is optimal in the multi-round problem.
Hence, an optimal dynamic mechanism exists in the multi-round problem.

For the only-if direction, assume there exists an optimal incentive compatible dynamic mechanism
A∗ in the multi-round problem. In particular, infF∈F Ratio(A∗, F, T ) ≥ Ratio(T ). Then, for any

distribution F ∈ F , we have PrincipalUtility(A∗,F,T )
OPT(F,T ) ≥ Ratio(T ), or

Ratio(T ) ·OPT(F, T )− PrincipalUtility(A∗, F, T ) ≤ 0 .

Taking the supremum over F ∈ F on the left-hand side, we have

sup
F∈F

Regret(A∗, F, T,Ratio(T )) ≤ 0 .

By the lower bound (TR-18) for λ = Ratio(T ), there exists a single-round direct IC/IR mechanism
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S such that

sup
θ∈Θ

Regret(S, δθ, 1,Ratio(T )) ≤ 1

T
sup
F∈F

Regret(A∗, F, T,Ratio(T )) ≤ 0 .

Since Ratio(T ) = supS′∈S×1 infθ′∈Θ Ratio(S′, δθ′ , 1) by Part 1,

sup
θ∈Θ

Regret(S, δθ, 1, sup
S′∈S×1

inf
θ′∈Θ

Ratio(S′, δθ′ , 1)) ≤ 0 .

This implies that for any θ ∈ Θ,

sup
S′∈S×1

inf
θ′∈Θ

Ratio(S′, δθ′ , 1) ·OPT(δθ, 1)− PrincipalUtility(S, δθ, 1) ≤ 0 .

Rearranging terms, we obtain

sup
S′∈S×1

inf
θ′∈Θ

Ratio(S′, δθ′ , 1) ≤ Ratio(S, δθ, 1) .

Taking the infimum over θ ∈ Θ on the right-hand side, we obtain

sup
S′∈S×1

inf
θ′∈Θ

Ratio(S′, δθ′ , 1) ≤ inf
θ∈Θ

Ratio(S, δθ, 1) .

Then, S is an optimal single-round direct IC/IR mechanism in the single-round problem and the
result follows. For S, we can take the single-round direct IC/IR mechanism constructed from A∗

via the method described in the proof of Lemma A.1 of the main paper. The same single-round
mechanism satisfies the lower bound (TR-18).

We prove the analogue of Lemma 1 of the main paper below. Note the following is the analogue of
(3) of the main paper for the multiplicative guarantee:

sup
S∈∆(Ω)Θ

inf
θ∈Θ

∫
Ω u(θ, ω)dSθ(ω)

OPT(δθ, 1)
s.t. (IC), (IR) , (TR-20)

with the same incentive compatibility and individual rationality constraints.

Lemma TR.1. The optimization problems (TR-9) and (TR-20) attain the same objective value.
Moreover, a single-round direct mechanism S∗ with decision rule π1 : Θ ∪ {PASS} × [0, 1]→ Ω is an
optimal solution of (TR-9) if and only if its outcome distributions S∗θ (W ) := Pz∼Uniform(0,1)(π1(θ, z) ∈
W ) for θ ∈ Θ,W ⊆ Ω are an optimal solution of (TR-20). Finally, the objective of (TR-20) can be

equivalently replaced with infF∈∆(Θ)

∫
Θ

∫
Ω u(θ,ω)dSθ(ω)dF (θ)∫
Θ OPT(δθ,1)dF (θ)

.

Proof. Note for any single-round direct mechanism S (and the recommended strategy of truthful

reporting for the agent) and any point-mass distribution δθ, we have Ratio(S, δθ, 1) =
∫
Ω u(θ,ω)dSθ(ω)

OPT(δθ,1) .
To prove the first and second statements, it suffices to show that a single-round direct mechanism S
is incentive compatible (i.e., in the set S×1) if and only if its outcome distributions Sθ satisfy the IC
and IR constraints. The same reasoning from the proof of Lemma 1 of the main paper works.

For the third part of the lemma, we show the original objective of (TR-20) and the alternative
objective lead to the same value. Fix an arbitrary single-round direct mechanism S ∈ ∆(Ω)Θ. We
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have

inf
θ′∈Θ

∫
Ω u(θ′, ω)dSθ′(ω)

OPT(δθ′ , 1)
= inf

θ′∈Θ

∫
Θ

∫
Ω u(θ, ω)dSθ(ω)dδθ′(θ)∫
Θ OPT(δθ, 1)dδθ′(θ)

≤ inf
F∈∆(Θ)

∫
Θ

∫
Ω u(θ, ω)dSθ(ω)dF (θ)∫
Θ OPT(δθ, 1)dF (θ)

,

where the first step is by rewriting the denominator and numerator and the second step is because
point-mass distributions are a subset of all probability distributions supported on Θ, ∆(Θ). For the
other direction, we note that

inf
F∈∆(Θ)

∫
Θ

∫
Ω u(θ, ω)dSθ(ω)dF (θ)∫
Θ OPT(δθ, 1)dF (θ)

= inf
F∈∆(Θ)

∫
Θ

∫
Θ u(θ,ω)dSθ(ω)

OPT(δθ,1) ·OPT(δθ, 1)dF (θ)∫
Θ OPT(δθ′ , 1)dF (θ′)

≥ inf
F∈∆(Θ)

∫
Θ infθ′′∈Θ

∫
Ω u(θ′′,ω)dSθ′′ (ω)

OPT(δθ′′ ,1) ·OPT(δθ, 1)dF (θ)∫
Θ OPT(δθ′ , 1)dF (θ′)

= inf
θ′′∈Θ

∫
Ω u(θ′′, ω)dSθ′′(ω)

OPT(δθ′′ , 1)
,

where the first step is by rewriting the numerator, the second step is by lower bounding the fraction
inside the integral in the numerator, and the last step follows regardless of F .

As S was arbitrary, it follows that the original objective and alternative objective achieve the same
value for S ∈ ∆(Ω)Θ. Therefore, the optimization problem (TR-20) and the version with the alter-
native objective are equivalent in terms of the optimal value and optimal solutions.

B.4 Principal Pessimism

B.4.1 Proof of Theorem TR.6

We can prove Theorem TR.6 by the same reasoning as in the proof of Theorem 1 of the main paper
using Lemmas 2 and 3 of the main paper with respect to the stronger notions of regret and minimax
regret and single-round direct IC/IR/PP mechanisms. In particular, Lemma 2 of the main paper will
show the existence of a single-round direct IC/IR/PP mechanism for any (not necessarily incentive
compatible) dynamic mechanism and Lemma 3 of the main paper will hold for any single-round
direct IC/IR/PP mechanism. These lemmas hold with almost identical proofs with modifications to
account for that the agent plays a utility-maximizing strategy that minimizes the principal utility
among utility-maximizing strategies. Below, we sketch the proofs of Lemmas 2 and 3 of the main
paper with respect to the stronger notions and single-round direct IC/IR/PP mechanisms.

Analogue of Lemma 2 of the Main Paper. In the proof of Lemma 2 of the main paper with
respect to the original notions of regret and minimax regret, we use Lemma A.1 of the main paper.
Instead of single-round direct IC/IR mechanisms, we can prove the lemma for single-round direct
IC/IR/PP mechanisms. Then, Lemma 2 of the main paper would follow in terms of single-round
direct IC/IR/PP mechanisms with respect to the stronger notions of regret and minimax regret by
the same proof using the modified version of the lemma.
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For Lemma A.1 of the main paper, the same construction provided in its proof yields a single-round
direct IC/IR/PP mechanism S satisfying the lemma statement for any given dynamic mechanism
A ∈ A (not necessarily incentive compatible). That is, we construct S = {Sθ}θ∈Θ from the random
sequences of outcomes when the principal commits to a dynamic mechanism A ∈ A, the agent plays
σ∗(A, T ), and the agent’s distribution is a point-mass distribution δθ for θ ∈ Θ. As in the proof of
Lemma A.1 of the main paper, the IC/IR constraints follow from that σ∗(A, T ) is a utility-maximizing
strategy for the agent when his shock distribution is δθ and guarantees the agent utility of at least 0.

For the PP constraint, we prove by contradiction. For the first part, suppose there exist θ and θ′

such that Eω∼Sθ [v(θ, ω)] = Eω∼Sθ′ [v(θ, ω)] and Eω∼Sθ [u(θ, ω)] > Eω∼Sθ′ [u(θ, ω)]. Then, the agent can
implement the strategy σ∗(A, T ) as if his distribution is δθ′ when his actual distribution is δθ in the
multi-round problem. Let σ′ denote this modified strategy that coincides with σ∗(A, T ) for other
distributions than δθ. By construction, σ′ is a utility-maximizing strategy for the agent. Then, for
point-mass distribution δθ, the agent can obtain the utility of

AgentUtility(A, σ′, δθ, T ) = T · Eω∼Sθ′ [v(θ, ω)]

= T · Eω∼Sθ [v(θ, ω)]

= AgentUtility(A, σ∗(A, T ), δθ, T ) ,

which is the same utility as under σ∗(A, T ). At the same time, the principal utility will be strictly
lower:

PrincipalUtility(A, σ′, δθ, T ) = T · Eω∼Sθ′ [u(θ, ω)]

< T · Eω∼Sθ [u(θ, ω)]

= PrincipalUtility(A, σ∗(A, T ), δθ, T ) .

This contradicts that σ∗(A, T ) is a principal-pessimistic utility-maximizing strategy when the agent’s
distribution is δθ.

For the second part of the PP constraint, suppose there exists θ such that Eω∼Sθ [v(θ, ω)] = 0 and
Eω∼Sθ [u(θ, ω)] > 0. When his distribution is δθ, the agent can choose to not participate and obtain the
same agent utility of 0 as under σ∗(A, T ), and the principal utility will be 0 which is strictly worse
than that achieved under σ∗(A, T ). As above, we can construct an alternative utility-maximizing
strategy based on this observation and contradict the choice of σ∗(A, T ) as a principal-pessimistic
utility-maximizing strategy. Hence, the singe-round direct mechanism constructed is IC/IR/PP and
the rest of the proof of Lemma A.1 of the main paper follows.

Analogue of Lemma 3 of the Main Paper. For Lemma 3 of the main paper with respect to
the original notions of regret and minimax regret, we use Lemmas A.2 and A.3 of the main paper in
its proof. Lemma A.3 of the main paper with the same proof still holds with respect to the stronger
notions of regret and minimax regret. For Lemma A.2 of the main paper, we adapt the same proof
but account for that a best-response strategy for the agent is a utility-maximizing strategy that also
minimizes the principal utility among utility-maximizing strategies. We provide more details below.
With these lemmas, Lemma 3 of the main paper would then follow in terms of single-round direct
IC/IR/PP mechanisms with respect to the stronger notions of regret and minimax regret.

We now provide more details for proving Lemma A.2 of the main paper for the stronger regret notion.
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Let S ∈ S×1 be any single-round direct IC/IR/PP mechanism with decision rule π̃ and S×T be the
mechanism that repeats S over T rounds. The statement that PrincipalUtility(S×T , σTR, F, T ) =
T · PrincipalUtility(S, σTR, F, 1) follows from the same reasoning in the proof of Lemma A.2 of the
main paper. We argue that S×T is indeed in the set S×T , i.e., that truthful reporting is a principal-
pessimistic utility-maximizing strategy. This means we can take σ∗(S×T , T ) to be truthful reporting
without loss in terms of the principal utility, agent utility and regret. In particular, we can use

sup
F∈F

Regret(S×T , F, T ) = sup
F∈F

{
OPT(F, T )− PrincipalUtility(S×T , σTR, F, T )

}
in proving Lemma 3 of the main paper for the stronger regret notion.

To see S×T ∈ S×T , we note that truthful reporting is a utility-maximizing strategy for the agent,
because S satisfies the IC/IR constraints and Lemma A.2 of the main paper applies. For the sake of
contradiction, assume there exists a distribution F ′ and a utility-maximizing strategy σ′ for the agent
such that PrincipalUtility(S×T , σTR, F ′, T ) > PrincipalUtility(S×T , σ′, F ′, T ). We define per-round
expected agent utility Vt and principal utility Ut when the principal implements S×T and the agent
plays σ′ as

Vt = E[v(θt, π̃(σ′t(θt, h
+
t )))] and Ut = E[u(θt, π̃(σ′t(θt, h

+
t )))]

for Rounds t ∈ [T ]. Note the principal’s mechanism has no dependence on histories while the agent’s
strategy may depend on the augmented history h+

t . Since σ′ is a utility-maximizing strategy, Vt is
equal to the agent utility achieved under the single-round mechanism S and σTR for all t. If not, there
must exist a round in which Vt is greater (say, where the maximum is achieved) and, by the same
claim in the proof of Lemma A.2 of the main paper, there exists a single-round strategy that the
agent can implement against S (when his distribution is F ′) and obtain a greater overall utility than
the truthful reporting strategy. This would contradict that truthful reporting is a utility-maximizing
strategy against S.

Furthermore, since σ′ leads to a lower principal utility than σTR, there must exist a particular round
t′ in which Ut′ is strictly less than the principal utility achieved under the single-round mechanism
S and σTR. By the same claim in the proof of Lemma A.2 of the main paper, there exists an
alternative agent strategy against the single-round mechanism S that yields the expected agent utility
equal to Vt′ and the expected principal utility equal to Ut′ . Note Vt′ = AgentUtility(S, σTR, F ′, 1)
and Ut′ < PrincipalUtility(S, σTR, F ′, 1). This contradicts that σTR is a principal-pessimistic utility-
maximizing strategy for the agent against S.

B.4.2 Analogue of Lemma 1 of the Main Paper

In what follows, we state and prove the analogue of Lemma 1 of the main paper for the stronger
notion of regret:

Lemma TR.2. The optimization problems (TR-10) and (TR-11) attain the same objective value.
Moreover, a single-round direct mechanism S∗ with decision rule π1 : Θ∪{PASS}×[0, 1]→ Ω is an op-
timal solution of (TR-10) if and only if its outcome distributions S∗θ (W ) := Pz∼Uniform(0,1)(π1(θ, z) ∈
W ) for θ ∈ Θ,W ⊆ Ω are an optimal solution of (TR-11). Finally, the objective of (TR-11) can be
equivalently replaced with supF∈∆(Θ)

{∫
Θ OPT(δθ, 1)dF (θ)−

∫
Θ

∫
Ω u(θ, ω)dSθ(ω)dF (θ)

}
.

Similar to how we analyzed specific applications in the main paper and this technical report, instead
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of (TR-10), we can apply the above lemma and equivalently consider

inf
S∈∆(Ω)Θ:

(IC),(IR),(PP)

sup
F∈∆(Θ)

R̂egret(S, F ) ,

where S can be any single-round direct IC/IR/PP mechanism and R̂egret(S, F ) :=
∫

Θ OPT(δθ, 1)dF (θ)−∫
Θ

∫
Ω u(θ, ω)dSθ(ω)dF (θ).

We now prove the above lemma:

Proof of Lemma TR.2. Note for any single-round direct mechanism S and any point-mass distribution
δθ, we have Regret(S, σTR, δθ, 1) = OPT(δθ, 1) −

∫
Ω u(θ, ω)dSθ(ω). To prove the first and second

statements, it suffices to show that a single-round direct mechanism S has truthful reporting as
a principal-pessimistic utility-maximizing strategy (i.e., in the set S×1) if and only if its outcome
distributions Sθ satisfy the IC/IR/PP constraints as formulated in (TR-11). Lemma 1 of the main
paper already shows that a single-round direct mechanism S has truthful reporting as a utility-
maximizing strategy if and only if its outcome distributions Sθ satisfy the IC/IR constraints. Hence,
it remains to show that a single-round direct IC/IR mechanism S has truthful reporting as a principal-
pessimistic utility-maximizing strategy if and only if its outcome distributions Sθ satisfy the PP
constraint.

For the only-if direction, we proceed as follows. Assume an arbitrary single-round direct IC/IR mech-
anism S against which truthful reporting σTR is a principal-pessimistic utility-maximizing strategy
for the agent. Recall, under σTR, the agent reports CONTINUE in Round 0 and then truthfully re-
ports shocks in future rounds. Then, PrincipalUtility(S, σTR, F, 1) ≤ PrincipalUtility(A, σ̃, F, 1) holds
for every F ∈ ∆(Θ) and σ̃ ∈ B(S, 1). In particular, the inequality holds for point-mass distribu-
tion δθ for any θ ∈ Θ and the alternative strategy σ̃ which reports shock θ′ ∈ B∗(S, θ) (if it is not
empty) when the agent’s distribution is δθ but truthfully reports for other distributions. Clearly,
σ̃ is a utility-maximizing strategy for the agent by construction. Then, the inequality reduces to∫

Ω u(θ, ω)dSθ(ω) ≤
∫

Ω u(θ, ω)dSθ′(ω) and the first part of the PP constraint follows. If B∗(S, θ) is
empty for some θ, the first part holds trivially for θ.

The same inequality PrincipalUtility(S, σTR, F, 1) ≤ PrincipalUtility(A, σ̃, F, 1) holds for point-mass
distribution δθ for any θ ∈ Θ0 (if it is not empty) and the alternative strategy σ̃ which reports QUIT in
Round 0 when the agent’s distribution is δθ but reports CONTINUE in Round 0 and shocks truthfully
for other distributions. Note that σ̃ ∈ B(S, 1) by construction. Then, we obtain

∫
Ω u(θ, ω)dSθ(ω) ≤ 0

and the second part of the PP constraint follows. If Θ0 is empty, then the second part holds trivially.
Therefore the outcome distributions of S satisfy the PP constraint.

We now show the if direction. Assume an arbitrary single-round direct IC/IR mechanism S (with
decision rule π1) with its outcome distributions satisfying the PP constraint in (TR-11). Let σTR be
the strategy of reporting CONTINUE in Round 0 and truthfully reporting in Round 1 for the agent.
We consider the following three cases depending on how an arbitrary alternative utility-maximizing
strategy σ̃ reports in Round 0 for each possible distribution F ∈ ∆(Θ). Fix an arbitrary distribution
F ∈ ∆(Θ).

Case 1) σ̃ deterministically reports CONTINUE in Round 0
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For any θ, we define

M̃(θ) = {m̂ ∈ Θ ∪ {PASS} |
Eπ1,σTR [v(θ1, π1(θ1, h1, z1))|θ1 = θ] = Eπ1 [v(θ1, π1(m1, h1, z1))|θ1 = θ,m1 = m̂]} .

Note that M̃(θ) ⊂ B∗(S, θ) ∪ {PASS}. It is possible that PASS ∈ M̃(θ). Since σ̃ is a utility-
maximizing strategy, its probability distribution of messages for shock θ has a measure of 1 over
M̃(θ).

The first part of the PP constraint implies

Eπ1,σTR [u(θ1, π1(θ1, h1, z1))|θ1 = θ] ≤ Eπ1 [u(θ1, π1(m1, h1, z1))|θ1 = θ,m1 = m̂] ,

for any θ ∈ Θ and m̂ ∈ B∗(S, θ). If PASS ∈ M̃(θ), the second part of the PP constraint implies
the same inequality above with the right-hand side equal to 0. Averaging the above inequality
over m̂ according to σ̃ which is potentially randomized, we obtain

Eπ1,σTR [u(θ1, π1(θ1, h1, z1))|θ1 = θ] ≤ Eπ1,σ̃[u(θ1, π1(m1, h1, z1))|θ1 = θ] ,

Since the last inequality holds for each possible value of θ1, we average it over θ1 ∼ F and obtain

PrincipalUtility(S, σTR, F, 1) = Eπ1,σTR [u(θ1, ω1)] ≤ Eπ1,σ̃[u(θ1, ω1)] = PrincipalUtility(S, σ̃, F, 1) .

Case 2) σ̃ deterministically reports QUIT in Round 0

Since σ̃ is a utility-maximizing strategy for the agent, the maximal agent utility is 0 and we
have AgentUtility(S, σTR, F, 1) = 0 because σTR is also a utility-maximizing strategy. From
AgentUtility(S, σTR, F, 1) =

∫
Θ

∫
Ω v(θ, ω)dSθ(ω)dF (θ) = 0, it follows that the agent’s distribu-

tion F has a measure of 1 over Θ0. By the second part of the PP constraint, for all θ ∈ Θ0,

Eπ1,σTR [u(θ1, π1(θ1, h1, z1))|θ1 = θ] ≤ 0 ,

where the left-hand side is equal to
∫

Ω u(θ, ω)dSθ(ω). Averaging the above over θ1 ∼ F , we obtain
PrincipalUtility(S, σTR, F, 1) = Eπ1,σTR [u(θ1, ω1)] ≤ 0.

Since σ̃ reports QUIT in Round 0, there is no interaction between the principal and agent at all and
PrincipalUtility(S, σ̃, F, 1) = 0. Clearly, PrincipalUtility(S, σTR, F, 1) ≤ PrincipalUtility(S, σ̃, F, 1).

Case 3) σ̃ probabilistically reports CONTINUE or QUIT in Round 0

Let σ̃ = {σ̃t}0:1 where m0 = σ̃0(h+
0 , y0) can be CONTINUE or QUIT. From the above cases,

PrincipalUtility(S, σTR, F, 1) ≤ Eπ1,σ̃[u(θ1, ω1)|m0 = CONTINUE] and

PrincipalUtility(S, σTR, F, 1) ≤ Eπ1,σ̃[u(θ1, ω1)|m0 = QUIT] .

We then have

PrincipalUtility(S, σTR, F, 1) ≤ Eπ1,σ̃[u(θ1, ω1)|m0 = CONT] · P(m0 = CONT)

+ Eπ1,σ̃[u(θ1, ω1)|m0 = QUIT] · P(m0 = QUIT)

= PrincipalUtility(S, σ̃, F, 1) ,

where CONT stands for CONTINUE.
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As F was arbitrary, PrincipalUtility(S, σTR, F, 1) ≤ PrincipalUtility(S, σ̃, F, 1) in all cases for any
distribution F . The above cases cover all possibilities for any alternative utility-maximizing strategy
σ̃ ∈ B(S, 1) and it follows that truthful reporting is a principal-pessimistic utility-maximizing strategy
for the agent.

For the last part of the lemma, we follow the same reasoning steps in the proof of Lemma 1 of the
main paper.

B.4.3 Characterizations in Specific Settings

For the applications considered in Section 4 of the main paper and Sections TR.4–TR.5, we show
the following characterizations of the PP constraint and that the optimal single-round direct IC/IR
mechanisms found for these applications satisfy the PP constraint:

Proposition TR.11. For revenue maximization in the dynamic selling mechanism design problem
with one good, a single-round direct IC/IR mechanism (x, p) satisfies the PP constraint if and only
if 1) there exists no θ′ < θ ∈ [0, 1] such that x(θ′) < x(θ) and x(θ̂) = x(θ′) for all θ̂ ∈ [θ′, θ), and 2)
p(θ) ≤ 0 for all θ such that θ · x(θ)− p(θ) = 0.

Proposition TR.12. For the principal-agent model with hidden costs, a (deterministic) single-round
direct IC/IR mechanism (q, p) satisfies the PP constraint if and only if 1) there exists no interval
(θ′, θ) where q(θ̂) = q0 for θ̂ ∈ (θ′, θ) for some q0 and at least one of following sets of conditions holds:

1. q(θ) < q0 and R(q0)− θ · q0 < R(q(θ))− θ · q(θ)

2. q(θ′) > q0 and R(q0)− θ · q0 < R(q(θ′))− θ · q(θ′) ,

and 2) R(q(θ))− p(θ) ≤ 0 for all θ such that p(θ)− θ · q(θ) = 0.

Proposition TR.13. For the dynamic resource allocation problem without monetary transfers, a
single-round direct IC/IR mechanism x satisfies the PP constraint if and only if the probabilistic
allocation rule x is constant.

Except for the last one, the if-and-only-if conditions for PP consist of two parts for the two parts of
the PP constraint. The second part of the conditions follows directly from the second part of the PP
constraint and is written in terms of the corresponding interim rules in respective problems. The first
part of the conditions is more complicated and, intuitively, it says that any flat part of the interim
allocation rule x(·), if exists, is closed on the right side in the dynamic selling problem or satisfies
some similar condition on both sides in the principal-agent model with hidden costs. In particular, if
the interim allocation rule x(·) is continuous, the first part of the conditions will be satisfied in these
problems.

For revenue maximization in the dynamic selling problem with a single good, the optimal single-round
direct IC/IR mechanism in Proposition 3 of the main paper has a continuous interim allocation rule
and the interim rule is such that the principal utility is 0 whenever the agent utility is 0. By
Proposition TR.11, the optimal single-round solution is PP. The optimal single-round solution S∗,n

in Proposition TR.2 in the multiple-goods case satisfies the PP constraint because it uses S∗ in
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Proposition 3 of the main paper on each good and inherits the same properties from the single-good
case.

For welfare maximization in both the single-good and multiple-goods cases, the principal’s utility
function u(·, ·) coincides with the agent’s utility function v(·, ·) when there is no payment and the
realized principal utility is the same for all utility-maximizing strategies for the agent. That is, tie-
breaking among utility-maximizing strategies is meaningless and all utility-maximizing strategies are
also principal-pessimistic utility-maximizing strategies by default. Hence, the optimal mechanism of
allocating items for free in Proposition TR.1 and the same mechanism in the multiple-goods case in
Proposition TR.2 satisfy the PP constraint.

Similarly, in the principal-agent model, the optimal single-round direct IC/IR mechanism in Proposi-
tion 4 of the main paper is deterministic and has a continuous interim allocation rule. It also satisfies
the second part of the if-and-only-if condition. By Proposition TR.12, it satisfies the PP constraint.

For the dynamic resource allocation problem, there are multiple optimal single-round solutions in
Proposition TR.4 and, in particular, the constant probabilistic allocation rule x∗(θ) = 1 − c for all
θ ∈ [0, 1] is optimal. By Proposition TR.13, it satisfies the PP constraint.

We prove the above propositions below.

Revenue Maximization in the Dynamic Selling Problem with One Good We primarily
work with the interim allocation rule x(·) and payment rule p(·). The IC/IR/PP constraints can be
equivalently written as

θ · x(θ)− p(θ) ≥ θ · x(θ′)− p(θ′) , ∀θ, θ′ ∈ [0, 1] (IC)

θ · x(θ)− p(θ) ≥ 0 , ∀θ ∈ [0, 1] (IR)

p(θ) ≤ p(θ′) , ∀θ ∈ [0, 1], θ′ ∈ B∗(θ)
p(θ) ≤ 0 , ∀θ ∈ Θ0

(PP)

where B∗(θ) = {θ′ ∈ Θ | θ · x(θ′) − p(θ′) = θ · x(θ) − p(θ)} and Θ0 = {θ ∈ Θ | θ · x(θ) − p(θ) = 0}.
Note if a single-round direct mechanism satisfies the IC/IR constraints, x is non-decreasing and p is
given by the payment equivalence formula and, similarly, non-decreasing. Let V (θ) = θ · x(θ)− p(θ).
Note V (θ) = maxθ′{θ · x(θ′) − p(θ′)}. Equivalently, the utility curve V (·) is supported by lines with
slope-intercept pairs (x(θ′),−p(θ′)) for θ′ ∈ [0, 1] and, in particular, the line with slope-intercept pair
(x(θ),−p(θ)) goes through the point (θ, V (θ)).

Proof of Proposition TR.11. It is straightforward to see that the second part of the if-and-only-if
condition is equivalent to the second part of the PP constraint in terms of the interim rules. It
remains to prove that the first part corresponds to the first part of the PP constraint.

(If part): We prove the contrapositive. Assume the first part of the PP constraint is not satisfied at θ.
Note θ 6= 0. Given that IC/IR constraints are satisfied, the first part of the PP constraint not holding
at θ means that truthful reporting is not a principal-pessimistic utility-maximizing strategy when the
realized value is θ. There exists another utility-maximizing report θ′ leading to outcome (x(θ′), p(θ′))
with a strictly worse principal utility, i.e., p(θ′) < p(θ). Since the payment rule is non-decreasing, it
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must be that θ′ < θ. Since

V (θ) = θ · x(θ)− p(θ) = θ · x(θ′)− p(θ′) ,

and θ 6= 0, it follows that x(θ′) < x(θ). Note the line with slope-intercept pair (x(θ′),−p(θ′)) goes
through (θ, V (θ)). For this to happen, x has to be constant over the interval [θ′, θ). If there exists
some θ̂ ∈ [θ′, θ) at which x(θ̂) > x(θ′) (this is the only possibility since x is non-decreasing), the line
with slope-intercept pair (x(θ̂),−p(θ̂)) leads to a strictly higher utility for the agent at the realized
value θ than the line with slope-intercept pair (x(θ′),−p(θ′)). This is because the point (θ̂, V (θ̂)) is
above or on the line with slope-intercept pair (x(θ′),−p(θ′)) and the line with slope-intercept pair
(x(θ̂),−p(θ̂)) goes through the point and has a greater slope. This would contradict that reporting
θ′ achieves V (θ) when the realized value is θ. For θ and θ′, we have x(θ′) < x(θ) and x constant over
[θ′, θ).

(Only if part): We similarly prove the contrapositive. Assume there exists a pair θ′ < θ such that
x(θ′) < x(θ) and x(θ̂) = x(θ′) for θ̂ ∈ [θ′, θ). Since the utility curve V (·) is convex and absolutely
continuous, the line with slope-intercept pair (x(θ′),−p(θ′)) which is tangent to V on [θ′, θ) contains
the point (θ, V (θ)). This implies

V (θ) = θ · x(θ)− p(θ) = θ · x(θ′)− p(θ′) ,

and reporting θ′ and truthfully reporting θ lead to the same agent utility when the realized value is
θ. By the payment equivalence formula, p(θ̂) = p(θ′) for θ̂ ∈ [θ′, θ) and, in particular, p(θ′) < p(θ).
Then, reporting θ′ leads to a strictly worse principal utility. The first part of the PP constraint is not
satisfied at θ.

Principal-Agent Model with Hidden Costs This is after the without-loss restriction of the
single-round direct IC/IR mechanisms to those that can be described as a menu of deterministic
contracts {(q(θ), p(θ))}θ∈[θ,θ̄]. By standard arguments, q(·) is non-increasing and p(·) is given by the
payment equivalence formula. See Appendix C.1 of the main paper for details. In this setting, the
IC/IR/PP constraints in consideration are

p(θ)− θ · q(θ) ≥ p(θ′)− θ · q(θ′) , ∀θ, θ′ ∈ [θ, θ̄] (IC)

p(θ)− θ · q(θ) ≥ 0 , ∀θ ∈ [θ, θ̄] (IR)

R(q(θ))− p(θ) ≤ R(q(θ′))− p(θ′) , ∀θ ∈ [θ, θ̄], θ′ ∈ B∗(θ)
R(q(θ))− p(θ) ≤ 0 , ∀θ ∈ Θ0

(PP)

where B∗(θ) = {θ′ ∈ Θ | p(θ′) − θ · q(θ′) = p(θ) − θ · q(θ)} and Θ0 = {θ ∈ Θ | p(θ) − θ · q(θ) = 0}.
In what follows, let V (θ) = p(θ) − θ · q(θ) for θ ∈ [θ, θ̄]. As in the dynamic selling problem, we can
describe the utility curve V (·) as the upper envelope of lines with slope-intercept pairs (−q(θ), p(θ))
for θ ∈ [θ, θ̄].

Proof of Proposition TR.12. The second part of the if-and-only-if condition is exactly the second part
of the PP constraint written in terms of the interim rules. We prove the first part is equivalent to
the first part of the PP constraint.

(If part): We prove the contrapositive. Assume the first part of the PP constraint is not satisfied and
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reporting some θ′ yields the same agent utility as truthful reporting but less principal utility when
the realized cost is θ, that is:

p(θ′)− θ · q(θ′) = p(θ)− θ · q(θ) and

R(q(θ′))− p(θ′) < R(q(θ))− p(θ) .

Combining the two relations, we obtain

R(q(θ′))− θ · q(θ′) < R(q(θ))− θ · q(θ) . (TR-21)

In particular, this implies q(θ) 6= q̄(θ) = arg maxq≥0{R(q)− θ · q}. There are two cases depending on
how q(θ) and q̄(θ) compare.

If q(θ) < q̄(θ), it must be that q(θ′) > q(θ) for (TR-21) to hold. As q is non-increasing, it follows that
θ′ < θ. We claim q is constant over [θ′, θ). If otherwise, q(θ̂) < q(θ′) for some θ̂ ∈ [θ′, θ) and this would
mean the line with slope-intercept pair (−q(θ̂), p(θ̂)) leads to a higher utility at realized cost θ than
the line with slope-intercept pair (−q(θ′), p(θ′)). Note the line with slope-intercept pair (−q(θ̂), p(θ̂))
goes through (θ̂, V (θ̂)) which is above or on the line with slope-intercept pair (q(θ′), p(θ′)) and has a
greater slope. This would contradict the choice of θ′. For the interval (θ′, θ), we have q constant over
the interval and the first set of conditions hold.

If q(θ) > q̄(θ), then q(θ′) < q(θ) and θ′ > θ. By a similar argument as above, it follows that q is
constant over (θ, θ′]. With the roles of θ and θ′ reversed, we have that the second set of conditions
hold.

(Only if part): We prove the contrapositive. Assume there exists an interval (θ′, θ) within which q
is constant, say, equal to q0. Assume the first set of conditions hold. The argument is similar when
the second set of conditions hold instead. We have q(θ) < q0 and R(q0)− θ · q0 < R(q(θ))− θ · q(θ).
We show that truthful reporting is not a principal-pessimistic utility-maximizing strategy when the
realized cost is θ because reporting some θ̂ ∈ (θ′, θ) is a utility-maximizing strategy that gives a worse
principal utility. Fix an arbitrary θ̂ ∈ (θ′, θ). In the interval [θ̂, θ), q is equal to q0 and p is also
constant, say p0. Then, the utility curve is on the line with slope-intercept pair (−q0, p0) on interval
[θ̂, θ). Since it is absolutely continuous, (θ, V (θ)) is also on the same line. Hence,

V (θ) = p(θ)− θ · q(θ) = p(θ̂)− θ · q(θ̂) ,

and reporting θ̂ is a utility-maximizing strategy when the realized cost is θ. Combining the above
with the assumption that R(q0)− θ · q0 < R(q(θ))− θ · q(θ), we obtain

R(q(θ̂))− p(θ̂) < R(q(θ))− p(θ) .

This shows reporting θ̂ leads to a strictly worse principal utility. It follows that the first part of the
PP constraint does not hold when realized cost is θ.
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Resource Allocation Problem without Monetary Transfers We represent a single-round
direct mechanism with its interim allocation rule x : [0, 1]→ [0, 1]. The IC/IR/PP constraints are

θ · x(θ) ≥ θ · x(θ′) , ∀θ, θ′ ∈ [0, 1] (IC)

θ · x(θ) ≥ 0 , ∀θ ∈ [0, 1] (IR)

(θ − c) · x(θ) ≤ (θ − c) · x(θ′) , ∀θ ∈ [0, 1], θ′ ∈ B∗(θ)
(θ − c) · x(θ) ≤ 0 , ∀θ ∈ Θ0

(PP)

where B∗(θ) = {θ′ ∈ [0, 1] | θ · x(θ′) = θ · x(θ)} and Θ0 = {θ ∈ [0, 1] | θ · x(θ) = 0}. Recall that
c ∈ (0, 1).

Proof of Proposition TR.13. We exhaustively go through the following cases and show that the propo-
sition statement holds. As discussed in Appendix A, we parametrize single-round direct IC/IR mech-
anisms in terms of 0 ≤ x0 ≤ x1 ≤ 1 such that x(0) = x0 and x(θ) = x1 for θ ∈ (0, 1].

Case 1) x0 = x1

In this case, the probabilistic allocation rule x is constant. That is, any report θ leads to the same
probability of allocation. Then, any report leads to the same principal and agent utilities and the
first part of the PP constraint holds trivially. For the second part, we divide into two subcases
depending on whether x0 = 0 or x0 > 0. If x0 = 0, the corresponding single-round mechanism
does not allocate at all and the principal and agent utilities will be 0. Hence, the second part
of the PP constraint holds. If x0 > 0, then Θ0 consists of exactly θ = 0 for which the principal
utility evaluates to −c · x0 < 0. Again, the second part of the PP constraint holds. It follows that
when the allocation rule is constant, the single-round direct IC/IR mechanism satisfies the PP
constraint.

Case 2) x0 < x1

For θ ∈ (0, 1], any reports θ′ ∈ [0, 1] lead to either the same agent utility or a strictly smaller
agent utility compared to truthful reporting. Reporting θ′ ∈ (0, 1] leads to the same allocation
probability and, hence, the same principal and agent utilities. Reporting θ′ = 0 leads to the agent
utility of θ · x0 which is less than that of θ · x1 under truthful reporting. When θ = 0, all reports
θ′ ∈ [0, 1] lead to the agent utility of 0, but can lead to different principal utilities. Reporting
θ′ = 0 leads to the principal utility of −c ·x0 whereas reporting any θ′ ∈ (0, 1] leads to the principal
utility of −c ·x1. Since c > 0 and x0 < x1, reporting some θ′ ∈ (0, 1] leads to the same agent utility
but a strictly smaller principal utility compared to truthful reporting. Hence, the PP constraint
does not hold.

It follows that only the single-round direct IC/IR mechanisms with x0 = x1, i.e., with a constant
probability allocation rule, satisfy the PP constraint.
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