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Sporting event managers typically only offer advance tickets which guarantee a seat at a future sporting

event in return for an upfront payment. Some event managers and ticket resellers have started to offer call

options under which a customer can pay a small amount now for the guaranteed option to attend a future

sporting event by paying an additional amount later. We consider the case of tournament options where the

event manager sells team-specific options for a tournament final, such as the Super Bowl, before the finalists

are determined. These options guarantee a final game ticket to the bearer if his team advances to the finals.

We develop an approach by which an event manager can determine the revenue maximizing prices and

amounts of advance tickets and options to sell for a tournament final. Afterwards, for a specific tournament

structure we show that offering options will increase expected revenue for the event. We also establish bounds

for the revenue improvement and show that introducing options can increase social welfare. We conclude by

presenting a numerical application of our approach.

Key words : Revenue Management; Real Options; Sports

1. Introduction

The World Cup final, the Super Bowl, and the final game of the NCAA Basketball Tournament

in the United States (a.k.a. “March Madness”) are among the most popular sporting events in the

world. Typically, demand exceeds supply for the tickets for these events, even when the tickets cost

hundreds of dollars. However, since these events are the final games of a tournament, the identities

of the two teams who will be facing each other are typically not known until shortly before the

event. For example, the identity of the two teams who faced each other in the 2010 World Cup final

was determined only after the completion of the two semi-final games, five days prior to the final.

Yet, tickets for the World Cup Final are offered for sale many months in advance. While there may

be many fans who are eager to attend the final game no matter who plays, many fans would only

be interested in attending if their favored team, say Germany, were playing in the final. These fans

face a dilemma. If they purchase an advance ticket, and Germany does not advance to the final,
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then they have potentially wasted the price of the ticket, especially if there is no secondary market.

On the other hand, tickets are likely to be sold out well before it is known who will be playing

in the finals, so if fans wait, they may be unable to attend at all. In response to this dilemma,

some sporting events have begun to offer “ticket options” in which a fan can pay a nonrefundable

deposit up front for the right to purchase a seat later once the identity of the teams playing is

known. Essentially, this is a call option by which the fan can limit his cost should his team not

make the final while guaranteeing a seat if his team does make the final. In this paper, we address

the revenue management problem faced by the event manager (or promoter) of a tournament final

who has the opportunity to offer options for the final. We examine when it is most profitable to

offer options to consumers and how the manager should set prices and availabilities for both the

advance tickets and the options. We also address the social welfare implications of offering options.

Over the past five years, a number of events and third-parties have begun to offer call options

for sporting event tickets. For example, the Rose Bowl is an annual post-season event in which

two American college football teams are chosen to play against each other based on their records

during the regular season. The identity of the teams playing is not known until a few weeks prior

to the event, however, the Rose Bowl sells tickets many months in advance. In addition to general

“advance tickets”, the Rose Bowl also sells “Team Specific Reservations”. As described on the Rose

Bowl’s web-site 1:

One Team Specific Ticket Reservation guarantees one face value ticket if your team makes it

to the 2011 Rose Bowl. Face value cost is a charge over and above the price you pay for your

Team Specific Ticket Reservation. If your team doesn’t make it to the Game, there are no

refunds for your purchased Team Specific Ticket Reservations, and tickets will not be provided.

Ticket options have become so popular that there is a software company, TTR that specializes in

selling Internet platforms to teams and events that wish to offer options. In addition, at least one

web site, www.OptionIT.com offers options for a variety of sporting events.

While options can be offered for any sporting event, in this paper we consider only the case of

tournament options, which are sold for a future event in which the two opponents who will face

each other are ex-ante unknown. We assume that there are potential customers – “fans” – whose

utility of attending the game is dependent upon whether or not their favored team is playing. In

this case, the tournament option enables a fan to hedge against the possibility that his favored

team is not selected to play in the game of interest – e.g. the World Cup final.

1 http://teamreserve.tournamentofroses.com/markets/sports/college-fb/event/2011-rose-bowl
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1.1. Main Contributions

In this paper we look at the revenue management of consumer options for sporting events. We

study the potential revenue improvements of offering options, relative to only offering advance

tickets.

We propose a demand model where consumers are segmented by their preferred teams. We do not

enforce any a priori segmentation across products. Instead, we postulate a neoclassical, risk-neutral,

choice model where consumers maximize their expected surplus. We allow fans to choose which

product to purchase based on (i) prices, (ii) product availability, (iii) their intrinsic willingness-to-

pay, and (iv) their rational expectations about the likelihood of the different outcomes. Thus, in

our model, the demands for products are not independent, and a price-sensitive consumer choice

model naturally arises.

In order to capture fans’ sensitivity to the teams playing in the final game, we introduce a

parameter termed love-of-the-game that measures the value to a fan of attending a game in which

their favorite team does not play. The higher the value of this parameter, the more utility that fans

derive from a game in which their favorite team is not playing. This parameter turns out to be

critical in our model, and strongly influences the profitability of introducing options. Estimation of

the fans’ willingness-to-pay and their sensitivity to the teams playing in the final could be estimated,

for example, with an empirical study similar to the one of Sainam et al. (2009) who estimated the

willingness to pay of consumers for advance tickets and options under various probabilities of their

favorite team playing in a final.

We address the joint problem of pricing and capacity allocation. We assume the event manager

announces ticket prices at the beginning, and these remain fixed throughout the sales horizon.

However, as demand realizes, the manager can control ticket sales by dynamically managing the

availability of products. The sequential nature of these decisions suggests a two-stage optimization

problem: set prices in the first stage, and allocate capacity given the fixed prices in the second

stage. The capacity allocation problem in the second stage is a continuous time stochastic control

problem under a discrete choice model, which in most real world applications can not be efficiently

solved to optimality.

Different methods have been proposed in the literature to solve the capacity allocation prob-

lem. For example, Zhang and Adelman (2006) proposed an approximate dynamic programming

approach in which the value function is approximated with an affine function of the state vector.

Another popular approach, which we adopt here, considers a deterministic approximation of the

capacity allocation problem, in which random variables are replaced by their means and products
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are allowed to be sold in fractional amounts (Gallego et al. 2004). The deterministic approximation

results in a linear program. Unfortunately, the resulting LP grows exponentially with the number

of teams. One of our contributions is an approximation that only grows quadratically with the

number of teams. This allows us to efficiently solve instances of moderate size jointly on prices

and capacity allocation. Additionally, in Theorem 1 we give precise bounds for the performance

of that deterministic approximation and show that it is asymptotically optimal for the stochastic

problem.

To provide some insight we analyze the symmetric problem, i.e., the case in which all teams

have the same probability of reaching the final and the fans of all teams share the same valuations

and love-of-the game. These simplifying assumptions allow us to characterize the conditions under

which offering options is beneficial to the event manager. Though not entirely realistic, this analysis

provides simple rules of thumb that can be applied to the general case. Specifically, in Theorem 2

we show that options are beneficial for the event manager only when the demand is high with

respect to the stadium’s capacity and fans strictly prefer their own team over any other. On one

hand, risk-neutral consumers buy options only when the expected cost of an option is less than

that of an advance ticket. Thus, the expected revenue per option sold will have to be less than the

revenue per advance ticket sold to keep the options attractive for consumers. On the other hand,

while each advance ticket consumes exactly one seat, options from different teams can be assigned

to the same seat, which allows the organizer to effectively sell more tickets per unit of capacity.

Even though at most one fan will exercise the option assigned to that seat, the organizer gets

to keep the premiums paid by the other consumers. We show that the second effect dominates:

the organizer can compensate for the reduced revenue per option by selling more tickets, and the

introduction of options is beneficial when capacity is scarce.

Additionally, we show that the value to the event manager of offering options decreases as the

love-of-the-game parameter increases. That is, as fans become more averse to seeing other teams

play, options become more attractive to them, and the event manager can take advantage of this

by offering options. We also show that, under some mild assumptions, the introduction of options

increases the consumer’s surplus. This should not be surprising because options allow fans to

hedge against the risk of watching a team that it is not of their preference. Lastly, we explore the

idea of full-information pricing where the event manager prices the tickets after the finalists are

determined, and show that offering options is a better strategy.
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1.2. Literature Review

This paper addresses a particular case of the classic revenue management problem of pricing and

managing constrained capacity to maximize expected revenue in the face of uncertain demand.

Overviews of revenue management can be found in Talluri and van Ryzin (2004) and Phillips

(2005). While the revenue management literature is vast, there has been relatively little research on

its applications to sporting events. Barlow (2000) discusses the application of revenue management

to Birmingham FC, an English Premier League soccer team. Chapter 5 of Phillips (2005) discusses

some pricing approaches used by baseball teams and Phillips et al. (2006) describe a software

system for revenue management applicable to sporting events. Duran et al. (2011) and Drake et al.

(2008) consider the optimal time to switch from offering bundles (e.g. season tickets) to individual

tickets for sports and entertainment industries. None of these works address the use of options.

Research specifically on the use of options for sports events is very scarce. The first attempt to

analyze such options was by Sainam et al. (2009). The authors devise a simple analytical model to

evaluate the benefits of offering options to sports event organizers. They show that organizers can

potentially increase their profits by offering options to consumers in addition to advance tickets.

They also conduct a small numerical study to support their theoretical findings. However, they do

not address the problem of pricing options or determining the number of tickets to sell.

In the absence of discounting, a consumer call option for a future service is equivalent to a

partially refundable ticket. Gallego and Sahin (2010) show how such partially refundable tickets

can increase revenue relative to either fully refundable or non-refundable tickets and that they can

be used to allocate the surplus between consumers and capacity providers. They show that offering

an option wherein an initial payment gives the option of purchasing a service for an additional

payment at a later date can provide additional revenue for sellers. Gallego and Stefanescu (2012)

discuss this as one of several “service engineering” approaches that sellers can use to increase

profitability. The same result holds for a consumer call option in the case when the identity of the

teams is known ex-ante. Our work extends their work by incorporating the correlation structure

on ex-post customer utilities imposed by the structure of the tournament.

1.3. Overview

§2 describes how we model a tournament and consumer demand for tickets. §3 introduces the

pricing and capacity allocation problem of selling advance tickets and options. The determinis-

tic approximation for the capacity allocation problem, together with the efficient formulation is

introduced in §3.1. In §3.2 we discuss implementation issues and practical considerations. In §4

we give some important theoretical results for a symmetric tournament. §4.2 explains how offering
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options to consumers affects their surplus and the idea of full-information pricing is examined in

§4.3. Results of numerical experiments are given in §5. §6 concludes with some final remarks.

2. Model

We consider a tournament with N ≥ 3 teams, where there is uncertainty about the finalists. The

final is held in a venue with a capacity of C seats, which we assume of uniform quality. In the

case where the seats have heterogeneous quality, the stadium can be partitioned in sections, and

then each section can be considered independently. Alternatively, one could consider all sections

simultaneously using a nested revenue management model with upgrades(Gallego and Stefanescu

2009).2

We address the problem of pricing and management of tickets and options for the final game.

The event manager offers N + 1 different products for the event: advance tickets, denoted by A

and options for each team i, denoted by Oi. Advance tickets require a payment of pa in advance

and guarantee a seat at the final game. An option Oi for team i is purchased at a price pio, and

confers the buyer a right to exercise and purchase the underlying ticket at a strike price pie only in

the event that team i advances to the final game. If the team fails to advance to the final game,

the option expires worthless and the premium paid is lost.

The event manager is a monopolist who can influence demand by varying the price. Hence, he

faces the problem of pricing the products and determining the number of products of each type

to offer so as to maximize his expected revenue. A common practice in sporting events is that

prices are announced in advance, and the organizer commits to those prices throughout the sales

horizon. We adhere to that static pricing practice in our model. However, the event manager does

not commit in advance to allocate a fixed number of seats for each product, and he can dynamically

react to demand by changing the set of products offered at each point in time.

For ease of exposition, the event manager is assumed to be risk-neutral, and performs no dis-

counting. Additionally, all costs incurred by the event manager are assumed to be sunk, so that

there is no marginal cost for additional tickets sold. From the event manager’s point of view seats

are perishable, that is, unsold seats have no value after the tournament starts since they cannot be

sold anymore. Finally, in agreement with current practice no overbooking is allowed in our model.

The timing of the events is as follows. First, the event manager announces the advance ticket’s

price pa, and the options’ premium and strike price (pio, p
i
e) for each team i. Then, the box office

2 In the model of Gallego and Stefanescu (2009) the event manager may upgrade customers to higher quality seats.
Even though we do not pursue this direction in here, we note that upgrades help balance demand and supply by
shifting excess capacity of high grade products to low grade products with excess demand.
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Figure 1 Sales horizon and actions involved in each period.

opens, and advance tickets and options are sold at those prices. Sales are allowed during a finite

horizon T that ends when the tournament starts. Afterwards, the tournament is played out, and

the two teams playing in the final are revealed. At this point the holders of options for the two

finalists decide whether to exercise their rights and redeem a seat at the corresponding strike price.

Finally, the championship game is played and the fans attend the event. Figure 1 illustrates the

timing of the events.

The set of possible combinations of teams that might advance to the finals is denoted by T . For

example, in the case where any combination of teams may play in the final game, we have T =

{{i, j} : 1≤ i < j ≤N}. In the case of a dyadic tournament such as a single-elimination tournament,

teams can be divided into two groups, denoted by T1 = {1, . . . , bN/2c} and T2 = {bN/2c+1, . . . ,N},

in such a way that exactly one team from each group advances to the final game. In this case the

space of future outcomes is T = T1×T2.

As agents form rational expectations about the outcome of the tournament, we assume that there

is an objective probability of team i advancing to the final game, denoted by qi, that is common

knowledge. In practice, one can obtain estimates of these probabilities from bookmakers’ betting

odds, and tournaments participants’ characteristics such as past performance and injury status;

both of which are publicly available. Additionally, we impose that these probabilities are invariant

throughout the sales horizon. The latter assumption is reasonable since the box office closes before

the tournament starts. Finally, note that the probabilities will satisfy
∑N

i=1 q
i = 2.

A critical assumption of our model is that tickets and options are not transferrable. This can

be enforced, for instance, by demanding some proof of identification at the entry gate. Non-

transferability precludes the existence of a secondary market for tickets, that is, tickets cannot

be resold and they can only be purchased from the event manager. This assumption, although

somewhat restrictive, simplifies the analysis.

Consumer Choice Model. Consumers are assumed to be risk-neutral and utility-maximizing.

The demand is naturally segmented with respect to team preference, with N disjoint segments
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corresponding to each team: we refer to consumers within segment i as fans of team i. In our

model, demand is stochastic and price sensitive, with customers arriving according to independent

Poisson processes with homogeneous intensity Λi for segment i. Time-dependent arrival intensities

can be handled by partitioning the sales horizon into intervals where the arrival rate is constant

(Liu and van Ryzin 2008).

A fan of team i has two sources of utility, (i) attending a final game with his favorite team

playing, and (ii) attending the event with any other team playing. The fan’s willingness-to-pay for

attending his favorite team’s final game, denoted by V , is drawn independently and at random

from a team-specific cumulative distribution function F i
v(·). Fans do not update their valuations

over time, and as a result, expected utilities of the possible alternatives remain constant. So, the

fans will not switch decisions, and there will be no cancellations or no-shows. Furthermore, every

option bought will be exercised. When his preferred team is not playing, the fan is not sensitive to

the finalists and will obtain only a fraction `i ∈ [0,1] of his original valuation if he watches the final.

We refer to `i as the “love-of-the-game”; and it captures the fact that a fan’s utility for attending

a game without his preferred team is mostly influenced by his “love” for the sport rather than by

the identities of the actual finalists. In the extreme case when `i = 1, a fan’s utility of attending

the game is independent of whichever teams are playing. Conversely, when `i is close to zero, fans

have a strong preference towards their team, and are willing to attend the game only if their team

is playing. We shall see that the parameter `i turns out to be critical in our model, and determines

to a great extent the profitability of introducing options. The parameters `i, F i
v(·), and Λi are

common knowledge.

At the moment of purchase, a fan of team i has three choices, (i) buy an advance ticket, (ii)

buy an option for his preferred team, or (iii) buy nothing. The first choice requires the payment

of the advance ticket price pa. Then, with probability qi, the fan expects to get a value of V

from seeing his team in the final and with probability 1 − qi he expects to get a value of `iV .

Hence, the fan’s expected utility for product A given a valuation of V , denoted by U i
a(V ), is

U i
a(V ) = (qi + (1− qi)`i)V − pa. The second choice, buying the option Oi, requires the payment of

the premium price pio at the moment of purchase. Since valuations are not updated over time, once

a fan buys an option, he will always exercise if his team makes the final. Hence, with probability qi

his preferred team advances to the final, and he exercises by paying the strike price pie and extracts

a value V in return. The expected utility for product Oi given a valuation of V , denoted by U i
o(V ),

is U i
o(V ) = qiV − (pio + qipie). Finally, the utility of no purchase is Un = 0. Table 1 summarizes the

expenditures, values and expected utilities related to each decision.
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Decision Pays Value Ex. Utility
n: don’t buy 0 0 0

a: buy A pa
V w.p. qi

(qi + (1− qi)`i)V − pa`iV w.p. 1− qi

o: buy Oi pio + pie w.p. qi V w.p. qi
qiV − (pio + qipie)pio w.p. 1− qi 0 w.p. 1− qi

Table 1 Expenditures, values and expected utilities related to each decision.

Decision Priorities Valuation Sets Probability (πxyz)
n {V :Ua(V )≤ 0,Uo(V )≤ 0} Fv(min(c, b))
on {V :Uo(V )≥ 0≥Ua(V )} (Fv(c)−Fv(b))+

an {V :Ua(V )≥ 0≥Uo(V )} (Fv(b)−Fv(c))+

oan {V :Ua(V )≥Uo(V )≥ 0} (Fv(a)−Fv(c))+

aon {V :Uo(V )≥Ua(V )≥ 0} 1−Fv(max(a, b))
Table 2 Decision priorities and corresponding valuation sets. For simplicity we drop the superscript indicating

the team. The intersection points are given by a = pa−(po+qpe)
(1−q)` , b = 1

q
(po + qpe), and c = pa

q+(1−q)` .

Additionally, (x)+ = max{x,0}.

A fan makes the choice that maximizes his expected utility. The actual decision, however, depends

on the availability of advance tickets and options at the moment of arrival to the box office. For

instance, when the first-best choice is not available, the consumer pursues his second-best choice,

and if this is also not available, he buys nothing.

We now address the problem of characterizing the demand rate of every product subject to a

given set of offered products. We partition the space of valuations for each market segment into five

disjoint sets as shown in Table 2. Decision priority xyz denotes the case where x is the first-best

choice, y is the second-best choice, and z is the least preferred choice. For example, aon corresponds

to the case where an advance ticket is the most highly preferred product, an option is the second

most highly preferred product and buying nothing is the least preferred choice. The linearity of

expected utilities implies the valuation sets corresponding to these priorities are intervals of R+.

Figure 2 illustrates the expected utility for the three choices versus the realized value of V for the

particular market segment i, and the corresponding valuation intervals. Observe that depending

on prices and problem parameters, this graph can take on two forms. Using the distribution of

valuations in the population, the event manager can compute the probability that the private

valuation of an arriving customer of team i belongs to a particular interval which is denoted by πixyz.

The last column of Table 2 shows corresponding probabilities for each possible choice ordering.

Now we turn to the problem of determining the demand rate for each product when the event

manager offers only a subset S ⊆S ≡ {A,O1, . . . ,ON} of the available products. Under our model

the instantaneous arrival rate of fans of team i purchasing advance tickets when offering S ⊆ S,

denoted by λia(S), is
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Figure 2 Graphs showing expected surplus for the three choices. The horizontal axis is divided in segments

matching each decision. For instance, if V falls in the segment oan the fan would buy an option, and

else he would buy an advance ticket.

λia(S) = Λi1{A∈S}(π
i
an +πiaon + 1{Oi /∈S}π

i
oan). (1)

The arrival rate for advance ticket purchases is composed of three terms. The first term accounts

for fans that are only willing to buy those tickets. The second term accounts for fans that are

willing to buy the advance tickets, but when they are no longer available will buy the options as

a second choice. Finally, the third term considers fans that prefer options as their first choice, but

may end up buying advance tickets when they are not available. The aggregate arrival rate for

advance ticket purchases when offering subset S is λa(S) =
∑N

i=1 λ
i
a(S). Similarly, the arrival rate

of fans of team i buying options when offering S, denoted by λio(S), is

λio(S) = Λi1{Oi∈S}(π
i
on +πioan + 1{A/∈S}π

i
aon). (2)

3. Pricing Problem

In this section we look at the combined problem of pricing and managing advance tickets and

options faced by the organizer. Recall that prices are determined in advance, disclosed at the begin-

ning of the sales horizon, and remain constant thereon. However, the number of seats allocated

to each product are not disclosed in advance. The organizer can control the number of tickets

and options sold to dynamically react to the demand by playing with the availability of the prod-

ucts. Since the resulting pricing and capacity allocation problem is intractable, we develop a novel

approximation, which we show to be asymptotically optimal when capacity and time are simulta-

neously scaled up. Then, we conclude this section by addressing some of the practical issues that
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one might face in the application of this approximation.

The sequential nature of the decisions involved suggests a partition of the problem into a two-

stage optimization problem. The decision variables are prices in the first stage and product avail-

abilities in the second stage. In the first stage, the organizer looks for the set of prices p= (pa, po, pe)

that maximizes the optimal value of the second-stage problem, which is the maximum expected

revenue that can be extracted under fixed prices p. This partition is well-defined because prices

are determined before the demand is realized, and are independent of the actual realization of the

demand. The optimal value of the first-stage problem, denoted by R∗, is

R∗ ≡max
p≥0

R∗(p)

where R∗(p) denotes the optimal value of the second-stage problem.

The second-stage problem takes prices as given, and optimizes the expected revenue by con-

trolling the subset of products that is offered at each point in time. Notice that the second-stage

decision variable is a control policy over the offer sets, which is determined as the demand realizes.

We refer to this second-stage problem as the Capacity Allocation Problem. Next, we turn to the

problem of determining the optimal value of the second-stage problem under fixed prices p.

Once prices are fixed, the organizer attempts to maximize his revenue by implementing adaptive

non-anticipating policies that offer some subset S ⊆S ≡ {A,O1, . . . ,ON} of the available products

at each point in time. A control policy µ maps states of the system to control actions, i.e. the set of

offered products. We denote by Sµ(t) the subset of products offered under policy µ at time t. The

organizer can affect the arrival intensity of purchase requests by controlling the offer set Sµ(t). As

such, the total number of advance tickets sold up to time t is a non-homogeneous Poisson process

with arrival intensity λa(Sµ(t)) as defined in (1). We denote the event of an advance ticket being

sold at time t by dXa(Sµ(t)) = 1. Similarly, the number of options sold follow a non-homogenous

Poisson process arrival intensity λio(Sµ(t)) as defined in (2), and we let dX i
o(Sµ(t)) = 1 when an

option is sold at time t. With some abuse of notation, we define Xa =
∫ T

0
dXa(Sµ(t)) and X i

o =∫ T
0

dX i
o(Sµ(t)) to be the total number of advance tickets and options sold, respectively.

The second-stage or Capacity Allocation Problem can be formalized as the following stochastic

control problem which is similar to the one given in Liu and van Ryzin (2008):

R∗(p) = max
µ∈M

E

[
paXa +

N∑
i=1

(pio + qipie)X
i
o

]
s.t. Xa =

∫ T

0

dXa(Sµ(t)), (3)
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X i
o =

∫ T

0

dX i
o(Sµ(t)), ∀i= 1, . . . ,N,

Xa +X i
o +Xj

o ≤C, (a.s.) ∀{i, j} ∈ T ,

where M is the set of all adaptive non-anticipating policies, and R∗(p) is the expected revenue

under the optimal policy µ∗. The first term in the objective accounts for the revenue from advance

ticket sales and the second term accounts for the revenue from options under the assumption that

all options are exercised, which was previously discussed in §2. Notice that because prices remain

constant during the time horizon, the revenue depends only on the expected number of tickets sold.

Unfortunately, the resulting HJB equation (see Appendix for more details) is a partial differential

equation that is in most cases very difficult to solve. The next section gives a tractable and provably

good deterministic approximation of (3).

3.1. Deterministic Approximation for the Second Stage Problem

In this section we follow Gallego et al. (2004), and solve a deterministic approximation of (3) in

which random variables are replaced by their means and quantities are assumed to be continuous.

We denote by ra = pa the expected revenue from selling an advance ticket, and by rio = pio + qipie

the expected revenue from selling an option of team i. Under this approximation, when a subset

of products S is offered, advance tickets (resp. options for team i) are purchased at a rate of

λa(S) (resp. λio(S)). Since ra (resp. rio) is the expected revenue from the sale of an advance ticket

(resp. option for team i), the rate of revenue generated from the sales of advance tickets is raλa(S)

(resp. rioλ
i
o(S) for options of team i). Additionally, because demand is deterministic and the choice

probabilities are time homogeneous, we only care about the total amount of time each subset of

products is offered and not the order in which they are offered. Thus, we only need to consider

the amount of time each subset S is offered, denoted by t(S), as the decision variables. Under this

notation, the number of advance tickets sold is
∑

S⊆S t(S)λa(S), while the number of options sold

for team i is
∑

S⊆S t(S)λio(S). Finally, the total revenue of the organizer is
∑

S⊆S r(S)t(S), where

r(S) = rTλ(S) is the revenue rate when subset S is offered, and r= (ra, r
1
o, . . . , r

N
o ) is the vector of

expected revenues.

Thus, we obtain the following choice-based deterministic LP model (CDLP):

RCDLP (p)≡max
t(S)

∑
S⊆S

r(S)t(S) (4)

s.t.
∑
S⊆S

t(S) = T,∑
S⊆S

t(S)
(
λa(S) +λio(S) +λjo(S)

)
≤C, ∀{i, j} ∈ T (5)
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t(S)≥ 0 ∀S ⊆S

where RCDLP (p) denotes the maximum revenue of the CDLP under prices p.

Since the linear program in (4) has one variable for each offer subset, it has 2N+1 variables in

total. For instance, if the tournament has 32 teams the program would have more than 8 billion

variables! Fortunately, by exploiting the structure of our choice model it is possible to derive an

alternative formulation with a linear number of variables and constraints.

Recall that consumers are partitioned into N different market segments, each associated with

a different team. Two different products are potentially offered to each segment i = 1, . . . ,N : (i)

advance tickets (A) and (ii) options for the associated team (Oi). We denote by Si = {A,Oi} the

set of products available for market segment i. Demands across segments are independent, and

different segments are only linked through the capacity constraints. Since each segment has two

products, only four offer sets need to be considered. Thus, for each market segment we only need

the following decision variables: (i) the time both advance tickets and options are offered, denoted

by ti ({A,Oi}), (ii) the time only advance tickets are offered, denoted by ti ({A}), (iii) the time

only options are offered, denoted by ti ({Oi}), and (iv) the time no product is offered, denoted by

ti (∅). Given a solution {t(S)}S⊆S for the CDLP, the value of the new decision variables can be

computed as follows

ti(S) =
∑

S′⊆S:S′∩Si=S

t(S′). (6)

Observe that for each segment offer times should sum up to length of the horizon, that is∑
S⊆Si t

i(S) = T . An important observation is that by requiring
∑

S⊆Si\∅ t
i(S) ≤ T we do not

need to keep track of the time in which no product is offered for each segment. Additionally,

in order for the offer sets to be consistent across market segments, the total time that advance

tickets are offered should be equal for all segments, i.e., for some Ta ≥ 0 it should be the case that

ti ({A,Oi}) + ti ({A}) = Ta for all i= 1, . . . ,N where Ta denotes the total time advance tickets are

offered throughout the sales horizon.

After applying the aforementioned changes, we obtain the following market-based deterministic

LP (MBLP)

RMBLP (p)≡ max
ti(S),Ta

N∑
i=1

∑
S⊆Si

ri(S)ti(S) (7)

s.t.
∑
S⊆Si

ti(S)≤ T ∀i= 1, . . . ,N (8)

ti
(
{A,Oi}

)
+ ti ({A}) = Ta ∀i= 1, . . . ,N (9)
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N∑
k=1

∑
S⊆Sk

tk(S)λka(S)

+
∑
S⊆Si

ti(S)λio(S) +
∑
S⊆Sj

tj(S)λjo(S)≤C ∀{i, j} ∈ T (10)

Ta ≥ 0, ti(S)≥ 0 ∀S ⊆Si, i= 1, . . . ,N,

where ri(S) = paλ
i
a(S) + rioλ

i
o(S) is the revenue rate from market segment i when subset S ⊆Si is

offered. Notice that the new optimization problem has 3N + 1 variables, which is much less than

the original CDLP, and O(N 2) constraints.

Proposition 1. The MBLP is equivalent to the CDLP, i.e. RMBLP (p) =RCDLP (p) for all prices

p≥ 0.

An interesting consequence of the proof is that the optimal policy has a nested structure. Because

demands across segments are independent, one can sequentially order the offer sets containing

advance tickets such that each set is a subset of the previous one. The same holds for offer sets

that do not include advance tickets. Additionally, the number of active sets in the optimal solution

is at most 2N + 1.

As with most deterministic approximations, it is the case that the optimal value of the MBLP

(also the CDLP) provides an upper bound to the optimal value of the stochastic program (3) (see,

e.g., Liu and van Ryzin (2008)). In the next result, we show that for every fixed price the revenue

difference between the deterministic approximations and the stochastic problem is of order O(
√
T ).

In order to show this bound we use an argument similar, yet slightly simpler, to that of Gallego

et al. (2004). We show this result for the CDLP formulation which is more generalized than the

MBLP. First, we construct a theoretical offer time (OT) policy from the optimal solution of the

CDLP. In such a policy (i) each set is offered for the time prescribed by the deterministic solution

in an arbitrary order, and (ii) the number of products sold in each set is limited to the expected

demand. We then show that the expected time each set is offered in the OT policy is close to the

one of the deterministic solution, and then conclude that the performance of such a policy is close

to the deterministic upper bound.

Theorem 1. Fix prices p ≥ 0. Let {t∗(S)}S∈S be an optimal solution for the CDLP for the

given prices, and S∗ = {S ∈ S : t∗(S)> 0} be the subsets of products with positive offer times in the

optimal solution. Then, then the revenue loss of the stochastic control problem with respect to the

CDLP is bounded by

0≤RCDLP (p)−R∗(p)≤ rmax|S∗|
(
λ−1

min +
√

(N + 1)λ−1
minT

)
,
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where rmax is the maximum revenue rate among all products available in the offer sets in S∗.

Similarly, λmin be the minimum arrival rate among all products available in the offer sets in S∗. 3

As a corollary, we get that the CDLP becomes asymptotically optimal as the stadium capacity

and length of the time horizon are simultaneously scaled up. To see this, let R∗θ(p) be the optimal

objective of a scaled stochastic problem in which capacity is set to θC and time horizon to θT for

some θ ≥ 1. Similarly, let RCDLP
θ (p) be the optimal objective of a scaled CDLP. Notice that the

CDLP is insensitive to the scaling, that is, 1
θ
RCDLP
θ (p) = RCDLP (p). Then from Theorem 1 one

gets that the CDLP is asymptotically optimal for the second-stage problem, or equivalently 1
θ
R∗θ(p)

converges to RCDLP (p) as θ→∞ for all p≥ 0. Moreover, it is not hard to see that the asymptotic

optimality of the CDLP carries over to the first-stage problem. Solving the CDLP instead of the

stochastic control in the second-stage is asymptotically optimal for the first-stage problem. Another

interesting consequence of the previous results is that the OT policy, in spite of its simplicity, is

asymptotically optimal for the stochastic control problem.

3.2. Implementation and Practical Considerations

As we previously discussed, the optimal value of the capacity allocation problem R∗(p) is hard

to compute. Hence, in order to tackle our problem, we replace the objective of the first-stage

problem with the upper-bound provided by the deterministic approximation RMBLP (p). This new

problem provides an upper bound to the truly optimal objective value R∗. However, in view of

the asymptotic optimality of the deterministic approximation, and the large scale of the problem

in terms of stadium’s capacity, our policy is expected to perform reasonably well. In Section 5 we

corroborate this claim through some numerical experiments.

Using our approximation for the second-state problem, the first-stage problem amounts to opti-

mizing the non-linear function RMBLP (p) over the polyhedron of prices. Because the objective is

not necessarily convex as a function of price, multiple different starting points need to be taken.

Given our efficient method to evaluate the approximate objective value of the capacity allocation

problem we are able to solve real problems of moderate size, despite the non-convexity of the

objective.

After the optimal solution is computed, a remaining issue is how tickets should be effectively sold.

Clearly, the event manager should announce the optimal prices p∗ at the beginning, and commit to

that price throughout the sales horizon. However, one important issue is the capacity allocation of

3 Let A ≡ O0 and pa ≡ r0
o. Then, rmax = maxS⊆S∗,Oi∈S{rio(S)} be the maximum revenue rate and λmin =

minS⊆S∗,Oi∈S{λio(S)} be the minimum arrival rate.
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the tickets, and constructing a good dynamic control policy from the output of the approximation.

The optimal solution of the deterministic approximation prescribes only how long each subset

should be offered, but does not specify how to implement the actual policy. One straightforward

approach is to offer each subset S for the amount of time given by t(S), which we referred as the

offer time policy. As pointed out by Liu and van Ryzin (2008), this approach has a few problems.

First, the order in which the sets are offered is not specified, and the resulting policy is static and

does not react to changes in demand.

Various heuristics have been proposed to address the first problem. Liu and van Ryzin (2008)

proposed a decomposition approach in which the dual optimal solutions of the deterministic prob-

lem are used to decompose the network dynamic program into a collection of leg-level DPs which

can be solved exactly. These are then used to construct a control policy. Kunnumkal and Topaloglu

(2010) improved upon this idea by considering an alternative dynamic programming decomposition

method that performs the allocations by solving an auxiliary optimization problem. Alternatively,

Zhang and Adelman (2006) employ an approximate dynamic programming scheme in which the

value function is approximated with affine functions of the state vector. This allows them to obtain

dynamic bid-prices that are later used to construct control policies.

Inspired by our efficient formulation, we propose a simple sales limit policy. The policy offers all

tickets from the beginning, and limits the number of each product sold to the expected value given

by the deterministic approximation. That is, tickets are sold either until the end of horizon or the

limit is reached, whichever happens first. The limits are given by Xa for the advance tickets, and

X i
o for the ith team options. Such booking limit policies are not guaranteed to be optimal in the

general network revenue management problem, but nevertheless performs surprisingly well in our

setting. Two attractive features of this policy are its ease of implementation, and the fact that it

concurs with the current sales practice.

To address the second problem, the static nature of the control policy, one could attempt to

periodically resolve the deterministic approximation. Recently, Jasin and Kumar (2010) showed

that carefully chosen periodic resolving schemes together with probabilistic allocation controls

can achieve a bounded revenue loss w.r.t. the optimal online policy (static control policies are

guaranteed to achieve a revenue loss that grows as the squared root of the size of the problem).

We do not pursue this direction in here, but note that one could attempt to periodically resolve

the MBLP to improve the performance.
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4. The Symmetric Case

In this section we consider a symmetric version of the problem that has the following character-

istics, (i) all teams have the same probability of advancing to the final, (ii) arrival rates are the

same for all teams, (iii) valuations are i.i.d. across teams, and (iv) the love-of-the-game is constant

throughout the population. These assumptions, albeit not entirely realistic, allows us to theoreti-

cally characterize the benefits of introducing options. As we shall later see in the numerical analysis

part, the conditions under which options are beneficial frequently carry over to the most general

case.

The following analysis will be based on the deterministic approximation of the problem and not

the actual stochastic performance. Due to the asymptotic optimality of the deterministic approx-

imation and the large scale of the problem, it should be expected that these results carry over to

the fully stochastic setting. In Section 5 we show, through some numerical experiments, that this

is indeed the case.

We start this section by first formulating the ticket pricing problem for the symmetric case.

Then, we show that offering options increases the revenue of the organizer, and also provide bounds

on the revenue improvement. Afterwards, we analyze the social efficiency of offering options, and

finally we compare offering options to the case of full information pricing.

4.1. Advance Ticket and Options Pricing Problem

In a symmetric problem with N teams, each team has the same probability q= 2
N

of advancing to

the final game. The arrival rate of fans of each team is λ= Λ
N

, where Λ denotes the aggregate arrival

rate. Due to the symmetry of the teams, we look for solutions in which the organizer charges the

same expected price ro = po + qpe for options for all teams. Hence, we will sell the same number of

options to all teams. At this point it should be noted that it is optimal to price products so that

we never run out of tickets before the end of the sales horizon. Otherwise, we would leave some

unsatisfied demand that could be captured by raising prices, resulting in increased revenue. As a

consequence, we do not need to control the availability of the products.

The aggregate arrival intensity of advance tickets and options under prices pa and ro can be

computed as

λa(pa, ro) = ΛF̄v

(
pa− ro
(1− q)`

)
,

λo(pa, ro) = Λ

[
F̄v

(
ro
q

)
− F̄v

(
pa− ro
(1− q)`

)]
,



Balseiro et al.: Revenue Management of Consumer Options for Tournaments
18 Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS

where we denote by λo the aggregate arrival intensity of all consumers buying options. We assume

that the c.d.f. of the values Fv(·) is continuous and strictly increasing. Thus, there is a one-to-one

correspondence between prices and arrival rates, and the inverse functions are given by

ro(λa, λo) = qF̄v
−1

(
λa +λo

Λ

)
,

pa(λa, λo) = qF̄v
−1

(
λa +λo

Λ

)
+ (1− q)`F̄v

−1

(
λa
Λ

)
.

The one-to-one correspondence between prices and arrival intensity allows us to recast the orga-

nizer problem with the arrival intensities as the decision variables; the promoter determines target

sales intensities λa and λo and the market determines the prices based on this quantity. Under

this change of variables, the deterministic approximation of the advance ticket and options pricing

problem becomes

RD
o = max

λa≥0,λo≥0
T (1− q)`v(λa) +Tqv(λa +λo) (11a)

s.t. Tλa +T
2

N
λo ≤C, (11b)

λa +λo ≤Λ,

where we have written the objective in terms of the value rate v(λa) = λaF̄v
−1 (λa

Λ

)
.

In the following, we assume that value rate is regular and differentiable. Regularity implies that

v(·) is continuous, bounded, concave, satisfies limλa→0 v(λa) = 0, and has a least maximizer λ∗a.

These assumptions are common in the RM literature (see, e.g., Gallego and van Ryzin (1994)).

A sufficient condition for the concavity of the value rate is that valuations have increasing failure

rate (IFR), or equivalently that the failure rate of values as given by h(x) = fv(x)/F̄v(x) is is non-

decreasing. A consequence of regularity is that the objective of program (11) is concave. Hence,

(11) is a convex maximization problem with linear inequality constraints. Additionally, because

the objective is continuous and the feasible set is compact, by Weierstrass’ Theorem one concludes

that there exists an optimal solution to the organizer program (Luenberger 1969).4 All the results

that follow in this section hold under the weaker assumption that the valuation random variable

has an increasing generalized failure rate (IGFR), that is, it suffices for generalized failure rate

xh(x) to be non-decreasing. IFR implies IGFR but the reverse does not hold.

We are now in a position to characterize some conditions under which options are beneficial to

the organizer. In the following we denote by RD
a the optimal revenue of the deterministic approx-

imation for the organizer when only advance tickets are sold, which amounts to setting λo = 0 in

program (11).

4 Lariviere (2006) and van den Berg (2006) give weaker sufficient conditions for the uniqueness of the optimal solution
and the concavity of the objective.
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Theorem 2. In the symmetric case, when the seats are scarce (C <λ∗aT ) and fans strictly prefer

their own team (` < 1), introducing options increases the revenue of the organizer (RD
o > RD

a ).

However, when the capacity of the stadium is large (C ≥ λ∗aT ) or fans are indifferent among teams

(`= 1) options do not increase the revenue.

The previous result shows that options are beneficial for the event manager only when the

demand is high with respect to the stadium’s capacity and fans strictly prefer their own team

over any other. In the case that fans are indifferent among teams (` = 1), the result is trivial

since consumers strictly prefer advance tickets over options. The most interesting case is when fans

strictly prefer their own team over any other (` < 1). From the point of view of a consumer, the

main difference between the products is that an advance ticket allows him to attend the final game

even when their favorite team is not playing, providing an extra source of utility. Therefore, if both

products have the same expected cost, a risk-neutral consumer would choose an advance ticket

over an option. When capacity is abundant, the organizer can ignore the problem of running out

of seats, and for the same expected revenue per product sold he can elicit a stronger demand for

advance tickets. Thus, in this case the introduction of options is not beneficial for the organizer.

However, when capacity is scarce the organizer should balance the expected revenue and the

expected capacity consumed for each unit of product sold. While each advance ticket consumes

exactly one seat, options from different teams can be assigned to the same seat, which allows the

organizer to effectively sell more than one option per unit of capacity. Even though at most one

fan will exercise the option assigned to that seat, the organizer gets to keep the premiums paid by

the other consumers. Thus, when capacity is scarce, there are two conflicting effects associated to

the introduction of options. On one hand, consumers buy options only when the expected cost of

an option is less than that of an advance ticket. Thus, the revenue per option sold is dominated by

the revenue per advanced ticket sold. On the other hand, each option sold consumes less capacity

in expectation than an advance ticket, allowing the organizer to sell more tickets. In the proof

of Theorem 2 we show that the second effect dominates: the organizer can compensate for the

reduced revenue per option by selling more tickets, and the introduction of options is beneficial

when capacity is scarce.

Theorem 2, however, provides no information on how the benefit from options is affected by `.

Next, we perform some comparative statics w.r.t. the love-of-the-game.

Proposition 2. In the symmetric case, when seats are scarce (C <λ∗aT ) and fans strictly prefer

their own team over any other (` < 1), both the absolute and relative benefit of introducing options

decreases as ` increases.
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The previous result shows that as the love-of-the-game parameter is increased, fans become less

sensitive to the teams playing at the final. As a result, options start to lose their attractiveness,

and demand for advance tickets increases. Hence, one should expect the benefit from introducing

options to decrease as ` is increased.

Next, we establish bounds on the revenue improvement that offering options provides when the

seats are scarce (if seats are not scarce, Theorem 2 shows that offering options does not increase

revenue).

Proposition 3. In the symmetric case, when the seats are scarce (C < λ∗aT ) we have the fol-

lowing bounds on the revenue improvements that offering options provide.

1. If fans obtain a positive surplus from attending a game without their own team (` > 0), the

revenue under options pricing converges to the revenue under advance selling as N grows to infinity.

Moreover, the convergence rate is given by

1≤ RD
o

RD
a

≤ 1 +
2

N`

v(λ∗a)

v(λ0
a)
.

2. If fans obtain zero surplus from attending a game without their own team (`= 0), the revenue

obtained when both advance tickets and options are offered strictly dominates the case when only

advance tickets are offered. Moreover, their ratio is given by

RD
o

RD
a

=
v
(
min

{
λ∗a, λ

0
a
N
2

})
v(λ0

a)

=
v(λ∗a)

v(λ0
a)
> 1 when N ≥ 2

⌈
λ∗a
λ0
a

⌉
.

The previous result shows that when ` > 0 the revenue under options pricing converges to the

revenue under advance selling as N grows to infinity. Furthermore, the convergence rate is O
(

1
N

)
.

The intuition behind this result is that, as the number of teams grows, fans are aware that the

probability of their own team reaching the final event decreases. So, in order to keep options

attractive for consumers, the organizer needs to set lower prices, and thus revenues generated by

options subside. Because fans also obtain a positive surplus from attending a game without their

own team, more consumers choose to buy advance tickets as the number of teams grows. However,

when `= 0 options and advance tickets are equivalent to customers, and they are only interested

in one outcome: their own team advancing to the final game. Because the probability of that

outcome converges to zero, the number of tickets sold converges to zero as well. This observation,

combined with the existence of the null price (or limλa→0 v(λa) = 0), causes the organizer’s revenue

to diminish to zero in all pricing schemes as the number of teams increases. Surprisingly, even
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though the revenues when only advance tickets are offered and, when both advance ticket and

options are offered converge to zero, they do so at different rates. The rationale is that when the

organizer offers only options each team has up to C/2 tickets available. Hence, the capacity of the

stadium is extended, and for a suitable large N the organizer may price according to the revenue

maximizer rate λ∗a.

4.2. Social Efficiency

How do the introduction of options affect customers’ surplus? Options allow fans to hedge against

the risk of watching a team that it is not of their preference. As a consequence, a larger number of

seats will be taken by fans of the teams that are playing in the final. So, intuitively we expect the

introduction of options to increase the total surplus of the fans.

Recall that, from Theorem 2, options are beneficial to the organizer only if the capacity is

scarce and fans strictly prefer their own team over any other. Hence, we only need to consider the

consumer surplus under those assumptions, else the organizer has no incentive to sell options. The

following proposition shows that under these assumptions if the valuation random variable is IFR,

then options do increase consumer surplus. This important result shows that offering options can

benefit both the promoter and the consumers.

Proposition 4. Assume that the valuation random variable is strictly IFR. Then, in the sym-

metric case, when the seats are scarce (C < λ∗aT ) and the fans strictly prefer their own team over

any other (` < 1), introducing options increases the consumer surplus.

4.3. Full Information Pricing

In this section we consider the hypothetical case where the event manager sets prices after the

finalists are determined. This is referred to as the full information pricing problem (Sainam et al.

2009). In practice, the event manager is averse to the notion of pricing tickets after the identity of

teams is revealed for at least two reasons: (i) deferring the sale of tickets increases the organizer’s

exposure to risk, (ii) the period of time left from the point when the uncertainty is revealed until

the final game is usually too short. Nevertheless, some insight can be gained from benchmarking

options against such a pricing scheme.

In full information pricing, the event manager needs to decide a price psf to maximize the revenue

in each possible outcome s ∈ T . In turn, in outcome s the event manager faces an advance ticket

pricing problem with a demand intensity given by λsf (psf ) =
∑

i∈sΛiF̄v(p
s
f )+

∑
i 6∈sΛiF̄v(p

s
f/`

i). The

first term of the arrival intensity accounts for fans of the teams that reach the final, and the

second term for the fans whose teams do not reach the final. For the symmetric case it simplifies

to λf (pf ) = 2ΛF̄v(pf )/N + (N − 2)ΛF̄v(pf/`)/N .
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In some sense, full information pricing is “last-minute” pricing since the prices are determined

after the finalists are revealed. This raises the issue of whether it is reasonable to assume the same

sales horizon T for this pricing strategy as well. The answer is most probably no. However, for the

purposes of this section it makes no difference since we assume that the number of fans from each

team remain the same regardless of the pricing strategy. So, if the sales horizon is now shorter, we

will just have to rescale the arrival rate Λ to accommodate the shorter sales horizon and the results

will not change. Thus, without loss of generality, we can assume that the sales horizon is still T in

this section. Next, we show that options always perform at least as well as full information pricing.

Proposition 5. In the symmetric case, the maximum expected revenue under options is greater

or equal to that of full information pricing, i.e., RD
o ≥RD

f .

The proof the previous result follows from setting both the advance ticket price, and the exercise

price of options equal to the optimal full information price. This allows the organizer to capture

customers with high valuations willing to buy a ticket independently of the outcome with advance

tickets, and capture customers with lower valuations willing to buy a ticket only when their pre-

ferred team plays with options. Thus, selling advance ticket and options under this pricing policy

performs as good as full information pricing in the symmetric case. However, this result does not

generalize. In the case in which teams are not symmetrical, one can construct counterexamples in

which offering options is dominated by full information pricing.

5. Numerical Examples

In this section we describe the results of several numerical experiments conducted to evaluate the

improvements from offering options. Our numerical example is based on Superbowl XLVI which

will take place on February 12th, 2012. For the sake of computational simplicity we assume that

pricing decisions are made at the Conference Championship level where only four teams are left and

we also assume that the teams that will play in the Superbowl will be the winners of New Orleans

Saints vs. Minnesota Vikings, and Indianapolis Colts vs. New York Jets games. Let us note that

those teams were the divisional round winners in the 2009 season. The probabilities of each team

advancing to the Superbowl were obtained from the betting odds of a major online betting company

(Vegas.com). The probabilities are given by q = (.6, .4, .65, .35) for (Saints, Vikings, Colts, Jets).

We estimated arrival rates arrival rates proportional to the population of each team’s hometown,

λ= (0.1271,0.0477,0.0675,0.7576).



Balseiro et al.: Revenue Management of Consumer Options for Tournaments
Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS 23

Uniform Valuations

lf = 3 lf = 1
` Advance Options Improv. Advance Options Improv.

0.01 $71.92 $80.73 12.24% $26.97 $28.31 5.60%
0.1 $83.84 $87.88 4.83% $31.44 $31.44 0.00%
0.2 $95.68 $98.30 2.74%
0.5 $130.41 $130.87 0.35%
0.9 $175.53 $175.53 0.00%

Truncated Normal Valuations

lf = 3 lf = 1
` Advance Options Improv. Advance Options Improv.

0.01 $72.01 $81.95 13.79% $28.88 $30.50 4.97%
0.1 $83.70 $88.91 6.23% $33.74 $33.74 0.00%
0.2 $95.29 $99.03 3.93%
0.5 $130.06 $130.06 0.00%
0.9 $173.69 $173.69 0.00%

Table 3 Revenues(in millions) from the deterministic approximation for different parameters

5.1. The Benefits of Introducing Options

In this first experiment we measure the benefits of introducing options in terms of both the event

manager’s revenue and the consumers’ surplus as well as the sensitivity of the results to changes

in the demand model.

To measure the impact in our model of the distribution of valuations V , we conducted the

experiment with two different distributions, namely, uniform and truncated normal. In order to

obtain comparable results the distributions were chosen with equal means and variances, where the

mean was $2000. Also, we checked the sensitivity of our results against different love-of-the-game

parameters and load factors. The load factor is defined by lf = (TΛ)/C, and measures the total

demand relative to the size of the stadium: the higher the load factor, the scarcer the tickets. Five

different values were used for the love-of-the-game paramater (0.001,0.1,0.2,0.5 and 0.9), and two

different values for lf (1 and 3). Changes in the load factor were implemented by changing the

length of the time horizon T .

Table 3 reports the revenues, as given by the deterministic approximations, for advance tickets

and options for the different demand scenarios. The third column shows the relative improvement

in the event manager’s revenue generated by the introduction of options. Relative improvements

in the revenue are plotted in Figure 3. Table 4 reports the consumer surplus when offering advance

tickets and options under the different demand scenarios.
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Figure 3 Relative improvement in the event manager’s revenue generated by the introduction of options as given

by the deterministic approximations.

Uniform Valuations

lf = 3 lf = 1
` Advance Options Improv. Advance Options Improv.

0.01 $26.26 $27.50 4.73% $16.25 $14.16 -12.87%
0.1 $27.20 $34.92 28.37% $17.80 $17.80 0.00%
0.2 $28.52 $35.09 23.02%
0.5 $34.10 $34.73 1.85%
0.9 $43.93 $43.93 0.00%

Table 4 Social surpluses(in millions) for different parameters

From Table 3 we see that offering options is most beneficial when ` is low. This result is intuitive

since options target fans who care the most about the teams playing in the finals. As ` is increased,

the utility that fans derive from watching other teams increases, so fans become less sensitive to

the finalists and more willing to buy advance tickets. Consequently, options become less attractive

for the fans and the organizer does not benefit as much from offering them.

Table 3 confirms that options are most beneficial when capacity is scarce, in agreement with the

theoretical results obtained from symmetric tournaments in §4. Recall that the advantage of options

over the advance tickets is that while each advance ticket consumes exactly one seat, options from

different teams can be assigned to the same seat, which allows the organizer to effectively sell more

tickets per unit of capacity. As more capacity is available the relative benefit of selling options, in

terms of a higher revenue per unit of capacity, dilutes. Thus, as the load factor is decreased, which

is equivalent to increasing capacity, the benefit of introducing options decreases.

Lastly, we see that our results do not appear to be very sensitive to the shape of the distribution

since the results are similar for uniformly and normally distributed valuations.
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Uniform Valuations

lf = 3 lf = 1
` Advance Options OT(Gap) Options BL(Gap) Advance Options OT(Gap) Options SL(Gap)

0.01 $71.80 $80.62 (0.13%) $80.55 (0.22%) $26.97 $28.31 (0.00%) $28.20 (0.37%)
0.1 $83.70 $87.74 (0.16%) $87.73 (0.18%) $31.44 $31.44 (0.00%) $31.38 (0.18%)
0.2 $95.53 $98.13 (0.17%) $98.13 (0.18%)
0.5 $130.22 $130.67 (0.15%) $130.66 (0.16%)
0.9 $175.25 $175.25 (0.16%) $175.26 (0.15%)

Truncated Normal Valuations

lf = 3 lf = 1
` Advance Options OT(Gap) Options SL(Gap) Advance Options OT(Gap) Options SL(Gap)

0.01 $71.89 $81.82 (0.15%) $81.76 (0.23%) $28.89 $30.51 (0.01%) $30.40 (0.33%)
0.1 $83.55 $88.75 (0.18%) $88.78 (0.15%) $33.74 $33.74 (0.00%) $33.68 (0.18%)
0.2 $95.14 $98.86 (0.18%) $98.86 (0.18%)
0.5 $129.10 $129.85 (0.16%) $130.25 (-0.15%)
0.9 $173.42 $173.42 (0.15%) $173.43 (0.15%)

Table 5 Simulated revenues (in millions) of different control policies. Gaps between the simulation and the

deterministic upper bound are also reported.

5.2. Simulation of Control Policies

In this second round of experiments we simulate the performance of different control policies for

the capacity allocation problem. In each scenario we tested the performance of two different control

policies: (i) offer time (OT) control, and (ii) sales limit (SL) control. Both policies were described in

Section 3.2. In the OT control each subset S is offered for the amount of time given by the optimal

solution t(S). Since the deterministic approximation does not prescribe any particular ordering

for the subsets, an order is chosen at random at the beginning of the horizon. In the SL control

all tickets are offered from the beginning, and the number of each product sold is limited to the

expected value given by the MBLP. Additionally, we simulate the performance of advance ticket

pricing problem.

Table 5 reports the average revenue of the different policies over 100 different sample paths for the

different demand scenarios. In the advance ticket pricing problem, simulation results are compared

to the upper bound provided a similar deterministic approximation. In the options pricing problem,

the simulated revenues of the OL and SL policies are compared to the upper bound provided by

the MBLP. In the simulation results, the Options OT column corresponds to the offer time policy

and the Options SL column corresponds to the sales limit policy.

From Table 5 we see that all gaps between the simulation and the deterministic upper bound are
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Figure 4 Gaps between deterministic approximation and simulation for options OT policy.

below .5%. Additionally, the deterministic upper bound performs very well for both distributions

and is robust to the different values of ` and lf .

In practice, enforcing the offer times obtained from the MBLP can be difficult. The difficulty

arises, for example, from the need to coordinate different sales booths, explain the policy to the

salespeople, etc. On the other hand, the sales limit policy provides a simple solution: the event

manager only needs to allocate a fixed number of tickets to each product, and sell the products

until the end of the horizon or the limits are reached. Table 5 shows that the difference between

the sales limit policy and the offer time policy is not very significant. In some cases, the sales limit

policy performs even better than the offer time policy. Thus, event managers can offer options in

a straightforward way: after solving the MBLP they just need to enforce the sales limits obtained

from the deterministic approximation.

6. Conclusion

In this paper, we analyzed consumer options that are contingent on a specific team reaching the

tournament final. Offering options, in addition to advance tickets, allows an organizer to segment

fans. The organizer targets fans with a higher willingness to pay, who are less sensitive to the

outcome, with advance tickets, whereas options target fans who receive more value from attending

a game when their favored team is in the finals. Our results show that the organizer can potentially

increase his profits by taking advantage of this segmentation and that offering options is beneficial

for the fans as well.

In this work we specifically addressed the problem of pricing and capacity control of such options

and advance tickets, under a stochastic and price-sensitive demand. The organizer faces the prob-

lem of pricing the tickets and options, and determining the number of tickets to offer so as to

maximize his expected revenue. We propose solving the organizer’s problem using a two-stage
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optimization problem. The first stage optimizes over the prices, while the second optimizes the

expected revenue by controlling the subset of products that is offered at each point in time using

a discrete choice revenue management model. The second-stage problem can be formulated as a

stochastic control problem, and in most cases is very difficult to solve. Hence, we propose an effi-

cient deterministic approximation, which is shown to be asymptotically optimal. Furthermore, the

deterministic approximation worked extremely well in our numerical tests.

To develop some insight, we provide a theoretical characterization of the problem in the symmet-

ric case, i.e., when all teams are equal in terms of arrival rate and other characteristics. Under some

mild assumptions, we show that when the seats are scarce and fans strictly prefer their own team

over any other, introducing options increases both the revenue of the organizer, and the surplus of

the consumers. We show that the benefits of options decreases as the number of teams grow.

Investigating dynamic pricing of options is a promising topic for research. Dynamic pricing may

provide higher revenues at the cost of substantially increased complexity. Two other natural exten-

sions are relaxing the no-resale restriction and allowing secondary markets, and selling tickets after

the tournament starts. Relaxing these two assumptions can affect the fans’ decisions substantially,

and deserve special attention. However, this may result in an intricate model since the fans may

now delay their decisions of buying tickets and options. Lastly, the single quality seat restriction

may be relaxed by dividing the stadium according to seat quality. This has the possibility of com-

plicating the consumer choice part of the model considerably. Instead of having to choose from at

most two products, fans now may face a wide array of choices.
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Appendix A: No Arbitrage Pricing

We want to exclude the possibility of a third party, the arbitrageur, from taking advantage of differences

in prices to obtain a risk-free profit. For instance, an arbitrageur may simultaneously offer options to fans

and buy advance tickets to fulfill the obligations, or offer options for some teams while buying options from

others.

In the following, we denote by θ = (θa, θ
1
o , . . . , θ

N
o ) ∈ R|S| a portfolio that assigns weight θi to product i.

By convention, a positive value for θi indicates that the arbitrageur is buying product i from the organizer,

while when θi is negative he is selling product i in the market. Using this notation, today’s market value of

the portfolio is given by

pT θ= θapa +

N∑
i=1

θiop
i
o.

Uncertainty is represented by the finite set T of states, one of which will be revealed as true. When state

{i, j} ∈ T realizes, the payoff of the portfolio is −θiopie−θjopje. These can be written more compactly in matrix

notation as Rθ, where R ∈ R|T |×|S| is the matrix of future payoffs. Notice that exploiting the structure of

the problem we can write the payoff matrix as R= ( 0 −ΛT diag(pe) ) , where Λ∈RN×|T | is such that (Λ)is = 1

if in state s team i advances to the final and 0 otherwise.

Finally, in order to fulfill future obligations, the portfolio needs to satisfy θa + θio + θjo ≥ 0 whenever state

(i, j) ∈ T realizes. For instance, if the arbitrageur sells one option for team i and another for team j, then

he needs to hold at least two advance tickets for the case that both teams advance in the final. Similarly,

we write the obligation restriction in matrix notation as Aθ≥ 0, where A∈R|T |×|S| is the obligation matrix.

Again, we may exploit the structure of the problem, and write the obligation matrix as A= ( 1 ΛT ) .

Textbook arbitrage requires no capital and entails no risk. Thus, an arbitrage opportunity is a transaction

that involves no negative cash flow future state and a positive cash flow today.

Definition 1. An arbitrage opportunity is a portfolio θ ∈R|S| with Aθ≥ 0 such that pT θ≤ 0 and Rθ≥ 0

with at least one strict inequality.

The following theorem characterizes the set of arbitrage-free prices. The requirement that y is strictly

positive for all outcomes is due to our definition of arbitrage. If we adopted a strong arbitrage definition as

in LeRoy and Werner (2000), then we would only require y to be non-negative.

Theorem 3. Prices constitute an arbitrage-free market if and only if there exists z, y ∈ R|T | such that

z ≥ 0, y > 0, and

∑
s∈T

zs = pa,
∑

s∈T :i∈s

zs = pio + pie
∑

s∈T :i∈s

ys, ∀i= 1, . . . ,N.

W e want to show that there is no portfolio θ with Aθ≥ 0,
(
−pT
R

)
θ≥ 0, and

(
−pT
R

)
θ 6= 0. Equivalently, from

Tucker’s Theorem of the Alternative Mangasarian (1987) there exists z, y ∈R|T | such that RT y+AT z = p,

y > 0, and z ≥ 0. The result follows by exploiting the fact that AT =
(
1T

Λ

)
, and RT =

(
0

−diag(pe)Λ

)
.
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Notice that by normalizing to 1, we can interpret z as a probability distribution over the set of outcomes.

This suggests that the result can be further simplified by aggregating outcomes, and considering the prob-

abilities of each team advancing to the final. Indeed, we may rewrite the arbitrage conditions in terms of

zi =
∑

s∈T :i∈s zs, and yi =
∑

s∈T :i∈s ys. It is clear that every distribution over outcomes induces a distribution

over teams, but the converse does not necessarily hold. Lemma 1 identifies the set of attainable distributions

over teams for dyadic tournament.

Lemma 1. Consider a single elimination tournament, and let the cone C = {α∈RN | α= Λy, y≥ 0}. Then,

α∈ C if and only if
∑

i∈T1
αi =

∑
i∈T2

αi, and α≥ 0.

F or the only if, take any α∈ C and observe that∑
i∈T1

αi =
∑
i∈T1

∑
s∈T

(Λ)isys =
∑
i∈T1

∑
j∈T2

y(i,j) =
∑
j∈T2

∑
i∈T1

y(i,j) =
∑
j∈T2

∑
s∈T

(Λ)jsys =
∑
j∈T2

αj .

For the if part we proceed by contradiction. If α = 0 the result is trivial, so we assume that α 6= 0. Since

the cone C is closed and convex and α /∈ C, by the Strictly Separating Hyperplane Theorem there exists

an hyperplane that strictly separates them Boyd and Vandenberghe (2004). Alternatively, there is a vector

q ∈RN such that qTα< qTΛy for all y≥ 0.

Pick any i′ ∈ T1, and set y such that y(i,j) = αj if i= i′ and 0 otherwise. Evaluating the right hand side at

y we get

qTΛy=
∑
i∈T1

∑
j∈T2

(qi + qj)y(i,j) =
∑
j∈T2

(q′i + qj)αj = q′i
∑
j∈T2

αj +
∑
j∈T2

qjαj =
∑
i∈T1

q′iαi +
∑
j∈T2

qjαj ,

where the last equality follows from the hypothesis. Hence,
∑

i∈T1\i′
(qi − qi′)αi < 0 from the separating

hyperplane theorem, and we conclude that qi
′′
< qi

′
for some i′′ ∈ T1 \ i′ since α≥ 0. Repeating the argument

with i′′ we obtain that qi
′′′
< qi

′′
< qi

′
for some i′′′ ∈ T1 \ i′′. By repeatedly applying the same argument we

reach a contradiction.

For example, in the case of a single elimination tournament we require that the teams in both branches

sum up to the same value, that is,
∑

i∈T1
yi =

∑
i∈T2

yi and
∑

i∈T1
zi =

∑
i∈T2

zi. Hence, after eliminating zi

from the system, we find that there is no arbitrage if there exists that a strictly positive y ∈RN such that

pa =
∑
i∈T1

pio + yipie =
∑
i∈T2

pio + yipie,∑
i∈T1

yi =
∑
i∈T2

yi.

Thus, one may incorporate the previous set of constraints in the first-stage problem to exclude arbitrage

opportunities.
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Appendix B: Proofs and Derivations

B.1. Hamiltion-Jacobi-Bellman Equation for the Second-Stage Problem

Let the value function V (t,Xa,Xo) be the maximum expected revenue that can be extracted when t time

units are remaining, and Xa number of advance tickets and Xo number of options have been sold. Our goal

is to find R∗(p) = V (T,0,0) and the HJB equation for the second-stage problem can be written:

∂V (t,Xa,Xo)

∂t
= max

S⊆S

{
λa(S) (pa +V (t,Xa + 1,Xo))

+
∑
i∈So

λio(S)
(
pio + qipie +V (t,Xa,Xo + ei)

)
+λn(S)V (t,Xa,Xo)

}
,

with boundary conditions

V (0,Xa,Xo) = 0 for all Xa,Xo,

V (t,Xa,Xo) =−∞ if Xa +Xi
o +Xj

o >C for some outcome {i, j} ∈ T .

Here, λn(S) = Λ−λa(S)−
∑N

i=1 λ
i
o(S) is the arrival rates of fans who decide not to purchase either advance

tickets or options when S is on offer and Λ =
∑N

i=1 Λi is the total arrival rate.

B.2. Proof of Proposition 1

We first show that RCDLP (p)≤RMBLP (p) by showing that any solution of the CDLP can be used to construct

a feasible solution to the MBLP with the same objective value. Let {t(S)}S⊆S be a feasible solution to the

CDLP. First, using the decision variables given by (6), the total number of advance tickets sold can be

written as

Xa =
∑
S⊆S

t(S)λa(S) =
∑
S⊆S

t(S)

N∑
i=1

Λi1{A∈S}(π
i
an +πiaon + 1{Oi /∈S}π

i
oan)

=

N∑
i=1

( ∑
S⊆S:A∈S,Oi∈S

t(S)
)

Λi(πian +πiaon) +
( ∑
S⊆S:A∈S,Oi 6∈S

t(S)
)

Λi(πian +πiaon +πioan)

=

N∑
i=1

ti
(
{A,Oi}

)
λia
(
{A,Oi}

)
+ ti ({A})λia ({A}) =

N∑
i=1

∑
S⊆Si

ti(S)λia(S), (12)

where the second equality follows from (1), the third from exchanging summations, and the fourth from (1)

again. Similarly, the number of options sold in market segment i can be written as

Xi
o =

∑
S⊆S

t(S)λio(S) =
∑
S⊆S

t(S)Λi1{Oi∈S}
(
πion +πioan + 1{A/∈S}π

i
aon

)
=
( ∑
S⊆S:A∈S,Oi∈S

t(S)
)

Λi(πion +πioan) +
( ∑
S⊆S:A∈S,Oi 6∈S

t(S)
)

Λi(πion +πioan +πiaon)

= ti
(
{A,Oi}

)
λio
(
{A,Oi}

)
+ ti ({A})λio ({A}) =

∑
S⊆Si

ti(S)λio(S), (13)

where the second equality follows from (2), the third from exchanging summations, and the fourth from (2)

again. Thus, the capacity constraint (10) is verified.



Balseiro et al.: Revenue Management of Consumer Options for Tournaments
Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS 31

The non-negativity constrains and the time-horizon length constraints (8) follow trivially. Next, for the

advance selling market consistency constraints (9) notice that for all i= 1, . . . ,N we have that

ti
(
{A,Oi}

)
+ ti ({A}) =

∑
S⊆S:A∈S,Oi∈S

t(S) +
∑

S⊆S:A∈S,Oi 6∈S

t(S) =
∑

S⊆S:A∈S

t(S) = Ta.

Thus, advance tickets are offered the same amount of time in all markets.

Finally, the next string of equalities show that both solutions attain the same objective value∑
S⊆S

r(S)t(S) =
∑
S⊆S

rTλ(S)t(S) =
∑
S⊆S

N∑
i=1

(
raλ

i
a(S) + rioλ

i
o(S)

)
t(S)

=

N∑
i=1

∑
S⊆Si

raλ
i
a(S)ti(S) + rioλ

i
o(S)ti(S) =

N∑
i=1

∑
S⊆Si

ri(S)ti(S),

where the third equality follows from (12) and (13).

Next, we show that RCDLP (p) ≥ RMBLP (p) by showing that any solution of the MBLP can be used to

construct a feasible solution to the CDLP with the same objective value. Let {ti(S)}
S⊆Si,i=1,...,N be a feasible

solution to the MBLP. In the following, we give a simple algorithm to compute a feasible solution {t(S)}
S⊆S

for the CDLP.

First, we deal with offer sets containing advance tickets, and compute t(S) for all S ∈ S such that A∈ S.

Let [i]i=1,...,N be the permutation in which teams are sorted in increasing order with respect to ti ({A,Oi}),

i.e. t[i]
(
{A,O[i]}

)
≤ t[i+1]

(
{A,O[i+1]}

)
. Consider the following offer sets

S[i] =
{
A,O[i],O[i+1], . . . ,O[N]

}
∀i= 1, . . . ,N

S[N+1] = {A}

and associated times t
(
S[i]
)

= t[i]
(
{A,O[i]}

)
− t[i−1]

(
{A,O[i−1]}

)
for all i = 1, . . . ,N + 1, with

t[0]
(
{A,O[0]}

)
= 0, and t[N+1]

(
{A,O[N+1]}

)
= Ta. Since teams are sorted with respect to ti ({A,Oi}), we

have t
(
S[i]
)
≥ 0. Notice that this construction is valid because the market consistency constraints (9) guar-

antee that advance tickets are offered the same amount of time in all markets. Figure 5 sketches a graphical

representation of the algorithm.

Next, we look at the intuition behind this construction. Although the order is not important, consider a

solution for the CDLP that offers the sets S[i] in sequential order; it starts with S[1], then S[2], and so forth

until S[N+1]. Hence, at first it offers all products, then team 1’s options are removed, then team 2’s options

are removed, and so forth until the end when only advance tickets are offered. Hence, the optimal policy has

a nested structure. A similar argument holds for offer sets not containing advance tickets.

B.3. Proof of Theorem 1

Fix prices p. The first bound follows from Proposition 1 in Liu and van Ryzin (2008), where they proved

such result by using the optimal policy µ∗ of the stochastic control problem to construct a candidate solution

for the CDLP. In the candidate solution each set is offered for an amount of time tµ∗(S), which is defined as

the expected time set S is offered under policy µ∗. Or equivalently tµ∗(S) = E
[∫ T

0
1{Sµ∗(t) = S}dt

]
. Such a
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{
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Figure 5 Computing a feasible solution for the CDLP (showed on the right) from a feasible solution from the

MBLP (on the left) in the case of offer sets containing advance tickets.

solution is easily shown to be feasible for the CDLP and to attain, in that problem, the same objective value

that in the original stochastic problem. Thus, one concludes that R∗(p)≤RCDLP (p) since every solution of

the CDLP is upper bounded by its optimal value.

In order to show the second bound we use an argument similar to that of Gallego et al. (2004). First, we

construct a theoretical offer time (OT) policy from the optimal solution of the CDLP. In such a policy one

offers each set for the time prescribed by the deterministic solution in an arbitrary order. Additionally, the

number of products sold in each set is limited to the expected demand, and each set is offered until either

the time runs out or any of the products runs out. We denote by ROT (p) to be the expected revenue of the

offer time control. Clearly, it is the case that ROT (p)≤R∗(p). We shall bound the difference between ROT (p)

and the upper bound RCDLP (p).

We construct the OT policy as follows. Let t∗(S) be the optimal solution of the CDLP. With some abuse of

notation with refer to advance tickets as the zero option, i.e., A≡O0, Xa ≡X0
o , pa ≡ r0

o , and λa(S)≡ λ0
o(S).

Under the OT policy set S is offered for a time τOT (S)
d
= min{t∗(S),minOi∈S τ

i
o(S)}, where τ io(S) is the first

time we run out of the ith team options in an alternate system in which products are sold independently of

each other. More formally, we have that

τ io(S) = inf{t :Xi
o(S, t)≥ bλio(S)t∗(S)c},

where Xi
o(S, t) is the number of ith team options sold by time t when offering set S in the alternate system,

and bxc is largest integer not greater than x. For the sake of simplicity we assume that the limits on the

number of tickets sold are stricly positive, else they can be excluded from the offer set. Notice that τ io(S) is

an Erlang random variable with rate λio(S) and shape parameter bλio(S)t∗(S)c.

Before proceeding we state some definitions. Let rmax = maxS⊆S∗,Oi∈S{rio(S)} be the maximum revenue

rate and λmin = minS⊆S∗,Oi∈S{λio(S)} be the minimum arrival rate.
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We can lower bound the expected value of the random time τOT (S) using the bound for the minimum of

random variables from Aven (1985) by

E
[
τOT (S)

]
≥min{t∗(S), min

Oi∈S
E[τ io(S)]}−

√
|S|
|S|+ 1

∑
Oi∈S

Var [τ io(S)]

≥ t∗(S)−max
Oi∈S

λio(S)−1−
√
t∗(S)

∑
Oi∈S

λio(S)−1

≥ t∗(S)−λ−1
min−

√
t∗(S)(N + 1)λ−1

min,

where the second inequality follows from the fact that E [τ io(S)] = bλio(S)t∗(S)c/λio(S)≥ t∗(S)−1/λio(S), and

Var [τ io(S)] = bλio(S)t∗(S)c/λio(S)2 ≤ t∗(S)/λio(S).

Next, we bound the expected revenue of the offer time policy. Using the fact that τOT (S) is a bounded

stopping time together with the previous bound we obtain that

ROT (p) = E

[∑
S⊆S

∑
Oi∈S

rioX
i
o(S, τ

OT (S))

]
=
∑
S⊆S

∑
Oi∈S

rioλ
i
o(S)E

[
τOT (S)

]
≥
∑
S⊆S

r(S)t∗(S)−
∑
S⊆S

r(S)(λ−1
min +

√
t∗(S)(N + 1)λ−1

min)

≥RCDLP (p)− rmaxλ
−1
min|S∗| − rmax

√
(N + 1)λ−1

min

∑
S⊆S

√
t∗(S)

≥RCDLP (p)− rmax|S∗|
(
λ−1

min +

√
(N + 1)λ−1

min

√
T

)
,

where the last inequality follows from the fact that
∑

S⊆S

√
t∗(S) ≤ |S∗|

√∑
S⊆S t

∗(S). We conclude by

noting that ROT (p)≤R∗(p).

B.4. Proof of Theorem 2

Recall that the deterministic approximation of the advance ticket pricing problem is equal to the option

pricing problem (11) under the condition that λo = 0. This can be equivalently written as

RDa = max
λa≥0

T (q+ (1− q)`)v(λa) (14)

s.t. Tλa ≤C,λa ≤Λ.

Let us first write down the gradient of the option pricing problem objective

∂RDo
∂λo

= Tqv′(λa +λo),

∂RDo
∂λa

= T (1− q)`v′(λa) +Tqv′(λa +λo).

First, we look at the case where the seats are scarce (C <λ∗aT ). In the advance ticket pricing problem (14)

the organizer can afford to price higher, and prices at the run-out rate λ0
a =C/T , i.e., the intensity at which

all seats are sold over the time horizon. Note that λ0
a is a constrained global optimum of the advance selling

problem, and v′(λ0
a)> 0. Starting from (λ0

a,0) in the options pricing problem, we will study the impact of

increasing the options’ intensity on the revenue. Clearly, (λ0
a,0) is a feasible solution of (11). Since capacity is

binding, to compensate for an increase in λo the organizer needs to decrease the intensity of advance tickets.
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Thus, from (11b) we obtain that dλa

dλo
=− 2

N
=−q. Evaluating the total derivative of the objective at (λ0

a,0)

we obtain

dRDo
dλo

=
∂RDo
∂λo

+
∂RDo
∂λa

dλa
dλo

= Tqv′(λ0
a)−Tq ((1− q)`+ q)v′(λ0

a)

= Tq(1− q)(1− `)v′(λ0
a)> 0.

This implies that the current solution can be improved by introducing options. However, note that when

`= 1, the equation above equals zero and there will not be any benefit in introducing options.

Second, we consider the case where the capacity of the stadium is large (C ≥ λ∗aT ). In the advance ticket

pricing problem (14) the organizer ignores the problem of running out of seats and prices according to the

revenue maximizing rate λ∗a. Note that λ∗a is an unconstrained global optimum, and thus v′(λ∗a) = 0. Clearly,

(λ∗a,0) is a feasible solution of (11), and the gradient of the objective is zero at (λ∗a,0) since v′(λ∗a) = 0.

Hence, this solution is an unconstrained local optimum and the concavity of the program implies this is also

a global optimum. Thus, the current solution cannot be improved by introducing options and this result is

independent of `.

B.5. Proof of Proposition 2

Let RDa (`) and RDo (`) be the optimal values of (14) and (11) as a function of `, respectively. First, we show

that the absolute benefit of introducing options decreases as ` increases. We proceed by showing that the

difference RDo (`)−RDa (`) is decreasing in `. Notice that the objective function of both problems is convex

as a function of `. By the Maximum Theorem the functions RDa (`) and RDo (`) are convex, and differentiable

almost everywhere. We proceed by calculating the total derivatives of RDa (`) and RDo (`) with respect to `.

For the advance ticket pricing problem, we have that the optimal solution of (14) is λ0
a because C <λ∗aT .

Then, any change in ` does not affect the optimal solution and the derivative of RDa (`) with respect to ` is

given by

dRDa (`)

d`
= T (1− q)v(λ0

a). (15)

For the options pricing problem, we have from the Envelope Theorem that the derivative of RDo (`) with

respect to ` is

dRDo (`)

d`
= T (1− q)v(λa(`)), (16)

where λa(`) denotes the optimal arrival intensity for advance tickets in 11 for fixed `.

A trivial consequence of the capacity constraint (11b) is that λa(`)≤ λ0
a. Additionally, because seats are

scarce we have λ0
a <λ

∗
a. Finally, since the value rate is increasing in [0, λ∗a), we conclude that

dRD
a (`)

d`
≥ dRD

o (`)

d`
,

and the difference is decreasing in `.

For the relative benefit, we first write the ratio of revenues as
RD

o (`)

RD
a (`)

= 1+
RD

o (`)−RD
a (`)

RD
a (`)

. From (15) it is clear

that RDa (`) is increasing in `, and the result follows.
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B.6. Proof of Proposition 3

First, let us prove the first part of the proposition when ` > 0. Observe that since capacity is scarce, the

optimal solution of the advance ticket pricing problem (14) is the run-out rate λ0
a =C/T , and it is independent

of the number of teams. Let {(λ(N)
a , λ(N)

o )}
N

be a sequence of optimal solutions to the advance ticket and

options pricing problem (11) indexed by the number of teams. Scarcity of seats together with concavity

guarantee that the capacity constraint (11b) is binding at the optimal solution. Since intensities are bounded

from above by Λ, this guarantees that limN→∞ λ
(N)
a = λ0

a. As a side note, it is not necessarily the case that

λ(N)
o converges to zero as N goes to infinity.

Second, we show that the following inequality holds

λ(N)

a ≤ λ0
a ≤ λ(N)

a +λ(N)

o ≤ λ∗a. (17)

The first inequality is a trivial consequence of the capacity constraint (11b). For the second inequality

observe that the capacity constraint (11b) is binding, and thus λ0
a = λ(N)

a + 2
N
λ(N)
o ≤ λ(N)

a + λ(N)
o . For the

third inequality suppose that λ(N)
a + λ(N)

o > λ∗a for some N , and consider an alternate solution in which the

options’ intensity is decreased to λ̃(N)
o = λ∗a−λ(N)

a . Clearly, λ̃(N)
o ≥ 0, and the new solution satisfies the capacity

constraint and the third inequality. Moreover,

RDo (λ(N)

a , λ(N)

o ) = T (1− 2

N
)`v(λ(N)

a ) +T
2

N
v(λ(N)

a +λ(N)

o )

≤ T (1− 2

N
)`v(λ(N)

a ) +T
2

N
v(λ∗a) =RDo

(
λ(N)

a , λ̃(N)

o

)
,

where the first inequality follows since λ∗a is the least maximizer of v. Thus, the new solution is also optimal.

This shows that if the third inequality does not hold for any N , we can construct a solution
(
λ(N)
a , λ̃(N)

o

)
for

which it holds. So, without loss of generality, we can conclude that the third inequality holds.

So, the ratio of optimal revenues can be written as

RDo (λ(N)
a , λ(N)

o )

RDa (λ0
a)

=
T (1− 2

N
)`v(λ(N)

a ) +T 2
N
v(λ(N)

a +λ(N)
o )

T
[
(1− 2

N
)`+ 2

N

]
v(λ0

a)

=
N`− 2`

N`+ 2(1− `)
v(λ(N)

a )

v(λ0
a)

+
2

N`+ 2(1− `)
v(λ(N)

a +λ(N)
o )

v(λ0
a)

≤ v(λ(N)
a )

v(λ0
a)

+
2

N`

v(λ(N)
a +λ(N)

o )

v(λ0
a)

≤ 1 +
2

N`

v(λ∗a)

v(λ0
a)
,

where the second equation is obtained by algebraic manipulation, the first inequality follows from bounding

the leading factor of the first term by 1 and the leading factor of the second term by 2
N`

, and the second

inequality follows from (17) together with the fact that v(.) is non-decreasing in [0, λ∗a].

Now, if `= 0 options and advance tickets are equivalent to customers, and customers choose the product

with the lowest expected price. Thus, we only need to consider the case where the organizer sells only options

the whole time horizon. The options pricing problem is now

RDo = max
λΣ
o ≥0

T
2

N
v(λΣ

o )

s.t. TλΣ
o ≤

N

2
C, λΣ

o ≤Λ.
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This problem is similar to the advance selling problem (14) except that capacity is scaled by N
2

. Scarcity

implies that C < λ∗aT , and thus the optimal solution is λ(N)
o = min

{
λ∗a, λ

0
a
N
2

}
. Then, the optimal value is

RDo = T 2
N
v(min

{
λ∗a, λ

0
a
N
2

}
). Finally, observe that for N ≥ 2

⌈
λ∗a
λ0
a

⌉
the organizer may price according to the

revenue maximizer rate λ∗a and RDo = T 2
N
v(λ∗a).

B.7. Proof of Proposition 4

Let us begin by defining the total surplus of consumers that will buy an advance ticket when the arrival

intensity is λa,

SDa (λa) = TΛ(q+ (1− q)`)Ḡv

(
pa(λa)

q+ (1− q)`

)
= T (q+ (1− q)`)s(λa)

where the surplus rate is defined as s(λa) = ΛḠv

(
F̄v
−1 (λa

Λ

))
, and Ḡi

v(x) = E [(V −x)+] =
∫∞
x
F̄ i
v(v)dv the

integrated tail of the valuations. Notice that the surplus rate is defined on [0,Λ]. Additionally, it is increasing,

continuous, differentiable, non-negative, and bounded. The monotonicity stems from the fact that F̄v
−1

is

decreasing and Ḡv is non-increasing. Moreover, it satisfies limλa→0 s(λa) = 0, and limλa→Λ = ΛEV . In contrast

to the revenue rate, the maximum is reached when the intensity is set to Λ, or equivalently the price set to

zero. Not surprisingly, total consumer surplus is maximized when the tickets are given away for free.

In the advance ticket and options pricing problem, two sources contribute to the total consumer surplus.

The first source is consumers who choose advance tickets over options. The second source is consumers who

chose options over advance tickets. Some algebra shows that the total consumer surplus in terms of the

arrival intensities, denoted by SDo (λa, λo), is

SDo (λa, λo) = T (1− q)`s(λa) +Tqs(λa +λo).

Observe that the formula for consumer surplus is similar to the organizer’s revenue with the exception that

the value rate is replaced by the surplus rate.

Next, we show that the surplus rate is The derivative of the surplus rate w.r.t. λa is

ds

dλa
(λa) =

λa
Λ

1

fv

(
F̄v
−1

(λa/Λ)
) .

Composing the derivative with λa(c) = ΛF̄v(c) we get(
ds

dλa
◦λa

)
(c) =

ds

dλa

(
ΛF̄v(c)

)
=
F̄v(c)

f(c)
=

1

h(c)
.

Strict IFR implies that the composite function is decreasing in c. Because λa(c) is decreasing, we conclude

that original derivative is also decreasing and s is strictly convex.

Now, we are position to prove that offering options increases social surplus. First, let (λa, λo) be the optimal

solution to the options pricing problem. Since seats are scarce, the capacity constraint (11b) is binding in

the optimal solution. Then λ0
a = C/T = λa + qλo = (1− q)λa + q(λa + λo), where we have written λ0

a as a
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convex combination of λa and λa +λo. Consider the convex combination of the same points, denoted by λ̂a,

in which we multiply the first weight by ` and re-normalize. Hence, λ̂a is given by

λ̂a =
(1− q)`

q+ (1− q)`
λa +

q

q+ (1− q)`
(λa +λo).

Notice that λ̂a >λ
0
a. This follows from λo > 0 implying that the second point is strictly greater than the first,

and the weight of this larger point being larger in λ̂a than in λ0
a.

Finally, we have that

SDo = SDo (λa, λo) = T (1− q)`s(λa) +Tqs(λa +λo)

≥ T (q+ (1− q)`)s(λ̂a)>T (q+ (1− q)`)s(λ0
a) = SDa (λ0

a) = SDa ,

where the first inequality follows from the convexity of the surplus rate, the second inequality from the fact

that the surplus rate is increasing and λ̂a >λ0
a, and the last equality from λ0

a being the optimal solution to

the advance selling problem when seats are scarce. Thus, the introduction of options increases the consumer

surplus. As a side note, any feasible solution to the options pricing problem in which the capacity constraint

(11b) is binding verifies that SDo (λa, λo)≥ SDo .

B.8. Proof of Proposition 5

Since all teams are equivalent, we offer tickets at price pf independent of the outcome under full information

pricing. Additionally, the expected revenue over all outcomes is equal to the revenue of any given outcome.

The deterministic approximation of the full information pricing problem is given by

RDf = max
pf

Tλf (pf )pf (18)

s.t. Tλf (pf )≤C,pf ≥ 0,

where the arrival rate is given by λf (pf ) = 2ΛF̄v(pf )/N + (N − 2)ΛF̄v(pf/`)/N .

Let pf be a solution to problem (18). We show that by taking pa = pf and ro = qpf we obtain a solution

to the options pricing problem (11) that achieves the same revenue. First, under those prices, the demand

intensities for advance tickets and options are λa(pf , qpf ) = ΛF̄v(pf/`), and λo(pf , qpf ) = ΛF̄v(pf )−ΛF̄v(pf/`)

respectively. Second, using the fact that Tλf (pf ) ≤ C, it is easy to see that the new solution satisfies the

capacity constraint (11b). Lastly, the revenue is given by

RDo (pf , qpf ) = Tλa(pf , qpf )pf +Tλo(pf , qpf )qpf = Tpf (λa(pf , qpf ) + 2/Nλo(pf , qpf ))

= Tλf (pf )pf =RDf .
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