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Abstract

Why do people disagree? Using the recent literature on inatten-

tion, we construct a simple setup that allows a priori identical agents,

being shown the same set of signals from the same objective state of

the world, to permanently come to different conclusions in their poste-

riors. The inattentive framework allows for two effects, which we call

confirmation and confidence effects. The former states that agents

who are biased in a particular direction will arrange their attention to

perceive signals that agree with their bias. The latter states that the

larger the degree of the bias, the less attention an agent will pay, until

the agent stops paying attention altogether. These effects in combi-

nation allow for divergence of opinions and permanent polarization,

even on issues with an objective truth.
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1 Introduction

Can two people come to permanently differ in their beliefs about an ob-

jective state of the world? Can one person be permanently wrong about

that state? It would appear that the simple answer to these questions is

no. With Bayesian updating and informative signals, beliefs should converge

to the truth irrespectively of the starting point. However, in reality, we do

observe persistently heterogeneous beliefs in a variety of fields on issues of

common values or objective truth from politics, to sports, to economics and

finance. How can these divergences occur? In this paper, we show how the

simple assumption that agents are attention-constrained implies the possi-

bility of them coming to the wrong belief permanently. When an individual

can choose the level of attention to pay to different states, he elects to obtain

more precision in the state he judges more likely, generating a confirmation

bias. The confirmation bias implies that when an agent perceives the wrong

state of the world in one period, she is more likely to make a similar percep-

tual mistake in the next period. In addition, we show that when an agent’s

beliefs are biased enough, she stops paying attention to the problem whatso-

ever and beliefs are stuck, which we label the confidence effect. Eventually, an

individual led to wrongly biased beliefs due to mistaken signals, a situation

which is made more likely with confirmation bias, can thus be permanently

wrong.

The impact of prior beliefs on the pattern of information collection, and

especially in the direction of updating, has been observed in various settings.

Polls by Pew Research Center show how Republicans’ and Democrats’ po-

sitions on government policies related to civil liberties evolved in opposite
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directions before and after the election of Barack Obama. In 2006, 75% of

Republicans and 37% of Democrats viewed the “NSA surveillance programs”

as “Acceptable”; In 2013, those numbers were 52% and 64%. In 2002, 53%

of Republicans and 41% of Democrats agreed that the “government [should]

be able to monitor emails”; in 2013 those numbers were 45% and 53%.

A divergence in the evolution of beliefs due to different priors has been

evinced more systematically. Darley and Gross (1983) ask some experimental

subjects to judge a child’s ability based only on some information about their

socio-economic background. They give the same socio-economic information

to another set of subjects who are then shown a video of the child completing

an academic test, after which the subjects are also asked to rate the child’s

ability. The viewing of the video increases the reported child’s ability when

the socio-economic information reveals the child to come from a high-income

neighbourhood, the opposite occurs with the other treatment.

In this paper, we suggest that there can be polarization of beliefs on

common value issues through the effect of priors on the collection and the

interpretation of information. A biased agent pays more attention to a state

she believes to be more likely to be true. More formally, with two possible

states of the world, she chooses the signal to be more informative in the

state which is more likely under her prior. Interpretation errors will thus be

more numerous in the state that goes against her beliefs. Therefore, initial

interpretation errors which bias the agents’ belief against the true state of

the world will beget new interpretation errors.

Our framework, while intuitively simple, actually enables us to achieve

divergence. It is quite straightforward to achieve permanent divergence, and
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the divergence often occurs very quickly. However, the convenience of having

such strong divergence results, is twofold. The first is that it allows us to

provide an micro foundation option for heterogeneous beliefs. The second

is that it occupies a space on the opposite end of the spectrum from Black-

well. Having two results under two different, but related frameworks, allows

for the possibility of hybrid models that could lead to a more sophisticated

understanding of disagreement.

Blackwell and Dubins (1962) showed that increasing information among

agents with absolute continuity in priors, must lead to convergence (or as

they termed it, ‘merging’) of opinions. Any Bayesian agent can observe a

imperfect signal and be temporarily distracted, but in the limit, the truth

must be reached. This powerful result has formed the bedrock of a strand of

economic literature. In particular, how can we reconcile such a result with the

many protracted disagreements we see around us? Acemoglu, Chernozhukov,

and Yildiz (2006) and Acemoglu, Chernozhukov, and Yildiz (2008) use the

idea of noise in the inference process of agents to allow for belief divergence.

Other more direct critiques of Blackwell and Dubins have come from such

papers as Freedman (1963) and Miller and Sanchirico (1999), which make

a technical argument against the assumption of absolute continuity in their

proof. Our approach is somewhat different - in that we allow for there to

be noise in the process of a signal’s perception, but there is no incomplete

information, nor does our result rely on agent’s placing zero weight on one

state in their prior (as for example, is the case in Berk (1966)).

Our focus on the impact of prior beliefs on information interpretation is

motivated by a long list of empirical findings. First, there has been substan-
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tial research uncovering the confirmation bias, and we refer the reader to the

review by Nickerson (1998), who defines it as “the unwitting selectivity in

the acquisition and use of evidence”.

More particularly, various papers have tried to analyze how agents collect

and interpret information. A first notion which has been studied in political

science is that of selective exposure: agents choose the sources of information

and their potential bias. Lord, Ross, and Lepper (1979), and Baumeister and

Newman (1994), provided evidence for agents suggesting that people pay less

attention to information confirming their prior and evaluate “disconfirming

evidence” more thoroughly. In finance, Huberman and Regev (2001) nar-

rates how a front-page story in the New York Times about a cancer-curing

drug reported months earlier, publicly, by Nature, led to a dramatic jump in

the stock of a company linked to the drug.1. In political economy, Redlawsk

(2008) shows that voters are looking for information about preferred candi-

dates and avoid information about candidates they dislike. Other references

for similar results include Lodge, Steenbergen, and Brau (1995), Taber and

Lodge (2006).

A second strand has looked at information misinterpretation, or how two

agents can look at the same information differently. In addition to Darley

and Gross (1983) mentioned above, Taber and Lodge (2006) show in the po-

litical realm that arguments in favor of the prior are considered stronger than

arguments against. In accounting, Hirshleifer and Teoh (2003) demonstrate

how the presentation of information affects its interpretation, a literature to

which Hirst and Hopkins (1998) contribute as well. Other examples can be

1. See also Lipe (1998)

5



found in, for instance, Fryer, Harms, and Jackson (2013).

The overwhelming evidence for the existence of a bias in the collection

of information has led to a flourishing theoretical literature to understand

its impact on the path of beliefs, to which our work is closely related. The

necessity of a new framework to understand how beliefs are formed has been

made even more salient by a recent paper by Baliga, Hanany, and Klibanoff

(2013) where they show that divergence cannot occur in a Bayesian updating

framework. Various models which discuss the potential impact of priors on

information collection have been proposed. Both Suen (2004) and Cukierman

and Tommasi (1998) show how it might be rational to choose an information

source biased towards one’s prior because only such a source can credibly

reveal information against the prior, which would make it worth it to incur

the cost of updating. Rabin and Schrag (1999) model confirmation bias as an

exogenous probability of misinterpretation of incongruent signals. Koszegi

and Rabin (2006) assume that the utility function is a increasing function

of the difference between actual consumption and a reference point so that

prior expectations play a role. Fryer, Harms, and Jackson (2013), in the

paper most closely related to our work, assume that agents receive ambiguous

signals which they interpret as signals in favor of their prior, and keep only

this interpretation in memory.

Instead, we adopt the Inattentive Valuation framework laid out in Wood-

ford (2012) where the precision of information is an endogenous choice of the

individual. Agents are motivated by simply being correct, but the accuracy

of their perception – the precision of their signals – is limited by an attention

cost. This attention cost is a fixed marginal cost imposed on the amount of
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information conveyed by a choice of precision levels. This information quan-

tity is measured using tools from information theory developed by Shannon

(1948) for communication systems, and also discussed by Sims (2003).

Importantly, agents’ utility function is simply minimizing squared error

terms. They are fully rational and try to maximize utility subject to certain

constraints or costs, and further they are Bayesian, and use Bayes’ Rule to

update their beliefs given their perceived signals.

The paper proceeds as follows. Section 2 will explain Woodford (2012)

and show that the naive approach will be insufficient to resolve the question

we’re trying to answer. Section 3 sets up a static problem where there is

uncertainty about a binary variable, and the precision on the observation of

the actual value of the variable is affected by the prior over the two alterna-

tives. Section 4 extends the analysis to a dynamic setting where an agent is

allowed to perform multiple (even infinite) observations about the variable.

Section 6 concludes.

2 Setup

Suppose that there are two possible states of the world, A and B. An agent

has a prior that the state is A which we denote by π = P (A). We will

henceforth write P (E) for the probability of a given event E. The agent’s

decision is to choose the level of attention to pay to each possible state, i.e.

the probability of observing it correctly, in order to maximize accuracy. The

“perceptions” of the states r ∈ {a, b} are assimilable to a typical “noisy

signal”. Formally, the attention that the agent pays to the states can be
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characterized by α = P (r = a|x = A) for state A and β = P (r = b|x = B)

for state B.

In standard models of this form with private information, α and β are

usually given exogenously and signals are assumed to be informative, i.e.

α, β > 1
2
. Under these setups, agents who update their beliefs using Bayes

Rule, as ours do, will always come to learn the truth in the limit. The

reasoning behind this is simple: if the true state is A it must be the case that

in the limit, the proportion of “a” signals that the agents sees is exactly α;

if the true state is B, this fraction will be 1−β. α = 1−β would imply that

the signals are uninformative about the state.

In our model, α and β are decision variables: the signals’ precisions are

endogenous. Typically, higher values of α and β will be more desirable for

the agent. If information was not costly, he would choose α = β = 1. If we

assume, however, that attention has a price, this will usually not be the case.

Assume that the quantity of information allowed by a choice (α, β) can be

written as a function Γ(α, β; γ) which depends on the attention choices, and

perhaps some additional parameter(s) γ. Intuitively, a standard condition

on Γ would be that it is increasing in both α and β. Given this quantity,

we can also quantify the attention cost as a function of Γ(.). We will turn

to information theory to find a cost function that is well-founded in the

literature.

We quantify information by considering a model of the perceptual system

as a communication system, and use the tools developed by Shannon (1948).

The decision frameworks developed by Sims (2003) and Woodford (2012)

employ Shannon’s work in the economic world in quantifying information.
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We quantify the information conveyed by a choice of attention in the same

way, and assume that there exists a fixed marginal cost incurred by an agent

in increasing this quantity.

The information conveyed by an attentional choice (α, β) is quantified by

a measure of the difference in uncertainty about the state of the world before

and after the perceived signal.

The amount of uncertainty contained in a distribution can be quantified

by its entropy. The entropy measures the minimum expected number of

bits necessary to encode the information contained in one realization from

this distribution. Formally, for a pdf f , the entropy is given by H(f) =

Ef [log2(f)]. The higher the value, the more bits required, and hence the less

informative the distribution.

The prior π yields the entropy of the prior belief. The choice of attention

along with the prior yields the entropy of the posterior belief. The expected

amount of information conveyed by the attention choice, from the point of

view of the agent, is the difference in entropy between the prior and the

posterior, which is called the mutual information between the two random

variables. The larger the gap between the distributions, the more informative

the attention choice.

In our model, this mutual information is thus given by:2

I((α, β); π) = −EP (x,r) [ln(P (x))− ln(P (x|r))]

We then have:

2. We use the natural logarithm here instead of the logarithm in base 2, but this has

no influence on the results.
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I((α, β);π) = απ ln(α) + (1− α)π ln(1− α)

+ (1− β)(1− π) ln(1− β) + β(1− π) ln(β) (1)

− [απ + (1− β)(1− π)] ln(απ + (1− β)(1− π))

− [(1− α)π + β(1− π)] ln((1− α)π + β(1− π))

The agent’s problem is to maximize accuracy, or minimize errors, un-

der an attention cost based on I((α, β);π). This cost can either be a pure

marginal cost, or a shadow cost of relaxing a fixed constraint on the overall

attention level. Given the simple setting, the maximization of accuracy is

equivalent to minimizing squared error (a more conventional objective) con-

sidering a situation where the utility of being correct is 1 and the utility of

being incorrect is 0.

The framework of rational inattention proposed by Sims (2003) uses mu-

tual information directly as its measure of the quantity of information con-

tained in an attention choice. If attention has a fixed marginal cost θ > 0,

the cost of attention is given by Γ(α, β; γ) = θI((α, β);π) so that γ ≡ π and

the rational inattention model can be written as

Max
α,β

πα + (1− π)β − θI((α, β); π) (2)

There are various way of interpreting θ. One important interpretation

is that it represents an opportunity cost in terms of attention paid to other

attention problems: θ would increase in the number or complexity of other

decision problems that the agent faces.

Rational inattention induces a constraint on the expected amount of in-

formation conveyed by an attention choice, meaning that it can be cheap to
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invest attention on a low-probability state. In particular, Woodford (2012)

shows that rational inattention cannot explain the higher attention paid to

more likely states in the experiment of Shaw and Shaw (1977).

Instead, we assume that the choice of attention is costly because of the

information capacity it generates. The capacity of a communication system,

say, an undersea cable, is the maximum rate of information that can be

transmitted without error (Shannon (1948)): if a source signal has an entropy

higher than the capacity, the transmission must result in some errors, if it

is lower, it can be transmitted perfectly. In our case, the capacity is then a

measure of the amount of information that a choice of attention can transmit,

as opposed to what it is expected to transmit: the cost of attention will thus be

on the potential information it can convey rather than the actual information

it transmits.

Formally, the constraint will not depend on the discrepancy of the poste-

rior to the actual prior π, but on the maximum possible discrepancy of the

posterior to a potential prior.

Denote π∗(α, β) =argmax
π

I((α, β);π) and I∗(α, β) the mutual informa-

tion evaluated at π∗(α, β). I∗(.) is the channel capacity of the perceptual

system defined by the attention choice (α, β). The “inattentive valuation”

problem then differs from the rational inattention model by assuming that

the attention cost is based on I∗(.). Assuming a fixed marginal cost θ > 0,

the cost function becomes Γ(α, β; γ) = θ · I∗((α, β)) so that the problem

becomes:
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Max
α,β

πα + (1− π)β − θI∗(α, β) (3)

Note here that γ ≡ ∅. This is crucial - as it is the key differentiator of

our Inattentive Valuation framework from Rational Inattention. The entire

cost function can be written in terms of the choice variables, and does not

depend at all on the prior distribution of the agent.

The use of the capacity measure is attractive for various reasons. First,

the capacity of a communication channel has a strong importance in the

information theory literature, and measures the amount of information a

system with a given error rate (in our case, (1−α, 1−β) is able to transmit

accurately. The assumption in the analogy with the perceptual system is

that attention allows the reception of a given quantity of information, so

that it should not depend on π, a measure of the quantity of information

for the current problem directly. More practically, the independence of the

capacity on π implies that the drawback of the mutual information quantity

disappear: paying attention in unlikely states is now expensive because the

attention choice would allow more information to come in.

One final assumption is in order. In the rest of the paper, we will fo-

cus on a choice of attention (α, β) such that α + β ≥ 1. Remember this

condition’s importance from our discussion of exogenously determined er-

rors. This assumption is without loss of generality given the symmetry of

the problem. The assumption simply states that a perception “x” is indeed

perceived as favoring state X, but as is standard in those types of models,

a simple relabelling of the signals could imply the opposite. We will write
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∆ = {(α, β) ∈ [0, 1]2|α + β ≥ 1} and3 ∆̊ = ∆ \ {(0, 1), (1, 0)}

3 The myopic problem

Let us first consider a myopic agent - who cares only about maximizing his

single period utility, thus solving Problem (3).

3.1 Properties of I∗

In order to properly understand the results of this section, we first analyze

the properties of the attention function I∗(.).

First, for any choice of attention (α, β) we can find the prior which max-

imizes the quantity of information provided by this choice, denoted π∗(α, β).

Using the first order condition with respect to π in Equation (1), we obtain:4

∀α, β ∈ (0, 1)2, π∗(α, β) =
f(α, β)(1− β)− β

(1− α− β)(1 + f(α, β))

where f(α, β) =
[
αα(1−α)1−α
ββ(1−β)1−β

] 1
1−α−β

.

Given π∗(.), we can find simple formulas for I∗(.). In particular, if one

denotes q∗(α, β) = π∗(α, β) ·α+(1−π∗(α, β)) ·(1−β) the average probability

3. ∆̊ is defined because all the quantities discussed in the paper, including partial deriva-

tives of I∗(.), for instance, are well defined on the interior of ∆ and can be extended by

continuity on ∆̊

4. We write down the explicit formulas in the calculations for α, β ∈ (0, 1)2. Although

most of the quantities here and below are not defined on the boundary of ∆, they can be

extended by continuity. The expressions for all α, β are available upon request.
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of observing signal a:

I∗(α, β) =(1− β) ln(1− β) + β ln(β)− (1− β) ln(q∗)− β ln(1− q∗)

I∗(α, β) =(1− α) ln(1− α) + α ln(α)− α ln(q∗)− (1− α) ln(1− q∗)

I∗(1, 1) = ln(2)

I∗(α, 1− α) =0

where the arguments of q∗(.) are implicit.

The specific quantities shown above are intuitive. I∗(1, 1) is the informa-

tion conveyed by full attention. In base 2, full attention would imply that

one bit of information can be seen perfectly: log2(2) = 1. In the case of

the natural logarithm, a digit can be observed perfectly, which corresponds

to ln(2) bits. On the other hand, I∗(α, 1 − α) represents the information

conveyed by a choice of attention which is completely uninformative: each

signal has the same probability in each state.

Figure 1 shows some qualitative properties of I∗ – darker shades repre-

sent higher values. As expected, I∗ is higher as α and β increases. Figure 2

displays the isoquants for I∗, with the diagonal corresponding to attention

choices which convey no information (I∗ = 0), and the curves shifting up-

wards with higher attention levels. Several properties are already apparent,

notably, the concavity of the isoquants.

Proposition 1 (Convexity of information capacity). I∗ is infinitely differ-

entiable on ∆̊ and is strictly convex in (α, β)

As an agent wishes to increase precision in one state, she must sacrifice

precision in the other to maintain the same level of informativeness, and in-
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creasingly so as the prior changes. Namely, the marginal rate of substitution

of precision on state A for precision on state B is increasing: as the precision

on one state becomes weaker, it becomes more “valuable” or “informative” at

the margin, relatively to the other state. Proposition 1 shows that this pat-

tern is the result of I∗ being a convex function of the information structure

(α, β).

Figure 2 also shows that if an agent tries to become certain about one

state, the marginal increase in the information quantity increases to become

infinite – so that with a fixed marginal cost, certainty would be infinitely

costly. This means that for any fixed marginal cost, the agent will never

choose fully informative signals. The marginal rate of substitution described

above becomes unboundedly large at extreme priors. Proposition 2 shows

formally that when α is close to 1, the marginal increase in I∗() from a

marginal increase in α is infinite and the marginal increase in I∗() from a

marginal increase in β is bounded away from 0.

In addition, the proposition shows that marginally increasing precision

from a state where attention is completely uninformative bears no cost as

long as both precisions can be increased, i.e. (α, β) ∈ ∆̊ . This has impor-

tant implications: it implies that there are only two possibilities: either an

agent pays attention to the problem by setting α, β such that I∗(.) is strictly

positive, or one of the state’s precision is set to 1 and the other to 0.

Proposition 2 (Marginal informativeness on the boundaries of ∆̊).

∀(α, β) ∈ ∆̊,

• ∂I∗(1,β)
∂α

=∞
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• ∂I∗(1,β)
∂β

∈ (0,∞)

• ∂I∗(α,β)
∂α

= 0⇔ α + β = 1

The properties of I∗(.) have important implications for the pattern of at-

tention choices which result from solving Problem (3). First, the assumption

that the cost of attention is independent of the prior generates a confirma-

tion bias in that more attention is paid to the most likely state, given its

higher marginal return (weighted by the prior) in terms of accuracy. As a

consequence, attention is allocated evenly when the prior is unbiased (π = .5)

and is increasingly unbalanced as π is further from .5. Because I∗(.) is con-

vex (Proposition 1) and because the marginal cost of attention is fixed, the

confirmation bias implies that the total amount of attention allocated to the

problem, endogenously given by I∗(α, β), decreases with the prior. Finally,

because the marginal cost of certainty on a state is infinite (Proposition 2,

there will be a level of bias after which it is optimal to pay no attention

whatsoever to the problem at stake. Those results are shown formally below.

3.2 Attention choices

We first show in Proposition 3 that the choice of attention is strictly monotonous

in the prior when some attention is actually paid (i.e. I∗(.) > 0) and the

solution is interior. Because the optimal attention choices are continuous

functions of the prior and that the solution is trivially interior at π = .5, the

proposition shows that as the prior is more biased, more attention is invested

in the more likely state . We label this effect the confirmation bias. In the

following, we denote α(θ; π) and β(θ; π) the solutions of Problem (3), and
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C(θ; π) = I∗(α(θ; π), β(θ; π))

Proposition 3 (Confirmation bias). ∀θ > 0, ∀π|(α(θ; π), β(θ; π)) ∈ ∆̊,

∂α(θ;π)
∂π

> 0, ∂β(θ;π)
∂π

< 0.

∀θ > 0, ∀π|(α(θ; π), β(θ; π)) ∈ ∆, ∂α(θ;π)
∂π
≥ 0, ∂β(θ;π)

∂π
≤ 0.

The condition that (α(θ; π), β(θ; π)) ∈ ∆̊, as we will see in the next

propositions, is valid for priors π which are not “extreme”, i.e. far away from

1
2
.

The confirmation bias has one immediate, important consequence: in a

myopic (as opposed to forward-looking), dynamic model, an agent biased in

favor of the wrong state is more likely to perceive the wrong state afterwards.

Perceptual mistakes beget perceptual mistakes; and beliefs depend not only

on the content of the perceptions but also on their order, as opposed to a

standard Bayesian model.

We then show in Proposition 4 that this confirmation bias and the un-

equal attention to the two states imply that as an agent becomes more sure

of her opinion, she lowers the overall attention paid to the problem. Even-

tually, she pays no attention to the problem at all for extreme priors: in

particular, I∗(α, β) converges to 0 when π approaches unity, and attention

level approaches certainty. We label this effect the confidence effect.

Proposition 4 (Confidence effect). C(θ; π) →
π→1

0 and C(θ; π) →
π→0

0. Fur-

ther, α(θ; π) →
π→1

1 and β(θ; π) →
π→1

0; α(θ; π) →
π→0

0 and β(θ; π) →
π→0

1.

The combinations of the two previous results have important implications.

One can easily see that when π = .5, the choice of precision in each state

is equal, and signals are informative: ∀θ > 0, α(θ; .5) > 1
2
, β(θ; .5) > 1

2
.
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However, because the solutions are continuous there exist a bias after which

perceptions in both states are more likely to favor the same state. At the

limit, perceptions in both states always favor the same state.

We show in Proposition 5, that this shutdown occurs before the agent is

certain about the state, i.e. the optimal level of I∗(α, β) is nil for large priors:

the agent chooses an information structure which conveys no information at

all about the state by focusing their attention fully on the most likely state.

Proposition 5 (Information shutdown at extreme priors). ∀θ, ∃π(θ)|∀π >

π(θ), β(θ; π) < 0.5 and α(θ; π) > 0.5. ∀θ, ∃¯̄π(θ)|∀π > ¯̄π(θ), β(θ; π) = 0 and

α(θ; π) = 1

The confidence effect reflected in a decrease in the amount of attention

I∗(.) for a given prior can be seen in Figure 3, where we set θ = 1: the

amount of information conveyed by the choice of attention falls increasingly

quickly as the prior moves away from 1
2

and hits 0 before π = 1. We show

the corresponding choices of attention Figure 4: the attention paid to state

A increases as the belief increases away from 1
2
, so that for a high level of the

prior the agent only pays attention to state A.

The fact that an agent can stop thinking about the problem altogether

when the prior is strictly below 1 makes it intuitively possible that at the

end of time in a repeated game, her prior will be wrong in the sense that she

will be stuck at a belief putting more weight on the wrong state. This would

imply that a permanent polarization of beliefs is possible.

The next question is whether a forward-looking agent, who takes into

account the consequences of a contemporaneous choice of biased attention

on future mistakes, can diverge in that way.
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4 The dynamic problem

In the previous section we have been comparing the attention choices of an

agent when he observes a single signal, which can also be interpreted in a

dynamic setting as the choices made by a myopic agent. We have stressed, in

particular, the impact of the prior, given exogenously, on attention choices.

This leads to another question: how are those priors formed? What is the

impact of limited attention on the formation of the prior? In this section,

we analyze this question by considering rational agents with the same initial

belief and analyzing how the cost of attention affects their choices on the at-

tention paid to a stream of signal. Because priors affect contemporaneous at-

tention choices through the confirmation bias, for instance, a forward-looking

agent must take into account the fact that a perceptual mistake made in one

period makes future mistakes more likely. Because of the confidence effect,

the forward-looking agent must also consider that the change in her beliefs’

bias will affect the total amount of attention paid to future problems. The

main question of interest, eventually, is whether the last result of the previ-

ous section holds in this dynamic case: can an agent’s belief be permanently

stuck against the actual state of the world? More generally, can two agents

with the same initial prior diverge permanently in their beliefs?

4.1 Statement of the Dynamic Problem

As before, we will assume that there is a state of the world, either A or B.

We assume that it remains constant over time, and that it sends a stream
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of unambiguous5 signals to the agents in question. For example, if the state

were A (as we will assume wlog) the signals would be “a”,“a”,“a”, . . . . The

probabilities on the perceptions of those signals are dictated by their choices

of attention at each period, so that they would typically change over time.

The marginal cost of attention, θ, is fixed over time.

Consider a model with an infinite number of periods, in discrete time

starting at date 0: each period is denoted t ∈ N. At each period, the agent’s

instantaneous payoff is the benefit to accuracy net of the information cost,

equivalent to the one-period objective of Problem (3). Future periods are

discounted by δ < 1. The decision maker chooses the attention level for every

period to maximize the discounted expected value of those instantaneous

payoffs. Formally, the dynamic problem can be written given an initial prior

belief π0 as

V (π0) = Max
{αt,βt}t∈N

E

[
∞∑
t=0

(u(x, rt)− θI∗(αt, βt)) |π0

]
(4)

where x is the fixed state of the world drawn at time 0, rt is the perception

made at time t, and

u(x, rt) =

1 if rt = x

0 if rt 6= x

This particular structure of the new problem requires some explanation.

In the static version of the game, the agent selected accuracies α and β in

order to maximize accuracy subject to a constraint. The implicit assumption

of that structure was that the agent wanted to maximize accuracy because

5. This assumption is relaxed in the next section.
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there was a second decision, selecting whether the state was A or B after

observing the signal, and that the payoffs were such that he would receive 1

for correct identification, and 0 for incorrect identification. The minimization

of the squared error led to the objective function as stated. In the dynamic

case, we cannot have sequential assessment of the agent’s decisions. Under

the assumption of perfectly informative signals (no noise in the data gener-

ating process), any assessment would be fully informative of the state. Our

assumption here therefore, is that after each signal the agent takes an action

(selecting A or B), which will be evaluated after all signals have been viewed.

We believe that this is a better way to think about protracted disagreements.

For example, consider the case of Global Warming - as the environment sends

us signals which we try to attend to and understand, we are actively tak-

ing decisions: to limit carbon emissions, to try to find alternative energy

sources etc. The value of these decisions will not be apparent to us for a

long time. Another example is the determination of the long run riskiness of

a particular market. As research is conducted, we may buy or sell assets as

we refine our opinions, but our actions will not be assessed for some time.

Matters in which our actions can be quickly evaluated, are much less likely

to result in protracted or permanent disagreement, as the evaluation should

give concrete evidence to support one opinion over another.

Problem 4 can be written in the form of a Bellman equation, where the

state variable in question is the prior πt with which an agent enters period t.

This yields:
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V (πt) = max
αt,βt

πtαt + (1− πt)βt − θI∗(αt, βt) (5)

+ δ
[
(αtπt + (1− βt)(1− πt))V (πat ) + ((1− αt)πt

+ βt(1− πt))V (πbt )
]

where the priors at the start of period t+1 after perceiving signal “a” and

“b” respectively, πat and πbt are given by the posteriors at the end of period

t:

πat =
αtπt

αtπt + (1− βt)(1− πt)

πbt =
(1− αt)πt

(1− αt)πt + βt(1− πt)

It is simple to show that the Blackwell conditions for the contraction

defined by the Bellman equation are satisfied, so that the value function

exists and is the fixed point of that contraction. We denote αd(θ; π) and

βd(θ; π) the attention choices made by the forward-looking agent with initial

prior π. We omit the d subscript when there is no confusion possible with

the static solutions.

4.2 Will Agents Disagree Forever?

Permanent divergence requires that an agent eventually stops paying atten-

tion to the problem. If that is not the case, the share of perceptions “a” and

“b” will differ between states and all individuals will converge to the correct

belief (π = 1 if the state is A, for instance). We show in Proposition 6 that
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when beliefs become extreme, such an information shutdown occurs, as we

found in Proposition 5 in the myopic problem. For values of π sufficiently

far from 0.5, the agent chooses signal precisions which prevent him from

distinguishing between the two states at all: perceptions are uninformative.

Importantly, the shutdown point is identical to the one found in the myopic

case.

Proposition 6. ∀θ > 0,∃π̃(θ) > 1
2
|
∣∣π − 1

2

∣∣ > ∣∣π̃(θ)− 1
2

∣∣ ⇒ αd(θ; π) +

βd(θ; π) = 1. Moreover, ∀θ > 0, π̃(θ) = ¯̄π(θ)

Proposition 6 implies that if any agent starts a period with a prior that

lies above π̃ or below 1 − π̃ where π̃ ∈ (0.5, 1), then he will not pay any

attention to signals from that or any subsequent period. Importantly here,

π̃(θ) = ¯̄π(θ), which is to say that the point of certainty at which the myopic

and forward-looking agents choose to stop paying attention to signals is the

same. As we will see later, there is strong evidence to suggest that the amount

of attention paid in the forward-looking case is weakly larger than the myopic.

The reason for this change is that attention in the forward looking case affects

not only signals at present, but the future, and the agent internalizes this

future effect. One could think of this as a multiplier greater than one, that

maps myopic attention to forward looking attention. However, no matter

what the multiplier, under the priors for which no attention is being paid in

the static case, no attention is paid either in the dynamic case.

Extreme beliefs are thus persistent: ∀π′ ∈ [0, 1 − π̃) ∪ (π̃, 1], πt = π′ ⇒

∀u > t, πu = π′. Even mild disagreement can then persist forever, when θ

is large: clearly, ∂π̃(θ)
∂θ

< 0 and π̃(θ) →
θ→∞

1
2
. The question is then whether

individuals with the same initial belief π0 ∈ (1 − π̃(θ), π̃(θ)) can end up in
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either of these regions with positive probability.

In order to answer this, we need to consider the pattern of attention

choices in the forward looking problem. We showed that the shutdown points

are identical in the myopic and the dynamic problems. However, this does

not mean that the amount of attention paid in the static and dynamic cases

are the same for all values of the prior. Consider in particular the problem

when π0 = 0.5. We show in Proposition 7 that in that case, the attention

devoted to both states by the forward-looking agent is higher than in the

one-shot problem.

Proposition 7. ∀θ > 0, α(θ; .5) < αd(θ; .5) and β(θ; .5) < βd(θ; .5).

The intuition for this result is simple. Agents in the forward-looking

model not only understand the direct effect that their attention has on accu-

racy (as is the case in the static model) but also the indirect effect that their

perceptions will have on future decisions. As such, they will choose to pay

more attention based on this forward-looking effect than they would without

it.

We can now show that permanent divergence of agents with the same

initial prior can occur. For this purpose, we show that when the prior is

uninformative, the decision makers consider only the first period signal and

stop collecting any information after that

Proposition 8. If πt = 0.5, then I∗(αt+1, βt+1) = 0. The agent will observe

one signal, update, and shutdown.

This is a strong result, and one that depends, in large part, on the strength

of the signals. That is to say, the signals from each potential state of the
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world are perfect and unadulterated. Additionally, at the point π = 0.5, I∗ is

at its highest point - the most attention is being paid. Therefore, perceptions

will be very accurate. Very accurate perceptions of perfectly accurate signals,

mean that the perceptions are therefore additionally, very informative. As a

result, large updates in the agents beliefs will take place. Large enough, in

fact, to make them sure of their opinion. The agent prefers to front load the

attentional cost, in order to forego paying it in any subsequent period.

Consider Figure 6. For different values of θ, agents will update to differing

degrees away from 0.5 and then stop acquiring new information. Although

we are unable to provide analytic results for other starting values of π, we

can observe some simulations to get a sense of the dynamics. In Figure 5, we

see agents starting at values of π 6= 0.5. It appears that agents who receive

confirmatory signals (that is, agents who start with a prior π > 0.5 and see

an “a” signal, or agents who start with a prior π < 0.5 and see a “b” signal),

update once and then shut down. However, agents who receive contradictory

signals (agents who start with a prior π > 0.5 and see a “b” signal, or agents

who start with a prior π < 0.5 and see an “a” signal), will update and then

continue to look for signals.

5 Extensions and Robustness

We consider here potential extensions and applications of the model to show

the potential uses of the inattentive valuation framework and how the results

developed in the two previous sections could possibly be extended quickly to

more general settings and related questions.
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First, we discuss the assumption that all the noise in the perceptions

of the states in our model are endogenous. Second, we adapt the problem

to cases where the states are not weighted identically, i.e. errors in the two

states generate different disutility. Third, we discover what we can say about

the intensive and extensive margins of disagreement. Finally, we summarize

the properties of the information quantity which were sufficient to generate

the results described in the previous sections.

5.1 Adding exogenous noise

5.1.1 The static case

In the framework described in previous sections, we assumed that the noise

in the signals perceived by the agent were purely endogenous, the result of

a choice of attention due to costly information acquisition. The assumption

means that there exists an objective state of the world which sends perfectly

informative signals. It is beyond the scope of this paper to discuss what

we usually understand by the term “signal”, but it seems intuitive that the

information generated by the objective state of the word can actually be

distorted even before their perception by an agent. This distortion will not

be a choice, either conscious or unconscious, of the agent.

How can we understand this potential for an exogenous distortion of the

signals? Formally, assume that in state A, the signal sent is a with probability

1 > qa >
1
2

and b with probability 1− qa, and define qb similarly in state B.

The distinction between the exogenous and the endogenous distortion is

important. An agent can only make an endogenous attention choice towards
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the “signals” derived from the state of the world and its inherent exogenous

noise. Although in the original framework, the state and the exogenous signal

were identical because we assumed no exogenous noise, we need to make the

distinction here. Therefore, let us introduce the following notations. The

state of the world is x ∈ {A,B}. State A sends signal s = a with probability

qa, State B sends signal s = b with probability qb. The agent can only pay

attention to those signals, so that the attention choice has to be rewritten as

P (r = a|s = a) = α

P (r = b|s = b) = β

The latter notation requires a short discussion. As we alluded to in the

setup of the original problem, the cost of attention is based on the reduction

in uncertainty of an input generated by a given attention choice o this input.

In the new frame with exogenous noise, the input is the imperfect signal.

Given π, qa and qb, this input has a Bernoulli distribution with parameter

p = πqa + (1− π)(1− qb), where p is the probability of s = a. The expected

quantity of information conveyed by the choice of attention, defined by the

mutual information between the posterior and the prior distribution of the

exogenous signal, is thus

I((α, β); p) = −EP (s,r) [ln(P (s))− ln(P (s|r))]

The channel capacity can then be reformulated as

I∗exog(α, β) =max
p∈P

I((α, β); p)
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Where P = [1 − qb, qa] is the image of [0, 1] via the increasing function

p(.):

p : [0, 1]→ [0, 1]

π → πqa + (1− π)(1− qb)

Therefore, if π∗(α, β) ∈ P then

I∗exog(α, β) = I∗(α, β)

Because π∗(α, β) is bounded away from 0 and 16, we have that the set

Q = {(qa, qb)|∀(α, β) ∈ (0, 1)I∗exog(α, β) = I∗(α, β)} 6= ∅. Although we have

not been able to prove it, we conjecture that the bounds on π∗(α, β) can be

computed and that
∣∣π∗(α, β)− 1

2

∣∣ < ∣∣1
2
− exp(−1)

∣∣7. In particular, π∗(α, β)

is maximal and equal to 1 − exp(−1) at α = 1, β → 0. One can then

characterize Q explicitly: Q = {(qa, qb)|min(qa, qb) > exp(−1)}.

We thus know that provided the exogenous signals are relatively infor-

mative ((qa, qb) ∈ Q) the choice of attention in the new framework is the

solution to the problem

Max
α,β

π [qaα + (1− qa)(1− β)] + (1− π) [qbβ + (1− qb)(1− α)]− θI∗(α, β)

(6)

6. For any attention choices, the mutual information would be 0 in these cases, while it

is strictly positive at π = 1
2

7. We can show that π∗(1, β) is decreasing in β, but it remains to be shown that the

maximum of π∗(1, β) is indeed achieved at the border.
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with qa = qb = 1 yielding the original problem. With simple manipula-

tions, the problem is equivalent to:

Max
α,β

α [qaπ − (1− qb)(1− π)] + β [qb(1− π)− π(1− qa)]− θI∗(α, β)

or writing λ(qa, qb, π) = qaπ−(1−qb)(1−π)
(2qa−1)π+(2qb−1)(1−π)

Max
α,β

αλ(qa, qb, π) + β(1− λ(qa, qb, π))− θ

2qaπ + 2qb(1− π)− 1
I∗(α, β)

This reformulation means that we can directly find the attention choices

as a function of the prior and the exogenous precisions, as we describe in

Proposition 9. If we note the solutions to Problem (6) αe(θ, qa, qb; π), βe(θ, qa, qb; π),

we have:

Proposition 9 (Attention Choices with Exogenous Noise).

αe(θ, qa, qb; π) =


α
(

θ
2qaπ+2qb(1−π)−1

;λ(qa, qb, π)
)

if λ(qa, qb, π) ∈ [0, 1]

0 if λ(qa, qb, π) < 0

1 if λ(qa, qb, π) > 0

and

βe(θ, qa, qb; π) =


β
(

θ
2qaπ+2qb(1−π)−1

;λ(qa, qb, π))
)

if λ(qa, qb, π) ∈ [0, 1]

1 if λ(qa, qb, π) < 0

0 if λ(qa, qb, π) > 0

29



Given the similarities, most qualitative properties of the solutions are

preserved. First, note that given qa, qb >
1
2
, ∂λ(qa,qb,π)

∂π
> 0. Second, the new

marginal cost θ̃(π) = θ
2qaπ+2qb(1−π)−1

depends on π, and θ̃′(π) is of the sign of

qb − qa. Finally, θ̃(π) is bounded. The dependence of the effective marginal

cost on π makes the confirmation bias results less clear-cut. However, given

that it is monotonous, it is clear that qa > qb ⇒ ∂αe(θ,qa,qb;π)
∂π

> 0, since as

π increases, the decrease of the marginal cost complements the confirmation

bias; a similar result is obtained on βe(.) when qb > qa. Finally, the existence

of a shutdown point is still valid since θ̃(.) is bounded below.

In the simple case qa = qb = q, θ̃(π) ≡ ¯̃θ: the effective marginal cost is

constant and we can apply all the results we found for Problem (3), including

the confirmation bias. The confidence effect is even stronger. Indeed, the

weight on α is positive if and only if 1−q
q
≤ π

1−π and likewise, the weight on

β is positive if and only if q
1−q ≥

π
1−π . Those two conditions are equivalent

to 1 − q ≤ π and q ≥ π. This is intuitive, as under these conditions the

exogenous noises are larger than the uncertainty in the prior.

If the first condition is not satisfied, i.e. for low π, the weight on α is

negative and α is trivially set to 0. Likewise, if the second condition is not

satisfied, i.e. for high π, the weight on β is negative and β is set to 0.

5.1.2 The dynamic case

One of the results of the initial framework with no exogenous noise that is at

first blush perplexing is that at the point of maximal uncertainty (π = 0.5),

only one signal is required to make the agent shut off. It appears that the

reason for this result is the strength of the signals from the state. If θ = 0,
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an agent would require only one signal to have perfect information. On the

other hand, in the exogenously noisy case, even when θ = 0, the agent would

require infinitely many signals to achieve perfect certainty on the value of

the state. Hence, the updating process is slowed.

As we see in simulations of the case when θ > 0, this carries over to

our setup. Although there are still beliefs for which agents shut down, they

approach those beliefs more slowly, as each signal carries two sources of noise

(perceptual and exogenous), and thus less information.

Consider figure 8. The three panels show, in order, the evolution of 50

agents’ priors. The agents are ex-ante identical, and observe 20 identical

signals in these simulations. The cost of attention in all cases is given by

θ = 10. These signals are drawn from state A, which shows signal “a” with

probability q - known to the agents. Here again, agents eventually shut

down, after becoming sufficiently sure of their opinions, but this certainty

takes time. In fact, some agents in the sample did not converge at all after

receiving several conflicting signals.

In conclusion, in the case where qa = qb = 1, we have seen in previous

sections that shutdown occurs (usually) after one signal. Here, we found

suggestive evidence that when 1 > qa = qb > 0.5, shutdown can take many

periods. In the other limit case, where qa = qb = 0.5, all signals are perfectly

uninformative, so no amount of attention will be able to distinguish them.

Therefore, agents will set α+ β = 1, and will never move from their original

priors.
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5.2 Different weighing of states

We now consider an extension of the problem of inattentive valuation to the

case where the accuracy in each state is not valued identically. The typical

example is the one of Feddersen and Pesendorfer (1998) where a jury makes

a decision on whether an individual is guilty or innocent. The jurors might

not put the same weight on one error against the other. More generally, we

can think of the traditional arguments underlying a different weighting for

errors of type I and errors of type II.

We can modify the model in the simplest way by adding a parameter

γ > 0 measuring the weight put on being correct in state B relative to state

A. The problem is then:

Max
α,β

πα + γ(1− π)β − θI∗(α, β)

This setting is equivalent to assuming that the utility of being correct in

state B is γ and the utility of being correct in state A is 1, while the utility

of being incorrect in each state is 0. As in the case of exogenous noise, we

can rewrite the problem in the shape of Problem (3)

Max
α,β

π

π + γ(1− π)
α +

γ(1− π)

π + γ(1− π)
β − θ

π + γ(1− π)
I∗(α, β)

As with exogenous noise, we can thus find the solutions αrw(θ, γ; π), βrw(θ, γ; π)

from the solutions to Problem (3). Likewise, the confirmation bias is weaker

because of the dependence of the effective marginal cost on the prior, but

because it is monotonous in π for a given γ, we have that for instance
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γ < 1 ⇒ ∂αrw(θ,γ;π)
∂π

> 0. Finally, the result that no attention is paid when

beliefs are extreme, the confidence effect, is also unchanged given that the

cost is bounded. The main difference will be that the shutdown of informa-

tion occurs asymmetrically: if being accurate in state B is more important

(γ > 1), the bias in favor of state B which would lead an agent to stop paying

attention is higher than the required bias in favor of state A.

5.3 Size of divergent cohorts

We showed in section 4 that permanent divergence can occur between two

individuals with identical prior, based on their initial perceptions. Can we

quantify the magnitude of this divergence? There are two ways to character-

ize this disagreement. The first is to talk about the size of the groups that

disagree: is the minority a small percentage or almost half? The second is

to talk about the degree of disagreement: are the groups relatively close in

their beliefs, or is there a large gulf between them? We will term the former

the extensive margin of disagreement, and the latter the intensive margin.

Consider some 0 < θ < ∞, and π0 = 1
2
. We know that αd(θ, π0) =

βd(θ, π0) = ζ(θ) ∈
(
1
2
, 1
)
. Using the results developed in the proofs of Propo-

sition 8, we know that for all t > 1 a share ζ of individuals will have a poste-

rior π1 = πt = ζ and that a share (1−ζ) will have a posterior π1 = πt = 1−ζ.

Moreover, we know that ζ ′(θ) < 0. Therefore, as the cost of attention in-

creases, the intensive margin of disagreement decreases, but the extensive

margin increases.

These results are displayed for different values of θ in Figure 7. In the

figure, we show the final distribution of agents when a unit mass starts with
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a prior of π0 = .5. The horizontal axis represents the final beliefs, while the

height of the bars show the percentage of the unit mass ending with this

belief.

Convergence Under Fixed Capacity It is a relevant question to think

about whether or not the setup of attention in this problem is important to

the result. Much of the literature on attention assumes, instead of a fixed cost

of attention, a fixed capacity, or stock of attention. If we instead consider a

problem of the following form:

max
α,β

απ + β(1− π)

s.t.I∗(α, β) ≤ C

where C is exogenously given, can the same results as above hold? The

following proposition will show that they do not.

Proposition 10. As t → ∞, πt → 1 for a fixed C. That is, any agent will

always converge to the truth in the limit.

In both Rational Inattention and Inattentive Valuation, the intuition for

this result is relatively straightforward. Under Rational Inattention, there is

only one unique fixed point - and that is π = 1. Therefore, no divergence to

any other point is possible. Under Inattentive Valuation, there are actually

two fixed points: π = 1 and π = 0. However, intuitively, agents under fixed

capacity are prevented from paying less attention as their certainty increases.

Therefore, as an agent becomes convinced of the wrong belief, he must still

observe signals with the same net level of accuracy. Therefore, if the agent

sees a string of ‘b′s at first, a subsequent ‘a′ will actually be quite informative
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as α and β are necessarily bounded away from 0. Therefore, no matter how

close the agent gets to π = 0, observing an ‘a′ at that point would move him

quite far in the opposite direction.

5.4 Attention cost function

We showed in the previous sections that our model can be used to solve

more general problems by manipulating the reward for being correct. The

final question is to understand the influence of the choice of the channel ca-

pacity as our measure of attention for the results described in the paper.

Indeed, the use of information theory, mutual information, and channel ca-

pacity to quantify information, and the inclusion of a fixed marginal cost for

this quantity, can be seen as specific cases of a general model with costly

attention. Therefore, it is important to understand which conditions on I∗(.)

were necessary to produce the results described in Section 3 and 4. Here,

we described conditions on the information quantity which are sufficient to

generate the confirmation bias and the confidence effect in the static case.

We consider here classes of functions which do not depend on the prior.

We explained in the discussion of rational inattention that one drawback in

using the actual prior is that unlikely states are overweighted by definition. In

this case, more attention can be invested towards those states, which would

negate a confirmation bias.

Several other restrictions are more intuitive. In particular, we restrict

our discussion to functions which are symmetric in the states – the states

are “anonymous”. We also assume that the information quantity is strictly

increasing in its arguments. To prevent some potential problems linked to
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the relabelling of the signals, we thus restrict the arguments’ space to the

upper quadrant of the unit square – one can extend the function to the lower

quadrant by symmetry.

Therefore, remember that ∆ = {(x, y) ∈ [0, 1]|x + y ≥ 1} and denote

F = {f : ∆ → R+|f(x, y) = f(y, x),∀y ∈ [0, 1]x > x′ ≥ 1 − y ⇒ f(x, y) >

f(x′, y)}

We want to find the properties of a function f ∈ F yielding the results

from the previous section when the agent’s problem is

Max
α,β

πα + (1− π)β − θf(α, β) (7)

Let us denote the solutions to Problem (7) as (αf (θ; π), βf (θ; π))

The proof of Proposition 3 shows that the confirmation bias can be ex-

tended to all cases where f is “smooth”, concave and the states’ attention

levels are complementary. We formalize this result in Proposition

Proposition 11 (Confirmation bias). Assume that f is twice differentiable

on ∆̊, and strictly convex. In addition, assume that ∀(α, β) ∈ ∆̊, ∂
2f

∂αβ
> 0.

Then

∀θ > 0, ∀π|(αf (θ; π), βf (θ; π)) ∈ ∆̊,
∂αf (θ;π)

∂π
> 0,

∂βf (θ;π)

∂π
< 0.

∀θ > 0, ∀π|(αf (θ; π), βf (θ; π)) ∈ ∆,
∂αf (θ;π)

∂π
≥ 0,

∂βf (θ;π)

∂π
≤ 0.

The confidence effect as described in Proposition 4 requires slightly stronger

assumptions. Intuitively, the pattern of collection of information at extreme

priors depend on the value of marginal precisions when those precisions are

already extreme. The properties of I∗(.) described in Proposition 2, where
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we listed those values on the boundary of ∆, were sufficient to generate the

confidence effect.

The assumption on f that we require for the effect to be obtained is the

combination of the strict convexity of f and the properties of the marginal

informativeness of attention described in Proposition 2: when precisions can

be increased and no information is currently collected, increasing attention

is costless; certainty on one state is infinitely costly.

The intuition is clear. The second part of Proposition 2 is required since

as the prior increases, the marginal return to precision in the least likely state

becomes negligible. If the f satisfies the condition, the attention choice must

converge towards the anti-diagonal of the unit square, reflecting uninforma-

tiveness. At the same time, the marginal return on the most likely state

remains positive, so that the only solution at extreme priors is the corner

solution, where all the precision is oriented towards the most likely state.

The first part of Proposition 2 is required since otherwise, it would be possi-

ble for an agent to have full precision on one of the state while maintaining

information on the other, when the marginal cost θ is small.

Formally, define Cf (θ; π) = f((αf (θ; π), βf (θ; π))).

Proposition 12 (Confidence effect). Assume f satistifies the properties de-

scribed in Proposition 11.

In addition, assume ∀(α, β) ∈ ∆̊

• ∂f(1,β)
∂α

=∞

• , ∂f(α,β)
∂α

= 0⇔ α + β = 1.

Then,
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Cf (θ; π) →
π→1

0 and Cf (θ; π) →
π→0

0. Further, αf (θ; π) →
π→1

1 and βf (θ; π) →
π→1

0; αf (θ; π) →
π→0

0 and βf (θ; π) →
π→0

1.

Finally, it is also worth emphasizing that as Shannon (1948) has shown,

the use of the entropy measure to quantify the amount of information in a

random variable relies on really weak and intuitive assumptions. In particu-

lar, it is the only function satisfying three properties: it is continuous in the

distribution of interest, it increases with the size of the support when the

distribution is uniform, and is independent of the decomposition of choices.

Therefore, we consider the use of the tools of information theory to be

useful and relevant to understand the role of limited attention on individual

decisions. However, it is clear that one main future area of research will be

to know more about the attention cost function, as Caplin and Dean (2014)

do for instance. We hope that by providing simple properties which would

generate confirmation bias and permanent disagreement, we can provide in-

tuitions on the properties we would expect from such a function.

6 Conclusion

We have shown in this paper that polarization of beliefs on common value

issues can occur under the simple assumption that people are motivated by

belief accuracy but are constrained in the attention they can pay to the issue.

Costly information, as measured by the amount of information that a choice

of attention can potentially convey, leads agents to select to obtain more

precise signals about the states of the world they consider likely, generating

a confirmation bias. When this information has a fixed marginal cost, a
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highly biased agent will decide to pay no attention whatsoever to figuring

out the state of the world, so that his beliefs are permanently stuck. As a

consequence, an agent who makes perceptual mistakes at the start of the

information collection process can be permanently wrong, his beliefs being

biased against the actual state of the world.

The assumption that attention is limited should be relatively uncontro-

versial. The fact that this simple limitation can cause rational individuals to

eventually disagree completely on an objective issue, where they both aim

to understand correctly, is humbling. Indeed, our results show that our dis-

agreements can simply be the consequence of random, initial mistakes in the

perception of signals. Long-term disagreements can also come from initial,

random shocks to prior beliefs. Kaplan and Mukand (2011) show that the

increase in Republican registration after September 11th, 2001, persists after

several years. Mullainathan and Washington (2009) find that two years af-

ter a presidential election, the degree of polarization differs between cohorts

around the age of voting eligibility two years before, with much more po-

larization in the eligible one. Outside the world of politics, it is easy to see

how these results could affect, for instance, the interpretation of information

in financial markets: Hong and Stein (2007) provides a review of recent fi-

nancial literature, and conclude that behavioral techniques, including that

of heterogeneous priors, are required in asset pricing.

More work should be done in order to understand the consequences of

limited attention on information patterns and economic choices. To answer

those issues, the most important avenue of investigation is the analysis of

the properties of the attention cost function. Here, we considered the model
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proposed by Woodford (2012), and we discussed in the final section which

properties of the cost function seemed necessary for our findings. We consider

the use of entropy and its derivatives as a measure of information to be the

most promising, for its reliance on a small and intuitive set of assumptions.

However, more can be learnt empirically about the properties of the function

theorists should use. In particular, Caplin and Dean (2014) provides inter-

esting experimental findings such as the increase in total attention as stakes

increase and that more attention is devoted to discriminate states with higher

stakes. Higher stakes, in our framework, are isomorphic to a lower relative

cost of attention, and so this arises endogenously. More experimental work

is needed to uncover additional comparative statics, or test the properties of

existing proposals – in our case, it would be important to test the concavity

of I∗(.) and its behavior at high levels of certainty.

A second key element of future research is to consider is the impact of

limited attention in settings where individuals can interact. For instance,

given that the probability distribution of perceived signals is history depen-

dent, one immediate interrogation is the potential impact of limited attention

on herding behavior. More generally, how does limited attention influence

information aggregation? For instance, if one person is unaware of another’s

initial bias and thus cannot correct for it, a perceptual mistake by the sec-

ond person might be communicated to the first, and separate groups could

diverge faster than individuals.
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A Proofs

Proof of proposition 1

We will use the following lemma

Lemma 1 (Convexity of the maximum of convex functions). Let fi : X → Y ,

i ∈ I be a family of convex functions and f = maxifi. Then f is convex.

Proof of lemma 1. Consider f = max(f1, f2) with both fi convex. Then

for any x, y, λ ∈ (0, 1), there exists i ∈ {1, 2} such that f(λx + (1 − λ)y) =

fi(λx+(1−λ)y). By convexity of fi, f(λx+(1−λ)y) ≤ λfi(x)+(1−λ)fi(y) ≤

λf(x) + (1− λ)f(y)

Proposition 1 (Convexity of information capacity). I∗ is infinitely differ-

entiable on ∆̊ and is strictly convex in (α, β)

Proof of proposition 1. To show that I∗ is convex, we show that Iπ(α, β)

is convex for any π. We then use lemma 1 to conclude. Let us denote

q = απ + (1− β)(1− π). The mutual information given a prior π is

Iπ(α, β) = απ ln(α) + (1− α)π ln(1− α)

+ (1− β)(1− π) ln(1− β) + β(1− π) ln(β)

− q ln(q)− (1− q) ln(1− q)

Then for all π, Iπ(.) is twice continuously differentiable in (α, β) and
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∂Iπ(α, β)

∂α
=π ln(α)− π ln(1− α)− π ln(q) + π ln(1− q)

∂Iπ(α, β)

∂β
=− (1− π) ln(β)− (1− π) ln(1− β) + (1− π) ln(q)− (1− π) ln(1− q)

and the second derivatives are given by

∂2Iπ(α, β)

∂α2
=
π

α
+

π

1− α
− π2

q
− π2

1− q
∂2Iπ(α, β)

∂β2
=

1− π
β

+
1− π
1− β

− (1− π)2

q
− (1− π)2

1− q
∂2Iπ(α, β)

∂β∂α
=
π(1− π)

q
+
π(1− π)

1− q

Given the Hessian of Iπ(.), we can directly show that for any π, Iπ(.) is

convex, by showing that (denoting I ≡ Iπ(α, β))

∆ =
∂2I

∂α2
· ∂

2I

∂β2
− ∂2I

∂β∂α
> 0

Let us first rewrite the terms of the Hessian:

∂2I

∂α2
=
πq(1− q)− π2α(1− α)

α(1− α)q(1− q)
∂2I

∂β2
=

(1− π)q(1− q)− (1− π)2β(1− β)

β(1− β)q(1− q)
∂2I

∂β∂α
=
π(1− π)

q(1− q)

Hence,

∆ > 0⇔ π[q(1−q)−πα(1−α)](1−π)[q(1−q)−(1−π)β(1−β)]−α(1−α)β(1−β)π2(1−π)2 > 0
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or

∆ > 0⇔ [q(1−q)−πα(1−α)][q(1−q)−(1−π)β(1−β)]−α(1−α)β(1−β)π(1−π) > 0

Finally,

∆ > 0⇔ [q2(1− q)2 − πα(1− α)q(1− q)− (1− π)β(1− β)q(1− q)] > 0

which is equivalent to

∆ > 0⇔ [q(1− q)− πα(1− α)− (1− π)β(1− β)] > 0

Plugging in q = απ + (1− π)(1− β) and dividing by π(1− π) yields the

condition

∆ > 0⇔ (1− (α + β)2) > 0

Hence, Iπ(.) is convex for all π.

I∗ is therefore the pointwise maximum of convex functions, and is thus

convex by Lemma 1.

Proof of Proposition 2

Proposition 2 (Marginal informativeness on the boundaries of ∆̊).

∀(α, β) ∈ ∆̊,

• ∂I∗(1,β)
∂α

=∞

• ∂I∗(1,β)
∂β

∈ (0,∞)
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• ∂I∗(α,β)
∂α

= 0⇔ α + β = 1

Proof of Proposition 2. By the envelope theorem, we know that ∂I∗

∂α
= ∂I(α,β;π∗)

∂α

where π∗(α, β) is the prior maximizing I for a given information structure.

But we know that

I((α, β); (π, 1− π)) =απ ln(α) + (1− α)π ln(1− α)

+(1− β)(1− π) ln(1− β) + β(1− π) ln(β)

− [απ + (1− β)(1− π)] ln(απ + (1− β)(1− π))

− [(1− α)π + β(1− π)] ln((1− α)π + β(1− π))

So that

∂I(α, β; π∗)

∂α
=π∗

[
ln

α

1− α
− ln

q∗

1− q∗

]
(8)

∂I(α, β; π∗)

∂β
=(1− π∗)

[
ln

β

1− β
− ln

1− q∗

q∗

]
(9)

where q∗ = απ∗ + (1− β)(1− π∗).

From the optimization of I, we know that

q∗

1− q∗
=

[
αα(1− α)1−α

ββ(1− β)1−β

] 1
α+β−1

In particular, when α = 1, for any β > 0, q∗ ∈ (0, 1). Hence, ln q∗

1−q∗ is

finite.

From equation 8, this gives us that ∂I(α,β;π∗)
∂α

evaluated at α = 1 and β > 0

is infinite while equation 9 tells us that at the same point, ∂I(α,β;π∗)
∂β

is finite

– and bounded away from 08.

8. Note that π∗ and q∗ are related and at the same α, β, we will have π∗ ∈ (0, 1)
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Finally, assume α ∈ (0, 1). By writing β = 1 − α + u where u → 0,

one can show that q∗

1−q∗ = α
1−α

(
1− u

2α(1−α + o(u)
)

. This expansion implies

that π∗(α, 1− α) = 1
2

by continuity, and using Equation 8 and 9, we obtain

that the partial derivatives of I∗ are all null on the inverted diagonal of the

square.

The discussion above shows that those partial derivatives are also strictly

positive outside of this diagonal, so that the equivalence stated in the propo-

sition is proven.

Proof of proposition 3

Proposition 3 (Confirmation bias). ∀θ > 0, ∀π|(α(θ; π), β(θ; π)) ∈ ∆̊,

∂α(θ;π)
∂π

> 0, ∂β(θ;π)
∂π

< 0.

∀θ > 0, ∀π|(α(θ; π), β(θ; π)) ∈ ∆, ∂α(θ;π)
∂π
≥ 0, ∂β(θ;π)

∂π
≤ 0.

Proof. Proof of proposition 3

Assume that the solution to Problem (3) is interior and consider the

system derived from the first order conditions:

∂I∗(α(θ; π), β(θ; π))

∂α
=
π

θ
(10)

∂I∗(α(θ; π), β(θ; π))

∂β
=

1− π
θ

(11)

For clarity, we will denote the (hypothetical) solution to the system (which

is unique, by the concavity of the problem) α∗(π, θ), β∗(π, θ).

Denote β̃(α|θ, π) the only point in (1−α, 1) such that ∂I∗(α,β̃(α|θ,π))
∂β

= 1−π
θ

.

This is possible because for all α
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∂I∗(α, 1)

∂β
=∞

∂I∗(α, 1− α)

∂β
=0

and ∂I∗2(α,β)
∂β2 > 0.

Likewise, we can define α̃(β|θ, π) to be the only point in (1 − β, 1) such

that ∂I∗(α̃(β|θ,π),β)
∂α

= π
θ
.

Moreover, because ∂I∗2(α,β)
∂β2 > 0 and ∂I∗2(α,β)

∂α∂β
> 0, β̃(.|θ, π) is a decreasing

function of α. Likewise, α̃ is a decreasing function of β.

Consider now an increase in π ∈ (0, 1), to π′ > π ∈ (0, 1) for which the

solution is also interior.

Because the loci of β̃(.) and α̃(.) cross only once, α̃(β) →
β→0

1 and β̃(α) →
α→1

β̄ ∈ (0, 1), it must be that:

β̃(α̃(β|π, θ)|π, θ) > β ⇔ β < β∗(π, θ) (12)

We also know that ∀β, α̃(β|π′) > α̃(β|π) since ∂I∗

∂α
increases in α and

equation (10) must hold.

Because β̃ is decreasing, we have that for all β

β̃(α̃(β|π′)|π′) < β̃(α̃(β|π)|π′)

One can show as we did for α̃ that ∀α, β̃(α|π′) < β̃(α|π). This implies

β̃(α̃(β|π)|π′) < β̃(α̃(β|π)|π)
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Evaluating the latter two equations at β = β∗(π), we get

β̃(α̃(β∗(π)|π′)|π′) < β∗(π)

By relation (12), it must be that β∗(π) > β∗(π′)

Likewise, α∗(π) < α∗(π′)

Proof of proposition 4

Proposition 4 (Confidence effect). C(θ; π) →
π→1

0 and C(θ; π) →
π→0

0. Fur-

ther, α(θ; π) →
π→1

1 and β(θ; π) →
π→1

0; α(θ; π) →
π→0

0 and β(θ; π) →
π→0

1.

Proof of proposition 4. By symmetry, we will concern ourselves with the lim-

its as π → 1. As a reminder, we also only consider the case where α+β ≥ 1.

Fixing θ > 0, we write α(π) and β(π) to be the solutions of Problem (3) with

the dependence in θ implicitly understood.

Because when the solution is interior, α and β are monotonous in π and

they are bounded, there exists (ᾱ, β̄) ∈ [0, 1]2 such that α(π) →
π→1

ᾱ and

β(π) →
π→1

β̄

We show in the following that the only possibility is ᾱ = 1 − β̄ so that

C →
π→1

0

When the solution is not interior at extreme priors Assume first the

that there exists π̄ > 1
2

such that ∀π > π̄, the solution to the maximization

problem is not interior to α + β ≥ 1.

If for any 1 ≥ π > π̄, β(π) = 1 (resp. α(π) = 1), it must be the case that

α(π) = 0 (resp. β(π) = 0) by Proposition 2 since otherwise, the marginal

increase in the objective function in decreasing β (resp. α) would be infinite.
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Given these results, the only case consistent with optimization at π > 1
2

is

α = 1 and β = 0. This yields the desired results.

The only possible other boundary to check is α + β = 1. In that case,

I∗(α, β) = 0 and the only choice consistent with optimization for π > 1
2

is

also α = 1 and β = 0.

When the solution is always interior Assume now that the solution is

interior at all π′s. The first order conditions are given by Equations (10) and

(11).

Equation (11) requires that ∂I∗(α(π),β(π))
∂β

→
π→1

0.

We know that ∂I∗(α,β)
∂β

= 0⇔ α = 1− β

Hence, ᾱ = 1− β̄. This immediately yields that C(θ; π) →
π→1

0.

We can also show immediately that ᾱ = 1. Assume ᾱ ∈ (0, 1), and

consider the first order condition in Equation (10). If it holds for all π, then

the RHS converges to 0 since ᾱ = 1− β̄ while the LHS converges to 1. This

is a contradiction. Hence it must be that ᾱ ∈ {0, 1}. But ᾱ = 0, β̄ = 1 would

be obviously inconsistent with maximization in a neighbourhood of π = 1.

Proof of Proposition 5

Proposition 5 (Information shutdown at extreme priors). ∀θ, ∃π(θ)|∀π >

π(θ), β(θ; π) < 0.5 and α(θ; π) > 0.5. ∀θ, ∃¯̄π(θ)|∀π > ¯̄π(θ), β(θ; π) = 0 and

α(θ; π) = 1

Proof of Proposition 5. The first part of the proposition follows immediately

from 4, the continuity of the solutions and the fact that β(0.5) = α(0.5) > 0.5.
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For the second part, we show that in a rational inattention model, β = 0

for high priors. We then show that when β = 0 in a rational inattention

model, it has to be 0 in the inattentive valuation model.

The rational inattention problem with a fixed cost of attention θ is de-

scribed in Problem (2)

Denote a = exp
(
1
θ

)
. The first order conditions, provided the solution is

interior, yield

α(1− q)
q(1− α)

= a

βq

(1− β)(1− q)
= a

Equalizing the two expressions for q
1−q , we have that

α

1− α
= a2

1− β
β

Hence,

α =
a2(1− β)

β + a2(1− β)

Note that α = 1⇔ β = 0. The previous expression implies that

q =
a2(1− β)π

β + a2(1− β)
+ (1− β)(1− π)

1− q =
βπ

β + a2(1− β)
+ β(1− π)

From
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βq

(1− β)(1− q)
= a

and substituting for q and 1− q We have that

β

1− β
· a

2(1− β)π + (1− β)(1− π)(β + a2(1− β))

β(1− π)(β + a2(1− β)) + βπ
= a

Or

a2π + (1− π)(β + a2(1− β))

(1− π)(β + a2(1− β)) + π
= a

Thus

a2 + β[1− π][1− a2] = a[π + a2(1− π)] + aβ[1− π][1− a2]

Or

β · (1− π)(a2 − 1)(a− 1) = a[π + a2(1− π)− a]

We also have that

a[π + a2(1− π)− a] = a(a− 1)(a(1− π)− π)

So that

β =
a(a(1− π)− π)

(1− π)(a2 − 1)

This expression is not negative only if π
1−π ≤ a or π < a

1+a
. Therefore,

for all π ≥ a
1+a

, the solution is not interior and β = 0

Now, let us write
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V RI =max
α,β

π̃α + (1− π̃)β − θI((α, β); (π̃, 1− π̃))

=max
α,β

h(α, β, π̃)

V IV =max
α,β

π̃α + (1− π̃)β − θI∗(α, β)

=max
α,β

g(α, β, π̃)

By definition, ∀α, β, π, g(α, β, π) ≤ h(α, β, π).

Hence, by taking the max on both sides with respect to α, β, we have

that for all π, V IV ≤ V RI

We know that for π̃ ≥ π̄ = a
1+a

, V RI = π since α = 1, β = 0 and

I((α, β); (π̃, 1− π̃)) = 0. Hence, for π̃ ≥ π̄, V IV ≤ π. But setting α = 1 and

β = 0 in the IV problem yields a value of π̃. Hence, it realizes the maximum.

Therefore, we have that when under RI, α = 1 and β = 0, then it must

be the case under IV . In particular, for all π ≥ a
1+a

, the solution of the

inattentive valuation problem is not interior and β = 0, α = 1

Proof of Proposition 6

Proposition 6. ∀θ > 0,∃π̃(θ) > 1
2
|
∣∣π − 1

2

∣∣ > ∣∣π̃(θ)− 1
2

∣∣ ⇒ αd(θ; π) +

βd(θ; π) = 1. Moreover, ∀θ > 0, π̃(θ) = ¯̄π(θ)

Proof of Proposition 6. Consider the dynamic setting under Rational Inat-

tention:

V (π) = max
α,β

απ + β(1− π) + δ
[
qV

(
απ

q

)
+ (1− q)V

(
(1− α)π

1− q

)]
− θI(α, β, π)

55



Now consider V under no attention (α + β = 1), (immediately we get πa =

πb = π):

V (π) = max
α,β

πα + (1− π)β + δ[qV (π) + (1− q)V (π)]

V (π)(1− δ) = max
α,β

πα + (1− π)β

V (π) =
π

1− δ

Now, since V is continuous, and we are trying to show a discontinuity in

the first order conditions (a point at which they stop holding), there must

be a π̃ such that for all π > π̃, I(π) = 0. We know that π̃ = 1 is a

solution to this, but we want to check whether there is another solution

where π̃ < 1. Therefore, V (π̃) must satisfy the first order conditions and

satisfy V (π̃) = π̃
1−δ . If we can find this π̃ we are done. Importantly, at π̃,

V (π̃a) = V (π̃b) = π̃ and V ′(π̃a) = V ′(π̃b):

V (π̃) = max
α,β

απ̃ + β(1− π̃) + δ
[
qV

(
απ̃

q

)
+ (1− q)V

(
(1− α)π̃

1− q

)]
− θI(α, β, π̃)

So the first order condition with respect to α becomes:

π̃ + δπ̃

[
V (π̃a)− V (π̃b) +

q − απ̃
q

V ′(π̃a) +
(1− α)π̃ − (1− q)

1− q
V ′(πb)

]
= θIα

π̃ + δπ̃V ′(π̃)

[
q − απ̃
q

+
(1− α)π̃ − (1− q)

1− q

]
= θIα

π̃ = θπ̃ ln

(
α(1− q)
q(1− α)

)
1 = θ ln

(
α(1− q)
q(1− α)

)
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The first order condition with respect to β becomes:

(1− π̃) + δ(1− π̃)

[
V (π̃a)− V (π̃b) +

απ̃

q
V ′(π̃a) +

(1− α)π̃

(1− q)
V ′(πb)

]
= θIβ

(1− π̃) + δ(1− π̃)V ′(π̃)

[
απ̃

q
+

(1− α)π̃

(1− q)

]
= θIβ

1 = θ ln

(
βq

(1− q)(1− β)

)
This is identical to the static case and thus, the exact same proof will work.

Namely, we know that there is a point π̃ such that the first order conditions

above are both satisfied with equality, and α+ β = 1 - it will be exactly the

π̃ at which the first order conditions of the static case break down.

The same logic as the above for the Inattentive Value formulation will

show that at a hypothetical shutdown point, the FOC for the dynamic and

static case become the same. We know that under the FOC for the static

case, that there is a shutdown point that occurs before that of Rational

Inattention. Therefore, the same shutdown point must exist in the dynamic

case.

Therefore, such a shutdown point is defined in the same way in the dy-

namic case as in the static for both rational inattention and inattentive val-

uation.

Proof of Proposition 7

Proposition 7. ∀θ > 0, α(θ; .5) < αd(θ; .5) and β(θ; .5) < βd(θ; .5).

Proof of Proposition 7. Under static case we get q = π = π∗ = 0.5, α = β
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and FOC:

1 = θ ln

(
α

1− α

)
e

1
θ =

α

1− α

α =
e

1
θ

1 + e
1
θ

Under the dynamic case, we get that q = π = π∗ = 0.5, α = β, V (πa) =

V (πb) (due to symmetry) and V ′(πa) = −V ′(πb) (again due to symmetry).

The FOC is:

π̃ + δπ̃

[
V (π̃a)− V (π̃b) +

q − απ̃
q

V ′(π̃a) +
(1− α)π̃ − (1− q)

1− q
V ′(πb)

]
= θπ̃ ln

(
α

1− α

)
1 + δ [(1− α)V ′(π̃a)− αV ′(πb)] = θ ln

(
α

1− α

)

V ′(π̃a) > 0, as is shown below, and so the amount on the left hand side of

the equation is larger that in the static case, hence requiring a larger value

of α to satisfy equality.

To try to show that V ′(π) > 0 when π > 0.5:

V ′(π) = α− β + δ

[
(α + β − 1)V

(
απ

q

)
+ V ′

(
απ

q

)
αq − απ(α + β − 1)

q
− (α + β − 1)V

(
(1− α)π

1− q

)
+ V ′

(
(1− α)π

1− q

)
(1− q)(1− α)− (1− α)π(1− α− β)

1− q

]
It is easy to see two things immediately. If π is past the shutdown point,

then V ′(π) = 1, because α + β = 1 and α 6= β. Second, V ′(0.5) = 0. Now,

we can get the rest simply showing that the Value function is convex.

We show that the value function of our problem is convex by the following

reasoning:

• For any V convex, TV is convex
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• Therefore, for any V convex, T (n)V is convex

• Because the set of convex functions on [0, 1] is closed, lim
π→1

T (n)V is

convex

• Hence, the value function which solves our problem is convex

The main step to prove is the first one.

Let us thus show that if V is convex in π, then TV is also convex in π.

To show that, we will first show that the function inside the maximum is

convex in π for any α, β. As the maximum of a family of convex functions,

TV will thus be convex in π

Because the first part of the function is linear in π, we can focus on the

term in square brackets to show the convexity. Let us define, in particular

f(π) =
[
qV (πa) + (1− q)V (πb)

]
And note that

∂q

∂π
= α + β − 1

∂πa

∂π
=
αq − απ(α + β − 1)

q2

∂πb

∂π
=

(1− α)(1− q) + (1− α)π(α + β − 1)

(1− q)2

Hence,

f ′(π) = (α + β − 1)
[
V (πa)− V (πb)

]
+ V ′(πa)

αq − απ(α + β − 1)

q
+ V ′(πb)

(1− α)(1− q) + (1− α)π(α + β − 1)

1− q
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and

f ′′(π) = (α + β − 1)

[
V ′(πa)

αq − απ(α + β − 1)

q2
− V ′(πb)(1− α)(1− q) + (1− α)π(α + β − 1)

(1− q)2

]
− V ′(πa)(α + β − 1)(αq − απ(α + β − 1))

q2

+ V ′(πb)
(α + β − 1)((1− α)(1− q) + (1− α)π(α + β − 1))

(1− q)2

+ V ′′(πa)
1

q

(
∂πa

∂π

)2

+ V ′′(πb)
1

1− q

(
∂πb

∂π

)2

The terms in V ′ cancel out and we are only left with the terms in V ′′ weighted

by positive numbers. Hence, f ′′ inherits the sign of V ′′ if it is constant. In

particular, f is convex if V ′′ is convex.

Proof of Proposition 8

Proposition 6. ∀θ > 0,∃π̃(θ) > 1
2
|
∣∣π − 1

2

∣∣ > ∣∣π̃(θ)− 1
2

∣∣ ⇒ αd(θ; π) +

βd(θ; π) = 1. Moreover, ∀θ > 0, π̃(θ) = ¯̄π(θ)

Proof of Proposition 8. Take a unit interval of agents who all have a prior of

π0 = 0.5. Since we know that agents pay more attention to signals in the

forward-looking problem than in the myopic, we have that:

α = β ≥ e
1
θ

1 + e
1
θ

Further, we know that no matter which way the agents update (whether they

see an ′a′ or a ′b′:

π1 ≥
π0α

q0
OR π1 ≤

(1− α)π0
1− q0

Remember that π0 = q0 = 0.5, which means that the above equation simpli-

fies to the condition that π1 ≥ α or π1 ≤ 1− α depending on what signal is
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observed. But remember also that the shutdown point is (at least) the same

as α(0.5)! Therefore, for agents starting at 0.5, they will observe one signal,

either A or B, update, and then shut down.
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B Figures

Figure 1: Values of I∗(α, β) .
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Figure 2: Isoquants for I∗

Figure 3: Information capacity allocated to the problem, as a function of the prior on state

A for θ = 1.
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Figure 4: Optimal information structure (α, β) as a function of the prior on state A for

θ = 1.

Figure 5: Evolution of different starting values of π over 8 periods where θ = 10
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Figure 6: Evolution of π for agents under different values of θ.
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Figure 7: Finishing histograms for 100 agents starting at π0 = 0.5 for different values of

θ
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Figure 8: Evolution of priors for 50 agents starting at π0 = 0.5 and θ = 10 for different

values of q.
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