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Abstract

Motivation: Recent technology developments have made it possible to generate various kinds of

omics data, which provides opportunities to better solve problems such as disease subtyping or

disease mapping using more comprehensive omics data jointly. Among many developed data-

integration methods, the similarity network fusion (SNF) method has shown a great potential to

identify new disease subtypes through separating similar subjects using multi-omics data. SNF ef-

fectively fuses similarity networks with pairwise patient similarity measures from different types of

omics data into one fused network using both shared and complementary information across mul-

tiple types of omics data.

Results: In this article, we proposed an association-signal-annotation boosted similarity network

fusion (ab-SNF) method, adding feature-level association signal annotations as weights aiming to

up-weight signal features and down-weight noise features when constructing subject similarity

networks to boost the performance in disease subtyping. In various simulation studies, the pro-

posed ab-SNF outperforms the original SNF approach without weights. Most importantly, the im-

provement in the subtyping performance due to association-signal-annotation weights is amplified

in the integration process. Applications to somatic mutation data, DNA methylation data and gene

expression data of three cancer types from The Cancer Genome Atlas project suggest that the pro-

posed ab-SNF method consistently identifies new subtypes in each cancer that more accurately

predict patient survival and are more biologically meaningful.

Availability and implementation: The R package abSNF is freely available for downloading from

https://github.com/pfruan/abSNF.

Contact: sw2206@columbia.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

With the recent development of high-throughput technology, a vast

amount of omics data such as mutations, copy number variants,

DNA methylation data and gene expression data have been gener-

ated, which help advance understanding in system biology. A review

paper on integrative genomics in cancer emphasizes a fundamental

principle which says ‘any biological mechanism builds on multiple

molecular phenomena, and only through the understanding of the

interplay within and between different layers of genomic structures

can one attempt to fully understand phenotypic traits’ (Kristensen

et al., 2014). The development of powerful integrative analysis tools

for multi-omics data to better understand biological processes is a

natural next step. Many studies have indicated associations between

cancer subtypes and tumor aggressiveness, prognoses and responses
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to therapy, which suggests clinical potential with cancer type dis-

tinctions (Hu et al., 2006; Neve et al., 2006; Rouzier et al., 2005;

Sørlie et al., 2001). Several successful examples that translate cancer

genomic discoveries into therapeutics and diagnostics exist and re-

inforce the importance of cancer omics in personalized cancer medi-

cine (Chin et al., 2011).

Many integrative methods for clustering have been developed

lately. One common initial strategy in disease subtyping with multi-

omics data is to first cluster samples using one type of omics data

and then further cluster group labels from each type of omics data.

This is usually referred to as the consensus clustering method

(Cancer Genome Atlas Network, 2012; Cancer Genome Atlas

Research Network, 2016; Monti et al., 2003). Lock et al. (2013)

proposed a method which decomposes variation of an integrated

multi-source dataset into three terms: a joint variation across sour-

ces, a structured variation individual to each source and residual

noise. Qin (2008) and Lee et al. (2008) proposed clustering methods

on correlation matrices between any two types of omics data. This

line of methods utilizes shared information across multi-omics data

in order to identify their common patterns. To capture both com-

mon and complementary information across multi-omics data, a la-

tent variable model, iCluster, was developed (Shen et al., 2009). A

major extension of the original algorithm, iClusterPlus, that allows

a joint modeling of discrete and continuous data types and a sub-

stantially faster implementation was also developed (Mo et al.,

2013). A more recent extension of iCluster uses a full Bayesian la-

tent variable approach (Mo et al., 2018) and allows further im-

provement in terms of statistical inference on feature selection.

Another multiple dataset integration (Kirk et al., 2012) method

similarly implements a Bayesian latent variable model. Both

iCluster, multiple dataset integration and most of other clustering

methods have a pre-selection step to screen features, making them

sensitive to features pre-selected. Recently, Wang et al. (2014) devel-

oped a similarity-based method that generates similarity measures

between pairwise subjects using one type of omics data first, referred

to as the patient similarity network, and then iteratively updates

individual similarity networks from individual types of omics data

using information from other types of omics data. Similarity net-

works from multiple types of omics data are thus fused and the

method is referred to as similarity network fusion (SNF). Other simi-

lar method such as the affinity network fusion (Ma and Zhang,

2018) was also developed lately. Like any similarity-based methods,

no pre-screening feature selection step is necessary, which avoids the

potential to screen out any signal features especially ones with weak

signals. However, it is also acknowledged that in similarity-based

methods, unscreened noise features may dilute clustering signals and

weaken the study power. To alleviate this disadvantage, different

omics features may be weighted differently in the construction of the

similarity measures to up-weight signal features and down-weight

noise features. This idea has been adopted in similarity-based meth-

ods in genome-wide association studies (Wessel and Schork, 2006).

With multi-omics data, Xu et al. (2016) proposed a weighted SNF

method that utilizes miRNA-TF-mRNA regulatory network in

identifying cancer subtypes. However, this method is limited to the

specific types of omics data and the databases used to construct the

regulatory network do not cover all true interactions either.

In this paper, we proposed a more general framework of

weighted SNF method: an association-signal-annotation boosted

SNF (ab-SNF) method that incorporates association signal annota-

tions between features of different omics data and outcome of inter-

est as weights in the construction of similarity measures between

any given pair of samples in order to boost the clustering perform-

ance. Specifically, in the proposed ab-SNF method, for each type of

omics data, we first construct feature-level weights using association

signal annotations between individual features and outcomes, and

then compute the corresponding association-signal-annotation

boosted similarity matrices. These similarity matrices can be consid-

ered as similarity networks of samples whose nodes are subjects and

edges are pairwise similarity measures between any given pair of

samples. We then fuse the boosted similarity networks from individ-

ual types of omics data into a single boosted similarity network

through a non-linear combination method. This non-linear combin-

ation method iteratively updates the boosted similarity networks

from individual types of omics data using the boosted similarity net-

works of other types (Blum and Mitchell, 1998; Wang et al., 2012)

and amplifies the effects of the feature-level association-signal-anno-

tation weights.

We conducted simulation studies to compare the performances

of the proposed ab-SNF method and methods that either are not

boosted or do not integrate multi-omics data and observed a much

improved performance of the ab-SNF method in identifying true

disease subtypes. Most importantly, we observed that the improve-

ment in the clustering performance is due to the amplified effects of

feature-level weights across multiple types of omics data through

iterations of the diffusion process that integrates multi-omics data.

We applied the ab-SNF method to somatic mutation, DNA methyla-

tion and gene expression data of breast invasive carcinoma

(BRCA), kidney renal papillary cell carcinoma (KIRP) and liver hep-

atocellular carcinoma (LIHC) from The Cancer Genome Atlas

(TCGA) project and subtyped cancer patients that more accurately

reflect their survival than those by the original SNF method without

association-signal-annotation weights across the three independent

cancer types consistently.

2 Materials and methods

All continuous features of different types were first normalized to

have mean zero and unit standard deviation. For discrete features

such as somatic mutations, we worked on gene-level and considered

a gene to be mutated if there is any mutation on that gene and coded

the gene to be ‘1’ and ‘0’ otherwise.

There are three steps in the proposed ab-SNF method: (i) con-

structing feature-level weights and association-signal-annotation

boosted similarity networks for individual types of omics data;

(ii) fusing multiple boosted similarity networks into one single inte-

grated boosted similarity network and (iii) subtyping disease sub-

jects based on the integrated boosted similarity network (Fig. 1).

Fig. 1. The pipeline of the proposed ab-SNF method
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2.1 Constructing boosted similarity networks for

individual types of omics data
2.1.1 Feature-level weights

For individual types of omics data, we consider features that can

better differentiate tumor samples from adjacent normal samples (or

independent normal samples) as potential signal features for subtyp-

ing tumor samples, i.e. features with stronger association signals

with outcomes of interests. We would want to up-weight these sig-

nal features in constructing the patient similarity network using this

type of omics data. Therefore, for a continuous feature k such as an

epigenetic feature (DNA methylation at a CpG site) or a transcrip-

tomic feature (gene expression of a gene), we weight the feature

using the feature-level association P-value pk from comparing tumor

samples to adjacent normal samples (or independent normal sam-

ples) at feature k, using such as the paired t-test (or the two-sample

t-test). The feature-level weight wk for feature k is then defined as

wk ¼ �log10ðpkÞXK

k¼1

�
� log10ðpkÞ

�, where K is the total number of features

of that type. For a binary feature k, such as a mutation gene, we can

select mutation genes that are known to be cancer-related based on

the Cancer Gene Census (CGC) (Futreal et al., 2004) database. This

is equivalent to set feature-level weight wk¼1 for mutation gene k

in the CGC database and wk¼0 for all other mutation genes.

2.1.2 Association-signal-annotation boosted patient similarity

networks

For an individual type of continuous omics data with K features, we

first construct a boosted patient similarity network between any

given pair of tumor samples i and j, where we use a weighted

Euclidean distance: dði; jÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK

k¼1
wkðgik � gjkÞ2

q
. For an individ-

ual type of binary omics data with K features, we use a weighted

Hamming distance to measure the distance between any given pair

of tumor samples i and j: dði; jÞ ¼
XK

k¼1
wkjgik � gjkj. Here gik and

gjk is the kth feature of tumor samples i and j, respectively, and wk is

the feature-level weight. We then transform the weighted distance

measures dði; jÞ into weighted similarity measures through a scaled

exponential similarity kernel:

Aði; jÞ ¼ exp �d2ði; jÞ
leij

 !
(2.1)

where l is a hyperparameter that can be empirically defined [here

we set the default as 0.5 (Wang et al., 2014)], and eij is the param-

eter to eliminate the scaling problem and is defined as:

eij ¼
meanðdði;NiÞÞ þmeanðdðj;NjÞÞ þ dði; jÞ

3
: (2.2)

Here mean
�

dði;NiÞ
�

is the average distance between tumor

sample i and his/her neighbors Ni, where Ni are tumor samples

with the smallest distances to tumor sample i (Yang et al., 2008)

and is set at 20 as the default (Wang et al., 2014). These weighted

similarity measures between any given pairs of tumor samples

i and j, Aij ¼ Aði; jÞ comprises the boosted patient similarity net-

work A.

2.2 Fusing multiple boosted similarity networks
The network fusion algorithm was originally developed in the area

of computer vision (Blum and Mitchell, 1998; Wang et al., 2012).

For the mth type of omics data, we first define a global boosted

similarity network PðmÞ and a local boosted similarity network SðmÞ

using the boosted similarity network AðmÞ defined in Equation (2.1).

Specifically, the entries of the global boosted similarity network PðmÞ

are defined as the normalized entries in AðmÞ between any pairs of

tumor samples. The entries of the local boosted similarity network

SðmÞ are defined as the normalized entries in AðmÞ between tumor

sample i and his/her neighbors Ni, where Ni was defined in Section

2.1.2, and 0 between tumor sample i and tumor samples outside of

his/her neighbors Ni. This local boosted similarity network SðmÞ is

constructed with an assumption that local similarities might be

more reliable than remote ones.

Individual global similarity networks PðmÞ;m ¼ 1; :::;M for

M types of omics data are then smoothed through the parallel

interchanging diffusion process (Wang et al., 2012) that updates

the individual global similarity network PðmÞ using the local simi-

larity networks SðmÞ and the global similarity networks of other

types of omics data. More specifically, assuming there are only

two types of omics data, we have global similarity networks

Pð1Þ, Pð2Þ and local similarity networks Sð1Þ, Sð2Þ, respectively. To

update Pð1Þ, Pð2Þ iteratively, let initial condition Pð1Þðt ¼ 0Þ ¼ Pð1Þ

and Pð2Þðt ¼ 0Þ ¼ Pð2Þ for the first iteration, the diffusion process is

described as follows:

Pð1Þðt þ 1Þ ¼ Sð1Þ � Pð2ÞðtÞ � ðSð1ÞÞT (2.3)

Pð2Þðt þ 1Þ ¼ Sð2Þ � Pð1ÞðtÞ � ðSð2ÞÞT : (2.4)

After t iterations, the integrated boosted similarity network is

calculated as the average of the two updated global similarity net-

works PðfusedÞ ¼
�

Pð1ÞðtÞ þ Pð2ÞðtÞ
�
=2. When there are more than

two types of omics data, the diffusion process Equations (2.3) and

(2.4) can be expressed as:

PðmÞ ¼ SðmÞ �

X
k6¼m

PðkÞ

M� 1
� ðSðmÞÞT ;m ¼ 1; :::;M: (2.5)

There are three important observations of the diffusion process:

(i) if subjects i and j are similar in all types of omics data, the

diffusion process will make them even closer; (ii) if subjects i and j

are not similar in one type of omics data but similar in other types,

the similarity that exists in one type of omics data will be propa-

gated through the diffusion process and (iii) the effects of feature-

level association-signal-annotation weights are amplified across

multiple types of omics data through iterations of the diffusion

process.

2.3 Subtyping subjects based on the integrated boosted

similarity network
We apply the spectral clustering method on the fused boosted simi-

larity network which utilizes eigenvectors of the graph Laplacian of

the similarity network to accomplish subject clustering (Ng et al.,

2002). To determine the number of clusters, i.e. disease subtypes,

we used the eigengap method (Ng et al., 2002). Specifically, we

sorted the eigenvalues of the Laplacian matrix in an ascending order.

The eigengaps are defined as the differences between consecutive

eigenvalues. The best number of clusters, C, is the number that max-

imizes the Cth eigengap. For well-studied cancer types such as

BRCA, when at least five breast cancer subtypes are already widely

accepted (Parker et al., 2009), we will examine the number of clus-

ters starting from 6. Finally, we remove clusters with fewer than 10

subjects to ensure stable results.

ab-SNF 3

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article-abstract/doi/10.1093/bioinform
atics/btz124/5341415 by C

olum
bia U

niversity Libraries user on 27 M
arch 2019

Deleted Text:  
Deleted Text: .,
Deleted Text: ,
Deleted Text: &equals;
Deleted Text: &equals;
Deleted Text:  
Deleted Text: .
Deleted Text: .
Deleted Text: (
Deleted Text: )),
Deleted Text: ,
Deleted Text: 0
Deleted Text: .
Deleted Text: e
Deleted Text: ,
Deleted Text: .
Deleted Text: ,
Deleted Text: ,,
Deleted Text: ,
Deleted Text: .
Deleted Text: e
Deleted Text: ;
Deleted Text: .,
Deleted Text: E
Deleted Text: E
Deleted Text: E
Deleted Text: 5
Deleted Text: 0


3 Simulation studies

3.1 Comparison methods
We conducted simulation studies to investigate the performance of

the ab-SNF method and compared to that of (i) the original SNF

without weights, (ii) methods that use only one type of omics data

with/without weights and (iii) methods that use two types of omics

data with/without weights. These simulation studies can help dem-

onstrate how feature-level weights improve disease subtyping and

how the effects of feature-level weights can be amplified when inte-

grating multi-omics data.

3.2 Simulation settings
In each simulation setting, we considered 200 tumor samples with

three types of omics data. We set the 200 tumor samples from four

subtypes A, B, C and D each with 50 tumor samples. There are 1000

features in each type with 5% informative in defining subtypes.

The simulation studies were designed such that using one type data,

we can only separate two of the four subtypes from the other two.

Only when we use information from all three types, can we separate

all four subtypes. Specifically, for one type of data such as gene

expression data, we generated expression levels of the 50 signal

features from a normal distribution N(�1, 2) for samples of sub-

types A and B to represent down-regulated gene expression and

from a normal distribution N(1, 2) for samples of subtypes C and D.

For the second type of data such as DNA methylation data, we

generated methylation levels of the 50 signal features from a normal

distribution N(�1, 2) for samples of subtypes A and C to represent

hypo-methylation and from a normal distribution N(1, 2) for sam-

ples of subtypes B and D. Measures of each of the 950 noise features

for these two types of data were generated from a normal distribu-

tion N(0, 2). For the third type of data such as somatic mutation

data, we generated mutation status (‘1’ for mutation and ‘0’ other-

wise) for the 50 signal features from a Bernoulli distribution

Bernoulli(0.4) for samples of subtypes A and D and from

Bernoulli(0.2) for samples of subtypes B and C. Measures of the 950

noise features for mutation data were generated from a Bernoulli

distribution Bernoulli(0.1). We simulated 1000 datasets for each

simulation setting.

We considered simulation scenarios to investigate how feature-

level weights affect the clustering performance (Table 1).

Specifically, we examined how (i) percent and magnitude of correct-

ly up-weighted or incorrectly down-weighted signal features out of

all true signal features and how (ii) percent and magnitude of cor-

rectly down-weighted or incorrectly up-weight noise features out of

all true noise features affect the performance of the ab-SNF method

in disease subtyping. As defined in Section 2.1.1, feature-level

weights are based on association-signal-annotation P-values:

wk ¼ �log 10ðpkÞXK

k¼1

�
� log 10ðpkÞ

�, which are values in between 0 and 1.

We estimated feature-level weights using TCGA data where ranges

of weights for potential signals and noises were obtained. We then

rescaled the estimated weights for easier illustration, based on which

we simulated different feature-level weights, either up-weighted or

down-weighted, from uniform distributions. Specifically, we gener-

ated up-weights for signals from Uniform(1, 2), Uniform(1, 3) or

Uniform(1, 4). We also generated down-weights from Uniform(0,

1), Uniform(0.7, 1), Uniform(0.3, 0.7) or Uniform(0, 0.3). We also

set different percent of correctly up-weighted signal features and dif-

ferent percent of correctly down-weighted noise features.

We also conducted additional simulation studies to investigate

how the proposed ab-SNF method performs if certain types of omics

data are pure noise and not help define subtypes. The detailed

description of the addition simulation settings is included in the

Supplementary Materials.

3.3 Simulation results
We examined how accurately each method identifies true disease

subtypes, where we define the accuracy as the percent of subjects

Table 1. Simulation scenarios and corresponding results

Simulation scenarios Signal features Noise features Accuracy%a of each method

Info%b Magnitude Uninfo%c Magnitude Med alone Gee alone Muf alone Meþ Ge MeþMu GeþMu MeþGeþMu

Not boosted scenario 100 1 100 1 47.34 47.34 42.92 62.80 52.66 52.66 69.29

Boosted scenario I 20 U(1, 3) 40 U(0, 1) 47.69 47.69 42.94 69.04 57.33 57.33 83.24

60 U(1, 3) 40 U(0, 1) 47.82 47.82 42.97 71.17 59.79 59.79 88.45

100 U(1, 3) 40 U(0, 1) 48.47 48.46 43.04 73.45 61.50 61.50 91.44

Boosted scenario II 60 U(1, 2) 40 U(0, 1) 47.44 47.44 42.95 69.69 58.02 58.02 84.32

60 U(1, 3) 40 U(0, 1) 47.82 47.82 42.97 71.17 59.79 59.79 88.45

60 U(1, 4) 40 U(0, 1) 47.99 47.99 43.49 72.00 61.53 61.53 90.94

Boosted scenario III 60 U(1, 3) 0 U(0, 1) 47.46 47.46 42.98 70.25 58.65 58.64 85.09

60 U(1, 3) 40 U(0, 1) 47.82 47.82 42.97 71.17 59.79 59.79 88.45

60 U(1, 3) 80 U(0, 1) 48.47 48.47 43.44 73.19 62.05 62.05 92.30

Boosted scenario IV 60 U(1, 3) 40 U(0.7, 1) 47.87 47.87 42.96 70.18 59.08 59.08 86.67

60 U(1, 3) 40 U(0.3, 0.7) 47.98 47.98 43.16 71.88 60.15 60.15 88.01

60 U(1, 3) 40 U(0, 0.3) 48.13 48.14 43.50 71.97 61.42 61.42 89.64

Boosted scenario V 60 U(0, 1) 40 U(0, 1) 46.36 46.36 42.09 56.21 48.79 48.79 57.11

60 U(1, 3) 40 U(1, 3) 47.17 47.17 42.4 62.51 53.57 53.57 71.69

60 U(0, 1) 40 U(1, 3) 42.14 42.13 40.97 38.14 37.93 37.93 37.44

aAccuracy% stands for percent of subjects being correctly clustered.
bInfo% stands for percent of true signal features (informative features) being correctly up-weighted.
cUninfo% stands for percentage of true noise features (uninformative features) being correctly down-weighted.
dMe stands for DNA methylation.
eGe stands for gene expression.
fMu stands for mutation.
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being correctly clustered. Table 1 summarizes simulation results. It

is clear that the methods with association-signal-annotation weights

achieved higher accuracies than their corresponding no-weight ver-

sions. The ab-SNF method using all three types of data achieved the

highest accuracies in scenarios I–IV, where different percentages of

true signal features were correctly up-weighted with different magni-

tudes, and different percentages of noise features were correctly

down-weighted with different magnitudes. Specifically, in scenario

I, when the magnitude of weights for signal features were from

Uniform(1, 3), i.e. signal features being correctly up-weighted, and

the magnitude of weights for noise features were from Uniform(0,

1), i.e. noise features being correctly down-weighted, and 40%

noise features were down-weighted while increasing the percentage

of up-weighted signal features, the clustering accuracy of the ab-

SNF method was the highest as expected. For the comparison

methods that use only one type of data, up-weighting signal

features and down-weighting noise features only slightly improves

the clustering accuracy. For the comparison methods that use two

types of data, the improvements in clustering accuracies by up-

weighting signal features and down-weighting noise features were

larger than those of methods using only one type of omics data.

Moreover, for the comparison methods that use all three types

of data, up-weighting signal features and down-weighting noise

features achieved the largest improvements in clustering accura-

cies. This indicates that the effects of feature-level weights can be

amplified when multi-omics data are integrated. The original SNF

methods that integrate information from two or three types of

data without feature-level weights has an improved clustering

accuracy than that of the methods that only use one type of omics

data with/without weights. These suggest that (i) integrating

multiple types of omics data accumulates more information thus

improves the clustering accuracy as previously already demon-

strated; and (ii) the improvement from correctly up-weighting sig-

nal features and down-weighting noise features in multiple types

of omics data could be amplified during the integration of these

multiple types of omics data through the diffusion process

[Equations (2.3) and (2.4)].

Similar patterns can be observed in scenarios II–IV, where the

clustering accuracy of the ab-SNF method increases as the magni-

tude of weights for signal features increases, as the percentage of

noise features being correctly down-weighted increases, and as the

magnitude of weights for noise features decreases, respectively.

In scenario V, the clustering accuracy of the ab-SNF method

increases much slower as the magnitude of weights of correctly up-

weighted signal features increases but the magnitude of weights of

incorrectly up-weighted noise features also increases. As an extreme

setting in scenario V, which would rarely happen in real data, when

60% of signal features were incorrectly down-weighted and 40% of

noise features were incorrectly up-weighted, the clustering accuracy

of the ab-SNF method is lower than that of the original SNF

method. This emphasizes that the feature-level weights could be

very useful but it is important to assign correct weights to individual

features.

In the additional simulation studies investigating how the pro-

posed ab-SNF method performs if certain types of omics data are

pure noise and not help define subtypes, we observed similar pat-

terns in the results. That is, integrating a data type that is pure noise

decrease the clustering accuracy as expected. However, feature-level

weights help minimize the drop in accuracy. The detailed simulation

results for the additional simulation settings are included in the

Supplementary Materials.

4 Real data applications

4.1 TCGA cancer data
To demonstrate the performance of the proposed ab-SNF method in

cancer subtyping, we worked on three independent cancer types

from TCGA, i.e. BRCA, KIRP and LIHC, each with three types of

omics data., i.e. somatic mutation data, DNA methylation 450 K

array data, and gene-level RNA-seq data. This is based on the bio-

logical assumption that cancer-related mutations may change

genome-wide methylation levels, which then may lead to changes in

gene expression (Jones, 2012).

We conducted the same quality control steps across the three

cancer types where we removed tumor samples with more than 30%

missing in any of the three data types. We then removed features

with more than 30% missing. After these two steps, for the rest of

the missingness in gene expression and DNA methylation data, we

imputed using K-nearest neighbor (Troyanskaya et al., 2001). We

also conducted batch effect correction for gene expression using

Combat (Johnson et al., 2007). For DNA methylation, we further

removed CpG sites on sex chromosomes and CpG sites overlapping

with known single nucleotide polymorphisms and also corrected

type I/II probe bias using wateRmelon (Pidsley et al., 2013). To gen-

erate feature-level association signal annotations, we used additional

data including gene expression measures of adjacent normal samples

next to tumor samples, and DNA methylation 450 K measures of

adjacent normal samples next to tumor samples. Detailed descrip-

tions of the TCGA BRCA, KIRP and LIHC datasets are provided in

the Supplementary Materials.

Existing researches have integrated multiple omics data such as

copy number variants and gene expression for breast cancer subtyp-

ing (Curtis et al., 2012), copy number variants, gene expression,

DNA methylation, microRNA expression and protein expression

for renal cancer subtyping (Cancer Genome Atlas Research

Network, 2016) and copy number variants, DNA methylation, gene

expression, microRNA expression and proteomics data for liver can-

cer subtyping (Ally et al., 2017). We will compare subtyping results

using the ab-SNF method to published results for each individual

cancer type.

4.2 Overall performance of the ab-SNF method in three

independent cancer types
For each cancer type, we applied the spectral clustering method on

the integrated boosted similarity network generated by the ab-SNF

method as well as similarity networks generated by the comparison

methods. For each cancer type, Table 2 displays the number of sub-

types constructed by each method based on the eigengap criteria

introduced in Step 3 of the algorithm. The subtypes identified by the

ab-SNF method are most significantly associated with patient sur-

vival across all comparison methods in all three cancer types.

Consistent with what we observed in the simulation studies, based

on the log-rank P-values that associate subtypes and patient survival

in each individual cancer type, the comparison methods that use

only one type of omics data with feature-level weights are only

slightly better than the non-weight versions. When integrating

multi-omics data with weights, the subtypes generated have much

stronger association with patient survival than that generated by the

original SNF. This suggests that the effects of weights were ampli-

fied during the diffusion process when multiple types of omics data

were integrated.

We also used C-index to measure the prediction accuracy of each

model for each cancer type, where a C-index of 1 indicates perfect
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prediction and a C-index of 0.5 indicates random guess. C-indexes

of the ab-SNF method are 0.69, 0.87 and 0.63 for BRCA, KIRP and

LIHC, respectively, while the corresponding C-indexes using the ori-

ginal SNF method are 0.61, 0.83 and 0.55.

4.3 Individual cancer case studies
4.3.1 TCGA BRCA

BRCA subtyping has been extensively studied. Parker et al. (2009)

identified a classifier with 50 genes and defined 5 BRCA subtypes

using gene expression of these 50 genes, which has been widely

applied and referred as PAM 50. Curtis et al. (2012) identified 10

BRCA subtypes using copy number variants and gene expression

data.

Here using mutation data, DNA methylation data and gene ex-

pression data, the ab-SNF method identified eight BRCA subtypes.

These eight subtypes are associated with survival with a P-value of

4:56� 10�8 (Table 2) while the original SNF method identified

seven subtypes which are associated with survival with a P-value of

0.057. However, 3 subtypes out of the 7 have fewer than 10 subjects

and were thus removed. The rest four subtypes are associated with

survival with a P-value of 0.10 (Table 2).

Figure 2a plots the Kaplan–Meier curves of the eight BRCA sub-

types constructed by the ab-SNF method. We note that the smallest

subtype with 14 subjects has the worst survival with a mean survival

time of 1128 days. This subtype also has the highest averaged muta-

tion burden (Fig. 2d). Among the 4 subtypes identified by the origin-

al SNF method, these 14 subjects were clustered into two different

subtypes with a mean survival time of 2763 and 2650 days, respect-

ively, i.e. the 14 subjects survived much shorter than other subjects

in these two subtypes. This suggests that the ab-SNF method might

be able to subtype BRCA patients more accurately reflect their

survival.

Figure 2b displays the heatmap of gene expression levels of the

top ranked 500 genes by feature-level association weights for the

eight BRCA subtypes by the ab-SNF method. We clearly see differ-

ent gene expression patterns across the eight subtypes. For example,

comparing subtypes 1 and 2, subtype 1 has lower gene expression

levels for several CGC genes such as CD79B and LCK. Subtype 4

has higher gene expression levels than those of subtype 3 at these

two genes. Subtypes 3 and 4 have lower gene expression levels than

subtypes 1 and 2 at genes such as GATA3, which is an important

breast cancer gene (Takaku et al., 2015). Figure 2c similarly displays

the heatmap of DNA methylation levels of the top ranked 500 CpGs

by feature-level weights. Different patterns of DNA methylations

across the eight subtypes can be similarly observed. For example,

comparing subtype 2 to subtypes 1, 6 and 7, methylation levels at

CpGs such as cg26995244, cg10546065 and cg17840501 are lower

in subtype 2, and even lower in subtypes 3, 4 and 8. Note that

cg26995244 and cg10546065 are on gene PRR5, and cg17840501

is on gene SEPT9, when PRR5 and SEPT9 are both important

breast cancer genes (Connolly et al., 2011; Johnstone et al., 2005).

We further investigate the mutation landscape of the top ranked mu-

tation genes by mutation-frequency across subjects in the eight

BRCA subtypes (Fig. 2d). The frequencies of mutation genes vary

significantly across the eight subtypes. For example, about 40–60%

subjects in subtypes 1, 2, 5 and 6 have functional mutations in the

PIK3CA gene. In contrast, the PIK3CA functional mutation only

occurred in 2–5% of subjects in subtypes 3, 4 and 8 and 11% of

subjects in subtype 7. Other important breast cancer genes such as

TP53, CDH1, GATA3, MAP3K1, NCOR1 and PTEN also show

different mutation patterns across the eight subtypes.

To further investigate the clinical meaning of the eight subtypes,

we summarized comprehensive characteristics of the eight subtypes

through comparing the genomic, clinical and proteomics features

summarized in a review paper on comprehensive molecular portraits

of human breast tumors (Cancer Genome Atlas Network, 2012).

Specifically, subtypes 3 and 4 are mostly basal-like, as (i) most (75–

80%) of the subjects have TP53 mutations (Fig. 2d), (ii) are hypo-

methylated (Fig. 2c), (iii) have low estrogen receptor (ER)-positive

rates [13 and 25%, respectively, among subjects with ER status

available (Table 3)] and (iv) have low HER2-positive rates [0 and

8%, respectively, among subjects with HER2 status available (Table

3)]. Subtype 6 is mostly HER2-enriched, as (i) 71% of the subjects

have TP53 mutations and 47% have PIK3CA mutations (Fig. 2d),

and (ii) have a relatively high HER2-positive rate [29% among sub-

jects with HER2 status available, note that the average percentage

of HER2-postive rate for other 7 subtypes is 9% (Table 3)]. Subtype

2 is mostly Luminal A, as (i) more than half (57%) of the subjects

have PIK3CA mutations (Fig. 2d), (ii) have very high ER-positive

rate [97% among patients with ER status available (Table 3)] and

(iii) have low HER2-positive rate [11% among patients with HER2

status available (Table 3)]. Subtype 7 is mostly Luminal B, as (i) the

most frequently mutated genes are PIK3CA (25%) and TP53 (12%)

and (ii) have very high ER-positive rate [96% among subjects with

ER status available (Table 3)] and (iii) have low HER2-positive rate

[18% among patients with HER2 status available (Table 3)].

Subtype 1 is a combination of Luminal A and Luminal B (Fig. 2d).

The ab-SNF method also identified several novel subtypes.

Subtype 5 has the worst survival (Fig. 2a) and is characterized by a

high ER-positive rate [75% among subjects with ER status available

(Table 3)] and a high HER2-positive rate [55% among subjects with

HER2 status available (Table 3)], when none of the previously iden-

tified BRCA subtypes have such characteristics. Subtype 8 is charac-

terized by a low mutation burden (Fig. 2d) and low mutation rates

at TP53 (2%) and PIK3CA (0%), a high ER-positive rate [78%

Table 2. Subtype analyses in three TCGA cancer types with (i) best chosen number of clusters based on the eigengap criteria in parenthe-

ses, (ii) number of clusters after filtering out clusters whose sizes <10 in bold font and (iii) corresponding survival P-values

Cancer types Mua alone Weighted Mu Meb alone Weighted Me Gec alone Weighted Ge SNF ab-SNF

BRCA Number of clusters 7 (7) 7 (8) 6 (7) 7 (8) 6 (6) 7 (7) 4 (7) 8 (8)

Survival P-values 0.18 0.28 0.48 0.16 0.13 0.12 0.10 4:56� 10�8

KIRP Number of clusters 3 (3) 4 (4) 3 (3) 4 (4) 3 (5) 4 (4) 3 (3) 4 (4)

Survival P-values 0.65 0.081 7:04� 10�4 2:04� 10�9 1:79� 10�4 1:25� 10�5 1:39� 10�4 2:74� 10�14

LIHC Number of clusters 3 (3) 4 (4) 3 (3) 4 (4) 3 (3) 3 (3) 3 (3) 5 (5)

Survival P-values 0.21 0.12 0.16 0.15 0.91 0.44 0.26 0.046

aMu stands for mutation.
bMe stands for DNA methylation.
cGe stands for gene expression.
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among subjects with ER status available (Table 3)] and a low HER2

positive rate [6% among subjects with HER2 status available

(Table 3)], when none of the previously identified BRCA subtypes

have such characteristics. This indicates that the subtypes identified

by the ab-SNF method may provide additional clinical insights

for BRCA.

4.3.2 TCGA KIRP and TCGA LIHC

We conducted similar analyses for KIRP and LIHC. KIRP subtyping

has also been studied. TCGA network identified four KIRP subtypes

using copy number variants, mRNA expression data, DNA methyla-

tion data, microRNA expression data and proteomics data (Cancer

Genome Atlas Research Network, 2016). Here the ab-SNF method

also identified four KIRP subtypes that are associated with survival

with a P-value of 2:74� 10�14 (Table 2). The original SNF method

identified three KIRP subtypes that are associated with survival with

a P-value of 1:39� 10�4 (Table 2). LIHC subtyping has also been

studied. TCGA network identified three LIHC subtypes using copy

number variants, mRNA expression data, DNA methylation data,

microRNA expression data and proteomics data (Ally et al., 2017).

Table 3. Clinical characteristics of the subjects in the eight TCGA BRCA subtypes identified by the ab-SNF method

Subtypes by ab-SNF ER status HER2 status

Not evaluated Negative Positive Not evaluated Equivocal Indeterminate Negative Positive

1 (n¼ 108) 6 4 98 28 21 3 48 8

2 (n¼ 181) 5 5 171 25 31 2 106 17

3 (n¼ 39) 1 33 5 6 9 0 24 0

4 (n¼ 79) 4 56 19 18 10 1 45 5

5 (n¼ 14) 2 3 9 3 1 0 4 6

6 (n¼ 72) 6 15 51 9 12 1 32 18

7 (n¼ 54) 6 2 46 10 17 2 17 8

8 (n¼ 56) 2 12 42 9 10 0 34 3

Fig. 2. (a) Kaplan–Meier curves of the eight TCGA BRCA subtypes identified by the ab-SNF method with the number of subjects in each subtypes. (b) Heatmap of

gene expression profiles of the top ranked 500 genes by feature-level weights across the eight BRCA subtypes identified by the ab-SNF method compared with

the PAM50 subtypes. (c) Heatmap of DNA methylation profiles of the top ranked 500 CpGs by feature-level weights across the eight BRCA subtypes identified by

the ab-SNF method compared with the PAM50 subtypes. (d) The left panel displays the mutation frequencies of the top ranked 20 mutation genes by mutation

frequencies across all BRCA subjects. The top chart in the right panel displays the mutation burdens, defined as the number of mutations per million basepair,

across the eight BRCA subtypes. The bottom chart in the right panel displays the mutation profiles of these 20 mutation genes by mutation types across the eight

BRCA subtypes
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Here the ab-SNF method identified five LIHC subtypes that are

associated with survival with a P-value of 0.046 (Table 2). The ori-

ginal SNF method identified three LIHC subtypes that are associated

with survival with a P-value of 0.26 (Table 2). The detailed investi-

gation of the subtypes of these two cancer types is included in the

Supplementary Materials.

4.4 Empirical analysis of the eigengap criteria to select

number of clusters
To investigate the effectiveness of using the eigengap criteria to choose

the number of clusters with spectral clustering, we conducted an empir-

ical analysis, where we pooled all 901 tumor samples of BRCA, KIRP

and LIHC cancer types together. Here we know the true number of

clusters with pooled samples, i.e. there are three clusters for the three

cancer types. We applied the original SNF and the ab-SNF methods to

the pooled samples and compared number of clusters chosen by the

eigengap criteria. We also compared clustering labels to the true labels

of cancer types. The original SNF method identified three clusters,

while the ab-SNF method identified four clusters. Table 4 Part I shows

the comparisons between the true cancer types and the cluster labels

assigned by the two methods. We see that clusters 1, 2 and 3 defined

by the original SNF correspond to BRCA, KIRP and LIHC, respective-

ly, with 14 tumor samples not being clustered to their corresponding

cancer types. In the clusters defined by ab-SNF, clusters 2 and 3 are

clearly LIHC and KIRP, respectively, while BRCA tumor samples were

clustered into clusters 1 and 4. Overall, only two tumor samples were

not clustered into to their corresponding cancer types by ab-SNF.

When we further compared samples in clusters 1 and 4 to the BRCA

PAM50 subtypes, we note that tumor samples in cluster 4 are mainly

basal-like (98 out of 108 basal-like tumor samples are in cluster 4) and

majority of other BRCA tumor samples were clustered into cluster 1.

This is consistent with results from a recent comprehensive integrative

molecular analysis, where the complete set of tumors in TCGA with

�10 000 specimens representing 33 cancer types (Hoadley et al., 2018)

were pooled together and the clustering analysis suggested 28 clusters.

Among those 28 clusters, two clusters correspond to KIRP and LIHC,

while BRCA were divided into several clusters when most of the basal-

like samples were split out from the cluster for other BRCA subtypes.

These results suggest that the eigengap criteria is effective in selecting

number of clusters and the ab-SNF method is potentially more power-

ful in identifying more biologically meaningful clusters.

5 Discussion

In this paper, we proposed the ab-SNF method, a disease subtyping

method using integrated multi-omics data incorporating feature-level

association signal annotations as weights in generating patient similar-

ity networks with similarity measures between any given pairs of sam-

ples. The ab-SNF method integrates association-signal-annotation

boosted patient similarity networks through an iterative diffusion pro-

cess. One known advantage of similarity-based methods is, there is no

need to pre-select outcome-associated features, avoiding the potential

to mis-screen features with weak signals. This limitation for methods

with a feature selection step would be even more severe when the fea-

ture selection step is required for multiple types of omics data before

integration. On the contrary, in the ab-SNF method for multi-omics

data, other than screen out any features, feature-level association

strengths are used as weights aiming to up-weight signal features and

down-weight noise features in constructing similarity measures be-

tween any pairs of subjects. Both simulation studies and real data

applications have demonstrated that feature-level association signal

annotations indeed can help up-weight signal features and down-

weight noise features and achieve an improved clustering accuracy.

More importantly, the effect of feature-level weights is amplified dur-

ing the diffusion process when multiple types of omics data are inte-

grated through fusing multiple similarity networks. If the feature pre-

selection step could be conducted perfectly, it is equivalent to the case

when weight ‘0’ is correctly assigned to noise features and weight ‘1’

is correctly assigned to signal features.

Applications to mutation data, DNA methylation data and gene

expression data of three independent TCGA cancer types, BRCA,

KIRP and LIHC, consistently showed that the ab-SNF method can

subtype cancer patients more accurately reflect their survival than

all comparing methods. Further investigations of individual cancer

type also suggested that incorporating association signal annotations

as feature-level weights for features of different types help more effi-

ciently using relevant omics features for cancer subtyping. For ex-

ample, for BRCA, comparing with the well-recognized breast cancer

subtypes PAM50, the ab-SNF method not only identified established

subtypes, but also discovered several novel subtypes with distin-

guishing characteristics that may provide more biological insights.

The proposed ab-SNF method is general. It can be applied to any

types of omics data as long as informative association signal annota-

tions could be obtained, either from additional information or prior

information, such as CGC. In cases when association P-values for

feature-level weights cannot be obtained, e.g. when normal or

normal-adjacent tissues are not available, we could use existing

databases to assign weights to features of different types. For ex-

ample, we could use Combined Annotation Dependent Depletion to

assign weights to genetic variants which can quantitatively prioritize

functional, deleterious and disease causal variants (Kircher et al.,

2014); we could use HumanNet (Hwang et al., 2019; Lee et al.,

2011) to assign weights to gene expression or DNA methylation

data which can quantitatively prioritize disease-linked genes.
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Table 4. Clustering results with pooled TCGA BRCA, KIRP and LIHC

tumor samples using the eigengap criteria

Part Ia SNF clusters ab-SNF clusters

1 2 3 1 2 3 4

True cancer types BRCA 603 0 0 490 0 1 112

KIRP 8 129 0 0 0 136 1

LIHC 6 0 155 0 161 0 0

Part IIa ab-SNF clusters

1 2 3 4

BRCA PAM50 subtypes LumA 238 0 1 0

LumB 172 0 0 0

Basal 10 0 0 98

Her2 45 0 0 13

Normal 25 0 0 1

Note: Displayed are clustering results comparing to the true cancer types

for both SNF and ab-SNF methods (Part I) and clustering results comparing

to the BRCA PAM50 subtypes for clusters identified by the ab-SNF method

(Part II).
aDisplayed are number of tumor samples.
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