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ABSTRACT

Motivation: Existing association methods for rare variants from

sequencing data have focused on aggregating variants in a gene or

a genetic region because of the fact that analysing individual rare

variants is underpowered. However, these existing rare variant detec-

tion methods are not able to identify which rare variants in a gene or a

genetic region of all variants are associated with the complex diseases

or traits. Once phenotypic associations of a gene or a genetic region

are identified, the natural next step in the association study with

sequencing data is to locate the susceptible rare variants within the

gene or the genetic region.

Results: In this article, we propose a power set-based statistical se-

lection procedure that is able to identify the locations of the potentially

susceptible rare variants within a disease-related gene or a genetic

region. The selection performance of the proposed selection proced-

ure was evaluated through simulation studies, where we demon-

strated the feasibility and superior power over several comparable

existing methods. In particular, the proposed method is able to

handle the mixed effects when both risk and protective variants are

present in a gene or a genetic region. The proposed selection proced-

ure was also applied to the sequence data on the ANGPTL gene family

from the Dallas Heart Study to identify potentially susceptible rare

variants within the trait-related genes.

Availability and implementation: An R package ‘rvsel’ can be down-

loaded from http://www.columbia.edu/�sw2206/ and http://statsun.

pusan.ac.kr.

Contact: sw2206@columbia.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

The fundamental problem with rare variants [with minor allele

frequency (MAF)5 1%] is their low frequency, i.e. the limited

number of observed carriers lowers the statistical power to detect

phenotypic association with any single rare variant. Thus, almost

all existing statistical methods to detect disease/trait-associated

rare variants follow the framework of aggregating and testing all

rare variants in a gene or a candidate genomic region thereby

boosting the association signal (Bhatia et al., 2010; Chen et al.,

2012; Cheung et al., 2012; Ionita-Laza et al., 2011; Lee et al.,

2012; Lin and Tang, 2011; Liu and Leal, 2008, 2010; Madsen and

Browning, 2009; Neale et al., 2011; Price et al., 2010; Wu et al.,

2011). The existing methods try to improve this basic idea of

aggregating signals in two aspects: first, by more potent extrac-

tion of signals from individual rare variants; and second, by

better aggregation signals extracted from multiple rare variants

in a gene or a genetic region of interest. Improvements of the first

kind include upweighing variants as they become rarer (Madsen

and Browning, 2009) along with flexibility of the threshold for a

rare variant (Price et al., 2010) and accommodation of both risk

and protective variants in a genetic region of interest (Ionita-

Laza et al., 2011). Methods for more powerfully aggregating

statistical signals include kernel-based adaptive clustering,

which assigns weights to multi- rather than single-site genotypes

(Liu and Leal, 2010), and the C� test statistic, which contrasts the

observed versus expected variance of binomially distributed allele

counts (Neale et al., 2011), and regression-based models that

extract and aggregate signals (Lee et al., 2012; Lin and Tang,

2011; Wu et al., 2011).
However, these existing rare variant detection methods are not

able to identify which rare variants in a gene or a genetic region

out of all variants are associated with the complex diseases or

traits. Once phenotypic associations of a gene or a genetic region

are identified, the natural next step in the association study with

sequencing data is to locate the susceptible rare variants within

the gene or the genetic region. There have been a few testing

procedures based on the subset selection of rare variants such

as the variable thresholding (VT) (Price et al., 2010) and

RARECOVER (Rcover) (Bhatia et al., 2010) methods.

However, VT is not designed to select potentially causal variants

within a gene or a genetic region. Rcover collapses multiple rare

variants within a gene or a genetic region using the combined

multivariate and collapsing test (CMC) proposed by Liu and

Leal (2008). It has low power to identify causal variants when

both risk and protective variants are present within a gene or a

genetic region. Moreover, Rcover applies the Pearson’s �2 stat-

istic in the testing procedure, which may not be optimal for rare

variants and is limited to case-control designs only. Recently,

Bayesian hierarchical models have been proposed to estimate

the effects of rare variants under a regression framework

(Capanu and Begg, 2011; Yi et al., 2011), where Bayesian cred-

ible regions for regression coefficients were provided to assess the*To whom correspondence should be addressed.
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association of each individual rare variant. However, credible

regions for variants with low frequencies are too wide, indicating

the uncertainty for estimation. In addition, estimation results in

Bayesian analysis often rely on settings of unknown hyper-par-

ameters, and intensive computing is required all the time.
Zhou et al. (2010) considered the problem of locating suscep-

tible variants as a statistical variable selection problem, and at-

tempted to select both common and rare variants associated with

a disease outcome using a penalized regression model, where

regression coefficients were regularised to select variants with

relatively high impacts on the outcome. In penalised regression

models, the total number of non-zero coefficients is tuned by a

regularization parameter, so the choice of an optimal regulariza-

tion parameter is a crucial part of the l1-norm regularization

procedure. However, Zhou et al. (2010) did not try to select an

optimal regularization parameter, as common methods such as

cross-validation and resampling might not be applicable to rare

variants because of extreme sparsity. Alternatively, the authors

ranked the potentially disease-related variants with their impact

on the outcome. Thus, the method is essentially unable to sep-

arate potentially causal variants from non-causal variants within

a gene or a genetic region.

In this article, we propose a statistical selection procedure

based on the linear combinations of the power set of a set of

rare variants in a gene or a genetic region that is able to identify

the locations of the potentially susceptible rare variants within a

disease-related gene or genetic region. A stage I association test

first identifies the phenotypic association of a gene or a genetic

region using existing methods that aggregate multiple rare vari-

ants. The proposed method then selects the subset out of the

power set of all the rare variants that has the highest impact

on the outcome (either quantitative or qualitative).
The selection performance of the proposed method was eval-

uated through simulation studies, where different effect sizes,

sample sizes, and proportions of risk variants, protective variants

and non-causal variants were considered. We also applied the

proposed method to the sequence data of the ANGPTL gene

family from the Dallas Heart Study (DHS). Several studies

have worked on the DHS data and have already identified

some genes that are related to the traits (Cheung et al., 2012;

Liu and Leal, 2010, 2012; Price et al., 2010; Wu et al., 2011; Yi

et al., 2011). For example, associations between the ANGPTL4

gene and both triglyceride and very low density lipoprotein in

European American population have been suggested by several

studies (Liu and Leal, 2010, 2012). However, most of the existing

rare variant association tests have not tried to locate potentially

susceptible rare variants within the ANGPTL4 gene. Our pro-

posed selection procedure was able to select several potentially

causal rare variants within the ANGPTL4 gene that are asso-

ciated with triglyceride and very low density lipoprotein.

2 METHODS

Assume we observe the number of mutations over p rare variants in a

gene or a genetic region from a sequence data of n individuals. We denote

the dataset of the ith individual as ðyi;xi; uiÞ, i=1; . . . ; n, where

xi=ðxi1; . . . ; xipÞ
T is the p dimensional counting vector with

xij 2 f0; 1; 2g, j=1; . . . ; p and ui=ðui1; . . . ; uimÞ
T is the m dimensional

covariate vector such as age and gender. The phenotypic outcome yi

can be either quantitative or binary for case-control status, where yi=1

for cases and yi=0 for controls.

To generate K=2p � 1 subsets of the power set of the p rare variants

without the empty set, we introduce K weighting vectors for the p variants

denoted as �k=ð�k1; . . . ; �kpÞ
T; k=1; . . . ;K. We then code 0 as the exclu-

sion of a rare variant and 1 as the inclusion of a rare variant in

the weighting vector. For example, when p=4, we have a total of 15

subsets in the power set without the empty set such as fxi1g, fxi2g, fxi3g,

fxi4g, fxi1; xi2g, fxi1;xi3g,. . ., fxi2; xi3;xi4g, fxi1; xi2; xi3; xi4g. The corres-

ponding weighting vectors are then �1=ð1; 0; 0; 0Þ
T, �2=ð0; 1; 0; 0Þ

T,

�3=ð0; 0; 1; 0Þ
T, �4=ð0; 0; 0; 1Þ

T, �5=ð1; 1; 0; 0Þ
T, �6=ð1; 0; 1; 0Þ

T, . . . ,

�14=ð0; 1; 1; 1Þ
T, �15=ð1; 1; 1; 1Þ

T, respectively. As we exclude the

empty set from the subsets of the power set, the K weighting vectors all

have at least one ‘1’ out of the p indicators.

We then define the new feature of the subset k for the ith individual as

zik=
Xp
j=1

�kj!jx
�
ij;

where

x�ij=
1� xij if variant j is potentially protective;

xij otherwise:

(

for k=1; . . . ;K. The new feature zik can be viewed as a weighted linear

combination of the subset k, where variants included in the subset k are

combined. It is known that the association test on the weighted sum of

multiple rare variants could be underpowered if both risk and protective

variants are present in a gene or a genetic region (Pan, 2009). Han and

Pan (2010) proposed a data-adaptive procedure to take into account this

problem. In their procedure, potentially protective variants are first iden-

tified via marginal association tests. That is, each variant is tested one at a

time. If the regression coefficients from the marginal association tests are

negative and the P-value of the regression coefficients5�, where �=0:1,

was recommended by Han and Pan (2010) based on their simulation

experiments, then the variants are considered potentially protective. We

adopted this data-adaptive procedure to identify potentially protective

variants x�ij. We then flip the coding of xij in the new feature zik if variant

j is potentially protective. In addition to a binary weighting �kj 2 f0; 1g,

we allow each variant to have a different weight !j40. For instance,

Madsen and Browning (2009) proposed to weight variants inversely pro-

portional to the SD of estimated allele frequencies, so that rarer variants

are up-weighted. Price et al. (2010) used the thresholds of the allele fre-

quencies. Recently, Lin and Tang (2011) showed that the estimated re-

gression coefficient of an individual variant is an optimal weight with

relatively large sample.

Because each feature consists of a different combination of multiple

rare variants from the p rare variants in a gene or a genetic region, our

goal here is to find the most outcome-related feature z
ik̂
among the K new

features. Ideally, the subset k̂ contains only causal variants, i.e. �
k̂ j
=1 for

causal variants and �
k̂ j
=0 for non-causal variants. To select the most

outcome-related feature z
ik̂
among the K new features, we first adjust the

quantitative or binary phenotype outcomes yi for the covariates ui by

fitting a linear regression or a logistic regression, respectively. Let us

denote the ith residual from the fitted regression by ~yi. We then individu-

ally test each feature zik for association with the residual ~yi and choose

the one that has the maximum test statistic, i.e.

k̂=arg max
1�k�K

Tð ~y; zkÞ;

where ~y=ð ~y1; . . . ; ~ynÞ
T, zk=ðz1k; . . . ; znkÞ

T, and Tða; bÞ is a test statistic

for association between a and b.

Several association test statistics such as a marginal test, a score stat-

istic (Lin and Tang, 2011) and a z-score (Price et al., 2010) can be applied

for Tð�; �Þ to measure the strength of association between ~y and zk. Here

we simply use a sample correlation between ~y and zk to find the most
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outcome-related feature for computational speed-up. The feature having

the highest correlation with the outcome equivalently has the maximum

test statistic for testing a slope of linear regression of the outcome on the

feature.

One limitation of the proposed method is computational intensity for a

gene or a genetic region with a large number of rare variants. For ex-

ample, we need to compute and compare K4106 number of test statistics

when P=20. In the algorithm we developed, which we implemented in a

statistical software R combined with Fortran codes, it took only 1.38 s to

get the maximum statistic for both quantitative and binary outcomes with

P=17 ðK4105Þ and 500 subjects, �12 s with P=20 ðK4106Þ, and�3.5

min with P=24 ðK4107Þ. When the analysis is limited to a handful of

genes, i.e. for disease-related genes that have already been detected by a

stage I association test, the proposed method is computationally feasible

to locate susceptible rare variants within the genes or the genetic regions.

For genes with extremely large number of rare variants, one potential

solution is to cut the gene or the genetic region with a large number of

variants into smaller segments first, then apply a stage I association test

on those segments and perform the proposed power set-based selection

method to the significant segments only to select potentially causal rare

variants. This way, the computational burden can be much reduced.

3 RESULTS

3.1 Simulation studies

We conducted simulation studies to evaluate the selection per-
formance of the proposed method for both quantitative and

case-control binary traits. We first generated MAF of P variants

from the Wright’s distribution (Ionita-Laza et al., 2011; Madsen
and Browning, 2009)

fðqÞ=cq��1ð1� qÞ�=3�1e12ð1�qÞ;

where �=0:001 and c is a normalizing constant. We focused

on rare variants with 0:001 � q � 0:01. Given the MAFs of
the P variants, genotype data ðxi1; . . . ; xipÞ were generated

under Hardy–Weinberg equilibrium. The sample size was set at

n=1000; 2000 and 5000. We considered equal numbers of cases
and controls in a case-control setting.

Similar to Wu et al. (2011) and Lee et al. (2012), we set the
regression coefficients �j, j=1; . . . ; p for p variants to have dif-

ferent values to separate causal (risk or protective) and non-

causal variants where

�j=

�jlog 10MAFjj; if variant j is risk;

��jlog 10MAFjj; if variant j is protective;

0; if variant j is noncausal:

8>><
>>:

This setting assumes rarer variants to have larger effects, and
�40 controls the effect sizes of causal variants. We set a se-

quence of � from 0.2 to 0.7 increased by 0.1. The average

effect sizes of the risk variants are �avgðj�jjÞ=0:5 for �=0:2
and avgðj�jjÞ=1:75 for �=0:7. Accordingly, the average odds

ratios of the risk variants with case-control outcomes are around

1.65 and 5.75, respectively.
We simulated the quantitative outcome of the ith individual

from the following regression model

yi=0:5ui1+0:5ui2+�1xi1+�2xi2+ � � �+�pxip+�;

where covariate ui1 follows a Bernoulli distribution with a prob-

ability 0.5 and covariate ui2 follows a standard normal

distribution. An error term " was simulated from a standard
normal distribution. For case-control outcomes, we first simu-
lated quantitative outcomes with twice of the required sample

size, and then set cases (yi=1) to be the top 25% of the quan-
titative outcomes and controls (yi=0) to be the bottom 25% of
the outcomes.

The total number of variants p within a gene was fixed as 15,
each of which could be a risk (R), protective (P) or non-causal
(N) variant. We considered three variant-mix scenarios: (i)

5R/0P/10N, (ii) 3R/2P/10N and (iii) 5R/5P/5N. All simulation
results were summarized based on 1000 simulation replicates.
For each simulation replicate, we first applied the SKAT associ-

ation test (Wu et al., 2011) to assess the significance of a gene. If
the association of a gene was identified (i.e. the P-value of SKAT
is50.05), we then applied the proposed selection procedure to

locate potentially causal variants within the gene. We considered
three versions of the proposed method: the power set-based se-
lection procedure that ignores the mixed risk and protective vari-

ants (Pset), the data-adaptive power set-based procedure that
adopts Han and Pan’s method to identify potentially protective
variants (aPset) and the weighted data-adaptive power set-based

procedure that gives different weights to different variants
(wPset), where we used the weight proposed by Madsen and
Browning (2009). For comparison purposes, we also applied

Rcover (Bhatia et al., 2010) where the �2 test statistic was
replaced by a sample correlation with residuals, as the original
Rcover is limited to case-control outcomes and also cannot

handle with covariates.
In the first simulation study, the averaged selection propor-

tions (ASP) of risk, protective and non-causal rare variants were

computed for Rcover, Pset, aPset and wPset procedures with
three variant-mix scenarios, different effect sizes and different
sample sizes. In each simulation, the selection proportion of

risk variants is defined as the number of selected risk variants
divided by the total number of true risk variants. The selection
proportions of protective and non-causal variants are defined

similarly. ASP is then defined as the averaged selection propor-
tion over 1000 simulations for each type of variants. The larger
the ASP of causal (risk and protective) variants and the smaller

the ASP of non-causal variants, the better the selection
performance.
Figure 1 shows the ASPs for causal and non-causal variants of

the three variant-mix scenarios when sample sizes n=1000, 2000
and 5000, the trait is quantitative and the effect size is relatively
small, i.e. avgðj�jjÞ=0:5. The power of SKAT for a group of 15

variants is included in each figure on the top right. We can see
that the power of SKAT increases as the number of causal (risk
and protective) variants, or the sample size increases. The ASPs

of the four selection procedures are similar when all causal vari-
ants are risk (A, D and G). However, when causal variants are
either risk or protective, difference among the ASPs of the four

selection procedures were noticeable. Specifically, Rcover and
Pset have low ASPs when the number of protective variants is
high (C, F and J). They selected550% causal variants even when

the sample size is large because Rcover and Pset are not able to
identify causal variants correctly in the presence of both risk and
protective variants in a gene or a genetic region.

In contrast, aPset and wPset selected most true causal variants
together with a few non-causal variants when both risk and
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protective variants are present. We noticed that ASPs of different

types of variants for aPset and wPset were hardly affected by the

proportions of causal and non-causal rare variants. For example,

the ASPs of the non-causal variants of aPset are525% when

n=2000 and515% when n=5000 in all variant-mix scenarios

while those of wPset are lowered by 3–5%. Because aPset and

wPset use the data-adaptive procedure (Han and Pan, 2010) for

the initial screening of potentially protective variants, they may

not perform well for small sample sizes and effect sizes, as the

data-adaptive procedure is basically based on individual tests.

Supplementary Figures S1 and S2 in the Supplementary

Materials show ASP results when the effect sizes are

avgðj�jjÞ=0:75; and 1.0, respectively. In these settings, when

sample size and effect size are large, the ASPs of protective vari-

ants are almost the same as those of risk variants for both aPset

and wPset and the ASPs of the non-causal variants are lowered

by �3%. This might be because of the better performance of the

data-adaptive procedure for the initial screening of potentially

protective variants with individual tests when sample size and

effect size are large. Similar patterns for case-control binary out-

comes for the three effect size settings were observed in

Supplementary Figures S3–S5 in the Supplementary Materials.
We also considered an additional simulation study where there

is a big gene with 50 variants consisting of 10 risk, 5 protective

and 35 non-causal variants. All other settings such as the sample

sizes and the effect sizes remain the same as in the first simulation

study. We first applied the SKAT stage I association test for the

entire gene with 50 variants. Once a significant association signal

is detected, we divided the gene into five segments so that each

segment has 10 variants. We then reapplied the SKAT associ-

ation test for each segment, and further applied Rcover, Pset,

aPset and wPset for the segments with SKAT P-values50:05.
For segments that were not detected by the SKAT method, we

did not apply the selection procedure and considered variants

within the segments non-causal. Average selection proportions

of risk, protective and non-causal variants were summarized in

Supplementary Figures S6 and S7 in the Supplementary

Materials for quantitative outcomes and binary outcomes, re-

spectively. Similar to what we observed in the smaller gene set-

ting, the proposed aPset and wPset have the best selection

performance in all simulation settings.

In the second simulation study, we computed the selection

power of each selection procedure, where the selection power is

defined as the proportion that a procedure selects exactly all of

the causal variants among 1000 simulations. The probability of

randomly selecting only all of causal variants is

1=ð215 � 1Þ � 0:3� 10�4 in each simulation replicate when the

exact number of the causal variants is unknown. Figure 2 dis-

plays the selection power of the four procedures as the effect size

avgðj�jjÞ increases from 0.5 to 1.75 when the traits are case-

control binary outcomes. Two variant-mix scenarios: (i) 5R/0P/

10N and (ii) 3R/2P/10N were considered along with different

sample sizes (n=1000, 2000 and 5000). The corresponding selec-

tion power for quantitative outcomes is summarized in

Supplementary Figure S8 in the Supplementary Materials.

As expected, the power of both Rcover and Pset does not

increase at all as the effect size increases when both risk and

protective variants are present in a gene or a genetic region

(D–F). In fact, they never identified exactly all of the causal

variants in the variant-mix scenario (ii) 3R/2P/10N. When all

causal variants are risk variants, Rcover and Pset have slightly

higher power than aPset, as aPset could misidentify potentially

protective variants (A–C). In all scenarios, wPset has the highest

selection power as expected, as the weight (Madsen and

Browning, 2009) was proposed for case-control outcomes to

boost association signals. For quantitative outcomes, the selec-

tion powers of aPset and wPset are hardly different. Thus, the

development of a different optimal weight for quantitative out-

comes may improve the selection power of the proposed selection

procedure for quantitative traits.

3.2 Analysis of the DHA

We applied the proposed power set-based selection procedure to

the DHS data (Romeo et al., 2007, 2009). Coding regions of four

genes ANGTPL3, ANGTPL4, ANGTPL5 and ANGTPL6 were

sequenced to detect the association with nine energy metabolism

traits, namely triglyceride (TG), low-density lipoprotein (LDL),

very low-density lipoprotein (VLDL), high-density lipoprotein,

cholesterol, glucose, body mass index, systolic (SysBP) and dia-

stolic blood pressure. A total of 348 nucleotide sites of sequence

variations were discovered in these four genes, where the major-

ity of them are rare (MAF55%). We focused on the European

American population to identify trait-related genes, and then to

identify potentially susceptible rare variants within the trait-

related genes.
We analysed the nine traits in two ways, either as the original

quantitative traits or as the binary case-control outcomes, where

Fig. 1. Averaged selection proportions of risk (R), protective (P) and

non-causal (N) rare variants for RARECOVER (Rcover), power-set-

based (Pset), data-adaptive Pset (aPset) and weighted data-adaptive

Pset (wPset) procedures when the outcome is quantitative and the

effect size is avgðj�jjÞ=0:5. The sample size is n=1000 for A–C,

n=2000 for D–F, and n=5000 for G–J. There are 5R/0P/10N variants

in A, D and G, 3R/2P/10N in B, E and H, and 5R/5P/5N in C,F and J
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the case and control groups are defined as the samples in the top

25th percentile and in the bottom 25th percentile, respectively.

Gender and logarithm transformed age were included in the

model as covariates. We also limited the analysis to the non-

synonymous rare variants with MAF � 3% (Liu and Leal,

2010, 2012). For the stage I association test to identify trait-

related genes, we applied VT (Price et al., 2010) and SKAT

(Wu et al., 2011) methods for the four genes. We then applied

the proposed power set-based selection procedure on the identi-

fied genes and the associated traits to locate potentially suscep-

tible rare variants within these genes.
Because for each of the quantitative or binary case-control

outcome we applied VT and SKAT to four genes to detect as-

sociation signals, a Bonferroni-adjusted significance level

�=0:05=8=0:0063 was used to claim any significant association

signals. Two traits, TG and VLDL, are associated with the gene

ANGPTL4 at the multiple comparison adjusted significance

level (Table 1). This association analysis result is consistent

with the result in a recent application of the DHS data (Liu

and Leal, 2012) where CMC, weighted sum statistic test

(Madsen and Browning, 2009) and VT were applied but only

to the quantitative traits. We then applied the four selection pro-

cedures (Rcover, Pset, aPset and wPset) to identify potentially

causal variants within the gene ANGPTL4. Fewer number of

variants of the gene ANGPTL4 were included in the analysis

with the binary case-control outcome than the quantitative out-

come. This is because we included variants with at least one

mutation in both analyses. As fewer samples were included in

the binary case-control analysis, there were more variants with

no mutations in the binary case-control analysis.

The lists of the selected rare variants in the gene ANGPTL4

for the binary case-control outcomes are summarized in Table 2.

The lists of the selected rare variants in the gene ANGPTL4

for the quantitative outcomes are included in Supplementary

Table S1 in the Supplementary Materials. As the selection

result of Pset is exactly the same as that of Rcover in all analyses,

we omitted Pset in Table 2 and Supplementary Table S1. This is

because most of the rare variants in the gene ANGPTL4 are

singletons, thus summing p variants as in the proposed selection

procedure is not much different from collapsing p variants as in

Rcover. However, aPset and wPset show quite different selection

results compared with Rcover. In the analyses of binary out-

comes, aPset selected three rare variants for TG and four rare

variants for VLDL whereas Rcover selected most of the variants

in the gene ANGPTL4. Consistent with the simulation results,

wPset selected the same or fewer number of rare variants than

aPset did.
All four selection procedures selected the variant X1313_E40K

in the gene ANGPTL4 for the traits TG and VLDL. The variant

X1313_E40K has the largest difference in the number of muta-

tions observed between cases and controls for both traits. This

variant could be a candidate causal variant for future validation

study. aPset also selected the variants X6113_E190Q and

X8020_P251T for both traits and the variant X8262_S302fs for

the trait VLDL. For the three variants selected, there is only one

mutation in cases and no mutation in controls. Further investi-

gation is necessary for these variant. We also noticed that for the

variant X8364_R336C, although there are two mutations in con-

trols and no mutations in cases for the binary trait TG (and three

mutations in controls and no mutations in cases for the binary

trait VLDL), it was not selected by either aPset or wPset. This

may be because this variant was not identified as a potentially

protective variant by the data-adaptive procedure (Han and Pan,

2010) in the screening step. The variant X1313_E40K was iden-

tified as a potentially protective variant in the screening step and

its genotype coding was then flipped. We observed the similar

results for the quantitative traits. Another pattern we noticed is,

Rcover selected all variants with more mutations in controls

(potentially protective variants) but did not select any variants

with more mutations in cases (potentially risk variants), which

may be owing to the strong effect of the potentially protective

variant X1313_E40K and the fact that Rcover does not handle

mixed effects.
Additionally, we also applied the proposed selection procedure

to the Hispanic population of the DHS sequencing data. Cheung

et al. (2012) have identified an association of the gene

ANGPTL5 with the SysBP in the Hispanic group although the

Table 1. VT and SKAT association analysis results with P-values for the

genes ANGPTL3, ANGPTL4, ANGPTL5 and ANGPTL6 from the

Dallas Heart Study sequence data with both quantitative and case-con-

trol outcomes for the European American population

Genes Traits VT SKAT Total variants

Quantitative outcomes

ANGPTL4 TG 0.0040 0.0022 17

ANGPTL4 VLDL 0.0070 0.0021 17

Case-control outcomes

ANGPTL4 TG 0.0010 0.0021 9

ANGPTL4 VLDL 0.0060 0.0021 9

Fig. 2. Selection power of RARECOVER (Rcover), power set-based

(Pset), data-adaptive Pset (aPset) and weighted data-adaptive Pset

(wPset) procedures are displayed as the effect size avgðj�jjÞ increases

when the outcome is binary (case-control status). There are 5 Risk/0

Protective/10 Non-causal variants in A–C, and 3 Risk/2 Protective/10

Non-causal variants in D–F. The sample size is n=1000 for A and D,

n=2000 for B and E, and n=5000 for C and F
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association P-value is not extremely small. Our repeated analysis

using SKAT stage I association test has a P-values of 0.0367 and

0.0370 for the quantitative and binary SysBP traits, respectively.

We then applied the four selection procedures to the gene

ANGPTL5 to separate potentially causal variants from non-

causal variants within the gene. The selection result is shown in

Supplementary Table S2 in the Supplementary Materials. It is

noticeable that in the analysis of binary SysBP trait, the pro-

posed selection procedures identified both risk and potentially

protective variants S93N, L98P and T268M, whereas Rcover

only identified two potentially protective variants L98P and

T268M. Moreover, Rcover selected two completely different

lists of variants for the quantitative and binary SysBP traits,

whereas aPset and wPset performed consistent selections in

both analyses with the quantitative and binary traits.

4 DISCUSSION

In this article, we proposed a power set-based selection proced-

ure to identify the locations of susceptible rare variants asso-

ciated with complex diseases with sequencing data. The

proposed selection procedure not only aggregates multiple rare

variants to boost association signals, but also locates potentially

causal and noncausal variants within a disease-related gene or a

genetic region. Using the idea of the power set of all rare variants

in a gene or a genetic region, the most outcome-related subset of

rare variants among the power set is identified. Our simulation

studies suggested that the proposed power set-based selection

procedures (aPset and wPset) are able to locate potentially
causal variants relatively accurately when both risk and protect-
ive variants are present in a gene or a genetic region. In the

analysis of the DHS sequencing data, the best subset of variants
selected by the proposed method are promising and could be
potential trait-related variants for future validation.
Selecting susceptible rare variants is statistically challenging

because of sparsity. To improve the selection performance of
the proposed power set-based selection procedure, there are
three potential extensions. First, we used the data-adaptive pro-

cedure (Han and Pan, 2010) to screen potentially protective vari-
ants. However, the procedure may not perform well when sample
size and effect size are small, as the procedure is based on a

marginal association test. We noticed in the simulation studies
that ASPs for both risk and protective variants could be im-
proved by a maximum of 10% (data not shown) if we knew

which variants are protective. Therefore, it is essential to develop
an improved procedure to identify potentially protective vari-
ants. Second, we used allele frequency weights (Madsen and

Browning, 2009) for wPset and observed a similar performance
of wPset and aPset in quantitative analysis. One possible explan-
ation is that this weight is designed for binary case-control

outcomes. Another possible explanation is that the weight is as-
signed on the individual variant level while the selection is on the
feature level. Thus, the variant-level weights may not influence

much on selecting the most outcome-related feature. The devel-
opment of optimal weights for each feature rather than each
variant may improve the selection performance of the proposed

method. Third, we combined variants within a subset using a
weighted linear combination. A recent publication by Chen
et al. (2012) has suggested that an exponential combination

might be more powerful than a linear combination to detect
rare variant associations when the number of causal variants
within a gene or a genetic region is small. In addition to the

improvement in the detection power, the exponential combin-
ation procedure (Chen et al., 2012) combines both risk and pro-
tective variants without the need of initial screening of protective

variants, as it is not affected by the directions of variants.
However, the numerical values of the exponential combinations
depend on the number of variants when the test statistics of

individual variants are exponentially combined, i.e. the more
the variants that are combined, the larger statistic it has. Thus,
the proposed power set idea cannot be directly applied to the

exponential combinations. Some modification of the exponential
combination may be preceded to extend the proposed power set
method. To improve in these three areas are our future work.
Our proposed selection procedure can be easily applied to

different types of phenotypic outcomes. We limited an outcome
to be either quantitative or binary in this article. However, be-
cause our procedure is based on an association with regression

residuals, it is readily extended to other types of outcomes by
simply applying the generalized regression model.
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Table 2. Susceptible rare variants in the ANGPTL4 gene that is asso-

ciated with the binary TG and VLDL traits for the European American

population

Variants MAF Cases ctrls Rcover aPset wPset

ANGPTL4—binary TG

X1313_E40K 0.0150 1 11 � � �

X3145_E167K 0.0023 0 1 �

X6113_E190Q 0.0023 1 0 �

X7936_G223R 0.0023 0 1 �

X8003_K245fs 0.0023 0 1 �

X8020_P251T 0.0023 1 0 �

X8262_S302fs 0.0023 0 1 �

X8364_R336C 0.0035 0 2 �

X10621_G361S 0.0023 0 1 �

ANGPTL4—binary VLDL

X1313_E40K 0.0152 1 12 � � �

X3145_E167K 0.0022 0 1 �

X6113_E190Q 0.0022 1 0 � �

X7936_G223R 0.0022 0 1 �

X8003_K245fs 0.0022 1 0 � �

X8020_P251T 0.0022 1 0 � �

X8262_S302fs 0.0022 0 1 �

X8364_R336C 0.0043 0 3 �

X10621_G361S 0.0022 0 1 �

Note: � indicates a selected variant.

‘cases’ and ‘ctrls’ indicate the number of mutations in cases and controls,

respectively.
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