
Published online 10 October 2018 Nucleic Acids Research, 2019, Vol. 47, No. 1 e6
doi: 10.1093/nar/gky882

Detection of epigenetic field defects using a weighted
epigenetic distance-based method
Ya Wang1, Min Qian1, Peifeng Ruan2, Andrew E. Teschendorff3,4 and Shuang Wang 1,*

1Department of Biostatistics, Mailman School of Public Health, Columbia University, 2Department of Statistics,
Columbian College of Arts and Sciences, the George Washington University, 3CAS Key Lab of Computational
Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences and 4Statistical Cancer Genomics,
UCL Cancer Institute, University College London

Received May 07, 2018; Revised September 14, 2018; Editorial Decision September 18, 2018; Accepted September 19, 2018

ABSTRACT

Identifying epigenetic field defects, notably early
DNA methylation alterations, is important for early
cancer detection. Research has suggested these
early methylation alterations are infrequent across
samples and identifiable as outlier samples. Here
we developed a weighted epigenetic distance-based
method characterizing (dis)similarity in methylation
measures at multiple CpGs in a gene or a ge-
netic region between pairwise samples, with weights
to up-weight signal CpGs and down-weight noise
CpGs. Using distance-based approaches, weak sig-
nals that might be filtered out in a CpG site-level
analysis could be accumulated and therefore boost
the overall study power. In constructing epigenetic
distances, we considered both differential methyla-
tion (DM) and differential variability (DV) signals. We
demonstrated the superior performance of the pro-
posed weighted epigenetic distance-based method
over non-weighted versions and site-level EWAS
(epigenome-wide association studies) methods in
simulation studies. Application to breast cancer
methylation data from Gene Expression Omnibus
(GEO) comparing normal-adjacent tissue to tumor
of breast cancer patients and normal tissue of inde-
pendent age-matched cancer-free women identified
novel epigenetic field defects that were missed by
EWAS methods, when majority were previously re-
ported to be associated with breast cancer and were
confirmed the progression to breast cancer. We fur-
ther replicated some of the identified epigenetic field
defects.

INTRODUCTION

Identifying molecular alterations that happen early in car-
cinogenesis, known as field defects, is important for early

cancer detection. One common approach is to compare
normal tissue of healthy individuals to normal tissue ad-
jacent to tumor (normal-adjacent tissue) of cancer patients
as a surrogate of pre-cancer tissue that are difficult to col-
lect. There have been studies in identifying epigenetic field
defects (1–4), notably early DNA methylation alterations.
DNA methylation is an epigenetic modification that has
been shown to be crucial in gene expression (5–8) and
cancers (9–12). There are mainly two types of aberrant
DNA methylation in cancers, local hyper-methylation in
promoter-related CpGs that leads to the silencing of down-
stream tumor suppressor genes (13–17), and global hypo-
methylation that leads to chromosome instability (17–20).
Studies have successfully identified epigenetic field defects
in breast cancer by comparing normal-adjacent tissue of
breast cancer patients to normal tissue from healthy indi-
viduals. Teschendorff et al. identified epigenetic field defects
in breast cancer based on differential variability (DV), i.e.
variance signals in DNA methylation (3), using methylation
site-level analyses. Our previous work (21) identified epige-
netic field defects in breast cancer based on both differential
methylation (DM), i.e. mean signals, and DV, using methy-
lation region-level analyses. In both studies, epigenetic field
defects were found to be mainly driven by increased varia-
tion in methylation due to several outlier normal-adjacent
tissue samples.

Due to the fact that CpG site-level signals for epigenetic
field defects may be very small, existing methods based on
differences (DM or DV or both) on CpG site-level may
not have good power. Standard epigenome-wide associa-
tion studies (EWAS) that focus on mean signals (EWAS-
DM) perform CpG site-level tests to identify differentially
methylated CpGs between two experimental groups using
standard tests such as a t-test, a regression-based test or its
regularized versions (22–24), or a non-parametric Wilcoxon
rank sum test (25). EWAS that focus on variance signals
(EWAS-DV) perform CpG site-level tests to identify differ-
ential variation CpGs between two experimental groups us-
ing standard tests such as the F-test (26,27), the Bartlett’s
test or its regularized version (3,4), or an empirical Bayes
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extension of the Levene’s test (28). The F-test and Bartlett’s
test are sensitive to departures from normality which is
usually the case for methylation data, while the Levene’s
test is more robust to non-normality. On the other hand,
distance-based methods that characterize (dis)similarity be-
tween pairwise samples across a gene, a genetic region, a
pathway or an entire genome have been proven to be pow-
erful in genetic and gene expression studies (29–33). While
standard EWAS perform CpG site-level tests with stringent
multiple comparisons adjustment, in a gene or a genetic re-
gion level, the common practice using non-distance-based
methods is to select the minimum P-value out of all CpGs
in that region. These methods will not be powerful when
site-level effects are very small. Alternatively, the distance-
based methods accumulate any CpG site-level signals from
a gene or a genetic region via the (dis)similarity matrix thus
boost the overall association power, making them the ideal
methods for detection of epigenetic field defects.

Here, we developed a weighted epigenetic distance-based
method to identify epigenetic field defects at gene or
genetic-region levels using both DM and DV signals. CpG
site-level weights were incorporated in the calculation of
(dis)similarity matrix to further boost signals and reduce
noises. Specifically, we used original DNA methylation
measures to examine DM and centered quadratic methy-
lation measures to examine DV and considered site-level
weights based on strengths of site-level DM and DV signals.
Simulation studies showed much improved performance of
the proposed weighted epigenetic distance-based method
over several comparing methods including non-weighted
versions and methods that use either DM or DV signals as
well as standard EWAS methods. We further demonstrated
the performance of the proposed method through an ap-
plication to the 450K DNA methylation data of normal-
adjacent tissue of breast invasive carcinoma (BRCA) pa-
tients and normal tissue from independent age-matched
cancer-free women from Gene Expression Omnibus (GEO).
The proposed method that accumulates weighted DM and
DV signals identified genes with epigenetic field defects that
were missed by standard EWAS methods and non-weighted
distance-based methods. Many of these epigenetic field de-
fects were previously reported to be associated with breast
cancer. Further examination confirmed their enrichment
in the progression to breast cancer and replicated some of
these identified epigenetic field defects.

MATERIALS AND METHODS

Case-control designs using normal tissue from healthy indi-
viduals (Y = 0) and normal tissue adjacent to tumor from
cancer patients (Y = 1) as a surrogate of pre-cancer tis-
sue are widely used to identify epigenetic field defects in
cancers. We therefore focused on case-control designs and
illustrated and applied the proposed weighted epigenetic
distance-based method on gene level. However, the pro-
posed method can be easily adapted to other types of design
and on genetic region or genome levels. There are three steps
in the proposed distance-based method: (i) to define gene-
level weighted epigenetic distance matrix; (ii) to calculate
pseudo-Fstatistic and (iii) to assess statistical significance
using permutations.

Step 1: Define gene-level weighted epigenetic distance matrix

Define epigenetic distance matrix. For each gene, let Xm

be an 2N × n matrix with original DNA methylation mea-
sures for N cases and N controls of n CpG sites in a gene,
where element xm

i j harbors DNA methylation measure of
the j th CpG site, j = 1, ..., n in the gene, for the i -th sub-
ject, i = 1, ..., N. This Xm matrix will be used to examine
differential methylation (DM) capturing methylation mean
signals. Let Xv be an 2N × n pseudo data matrix of vari-
ability score capturing methylation variance signals, which
will be used to examine differential variability (DV). The el-
ement xv

i j = (xm
i j − x̄m

j )2 harbors centered quadratic methy-
lation measure of the same j th CpG site for the i th subject.
Here x̄m

j = 1
N

∑N
i=1 xm

i j is the mean methylation measure of
the j -th CpG site across N cases and N controls separately.
The quadratic terms are centered to better capture variance
signals. By using Xmv = [Xm, Xv], an 2N × 2n matrix, we
will be able to capture both methylation mean and methy-
lation variance signals of the n CpG sites. Before construct-
ing the epigenetic distance between any pair of subjects, we
performed normalization on each column of Xmv such that
each column has mean zero and unit standard deviation.

We define the 2N × 2N epigenetic distance matrix
DDM−DV with element d DM−DV

st that captures dissimilari-
ties between any given pair of individuals s and t, s, t =
1, ..., 2N as

d DM−DV
st =

√√√√ n∑
j=1

{
1

2n

(
xm

s j − xm
tj

)2
+ 1

2n

(
xv

s j − xv
t j

)2
}
. (1)

Incorporate CpG site-level weights into epigenetic distance
matrix. We construct CpG site-level weights aiming to up-
weight signal CpGs (mean or variance) and to down-weight
noise CpGs in calculating distances between pairs of sub-
jects. Therefore, we define weights for mean and variance
signals at CpG site j as follows:

wm
j = −log10(pm

j )∑n
j=1 −log10(pm

j )
, wv

j = −log10(pv
j )∑n

j=1 −log10(pv
j )

(2)

where pm
j and pv

j are the P-values from the two-sided two-
sample t-test testing if the mean methylation measures are
the same between cases and controls and from the one-sided
Levene’s test testing if the variance of the methylation mea-
sures in cases is greater than that in controls at CpG site j ,
j = 1, ..., n in a gene. Note that

∑n
j=1 wm

j =∑n
j=1 wv

j =1.
The corresponding 2N × 2N weighted epigenetic dis-

tance matrix Dw−DM−DV with element dw−DM−DV
st that cap-

tures weighted dissimilarities between individuals s and t,
s, t = 1, ..., 2N can be defined as

dw−DM−DV
st =

√√√√ n∑
j=1

{
wm

j

2

(
xm

s j − xm
tj

)2 +
wv

j

2

(
xv

s j − xv
t j

)2
}

. (3)

Step 2: Calculate pseudo-F statistic

We apply distance-based regression originally developed
in the field of ecology (31,32) to test if DNA methylation
measures in a gene is associated with the case-control sta-
tus. Specifically, for each gene, we calculate a pseudo-F
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statistic based on the weighted epigenetic distance matrix
Dw−DM−DV introduced above

Fw−DM−DV = tr (HGH)
tr [(I − H)G(I − H)]

(4)

where H = Y(YTY)−1YT is an 2N × 2N projection matrix,
Y is an 2N × 1 vector with case (Y = 1) and control (Y = 0)
status, G = (

I − 1
2N 11T

)
A

(
I − 1

2N 11T
)

is the Gower’s cen-

tered matrix, A = (ast) =
(
− 1

2 (dw−DM−DV
st )2

)
, 1 is an 2N-

dimensional column vector with elements 1, and I is an
2N × 2N identity matrix. The pseudo-F statistic is used to
evaluate the association between epigenetic similarity of a
gene with n CpG sites and the case/control status.

Step 3: Assess statistical significance using permutations

To access significance of all G genes tested, we use permu-
tation procedures, where we randomly shuffle cases (Y = 1)
and controls (Y = 0) and repeat Steps 1–2 on the permuted
data. In order to have more granular P-values, we pool
pseudo-F statistics of all G genes from all permutations, as
well as those from the observed data, to compute the em-
pirical P-value (34). We repeat the permutation procedure
999 times, and calculate the empirical P-value for gene g,
g = 1, ..., G, as follows:

Pw−DM−DV
g =

∑G
g′=1

{
1 + ∑999

perm=1 I
(

Fw−DM−DV
g′,perm ≥ Fw−DM−DV

g

)}
G × (1 + 999)

(5)

In the real data application, we have G= 19 271 genes,
which helps to have high resolution gene-level empirical P-
values.

Comparing methods

We compare the performance of the proposed method
Dw−DM−DV that considers site-level weights for mean and
variance signals to that of several comparing methods, in-
cluding the weighted distance-based methods that consider
mean signals only Dw−DM or variance signals only Dw−DV,
and distance-based methods without weights that consider
both mean and variance signals DDM−DV, mean signals
only DDM, variance signals only DDV, and standard EWAS
methods on each CpG site with multiple comparisons ad-
justment of number of CpGs in a gene based on mean sig-
nals EWASDM or variance signals EWASDV .

Simulation study

We conducted simulation studies to evaluate type I error
rate and power of the proposed method Dw−DM−DV and
those of the comparing methods described above. Type I er-
ror rate is defined as the proportion of simulations with any
significant genes when the data is generated under the null
hypothesis of no genes are associated with case-control sta-
tus. Power is defined as the proportion of simulations with
observed pseudo-F statistics smaller than that of the per-
muted values from all genes across all permutations.

Simulation setup

We simulated methylation measures X of cases (Y = 1) and
controls (Y = 0) at every CpG site in a gene from beta dis-
tributions:

X|Y = 0 ∼ Beta(a0, b0)

X|Y = 1 ∼ Beta(a1, b1)

where shape parameters a0 and b0 for samples in the control
group were chosen based on estimates from the 50 normal
tissue samples from cancer-free women in the GEO BRCA
data (GSE69914), and shape parameters a1 and b1 for sam-
ples in the case group were chosen based on estimates from
the 42 normal-adjacent tissues in the GEO BRCA data.
More specifically, the average of the methylation means and
standard deviations (SDs) of all CpG sites with gene infor-
mation for the 50 normal tissue samples is 0.47 and 0.05, re-
spectively. Therefore, we set a0 = 46.36 and b0 = 52.28 for
noise CpGs such that the corresponding mean and SD of
the beta distribution are 0.47 and 0.05, respectively. We gen-
erated methylation measures for 40 cases and 40 controls to
mimic the size of the GEO BRCA study. We set a1 = a0 and
b1 = b0 for all CpG sites in case and control groups to eval-
uate type I error rates. For power scenarios, we considered
scenarios when signal CpGs have different mean or vari-
ance signals through varying shape parameters a1 and b1.
We conducted 1000 simulations in each simulation setting.

Simulation settings with one gene. We first considered one
gene with different number of CpGs with different signal-
to-noise ratios of the CpGs. That is, the ratio between num-
ber of signal CpGs and number of noise CpGs in this gene
ranges from 1:0, 1:24, 1:49, 3:47, to 5:45. We considered
scenarios when signal CpGs have different mean or vari-
ance signals by varying shape parameters a1 and b1 such
that the mean differences in methylation measures between
cases and controls are 0.02, 0.04 0.06, 0.08 and 0.1, and the
ratios of SDs for cases and controls are 1.25, 1.50, 1.75, 2,
2.25 and 2.50, respectively. The values of a1, b1 in those sce-
narios and the corresponding effect sizes are summarized
in the Supplementary Table S1. We consider a gene to be
significant at the 0.05 significance level.

Simulation settings with 10 genes. We then considered 10
genes with one gene having signals when there are 25 CpGs
in each of the 10 genes. In the signal gene, we set one CpG
to have mean or/and variance signals with different effect
sizes. Here we test for the global null and consider a simu-
lation study to be significant if any gene is significant after
Bonferroni adjustment for testing 10 genes. The empirical
P-value for each gene is calculated using formula 5, where
G = 10.

Simulation settings with outliers. Since epigenetic field de-
fects are often characterized by increased variation in DNA
methylation due to a few outlier normal-adjacent tissue
samples (3,21), we considered simulation scenarios with
outlier samples. Here, we only considered one gene with 50
CpGs for illustration purposes. We considered two signal-
to-noise ratios in this gene to be either 5:45 or 10:40. We
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set 10%, 15% or 20% of cases to be outlier samples with
DNA methylation alterations at some signal CpGs, while
the rest cases have the same methylation measures as con-
trols at those signal CpGs when different outlier samples
could have DNA methylation alterations at different sig-
nal CpGs, For each signal CpG, we generated methylation
measures X for cases from a mixture distribution X = (1 −
Z)X1 + ZX2, and methylation measures for controls from
X1 ∼ Beta(a0, b0). Specifically, at each signal CpG, we ran-
domly assigned 40 cases to be either outlier samples (Z = 1)
or non-outlier samples (Z = 0) by Z ∼ Bernoulli(p), where
p is the probability of any case being an outlier sample.
We then generated methylation measures of outlier sam-
ples from X2 ∼ Beta(a2, b2) and non-outlier samples from
X1 ∼ Beta(a0, b0).

Simulation settings with one gene considering correlations
among CpGs. Since neighboring CpGs are known to be
correlated, we considered simulation scenarios that assume
an AR(1) correlation among CpGs in a gene with a correla-
tion coefficient 0.5. The detailed information for simulation
setup for this scenario is summarized in the Supplementary
File section 2 Simulation settings with one gene considering
correlations among CpGs.

RESULTS

Simulation results

Type I error rate. Type I error rates are well controlled
at the 0.05 significance level in settings with one gene and
10 genes after Bonferroni adjustment for multiple compar-
isons (Table 1), respectively.

Power for simulation settings with one gene. Power results
for simulation settings with one gene are summarized in
Figure 1. When there are only mean signals at signal CpGs,
Dw−DV, DDV and EWASDV that consider variance signals
only do not have any power as expected. When there is
only one CpG in the gene, the non-weighted distance-based
methods are the same as the weighted versions, as well as the
EWAS method as expected. When there is one signal CpG
and increasing number of noise CpGs in the gene, power
of DDM decreases drastically while power of the weighted
version Dw−DM are well maintained. This suggests that in-
corporating weights to CpGs indeed helps to up-weight sig-
nal CpGs and down-weight noise CpGs in constructing the
distance matrix, thus improves the performance. When the
size of a gene, i.e., number of CpGs in a gene, is fixed,
among which when the number of signal CpGs increases,
power of Dw−DM increases much slower than that of DDM

while Dw−DM always has greater power than that of DDM.
This implies that adding weights is most effective when a
small percent of CpGs in a gene are signals. Similar power
patterns are observed between weighted and non-weighted
versions of the distance-based methods that consider both
mean and variance signals, Dw−DM−DV and DDM−DV . We
also notice that Dw−DM−DV is slightly less powerful than
Dw−DM because the overall mean signals are diluted by the
inclusion of pseudo-sites for variance when there are only
mean signals in the data. Moreover, Dw−DM slightly outper-
form EWASDM when there are several signal CpGs. This is

because the distance-based method has the advantage to ac-
cumulate weak signals and thus boost the overall power.

Similar power patterns are observed when signal CpGs
are set to have variance signals only. Dw−DM, DDM and
EWASDM that consider mean signals only do not have any
power, and the weighted distance-based methods outper-
form the non-weighted versions in the presence of noise
CpGs, and Dw−DV performs better than Dw−DM−DV , and
Dw−DV outperforms EWASDV when there are several sig-
nal CpGs.

Power for simulation settings with 10 genes. Power results
for simulation settings with 10 genes are summarized in Fig-
ure 2. When signal CpGs have either mean or variance sig-
nals, we observed similar patterns as in the simulation set-
tings with one gene. When signal CpGs have non-negligible
mean signals and variance signals ranging from weak to
strong, Dw−DM−DV performs the best when variance signals
are also weak to moderate as expected. This confirms that
the potential area of usage for distance-based methods to
be most effective is when there are weak signals that could
be accumulated to boost the study power. When there are
very strong signals at some sites, any methods will perform
well. One observation that we need to point out is, powers
of Dw−DM, DDM and EWASDM that only consider mean
signals actually decrease as variance signals increase when
mean signals exist. This is due to the fact that we worked on
the standardized data in Xmv = [Xm, Xv], and the effect sizes
of mean signals (standardized mean difference) decrease as
the effect sizes of variance signals (ratio of standard devia-
tion for cases and controls) increase after standardization.

Power for simulation settings with outliers. Power results
for simulation settings with outlier samples are summarized
in Figure 3. We observe that power of all methods increases
as the signal-to-noise ratio increases and as the propor-
tion of outlier samples increases as expected, and distance-
based methods outperform non-distance-based methods
while EWASDM and EWASDV have very little power when
there are only 10% outlier samples. Among distance-based
methods, Dw−DM and DDM that consider mean signals only
have lower power compare to other methods as the mean
signals introduced by a few outlier samples are usually too
weak to be detected by methods that consider mean sig-
nals only. On the other hand, DDM−DV that considers both
mean and variance signals outperforms methods that con-
sider variance signals only, DDV.The two weighted distance-
based methods Dw−DM−DV and Dw−DV are among the best
performed methods consistently. This implies the superior-
ity of Dw−DM−DV in the presence of weak signals in both
DM and DV.

Power for simulation settings with one gene considering cor-
relations among CpGs. The type I error rates under this
scenario are summarized in Supplementary Table S2. The
power results are summarized in Supplementary Figure S1.
We note that the power patterns are very similar to those
observed in simulations ignoring correlations among CpG
sites. This implies that the correlations among neighboring
CpGs do not have much impact on the performance of the
proposed distance-based methods.
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Table 1. Type I error rates

1 gene 10 genesa

Methods 1 CpGb 25 CpGs 50 CpGs 25 CpGs

Dw−DM−DV 0.044 0.044 0.037 0.050
Dw−DM 0.046 0.032 0.048 0.053
Dw−DV 0.048 0.056 0.048 0.049
DDM−DV 0.044 0.052 0.045 0.054
DDM 0.046 0.043 0.041 0.057
DDV 0.044 0.052 0.054 0.045
EWASDM 0.046 0.030 0.039 0.050
EWASDV 0.044 0.047 0.040 0.037

aType I error rates after Bonferroni adjustment for 10 genes.
bNumber of CpG sites in a gene.

Real data application

We applied the proposed method Dw−DM−DV and all the
comparing methods to two GEO 450K DNA methylation
data of breast invasive carcinoma (BRCA) (GSE69914 and
GSE67919). As we have demonstrated the superior power
of Dw−DM−DV over other distance-based methods in the
simulation studies, we focused on Dw−DM−DV in the real
data application and compared its performance to that of
the EWAS method in the main text and included results us-
ing all other comparing distance-based methods in the Sup-
plementary File section 3 Real data application.

In order for the two EWAS methods, EWASDM and
EWASDV , to have a fair comparison with Dw−DM−DV, we
first adjusted multiple comparisons for the number of CpGs
in a gene by multiplying the site-level P-values based on DM
and DV with the number of CpGs in the gene, and then se-
lected the minimum adjusted DM and DV P-value across
all P-values in the gene as the gene-level P-value. We refer
to this method as EWASmin −P.

Discovery analysis using the GEO BRCA data

We applied the proposed method Dw−DM−DV and the com-
paring methods to the GEO 450K DNA methylation data
of normal-adjacent tissue of breast invasive carcinoma
(BRCA) patients and normal tissue from independent age-
matched cancer-free women (GSE69914). In the original
GEO BRCA data, there are DNA methylation measures
on 485,512 CpGs for 42 tumor and normal-adjacent pairs
from breast cancer patients, 50 normal tissue of indepen-
dent age-matched cancer-free women and 263 additional
tumor tissue of independent breast cancer patients. We
conducted standard quality control steps where we re-
moved CpGs on sex chromosomes and those contain ei-
ther a SNP at the CpG interrogation or at the single nu-
cleotide extension (SBE) based on UCSC dbSNP table ver-
sion 147 using the R package ‘IlluminaHumanMethyla-
tion450kanno.ilmn12.hg19’ (35). We also required at least
95% CpG coverage per sample and 70% sample coverage
per CpG, and only kept CpGs with gene annotations. We
ended up with 344 947 CpGs, covering 19 271 genes, from
42 normal-adjacent tissues, 50 normal tissues and 263 inde-
pendent tumor tissues.

Since Bonferroni adjustment for multiple comparisons
of the 19 271 genes is too conservative, especially with the

small sample size in the GEO BRCA dataset, we used a
less stringent threshold 0.0005 on empirical gene-level P-
values obtained from the permutation procedure (Figure
4). Our main purpose is to demonstrate the superior per-
formance of the proposed method Dw−DM−DV over sev-
eral comparing methods, especially the EWAS methods.
Results using Dw−DM−DV and EWASmin −P comparing 42
normal-adjacent tissues to 50 normal tissues are shown in
the Manhattan plots in Figure 4. At the 0.0005 threshold
for gene-level P-values, Dw−DM−DV identified 21 genes (Ta-
ble 2), of which 18 were previously reported to be associ-
ated with breast cancer; EWASmin −P identified 14 genes
(Table 3), of which 9 were previously reported to be asso-
ciated with breast cancer. There are 7 overlapping genes,
TMC4, NAA35, THY1, CXCL6, KDM5A, FKBP4, and
TMEM200B that were identified by both methods. Ex-
cept for the PLS1 gene, the 7 genes uniquely identified
by EWASmin −P all rank very high in Dw−DM−DV results
out of the 19 271 genes (Table 3). Except for the CFTR
gene, the 14 genes uniquely identified by Dw−DM−DV also
all rank very high in EWASmin −P results. This suggests an
overall good consistency between results of Dw−DM−DV and
EWASmin −P. At the same 0.0005 gene-level P-value thresh-
old, other comparing methods Dw−DM, Dw−DV, DDM−DV,
DDM and DDV identified 11, 9, 2, 6 and 4 genes, of which
6, 7, 1, 3 and 1 genes were also identified by the proposed
Dw−DM−DV (Supplementary Tables S3–S7), respectively.

We further examined the 14 and 7 genes uniquely identi-
fied by Dw−DM−DV and EWASmin −P, respectively. We plot-
ted heatmaps of the original DNA methylation measures
of CpG sites on these genes for the 50 normal tissues, 42
normal-adjacent tissues together with the 42 matched tu-
mor tissues (Supplementary Figures S2 and S3). In gen-
eral, the 14 genes uniquely identified by Dw−DM−DV are
genes with multiple CpGs of weak signals, i.e. weak dense
signals. Moreover, some of these weak dense signals were
mainly due to a few outlier normal-adjacent tissue samples,
thus were missed by EWASmin −P. The seven genes uniquely
identified by EWASmin −P are those with just one or two
CpGs with very strong signals, i.e. strong sparse signals.
We also plotted heatmaps of seven genes identified by both
Dw−DM−DV and EWASmin −P (Supplementary Figure S4).

We then investigated the two genes, CFTR and
PLS1, that were uniquely identified by Dw−DM−DV

and EWASmin −P, respectively, but ranked the last using
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C

D

Figure 1. Power results for simulation settings with one gene. The signal gene has one signal CpG and increasing number of total CpGs, i.e., decreasing
signal-to-noise ratios from 1:0, 1:24 to 1:49 (panel A for mean signals only, panel B for variance signals only), or with a fixed total number of CpGs 50 and
increasing signal-to-noise ratios from 1:49, 3:47, to 5:45 (panel C for mean signals only, panel D for variance signals only).

the other method among all uniquely identified genes.
We similarly plotted the heatmap of the original DNA
methylation measures of CpG sites in these two genes
(Figure 5A). For the CFTR gene that has 16 CpGs, it is
clear that variation in methylation measures increases in
the progression from normal tissues to normal-adjacent
tissues and to tumor tissues in multiple CpGs when there
are several samples among the 42 normal-adjacent tissue
samples that are very different from the normal samples.

On the other hand, for the PLS1 gene that also has 16
CpGs, it was identified uniquely by EWASmin −P because
of one signal CpG site cg00137209 (Figure 5A), mainly
due to the very small variation in the methylation measures
of the normal tissues. We then plotted DNA methylation
measures of the top 4 P-value ranked CpGs, ranked by
CpG site-level P-values from both mean and variance
tests each after adjusting for multiple comparisons for the
number of CpGs in the CFTR gene (Figure 5B), which
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Figure 2. Power results for simulation settings with 10 genes. We set each gene to have 25 CpGs and only one gene to have signals. The signal gene has 1
signal CpG and 24 noise CpGs, with signal CpG having mean signal only (panel A), variance signal only (panel B), and mean and variance signals with
different sizes of mean signals (panels C and D).

Table 2. Twenty one genes identified by Dw−DM−DV at the 0.0005 gene-level P-value threshold using the GEO BRCA Data

Rank Gene # CpG Cancer
Rank in

EWASmin −P

1 TMC4* 13 Breast Cancer (37) 2
2 ZFP57 5 Breast Cancer (38) 16
3 DPH3B 5 – 61
4 NAA35* 7 Breast Cancer (39) 10
5 ANKRD13B 22 Breast Cancer (40) 25
6 PENK 23 Breast Cancer (41) 37
7 THY1* 19 Breast Cancer (42) 13
8 CXCL6* 7 Breast Cancer (43) 1
9 KDM5A* 2 Breast Cancer (44) 4
10 HBA1 7 Breast Cancer (45) 23
11 SPAG6 16 Acute Myeloid Leukemia (46) 170
12 AQP3 7 Breast Cancer (47) 140
13 TRH 16 Breast Cancer (48) 28
14 SLC7A4 12 Breast Cancer (49) 175
15 FKBP4* 18 Breast Cancer (50) 7
16 PRDM5 18 Breast Cancer (51) 36
17 MMP23B 2 Breast Cancer (52) 80
18 TMEFF1 5 Breast Cancer (53) 156
19 PRSS48 7 – 64
20 CFTR 16 Breast Cancer (54) 1055
21 TMEM200B* 20 Breast Cancer (55) 3

*Genes identified by both Dw−DM−DV and EWASmin −P .
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Figure 3. Power results for simulation settings with outlier samples. We set to have 10%, 15% and 20% outlier samples and two different signal-to-noise
ratios 5:45 and 10:40.

Figure 4. Manhattan plots with results from Dw−DM−DV and EWASmin −P . The solid horizontal line is the 0.0005 gene-level P-value threshold. The dashed
horizontal line is the Bonferroni adjusted 0.05 significance level (0.05/19 271 genes = 0.0000026 adjusted gene-level P-value threshold). Genes annotated
with stars are genes identified by both methods at the 0.0005 gene-level P-value threshold.
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Table 3. Fourteen genes identified by EWASmin −P at the 0.0005 gene-level P-value threshold using the GEO BRCA Data

Rank Gene # CpG Top CpG Signala Cancer
Rank in

Dw−DM−DV

1 CXCL6* 7 Variance Breast Cancer (43) 11
2 TMC4* 13 Variance Breast Cancer (37) 1
3 TMEM200B* 20 Variance Acute Myeloid Leukemia (56) 41
4 KDM5A* 2 Variance Breast Cancer (44) 4
5 NRBP1 12 Variance Breast Cancer (57) 110
6 SALL1 44 Variance Breast Cancer (58) 887
7 FKBP4* 18 Variance Breast Cancer (50) 32
8 NOL6 5 Variance - 160
9 PLS1 16 Variance Bladder Cancer (59) 1069
10 NAA35* 7 Variance Breast Cancer (39) 6
11 ZNF132 12 Mean Prostate Cancer (60) 118
12 STAU2 39 Variance Hepatocellular Carcinoma (61) 666
13 THY1* 19 Variance Breast Cancer (42) 14
14 FAM198B 14 Variance Breast Cancer (62) 84

aMean or variance tests with smaller P-value at the most significant CpG in a gene.
*Genes identified by both Dw−DM−DV and EWASmin −P .

clearly shows elevated methylation levels in the progression
to tumor. For the PLS1 gene, we similarly plotted the
DNA methylation measures of the top 2 P-value ranked
CpGs (Figure 5B), where the #1 ranked CpG cg00137209
is the one that shows strong variance signal due to very
small variation in the methylation measures of the normal
tissues, when neither CpGs showed any enrichment in
methylation measures in the progression to tumor. This
suggests that genes uniquely identified by EWASmin −P

due to extreme P-values at one or two CpGs may not be
reliable, while genes identified uniquely by Dw−DM−DV are
generally characterized by multiple signal CpGs, thus are
more reliable.

We also plotted the DNA methylation measures of all
CpGs in these two genes CFTR and PLS1 (Supplementary
Figures S5 and S6, respectively). It is again clear that almost
half of the CpGs in the CFTR gene have weak mean sig-
nals and weak variance signals, thus missed by EWASmin −P

due to stringent multiple comparisons adjustment. In addi-
tion, we plotted the weighted distance matrices of the 50
normal tissues and the 42 normal-adjacent tissues for the
CFTR gene and the PLS1 gene (Supplementary Figure S7).
For the CFTR gene, we observe little variation in distances
among normal samples and increased variation in distances
between several pairs of normal and normal-adjacent sam-
ples, while for the PLS1 gene, we observe no clear pattern.
We also plotted the DNA methylation measures of CpGs in
the TMC4 gene (Supplementary Figure S8) that was iden-
tified by both Dw−DM−DV and EWASmin −P and ranked
#1 and #2 in the two methods, respectively. There are 13
CpGs in the TMC4 gene, 3 CpGs have strong variance sig-
nals when two of the three CpGs also have mean signals.
Thus, the TMC4 gene was identified by both Dw−DM−DV

and EWASmin −P.
In our previous work on differentially methylated regions

(DMRs) using the same GEO BRCA data, we identified 2
DMRs of epigenetic field defects using both mean and vari-
ance signals (21). The two DMRs cover two genes, NKX6−2
and CCND2, which rank #113 and #359 in the Dw−DM−DV

results. Further investigation revealed that the two DMRs
only cover part of the two genes. We therefore broke down

the two genes into smaller parts so that there is one part that
covers exactly the identified DMR. We then treated these
smaller parts as individual regions and repeated Dw−DM−DV

across the whole genome. The rank of the NKX6−2 part
that matches with the DMR moved up to #90 from #113
while the other two parts rank #107 and #4855, respectively.
The rank of the CCND2 part that matches with the other
DMR moved up to #154 from #359 and the other part
ranks #1116. Overall, the 2 DMR-covered genes previously
identified as epigenetic field defects also rank on top in the
results of Dw−DM−DV. This suggests that we may combine
DMR detection techniques with distance-based methods
to first better define ‘regions of interest’ using DMR ideas
and then assess significance more powerfully with distance-
based methods.

We also investigated the relation between the number of
CpGs in a gene and the probability that the gene is selected,
where we binned genes based on their sizes and calculated
the selection probability of a gene in a bin as the propor-
tion of genes identified out of all genes in the bin. We plot-
ted the selection probabilities against gene sizes (Supple-
mentary Figure S9) and found that the selection probabil-
ities for different versions of the distance-based methods
and EWASmin −P method are not systematically affected by
gene sizes.

Validation of the identified epigenetic field defects in the GEO
BRCA data

We further validated the 21 genes of epigenetic field de-
fects identified by Dw−DM−DV through comparing methy-
lation measures of the 21-gene-covered CpGs between 263
independent tumor tissues and 42 normal-adjacent tissues
to examine if the methylation levels at these CpGs ex-
hibit progression to tumor. Specifically, we performed the
two-sample t-test at each of these CpGs and plotted the
−log10(p−value) from the two comparisons, 50 normal
tissues versus 42 normal-adjacent tissues and 42 normal-
adjacent tissues vs. 263 tumor tissues (Supplementary Fig-
ure S10). In general, the majority of these CpGs show more
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A B

Figure 5. (A) Heatmaps of DNA methylation measures of CpGs in the CFTR and PLS1 genes. The CpGs underlined are the top 4 P-value ranked CpGs
in the CFTR gene and the top 2 P-value ranked CpGs in the PLS1 gene. (B) DNA methylation measures of 50 normal tissues, 42 normal-adjacent tissues
and 42 matched tumors of the top 4 P-value ranked CpGs in the CFTR gene and the top 2 P-value ranked CpGs in the PLS1 gene. Pm and Pv are P-values
from CpG site-level mean and variance tests adjusted for multiple comparisons for the number of CpGs in the gene. The three horizontal lines represent
mean methylation levels of the three groups of normal tissues, normal-adjacent tissues and matched tumors.

significant signals in the progression from normal tissues to
normal-adjacent tissues to tumor.

Replication analysis using an independent data of normal tis-
sues

As epigenetic field defects identified in one set of normal vs.
normal-adjacent comparison maybe driven by a few ‘out-
lier’ normal-adjacent samples (3,4,21), different epigenetic
field defects could be identified in a different set of normal

versus normal-adjacent comparison that are driven by dif-
ferent ‘outlier’ normal-adjacent samples. Therefore, we pro-
pose to conduct a replication analysis that uses the same
normal-adjacent tissue samples but compare to an indepen-
dent data of normal samples. We used 450K DNA methy-
lation data of 18 normal tissue of 18 breast reduction mam-
moplasty subjects (GSE67919) (36). The original data have
methylation measures on 485 577 CpG sites. We followed
the same quality control steps as for the discovery GEO
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BRCA data (GSE69914) and kept the same CpG sites for
comparison purposes. We ended up with 344 947 CpGs,
covering 19 271 genes, from 18 normal tissues. We then com-
pared these normal samples to the same 42 normal-adjacent
tissues from the GEO BRCA data in a replication analysis.

At the same 0.0005 threshold for gene-level P-values, 7
out of the 21 previously identified genes with epigenetic
field defects in the discovery analysis using the GEO BRCA
data were replicated by Dw−DM−DV . The seven genes are
DPH3B, NAA35, ANKRD13B, CXCL6, FKBP4, PRSS48
and CFTR. We similarly validated these 7 genes by compar-
ing P-values from the two-sample t-tests comparing the 18
replication normal samples to the 42 GEO BRCA normal-
adjacent samples and P-values from the two-sample t-tests
comparing the 42 GEO BRCA normal-adjacent samples to
the 263 independent GEO BRCA tumor samples (Supple-
mentary Figure S11). All 7 genes, except the NAA35 and
FKBP4, exhibit progression to tumor. More details of the
replication analysis results using Dw−DM−DV , EWASmin −P

and other comparing distance-based methods were summa-
rized in Supplementary File section 3.3 Replication Analy-
sis and Supplementary Table S8 and Supplementary Fig-
ures S12–S14.

To investigate our hypothesis that different epigenetic
field defects maybe identified when comparing normal sam-
ples to a different set of normal-adjacent samples, we ob-
tained a new set of BRCA normal-adjacent samples (n =
90) from the Cancer Genome Atlas (TCGA) project to-
gether with their matched tumor samples (n = 90). We plot-
ted DNA methylation measures of CpGs in the 7 repli-
cated genes (Supplementary File 2) of the 18 replication
normal samples, the 50 discovery GEO BRCA normal sam-
ples, the 42 discovery GEO BRCA normal-adjacent sam-
ples, the 42 discovery GEO BRCA matched tumor sam-
ples, and the 90 TCGA normal-adjacent samples and the
90 TCGA matched tumor samples. It is clear that methyla-
tion patterns of the TCGA normal-adjacent tissues are very
different from that of the discovery GEO BRCA normal-
adjacent tissues in most of these CpGs. This supports our
hypothesis that methylation patterns can be very different
in different pre-cancer tissues (using normal-adjacent tissue
as a surrogate) thus different epigenetic field defects maybe
identified when normal samples are compared to different
sets of pre-cancer tissues.

DISCUSSION

In this study, we developed a weighted epigenetic distance-
based method Dw−DM−DV that accumulates both DM
(mean) and DV (variance) signals across CpGs in a gene
or a genetic region. One known advantage of distance-
based methods is, there is no need to preselect outcome-
associated features, avoiding the potential to mis-screen fea-
tures with weak signals. In our proposed weighted epige-
netic distance-based method Dw−DM−DV , we used CpG site-
level association strengths as weights for individual CpGs
aiming to up-weight signal CpGs and down-weight noise
CpGs. If the feature preselection step could be conducted
perfectly, it is equivalent to the case when weight ‘0’ is cor-
rectly assigned to noise CpGs and weight ‘1’ is correctly
assigned to signal CpGs. Results from simulation studies

suggest that when the signal-to-noise ratio in a gene de-
creases, power of non-weighted epigenetic distance-based
methods decreased drastically, while power of the weighted
version was well maintained. This suggests that incorpo-
rating CpG-site-level association strengths as weights for
individual CpGs indeed help to up-weight signal CpGs
and down-weight noise CpGs, thus improve the overall
study performance. Simulation results also suggest that the
weighted epigenetic distance-based methods will be most
effective when applied to genes or genetic regions with a
small percentage of CpGs having weak signals. This makes
the detection of epigenetic field defects, i.e., early epigenetic
alterations that are usually infrequent across samples and
identifiable as outlier samples, the ideal application of the
proposed method Dw−DM−DV . Using the GEO BRCA 450K
DNA methylation data, Dw−DM−DV identified 21 genes with
epigenetic field defects, when 7 out of the 21 genes over-
lap with the genes identified by EWASmin −P. Majority of
the genes uniquely identified by Dw−DM−DV were previously
reported to be associated with breast cancer. Most of the
genes uniquely identified by EWASmin −P also ranked on
top in the Dw−DM−DV results except for the PLS1 gene.
However, further investigations suggested that the PLS1
gene may not be a real epigenetic field defect. On the other
hand, most of the genes uniquely identified by Dw−DM−DV

also ranked on top in the EWASmin −P results except for the
CFTR gene, in which the enrichment in the progression to
breast cancer was confirmed in further analyses. This sug-
gests that genes identified by Dw−DM−DV , which are gen-
erally characterized by multiple signal CpGs, are more re-
liable. It is worth noticing that the 2 DMR-covered genes
identified in our previous work (21) also ranked on top in
the Dw−DM−DV results. We validated the identified epige-
netic field defects by showing a progression to tumor in an
independent dataset of tumor tissues. We also conducted a
replication analysis by comparing the same set of normal-
adjacent tissues to an independent set of normal tissues,
and found that 7 out of the 21 genes of epigenetic field de-
fects identified by Dw−DM−DV in the discovery analysis were
replicated.

In general, distance-based methods have a better perfor-
mance than that of site-level EWAS methods when site-level
signals are weak. As discussed in our previous work (21)
and work of others (3,4), epigenetic field defects are often
characterized by increased variation in DNA methylation
measures due to a few outlier normal-adjacent tissue sam-
ples. So the site-level EWAS methods are usually underpow-
ered due to small mean differences as well as stringent mul-
tiple comparisons adjustment. Distance-based methods ac-
cumulate weak signals to improve power. Distance-based
methods are flexible and can be applied to a CpG site, a
gene, a pathway, or an entire genome. A closer investigation
on what we identified in our previous work (21) in DMR
detection and the current work suggests that we may take
advantages of the techniques in DMR detection and com-
bine that with distance-based methods in future works to
more efficiently identify regions of epigenetic field defects.

In summary, we proposed a new weighted distance-
based method Dw−DM−DV that considers both DM and
DV in DNA methylation and incorporates site-level as-
sociation strengths as weights on individual CpGs to up-
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weight signal CpGs and down-weight noise CpGs to fur-
ther boost the overall study power. The Dw−DM−DV method
is especially powerful in detecting epigenetic field defects
when methylation alterations between normal tissues and
normal-adjacent tissues are usually minimum.

DATA AVAILABILITY

An R code for the proposed method Dw−DM−DV to-
gether with a tutorial and a sample data set is available
for downloading from http://www.columbia.edu/∼sw2206/
softwares.htm.

The BRCA 450K DNA methylation data of 50 nor-
mal tissues, 42 normal tissues adjacent to tumors together
with 42 matched tumor tissues, and 263 independent tu-
mor tissues were downloaded from Gene Expression Om-
nibus (GEO) under the accession number GSE69914. The
450K DNA methylation data of 18 normal tissue of 18
breast reduction mammoplasty subjects were downloaded
from Gene Expression Omnibus (GEO) under the accession
number GSE67919. The 450K DNA methylation data of 90
BRCA normal-adjacent and tumor pairs were downloaded
from the Cancer Genome Atlas (TCGA) project.
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Supplementary Data are available at NAR Online.
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