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ABSTRACT
Cell division is important in human aging and cancer. The estimation of the number of cell divisions
(mitotic age) of a given tissue type in individuals is of great interest as it allows not only the study of
biological aging (using a new molecular aging target) but also the stratification of prospective cancer risk.
Here, we introduce the MiAge Calculator, a mitotic age calculator based on a novel statistical framework,
the MiAge model. MiAge is designed to quantitatively estimate mitotic age (total number of lifetime cell
divisions) of a tissue using the stochastic replication errors accumulated in the epigenetic inheritance
process during cell divisions. With the MiAge model, the MiAge Calculator was built using the training
data of DNA methylation measures of 4,020 tumor and adjacent normal tissue samples from eight TCGA
cancer types and was tested using the testing data of DNA methylation measures of 2,221 tumor and
adjacent normal tissue samples of five other TCGA cancer types. We showed that within each of the
thirteen cancer types studied, the estimated mitotic age is universally accelerated in tumor tissues
compared to adjacent normal tissues. Across the thirteen cancer types, we showed that worse cancer
survivals are associated with more accelerated mitotic age in tumor tissues. Importantly, we demonstrated
the utility of mitotic age by showing that the integration of mitotic age and clinical information leads to
improved survival prediction in six out of the thirteen cancer types studied. The MiAge Calculator is
available at http://www.columbia.edu/»sw2206/softwares.htm.
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Introduction

The lifetime risks of many cancers are suggested to be corre-
lated with the lifetime number of cell divisions of normal stem
cells within those tissues [1,2]. Thus, the estimation of the
number of cell divisions, that is, the construction of molecular
mitotic clocks of a given tissue type in individuals allows strati-
fication according to prospective cancer risk. Progress was
made very recently with the construction of the DNA methyla-
tion-based mitotic-like clock epiTOC [3]. This mitotic-like
clock focuses on Polycomb group promoter CpGs and selected
those CpGs for which DNA methylation levels increase with
chronological age and are unmethylated in fetal tissues. By cor-
relating the tick rate prediction from the model to the rate of
stem cell divisions in normal tissues and an mRNA expression-
based mitotic index in cancer tissues, this model is demon-
strated to approximate a mitotic-like clock.

Here, we approached the same problem differently and
introduced MiAge, a novel statistical model that quantitatively
estimates mitotic age of a tissue using DNA methylation data.
MiAge uses a molecular clock hypothesis [4]. As a cell divides
during normal human development and aging, in theory, the
greater the number of divisions, the greater the number of
somatic replication errors. Based on this molecular clock
hypothesis, the majority of epigenetic changes in a genome as a
cell divides are neutral (“passenger”), with minimal selective

value. Those passenger changes are “odometer-like” clicks of a
molecular clock [5,6]. The proposed MiAge statistical model
utilizes the stochastic replication errors accumulated during
cell divisions. Per cell division, two events could occur at a CpG
site when epigenetic patterns are inherited: an existing methyl
group may be lost (failure of maintenance) or a new methyl
group may be added (de novo methylation) [7]. Observed
methylation levels at CpG sites thus may change stochastically
over many cell divisions according to the probabilities of failure
of maintenance and de novo methylation. Under the MiAge
model, there are four types of CpG sites as a cell divides: (i) sites
with methylation levels monotonically increasing over cell divi-
sions if they have low initial methylation levels at the first cell
generation, low probability of failure of maintenance and high
probability of de novo methylation, which we name increasing-
methylated CpGs and are informative in inferring mitotic age;
(ii) sites with methylation levels monotonically decreasing over
cell divisions if they have high initial methylation levels at the
first cell generation, high probability of failure of maintenance,
and low probability of de novo methylation, which we name
decreasing-methylated CpGs and are informative in inferring
mitotic age; (iii) sites with stationary methylation levels over
cell divisions that are not informative in inferring mitotic age;
and (iv) sites with unstable methylation levels, which are
dynamic but not informative in inferring mitotic age. The
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MiAge model assumes site-specific parameters at a CpG site:
the methylation level at the first cell generation, the probability
of failure of maintenance, and the probability of de novo meth-
ylation are the same for all tissue samples of the same type. By
comparing observed to expected methylation levels at present-
day genome under the MiAge model, we are able to estimate
the total number of cell divisions a tissue sample has gone
through, as well as the site-specific parameters of selected CpGs
that are most informative in inferring mitotic activities using a
selection procedure imbedded in the MiAge model. We applied
the MiAge model to training data of DNA methylation meas-
ures of 4,020 tumor and adjacent normal samples of 8 cancer
types and built the MiAge Calculator that consists of a panel of
286 increasing-methylated CpGs that are mitotic-activity-infor-
mative together with their estimated site-specific parameters,
which can be applied to methylation data of new samples of
other tissue types to estimate their mitotic age. We tested this
non-tissue-specific property of the MiAge Calculator using test-
ing data of DNA methylation measures of 2,221 tumor and
adjacent normal samples of 5 cancer types different from the 8
cancer types in the training data. We further validated the
MiAge Calculator by showing high correlations between esti-
mated mitotic age and three surrogate measures of the
unknown true mitotic age.

Although we focused on cancer applications, the MiAge Cal-
culator is readily applicable to aging studies using DNA meth-
ylation measures to estimate mitotic age as a new molecular
target of aging marker.

Results

Estimation of mitotic age using a novel statistical
framework based on DNA methylation transmission

MiAge statistical model. The MiAge model quantitatively esti-
mates total number of cell divisions, i.e., mitotic age, of a tissue
sample using DNA methylation data. To model changes in
methylation patterns accumulated through cell divisions across
CpGs, MiAge uses a previously developed model for methyla-
tion transmission process per cell division (Figure 1(a)) [7],
from which we derived all possible probabilistic methylation
transition events at a CpG (Figure 1(b)), where Pn is the meth-
ylation status (1 if methylated and 0 otherwise) of a pre-replica-
tion parent strand in the nth cell generation; Qn is the
methylation status of a post-methylation parent strand; Dn is
the methylation status of a post-methylation daughter strand;
m is the probability of maintaining methylation during a cell
division; and dp and dd are the probabilities of de novo methyla-
tion event on the parent and daughter strand. Thus Xn =
(Qn+Dn)/2 is the mean methylation status of the double strands
at a CpG site on one sister chromosome in the nth cell genera-
tion in one cell. The key feature of MiAge that makes the esti-
mation of mitotic age possible is that the mean methylation
status of the double strands of one sister chromosome Xn at a
CpG in the nth cell generation of one cell only depends on Xn-1,
that of the previous (n-1)th cell generation. That is, the proba-
bility distribution of Pr(XnjXn-1) can be readily derived based
on the methylation transmission process as a function of the
probabilities of de novo methylation dp, dd, the probability of

failure of maintenance, 1-m [see Supplementary Materials for
detailed derivation of Pr(XnjXn-1)]. We can safely assume that
the two sister chromosomes have the same transition process
during cell divisions, thus having the same Xn at the CpG.

By recursively applying the methylation transmission proba-
bility Pr(XnjXn-1), we can derive E(Xn), the mean methylation
level at a CpG in the nth cell generation of a tissue sample
assuming all cells of this tissue sample have gone through the
same number of cell divisions n [see Supplementary materials
for detailed derivation of E(Xn)]. If we introduce the index i for
CpG sites and index j for tissue samples, we can model the
mean methylation level at CpG i in the nj

th cell generation of
tissue sample j, EðXnj;iÞ, using Equation (1).

EðXnj;iÞ ¼ ai
1� bi

þ b
nj�1
i EðX1;iÞ � ai

1� bi

� �
; when bi 6¼ 1: (1)

Here we assume parameters ai; bi, EðX1;iÞ at CpG site i are
site-specific and are the same across samples. Here ai ¼ ðdpi þ
ddi Þ=2 describes the average rate of de novo methylation at CpG
i, and bi ¼ ð1þ mi � d

p
i � ddi Þ=2 describes the fidelity of meth-

ylation maintenance at CpG i, and E(X1,i) is the methylation
level at CpG i in the 1st cell generation. When bi ¼ 1; we have
d
p
i ¼ ddi ¼ 0 and mi ¼ 1. That is, the methylation status is per-
fectly transmitted with no random errors as cell divides, i.e.,
EðXnj;iÞ ¼ EðX1;iÞ. We assume that every CpG is methylated
independently of other CpGs in the genome.

With methylation measures at many CpG sites from many
samples, we can estimate number of cell divisions nj of sample j
and parameters ai, bi, and EðX1;iÞ of CpG i by minimizing the
following objective function in Equation (2), which compares
the observed methylation level at CpG i of sample j, bi,j to
expected methylation level under the MiAge model, EðXnj;iÞ,
across all samples and CpG sites.

f ¼
X
i

X
j

EðXnj;iÞ � bi;j

� �2
: (2)

Here, f is the sum of squares of the difference between
observed and expected methylation levels, summed over all
samples at CpG i, and then summed over all CpGs. Details of
the optimization procedure are in the Materials and methods
section.

MiAge is coupled with a procedure to select informative CpGs.
As we pointed out, under the MiAge model, there are four types
of CpG sites as cell divides depending on the value of the site-
specific parameters ai; bi, EðX1;iÞ: (i) sites with increasing-meth-
ylated levels, which are informative in inferring mitotic age; (ii)
sites with decreasing-methylated levels, which are also informa-
tive in inferring mitotic age; and (iii) sites with stationary-
methylation levels, which are not informative in inferring
mitotic age; and (iv) sites with unstable methylation levels,
which are dynamic but are not informative in inferring mitotic
age.

We need to separate informative CpGs from uninformative
CpGs. The second step of MiAge is thus an iterative procedure
to simultaneously select informative CpGs while estimating
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mitotic age nj during the optimization procedure of Equation
(2). To do this, we proposed an informativeness score si for
CpG i, and a cutoff c0 for si to determine which sites are infor-
mative, prior to the optimization procedure of the objective
function in Equation (2). The detailed description of the infor-
mativeness score si and the procedure to define the cutoff c0 are
provided in theMaterials and methods section.

Unidentifiability problem of MiAge. One important caveat
when minimizing the objective function f in Equation (2) is
that there is no unique solution minimizing f. As explained in
more detail in the Materials and methods section, the sets
nj

� �
and c�nj � cþ 1

� �
for a constant c give the same value of

f with different sets of site-specific parameters ai, bi, and
EðX1;iÞ. That is, if the true mitotic age is nj

� �
, the best estimate

will be c�nj � cþ 1
� �

for some constant c. Thus, the estimated
mitotic age is proportional to the true mitotic age and should
be interpreted as a relative number rather than an actual num-
ber. Similarly, the estimated site-specific parameters ai, bi, and
EðX1;iÞ are also proportional to the true values. However, this
unknown constant is the same for all samples, thus the esti-
mated relative mitotic ages are comparable across samples.

Simulation Studies of MiAge. We conducted a set of simula-
tion studies to investigate the feasibility and performance of
MiAge and the robustness of MiAge to misspecifications of

Figure 1. The methylation transmission process of the MiAge model. (a) During a cell division, each of the two strands of a DNA molecule becomes a parent strand, which
is used as a template to synthesize a daughter strand. During the intermediate post-replication stage, daughter strands are completely unmethylated, whereas parent
strands have the same methylation patterns as before. Subsequently, methyl groups are added to cytosines. In this process, failure of maintenance and/or de novo methyl-
ation events can occur with certain probabilities. (b) All methylation transition events that happen within a cell division. At a CpG site, Pn is the methylation status (1 if
methylated and 0 otherwise) of a pre-replication parent strand in the nth cell generation; Qn is the methylation status of a post-methylation parent strand; Dn is the meth-
ylation status of a post-methylation daughter strand; m is the probability of maintaining methylation during a cell division; and dp and dd are the probabilities of de novo
methylation event on the parent and daughter strand. Thus Xn = (Qn+Dn)/2 is the mean methylation status of the double strands at a CpG site on one sister chromosome
in the nth cell generation in one cell.
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several key model assumptions. To mimic real DNA methyla-
tion data, the site-specific parameters ai, bi, and EðX1;iÞ for each
CpG i were set as the estimates from applying MiAge to TCGA
BRCA Illumina HumanMethylation450 (450K) array data of
745 tumor samples and 96 adjacent normal samples. Specifi-
cally, using those site-specific parameter estimates, we calcu-
lated EðXnj;iÞ using the Equation (1) for about 450K CpGs of
101 tissue samples setting the true mitotic age nj for sample j,
j = 1,…,101 to range from 100 to 1,100 increasing by 10. We
considered three error settings: no error when observed meth-
ylation levels bi,j equal to the expected methylation levels, bi,j =
E(Xnj,i); small errors bi,j = E(Xnj,i)§ei,j, ei,j»N(0,0.01); and large
errors bi,j = E(Xnj,i)§ei,j, ei,j»N(0,0.05). The histograms of the
three sets of simulated methylation values and the real methyla-
tion values of the 841 TCGA breast tumor and adjacent normal
samples suggested that real methylation data is in between the
small and large error scenarios (Supplementary Figure S1). The
mitotic age estimates of MiAge model from the three error set-
tings are all very much proportional to the true mitotic age
even with large errors added (Figure 2), which indicates that
MiAge is feasible with the unidentifiability problem. The esti-
mated and true values of the site-specific parameters ai; bi,
EðX1;iÞ of the selected informative CpGs for the three error set-
tings are also proportional (Supplementary Figure S3). In the
following simulation settings, we simulated methylation values
with large errors added.

We next investigated the robustness of MiAge when the
assumption that the site-specific parameters ai; bi, EðX1;iÞ at
CpG i are the same across samples is not met. To do so, we sim-
ulated methylation data allowing each sample j to have differ-
ent site-specific parameters. With methylation data simulated
this way (see Materials and methods for details of the simula-
tion steps), we estimated mitotic ages using MiAge that
assumes the same site-specific parameters across samples. The
estimated and true mitotic age in this simulation scenario are
very much proportional (Supplementary Figure S4), indicating
that MiAge is robust to this key assumption.

Another key assumption of MiAge is that all cells of tissue
sample j have gone through the same number of cell divisions

nj. To investigate the model robustness to this assumption, we
simulated methylation values bi,j for CpG i sample j as a mix-
ture of methylation values from two or more different types of
cells whose true mitotic ages are different (see Materials and
methods for detailed simulation steps). The results suggest that
when a tissue sample is a mixture of two or more different cell
types with very different true mitotic ages, if the proportion of
one cell type is high, the mitotic age estimated using MiAge
that assumes cellular homogeneity is very much proportional
to the true mitotic age of the dominating cell type (Supplemen-
tary Figure S5).

We next examined if we can combine DNA methylation
datasets from multiple tissue types and compare the estimated
mitotic ages across tissue types. We simulated methylation val-
ues of two tissue types allowing a bigger between-tissue differ-
ence than a within-tissue difference across samples in site-
specific parameters (see Materials and Methods for detailed
simulation steps). The results, again, suggest that the estimated
mitotic age is very much proportional to the true mitotic age
(Supplementary Figure S6).

Building the MiAge Calculator

Training and testing data from TCGA for the MiAge
Calculator. We obtained 450K DNA methylation data of can-
cer types with enough number of adjacent normal samples
from TCGA in order to compare estimated mitotic ages of
tumor samples to that of adjacent normal samples from same
patients. Our simulation study suggested a minimum sample
size of 30 for accurate mitotic age estimations (Supplementary
Figure S7). TCGA cancer types that meet this criterion include
breast invasive carcinoma (BRCA, 745 tumor and 96 normal
samples), colon adenocarcinoma (COAD, 301 tumor and 38
normal samples), head and neck squamous cell carcinoma
(HNSC, 530 tumor and 50 normal samples), kidney renal pap-
illary cell carcinoma (KIRP, 276 tumor and 45 normal sam-
ples), kidney renal clear cell carcinoma (KIRC, 325 tumor and
160 normal samples), liver hepatocellular carcinoma (LIHC,
292 tumor and 50 normal samples), lung adenocarcinoma

Figure 2. Simulation studies to assess the feasibility and performance of the MiAge model. We compared estimated mitotic ages vs. true mitotic ages of all simulated tis-
sue samples in the three error settings. The proportional relationship between the estimated vs. the true mitotic ages indicates MiAge is feasible even with the unidentifi-
ability problem.
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(LUAD, 466 tumor and 32 normal samples), lung squamous
cell carcinoma (LUSC, 359 tumor and 42 normal samples),
prostate adenocarcinoma (PRAD, 503 tumor and 50 normal
samples), thyroid carcinoma (THCA, 515 tumor and 56 normal
samples), and uterine corpus endometrial carcinoma (UCEC,
439 tumor and 34 normal samples).

Of these 11 cancer types, we used 8 cancer types (BRCA,
COAD, HNSC, KIRP, LIHC, PRAD, THCA, UCEC) to build
the MiAge Calculator, and used the rest 3 cancer types (LUAD,
LUSC, KIRC) to test the non-tissue-specific property of the
MiAge Calculator. In order to have more cancer types in the
testing data, we added two more TCGA cancer types that have
the largest number of samples with DNA methylation data and
some adjacent normal samples: bladder urothelial carcinoma
(BLCA, 419 tumor and 21 normal samples), and stomach ade-
nocarcinoma (STAD, 395 tumor and 2 normal samples). For
most of the TCGA cancer patients, one primary tumor sample
was taken. For a few patients, one from primary tumor and one
from metastasized tumor were taken. Rarely, multiple primary
tumor samples were taken from one patient. For validation
steps correlating mitotic age with unknown true mitotic age,
we will use all samples. For correlating mitotic age with clinical
variables and for survival prediction, we will use primary tumor
only and for those with multiple primary tumor samples, we
will use averaged mitotic age from multiple primary tumor
samples for the patient.

Building the MiAge Calculator with training data of 8 TCGA
cancer types. With the MiAge model, we built the MiAge Cal-
culator, a non-tissue-specific mitotic age calculator, using the
training data of 8 TCGA cancer types. There are two major
steps in building the MiAge Calculator: i) to select a panel of
“mitotic clock CpGs” that are neither tumor-related nor tissue-
specific but are mostly informative in measuring mitotic activi-
ties and ii) to estimate site-specific parameters ai; bi, EðX1;iÞ of
the selected panel of “mitotic clock” CpGs.

In identifying a panel of “mitotic clock” CpGs, the idea is
that there exist “odometer-like” CpGs that are neither tumor-
related nor tissue-specific but are mostly related to mitotic
activities so that the defined panel of informative CpGs are con-
sidered as “mitotic clock” CpGs and can be used for other tissue
types in other studies. For each of the 8 TCGA cancer types in
the training data, we applied the MiAge model to DNA methyl-
ation data of available tumor and normal samples and identi-
fied 8 sets of informative CpGs that are either increasing- or
decreasing-methylated (see detailed steps for selecting “mitotic
clock” CpGs in Supplementary Materials). We then overlapped
these 8 sets of informative CpGs and obtained 268 increasing-
methylated CpGs and 4,014 decreasing-methylated CpGs. Both
increasing- and decreasing-methylated are a known frequent
characteristic of a variety of cancers but seem to affect different
DNA sequences, with hypermethylation playing a transcription
silencing role at promoters of many tumor suppressor genes
and hypomethylation playing a less understood and more com-
plicated role, including activation of tumor promoting genes
and increased karyotypic instability [8–15]. Recent research
has shown that age-associated methylation changes observed
within normal samples are more coherently observed within
tumor samples at age-hypermethylated sites than age-

hypomethylated sites [16]. This is also supported by Yang et al
[3]. who also used age-hypermethylated sites in their mitotic-
like clock epiTOC and showed that hypomethylation did not
correlate well with the mitotic index in cancer tissue. Therefore,
we chose to use the panel of 268 increasing-methylated CpGs to
build the MiAge Calculator. We conducted a sensitivity analysis
using the combined panel of the 268 increasing-methylated
CpGs and the 4,014 decreasing-methylated CpGs as the
selected panel of 4,282 “mitotic clock” CpGs and observed a lot
weaker correlations between estimated mitotic ages and several
surrogate measures of the unknown true mitotic ages (Supple-
mentary Figure S9 for results of the sensitivity analysis using
4,282 CpGs). This supports our choice of the panel of 268
increasing-methylated CpG sites as the selected informative
sites, which is also consistent with previous publications [3,16].
Information on these 268 CpGs is presented in Supplementary
Table S2, where averaged informativeness scores were obtained
from the 8 sets of informativeness scores from the eight cancer
types in the training data.

We then estimated site-specific parameters ai; bi, EðX1;iÞ of
the selected panel of 268 “mitotic clock CpGs”. To do so, we
further randomly selected the same number of tumor and adja-
cent normal pairs from each of the 8 cancer types in the train-
ing data. This is because, the objective function in Equation (2)
is the sum of squares of the differences between expected and
observed methylation values across all samples and all CpGs. If
the number of samples of a cancer type is much greater than
that of other cancer types, it may dominate the objective func-
tion and drive the optimization process in its favor. Among the
8 cancer types in the training data, UCEC has the smallest
number of adjacent normal samples (n = 34). We thus ran-
domly selected 34 tumor and adjacent normal pairs from other
7 cancer types. Using this data with 8 cancer types of 34 tumor
and adjacent normal pairs each, we obtained the estimates of
site-specific parameters ai; bi, EðX1;iÞ of the selected panel of
268 “mitotic clock CpGs” through minimizing the objective
function in Equation (2). These parameter estimates of the 268
“mitotic clock CpGs” are then built-in the MiAge Calculator.
The MiAge Calculator can be applied to estimate mitotic ages
of any tissue samples using the DNA methylation data of this
panel of 268 CpGs by minimizing the objective function in
Equation (2).

With the panel of 268 increasing-methylated “mitotic clock”
CpGs (Supplementary Table S2) and the built-in site-specific
parameter estimates of the 268 “mitotic clock” CpGs, we can
estimate mitotic ages, which are proportional to the true
mitotic ages by an unknown constant c. Since this constant c is
the same for all samples, the estimated mitotic ages are compa-
rable across samples, across tissue types, and across studies.
The MiAge Calculator is computationally efficient with run-
ning time increasing linearly with the number of samples. With
500 samples, it takes 25 seconds on Intel(R) Xeon(R) CPU E5-
2630 0 @ 2.30GHz.

Stability of the MiAge Calculator with respect to the selection
procedure. Having different number of tumor types in the
training set may change the mitotic informative clock sites
selected that are commonly increasing-methylated across these
tumor types. We therefore investigated how stable the MiAge
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Calculator is with respect to the number of tumor types used in
selecting the mitotic clock sites. When we defined the mitotic
clock sites as those commonly increasing-methylated in at least
6 tumor types in the training data, 19,593 mitotic clock sites
were selected. In doing so, we worked on all 28 possible combi-
nations of 6 tumor types out of the 8 tumor types and the
19,593 mitotic clock sites are the overlapping sites out of the 28
sets of mitotic clock CpGs selected from the 28 possible 6
tumor sets. When we used 7 tumor types, 4,253 sites were simi-
larly selected, compared to the 268 sites selected when we used
all 8 tumor types. Although the number of selected mitotic
clock sites varies, the mitotic age estimates using the three dif-
ferent sets of mitotic clock sites are highly correlated. We calcu-
lated mitotic age of tumor and normal samples of all cancer
types (n = 6,261) and the correlation between mitotic age esti-
mates using 268 sites and that using 4,253 sites is 0.97. The cor-
relation between mitotic age estimates using 268 sites and that
using 19,593 sites is 0.89, and the correlation between mitotic
age estimates using 4,253 sites and that using 19,593 sites is
0.96. These results show that the mitotic age estimated using
the MiAge Calculator is very robust with respect to the number
of tumor types used in the training data for selecting mitotic
clock informative sites.

In addition, in building the MiAge Calculator, after the
selection of the 268 increasing-methylated mitotic clock CpGs,
we randomly selected subsamples in each of the 8 tumor types
so that every tumor type is represented by equal number of
samples. This is because, the objective function Equation (2)
that estimates mitotic age is the sum of squares of the differen-
ces between expected and observed methylation values across
all samples and all CpGs. If the number of samples of a cancer
type is much greater than that of other cancer types, it may
dominate the objective function and drive the optimization
process in its favor. To investigate the impact of the random
subsamples on the site-specific parameter estimates of the 268
sites, ai; bi, EðX1;iÞ, we also conducted additional analyses
where we repeated the random subsampling procedure 10 times
and estimated the site-specific parameters of the 268 clock sites.
We then estimated mitotic ages of tumor and adjacent normal
samples of all cancer types (n = 6,261) using these 10 sets of
site-specific parameter estimates. We found that the averaged
correlation between the 10 sets of parameter estimates using
the new subsamples and the parameter estimates built-in the
MiAge Calculator using the first set of subsample is 0.934 for
ai, 0.923 for bi and 0.996 for EðX1;iÞ. The averaged correlation
between the 10 sets of 6,261 mitotic age estimates of tumor and
normal samples of all cancer types (n = 6,261) using the 10 sets
of site-specific parameter estimates and that using the MiAge
Calculator is 0.999. These results show that the MiAge
Calculator is very robust with respect to the samples used for
its training.

Performance of the MiAge Calculator

Validation of the non-tissue-specific property of the MiAge Cal-
culator using a testing data of 5 different cancer types. We first
validated the non-tissue-specific property of the MiAge Calcu-
lator using a testing data of DNA methylation measures of
2,221 samples of 5 independent TCGA cancer types: BLCA,

KIRC, LUAD, LUSC, and STAD. Within each cancer type in
the testing data, we first built a temporary tissue-specific calcu-
lator using tumor and adjacent normal tissue samples from the
cancer type only and then compared the mitotic ages estimated
using the temporary tissue-specific calculator with the mitotic
ages estimated using the non-tissue-specific MiAge Calculator.
Within each of the 5 cancer types in the testing data, the corre-
lations are 0.98 for BLCA, 0.99 for KIRC, 0.96 for LUAD, 0.92
for LUSC, and 0.94 for STAD. The high correlations indicate
that the MiAge Calculator using a panel of 268 CpGs selected
across the 8 cancer types in the training data is indeed non-tis-
sue-specific. The MiAge Calculator therefore can be applied to
DNA methylation data of the panel of selected 268 CpGs from
any tissue types.

Validation of MiAge Calculator using surrogate measures of
unknown true mitotic ages. Having validated the non-tissue-
specific property of the MiAge Calculator in several indepen-
dent cancer types in the testing data, we next validated the
MiAge Calculator by correlating mitotic age estimates with sev-
eral surrogate measures of unknown true mitotic ages. We cor-
related (i) the mitotic age estimates of some cell cultures with
their passage numbers; (ii) the mitotic age estimates of TCGA
tumor samples with number of somatic mutations accumulated
in the same tumor samples across the 13 cancer types in the
training and testing data; and (iii) the mitotic age estimates of
TCGA adjacent normal samples that are proliferative with
patients’ chronological ages.

Using the MiAge Calculator, we first estimated mitotic
ages of 31 human embryonic stem (ES) cells and 35 human
induced pluripotent stem (iPS) cells and then compared
those with their passage numbers (Figure 3(a)) [17].
Although ES cells and iPS cells are different from tumor
cells, the MiAge Calculator can be applied to their methyla-
tion measures to estimate the number of cell divisions of
these cells, since the MiAge Calculator is based on mitotic
clock informative CpG sites whose methylation alteration
patterns are mostly related to mitotic activities. The ES cells,
although different from tumor and adjacent normal cells,
keep dividing when replication errors during cell divisions
cumulate. The passage numbers of these cell lines correlate
very well with their mitotic age estimates with r = 0.76
(P = 6.6e-07) for the ES cells and r = 0.42 (P = 0.01) for the
iPS cells. It is expected that the correlation for the iPS cells
is weaker since iPS cells are artificially derived from a non-
pluripotent cell (adult somatic cell) by inducing a set of spe-
cific genes. Thus, their passage numbers may not reflect true
mitotic age accurately.

The investigation of the relationship between the mitotic age
estimates of tumor samples and the number of somatic muta-
tions accumulated in the same tumor samples suggests a high
correlation in 7 cancer types out of the 13 cancer types in the
training and testing data (Figure 3(b)), r = 0.44 (P = 2.4e-15)
for BRCA, r = 0.47 (P = 3.4e-10) for PRAD, r = 0.45 (P = 2e-7)
for STAD, r = 0.33 (P = 0.00018) for KIRC, r = 0.31
(P = 0.0022) for LIHC, r = 0.27 (P = 1.2e-05) for HNSC, and
r = 0.25 (P = 0.043) for UCEC.

Alexandrov et al [18]. recently investigated clock-like
mutational processes in human somatic cells and found two
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mutational signatures, signatures 1 and 5, which correlate
with patients’ chronological ages. We correlated our esti-
mated mitotic ages of tumor samples with the number of
mutations of these two mutational signatures (Supplemen-
tary Figure S10). Our mitotic ages are significantly correlated
with signature 1 in most tissue types, especially for BRCA
(r = 0.31, P = 7.6e-16), COAD (r = 0.25, P = 0.00024),
HNSC (r = 0.31, P = 4.5e-13), KIRP (r = 0.24, P = 0.0027),
PRAD (r = 0.41, P = 2.6e-13) and STAD (r = 0.36, P = 1.9e-
10), but less correlated with signature 5.

Lastly, for the selected renewable tissue types that are not
under hormonal effect [19], the estimated mitotic ages of
TCGA normal adjacent tissues correlate well with patients’
chronological ages (Figure 3(c)), r = 0.64 (P = 1.3e-05) for
COAD, r = 0.37 (P = 1.6e-06) for KIRC, r = 0.48 (P = 7.7e-04)
for KIRP, and r = 0.46 (P = 1.8e-04) for LIHC.

These high correlations between the mitotic age estimates of
the MiAge Calculator and the surrogate measures of the
unknown true mitotic ages provide some degree of validation
of the MiAge Calculator.

Associating mitotic age with clinical variables

More accelerated mitotic age of tumor samples is associated
with worse survivals across the 13 cancer types. We next exam-
ined mitotic age of tumor and adjacent normal samples across
the 13 cancer types. We noticed that the mean mitotic age esti-
mates of normal thyroid tissues of THCA patients was the
smallest while that of the normal colon tissues of the COAD
patients as the largest (Supplementary Table S3). Out of the 13
cancer types studied, colon, head and neck, liver, lung, and thy-
roid were also previously studied and the lifetime numbers of
normal stem cell divisions of these tissues were calculated [1].
The order of mean mitotic age estimates of adjacent normal tis-
sues of these five tissue types from TCGA was THCA (thyroid)
< LUSC (lung) < LUAD (lung) <HNSC (head and neck) <
LIHC (liver) < COAD (colon) and agrees perfectly with the
order of the number of normal stem cell divisions in the life-
time of those tissues previously calculated [1]: thyroid < lung
< head and neck < liver < colon. Moreover, we show that
mitotic age is universally accelerated in tumor tissues compared

Figure 3. Validation of the MiAge Calculator using three surrogate measures of unknown true mitotic ages. (a) Correlating mitotic ages of cell cultures with their passage
numbers. With 31 human embryonic stem (ES) cells, the correlation is r = 0.76 (P = 1.3e-11). With 35 human induced pluripotent stem (iPS) cells, the correlation is r =
0.42 (P = 0.01). (b) Correlating mitotic ages of tumor tissues with number of somatic mutations in the same tumor tissues within each of the 13 cancer types. Seven cancer
types show significant correlations, r = 0.44 (P = 2.4e-15) for BRCA, r = 0.47 (P = 3.4e-10) for PRAD, r = 0.45 (P = 2e-7) for STAD, r = 0.33 (P = 0.00018) for KIRC, r = 0.31 (P
= 0.0022) for LIHC, r = 0.27 (P = 1.2e-05) for HNSC, and r = 0.25 (P = 0.043) for UCEC. (c) Correlating mitotic ages of adjacent normal tissues of selected proliferative tissue
types with patients’ chronological ages, where 4 tissue types show significant correlations, r = 0.64 (P = 1.3e-05) for COAD, r = 0.37 (P = 1.6e-06) for KIRC, r = 0.48 (P =
7.7e-04) for KIRP, and r = 0.46 (P = 1.8e-04) for LIHC.
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to adjacent normal tissues across the 13 cancer types in the
training and testing data (Supplementary Table S3).

We next showed that worse survivals of many cancer types
are associated with more accelerated mitotic age of tumor sam-
ples of those cancer types. Specifically, the mean mitotic age
estimates of the 13 tumor tissue types are negatively correlated
(r = ¡0.6, P = 0.029) with the percent surviving in 5 years of
those cancer types (Figure 4(a)). A weaker correlation between
that of the 13 adjacent normal tissue types and percent surviv-
ing in 5 years (r = ¡0.49, P = 0.091) was observed. When we
excluded STAD tissues for which only two normal samples
were available, the correlation became ¡0.32 (P = 0.31). In
Tomasetti and Vogelstein‘s paper [1], the authors concluded a
high positive correlation between cancer incidence rates and
population level number of lifetime stem cell divisions in a
hypothetical population. Here we concluded a high negative
correlation between cancer survival rates and individual level
number of cell divisions per lifetime in TCGA cancer patients.

Higher mitotic ages are associated with more advanced
tumors. We examined the association between the estimated
mitotic age of a tumor sample with the T/N/M staging variables
that describe the extent of the cancer. As shown in Figure 5(a),
the mitotic ages of tumor tissues increase significantly as the level
of the T staging variable increases in general, except for cancer
types like COAD, HNSC, and LIHC (Supplementary Table S4,
Figure 5(a)) after adjusting chronological age. This could partially
be explained by the difference in definitions of the T staging sys-
tem across different tumor types. For example, in stomach, colon,
and liver cancers, T stages are determined by the extent of spread

rather than the size of tumors while for breast, kidney, thyroid,
and lung cancers, T stages are mainly determined by the tumor
sizes. Specifically, the T stage of colon cancer is determined by
the extent of spread through layers forming the colon wall; the T
stage of liver cancer is mainly determined by whether the cancer
has grown into nearby blood vessels or organs; while for breast
cancer, T = 1,2,3 is for tumors of increasing sizes and T = 4 is for
tumors of any size growing into the chest wall or skin. The
mitotic age estimates correlate better with the T stage variable
indicating tumor sizes than that indicating tumor spread, as
tumor sizes are more directly related with the number of cell divi-
sions. We also noticed that the mitotic age estimates of tumor tis-
sues significantly increase as chronological ages increase, as
expected for most tissue types, but not for KIRP and LUSC. How-
ever, for KIRP and LUSC, the mitotic ages of adjacent normal tis-
sues are positively correlated with chronological age. This may
imply that for these tissue types, tumors of older patients tend to
divide slower than those of younger patients. UCEC, BLCA, and
PRAD were excluded from this analysis since T stage information
was not available for UCEC and there were no or too few T = 1
stage tumors for BLCA and PRAD.

As shown in Figure 5(b), the mitotic ages of tumor tissues
increase as tumor N stage (number of lymph nodes) increases
for KIRP and THCA (Supplementary Table S4) after adjusting
for chronological age. There is no N stage information for
UCEC. For LIHC, PRAD and THCA, there are no N = 2,3
tumors. As shown in Figure 5(c), we observed that only for KIRC
and KIRP, the mitotic ages of the primary tumors that were
metastasized are significantly higher than those of the primary
tumors that were not metastasized (Supplementary Table S4)

Figure 4. Mitotic age of tumor tissues and cancer survival. (a) Higher averaged estimated mitotic ages of tumor tissues are associated with lower 5-year survival rates
across the 13 cancer types in the training and testing data with r = ¡0.6 (P = 0.029) (left panel). The correlation is weaker and not significant for mitotic age of normal
adjacent tissues (right panel). (b) Higher mitotic age is associated with worse survival in some cancers.

8 A. YOUN AND S. WANG



after adjusting for chronological age. This implies that
metastasis does not necessarily occur late in tumor progres-
sion for many tumors. HNSC, LIHC, PRAD, UCEC, and
LUSC were excluded from this analysis, as the number of
patients that have metastatic tumors is less than five. It is
important to point out that the not-so-strong associations
between mitotic age and number of lymph nodes and metas-
tasis status is not a limitation of the MiAge model, but, in
fact, an advantage of mitotic age since this means the mitotic
age could provide additional information that current clini-
cal information does not offer. It also reflects that biological
processes underlying development of lymph nodes and
metastasis might be unrelated to cell divisions.

Combination of mitotic age with TNM stage information
improves prediction of patient survival in six out of thirteen
cancer types studied. Finally, we investigated the prognostic
value of mitotic age as a predictor of patient survival within
each of the 13 TCGA cancer types. We asked whether the use
of mitotic age could lead to improved prediction accuracy of
patient survival in integration with existing TNM stage infor-
mation in individual cancers. To assess this clinical utility of
the mitotic age-based survival predictor, we performed a two-
fold cross validation analysis within each of the 13 cancer types
(see details inMaterials and methods). Briefly, for each cancer,
in each cross validation, we randomly split patients into a train-
ing group of 50% patients and a testing group of the remaining

Figure 5. TNM staging variables and mitotic age estimates of tumor tissues. The plots show the regression coefficients and corresponding 95% CIs associating TNM stag-
ing variables and mitotic age estimates of tumor tissues adjusting for chronological age. (a) T variable assumes a number from 1 to 4 and describes tumor sizes and its
spread to nearby tissues with higher T numbers indicating larger tumors or wider spread to nearby tissues. gk is the increase in mitotic ages for the group with T = k com-
pared to the reference group with T = 1. (b) N variable assumes a number from 0 to 3 and describes the number of lymph nodes that have cancerous cells with N = 0 indi-
cating no cancer in any lymph nodes and higher N numbers indicating a greater spread to nearby lymph nodes. N = 2 and N = 3 tumors were grouped together due to
sparse data for most cancer types. gk is the increase in mitotic ages for the group with N = k compared to the reference group with N = 0. (c) M variable determines if
cancer has metastasized to other organs of the body with M = 0 indicating no metastasis and M = 1 indicating metastasis. g1 is the increase in mitotic ages for the metas-
tasized group compared to the group with no metastasis.
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50% patients. Then a Cox regression was used to build the pre-
dictive model either using mitotic age only, using TNM stage
information only, or using TNM stage information plus mitotic
age. We then applied the predictive model built from the train-
ing group in the testing group to test the model and repeated
the cross validation procedure 100 times. We used C-index to
measure the prediction accuracy of the model, where a C-index
of 1 indicates perfect prediction accuracy and a C-index of 0.5
indicates random guess.

As shown in Figure 6, in 6 cancer types out of the 13 cancer
types studied, integrating mitotic age with TNM stage informa-
tion significantly improves the discriminatory power of clinical
information alone (clinical versus clinical + mitotic age P = 3e-
04 for BRCA with two-sided paired Wilcoxon rank sum test;
P = 2e-13 for KIRC; P = 5e-12 for KIRP; P = 2e-14 for LUSC;
P = 3e-11 for STAD; and P = 2e-05 for THCA). C-index results
from multiple prediction models for all 13 cancer types are pro-
vided in Supplementary Figure S8. This improved prediction
accuracy across multiple cancers was not due to over-fitting
since the training group and the testing group was completely
separated with independent patients in the cross validation
procedure. This result illustrates the potential value of utilizing
mitotic age as a new predictor to improve cancer prognosis.
Further studies are required in order to evaluate the clinical

potential of MiAge, e.g., see if there is an independent prognos-
tic value considering TNM stage, tumor size, and patient age.

Comparison of MiAge and epiTOC. The MiAge Calculator
uses a panel of 268 mitotic clock CpGs that were commonly
identified as increasing-methylated sites when the MiAge
model was applied to DNA methylation data of each of the 8
TCGA cancer types in the training data. These 268 mitotic
clock sites together with their estimated site-specific parameters
ai; bi, EðX1;iÞ make up the MiAge Calculator, which can be
applied to estimate mitotic ages of any samples using their
DNA methylation data of the 268 CpGs by minimizing the
objective function in Equation (2).

The epiTOC selected 385 CpG sites that satisfy the following
three criteria: (i) CpGs that are unmethylated in fetal tissue
encompassing 11 different fetal tissue types; (ii) CpGs in gene
promoters marked by the PRC2 polycomb repressive complex
[Polycomb group targets (PCGTs)] in human embryonic stem

Figure 6. Boxplots of C-index of different survival predictors of 6 cancer types from cross-validation procedures. The plots show the distribution of C-indexes from 100
rounds of cross-validation. P-values are from a paired (two-sided) Wilcoxon rank sum test comparing different survival predictors.

Table 1. CpG sites that are commonly used in the MiAge Calculator and epiTOC.

CpG site ID Gene Symbol Chromosome Genomic Coordinate

cg21264189 POU4F1 13 79177782
cg19761848 GBX2 2 237076815
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cells; and (iii) CpGs exhibiting age-associated hypermethyla-
tion [false discovery rate (FDR) <0.05] [3]. For any given sam-
ple, epiTOC estimates mitotic-like clock, “pcgtAge”, as the
average DNA methylation level over these 385 CpG sites, which
represents the age-cumulative increase in DNA methylation
level at these sites due to putative cell-replication errors.

Although both methods selected increasing-methylated
sites, only two CpG sites overlap between our 268 mitotic clock
sites and their 385 epiTOC sites (Table 1). In spite of this differ-
ence, mitotic age from the MiAge Calculator and pcgtAge from
epiTOC of both tumor and adjacent normal samples are highly
correlated across all tumor types, ranging from 0.7 to 0.97
(Table 2).

However, unlike for tumor and adjacent normal samples,
mitotic age estimates of the 31 human ES cells and 35 human
iPS cells from the MiAge Calculator and pcgtAge from epiTOC
are much less correlated (r = 0.29). Moreover, the correlation
between pcgtAge of the 31 ES cells and 35 iPS cells and their
passage numbers is only 0.24 (Figure 7), much lower than that
observed with the mitotic age estimated using the MiAge Cal-
culator, which is 0.72.

Discussion

Although it has been long established that cell division is essen-
tial for the development of human cancer, no quantitative
method exists that can directly estimate total number of cell
divisions for cancer risk stratification or prognosis. Very
recently, independent progress was made where an epigenetic
mitotic-like clock was developed focusing on Polycomb-group
promoter CpGs from which tick rates were predicted and
shown to correlate with the rate of stem cell divisions in normal
tissues, as well as an mRNA-based mitotic index in cancer tis-
sue. Here, we developed the MiAge Calculator that can estimate
mitotic ages of any tissue types using DNA methylation data of
a panel of 268 selected “mitotic clock” CpGs. The MiAge Cal-
culator is based on the MiAge model, a novel statistical model

that models the stochastic replication errors accumulated in
epigenetic inheritance process to infer mitotic ages. The MiAge
model couples with an iterative procedure to select CpGs that
are informative for the mitotic activities. Using the training
data of 4,020 samples from 8 cancer types, we built the MiAge
Calculator that contains a panel of 268 selected informative
CpGs and the parameter estimates of the rate of de novo meth-
ylation, rate of the fidelity of methylation maintenance, and the
methylation level in the starting methylation state of these 268
selected CpGs so that the MiAge Calculator can be readily
applied by other researchers to any tissue samples that have
DNA methylation data of the selected 268 CpGs.

Although we acknowledge that due to the unidentifiability
problem of MiAge, current estimates of mitotic age are propor-
tional to the true mitotic ages by an unknown constant c, this
unknown constant is the same for all samples. Thus, the mitotic
age estimates of the MiAge Calculator are comparable across
samples, across tissue types, and across studies. Importantly,
the non-tissue-specific property of the MiAge Calculator was
validated in five independent cancer types in the testing data
and the mitotic age estimates were further validated using sev-
eral surrogate measures of unknown true mitotic ages. With
human ES cells and human iPS cells, the mitotic ages of these
cells are correlated with their passage numbers (r = 0.76 for the
ES cells and r = 0.42 for the iPS cells). Also supporting this,
mitotic ages of TCGA tumor samples correlate with the num-
ber of somatic mutations accumulated in the same tumor sam-
ples in 7 out of the 13 cancer types studied in the training and
testing data.

Assessment of mitotic ages of TCGA normal adjacent tissue
types that were also previously studied where the dynamics of
stem cell divisions of these tissue types have been described
experimentally suggests a perfect agreement in the order of the
magnitude of the mitotic age estimates of TCGA normal adja-
cent tissues of the MiAge Calculator and number of cell divi-
sions of normal stem cells calculated for hypothetical tissue
samples with known dynamics of stem cell divisions [1].

Figure 7. Passage number vs. pcgtAge for ES and iPS cells. The plot shows the correlation between pcgAge of cell cultures and their passage numbers. With 31 human
embryonic stem (ES) cells, the correlation is r = 0.54 (P = 0.0018). With 35 human induced pluripotent stem (iPS) cells, the correlation is r = 0.14 (P = 0.43). With ES and
iPS cells combined, the correlation is r = 0.24 (P = 0.056).

Table 2. Correlations between mitotic age estimates from the MiAge Calculator and pcgtAge for tumor and adjacent normal samples across tumor types.

BRCA COAD HNSC KIRP LIHC PRAD THCA UCEC BLCA KIRC LUAD LUSC STAD

tumor 0.91 0.94 0.88 0.95 0.71 0.86 0.84 0.9 0.87 0.9 0.86 0.81 0.92
normal 0.88 0.86 0.89 0.83 0.74 0.97 0.87 0.89 0.97 0.85 0.71 0.83 NA
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Another important finding of ours that shows a negative corre-
lation (r = ¡0.6) between mitotic ages of tumor tissues and the
percent surviving in 5 years across the 13 TCGA cancer types
agrees with the previous conclusion that the lifetime risks of
many cancers are positively correlated with the lifetime number
of cell divisions of normal stem cells within those tissues in
hypothetical subjects from a different angle [1]. Although the
association between mitotic age of TCGA tumor tissues and
number of lymph nodes and metastasis status are less conclu-
sive, we consider this an advantage of the mitotic age that
measures something current clinical information does not.
Mitotic age is only observed to be associated with lymph nodes
in KIRP and THCA and with metastasis status in KIRC and
KIRP; therefore, reflect biological processes underlying devel-
opment of lymph nodes and metastasis might be unrelated to
cell divisions.

Finally, with cross-validation analyses, we evaluated the
prognostic value of mitotic age and compared it to that of clini-
cal information for predicting patient survival. We show that
the mitotic age can be used as a predictor for patient survival,
with improved prediction accuracy integrating mitotic age and
clinical information than that of clinical predictors alone in 6
out of the 13 cancer types studied. This promising result calls
for further studies to fully explore the utility of mitotic age in
each individual cancer for different clinical applications.

The MiAge Calculator can be readily applied to methylation
measures from the MethylationEPIC array. Two hundred and
forty-one sites out of the 268 selected mitotic clock CpGs are
also on the EPIC array. Note that if methylation measures from
450K and EPIC array are going to be combined, a normaliza-
tion step to calibrate 450K data and EPIC data should be con-
ducted, where we could use the R code from Horvath https://
labs.genetics.ucla.edu/horvath/dnamage/NORMALIZATION.
R. For bisulfite sequencing data, the MiAge Calculator can also
be readily applied if sequencing data are processed into methyl-
ation percentages. Although with the greater coverage of the
EPIC array and sequencing data the MiAge Calculator may be
updated if data were available, our sensitivity analysis using dif-
ferent subsets of the mitotic informative CpGs showed that the
mitotic age estimates are highly correlated with almost all cor-
relations greater than 0.9.

The MiAge Calculator was built using the 450K data without
Type I/II probe normalization but with sites on sex chromo-
somes and sites overlapping with single nucleotide polymor-
phisms (SNPs) being removed. We also investigated the
potential impact of having or not having Type I/II probe nor-
malization on building the MiAge Calculator. We found that
the estimates of the site-specific parameters of the 268 mitotic
clock CpGs using methylation data with and without Type I/II
probe normalization are almost perfectly correlated with a cor-
relation of 0.999 for ai, 0.999 for bi, and 0.996 for EðX1;iÞ. The
mitotic age estimates of tumor and adjacent normal samples of
all tumor types (n = 6,261) using methylation data with and
without Type I/II probe normalization are also almost perfectly
correlated (r = 0.9995). Finally, the mitotic age estimated using
the 268 site-specific parameter estimates from Type I/II probe
normalized methylation measures are almost perfectly corre-
lated with that estimated using the MiAge Calculator
(r = 0.9988). These findings suggest that the MiAge Calculator

is very robust and can be readily applied to other types of meth-
ylation data with different data processing steps.

The MiAge Calculator together with the source code is avail-
able for downloading at http://www.columbia.edu/»sw2206/
softwares.htm. The MiAge Calculator can be applied to any tis-
sue types of any cancer type. The current statistical framework
of the MiAge Calculator is applicable to DNA methylation pro-
portion data. Other type of DNA methylation data generated
from other platforms, such as sequencing platforms, can be
used with the MiAge Calculator if processed from counts data
to proportion data.

Although we focused on cancer applications of the MiAge
Calculator, it is readily applicable to aging studies using DNA
methylation measures to estimate mitotic age as a new molecu-
lar target of aging marker.

Materials and methods

MiAge is coupled with a procedure to select informative CpGs.

At each CpG i, we can safely assume the fidelity of methylation
maintenance bi ¼ 1

2ð1þ mi � d
p
i � ddi Þ is between 0 and 1

because the methylation maintenance rate mi is in general close
to 1 and the de novo methylation rates ai ¼ ðdpi þ ddi Þ=2 are
close to 0 [7,20]. For those CpGs with bi ¼ 1, we have
EðXnj;iÞ ¼ EðX1;iÞ, which means the methylation levels in the

nthj cell generation of sample j are the same as that in the 1st cell

generation. Thus, CpGs with bi = 1 are not informative in esti-
mating mitotic age. For CpGs with unstable methylation levels,
e.g., when both probabilities for failure of maintenance
(1� mi) and the de novo methylation rates ai ¼ ðdpi þ ddi Þ=2
are comparatively high, their fidelity of methylation mainte-
nance bi ¼ 1

2ð1þ mi � d
p
i � ddi Þ will be small. These CpGs have

EðXnj;iÞ � ai
1�bi

for a reasonable range of nj (e.g., if bi < 0:5, b
nj�1
i

� 0 when nj > 50) according to Equation (1). Therefore, those
CpGs are like CpGs with bi ¼ 1 and are not informative in esti-
mating mitotic age. For those uninformative CpGs, we have
EðXnj;iÞ ¼ ci for some site-specific nuisance parameter ci that is
unrelated to mitotic age nj. For all other informative CpGs,
methylation levels either monotonically increase as nj increases
(increasing-methylated CpGs) if EðX1;iÞ � ai

1�bi
< 0 or monoton-

ically decrease otherwise (decreasing-methylated CpGs).
The second step of MiAge is thus an iterative procedure to

update the separation of informative CpGs modeled with Eð
Xnj;iÞ ¼ ai

1�bi
þ b

nj�1
i ðEðX1;iÞ � ai

1�bi
Þ from uninformative CpGs

modeled with EðXnj;iÞ ¼ ci. With each CpG site being labeled
as informative or uninformative, the objective function f in
Equation (2) which measures the discrepancy between the
observed methylation measures and the expected methylation
measures under the MiAge model becomes:

f ¼
X
i

X
j

ðEðXnj;iÞ � bi;jÞ
2

¼
X
i

f uni IðCpG i is uninformativeÞ�
þ f ini IðCpG i is informativeÞg; (3)
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where f uni ¼ P
jðci � bi;jÞ2 sums over all tissue samples j = 1,…,J

at uninformative CpG i, and f ini ¼P
ið ai

1�bi
þ b

nj�1
i ðEðX1;iÞ � ai

1�bi
Þ � bi;jÞ

2
sums over all tissue sam-

ples j = 1,…,J at informative CpG i, and I() is an indicator function.

Informativeness score si and cutoff c0. Since we do not know a
priori which CpGs are informative, we need to determine this
during the model fitting procedure. To do so, we developed an
informativeness score si for each CpG i, defined as
si ¼ minciðf uni Þ �minai;bi;EðX1;iÞðf ini j njÞ. The informativeness
score si for each CpG i is the difference of residual sum of
squares between the two models for CpG site i: model for unin-
formative sites EðXnj;iÞ ¼ ci and model for informative sites
EðXnj;iÞ ¼ ai

1�bi
þ b

nj�1
i ðEðX1;iÞ � ai

1�bi
Þ. By comparing which of

the two models fit the observed methylation data at CpG site i
better, we choose between whether the CpG site i is informative
or uninformative. Because the model for informative sites has
more parameters, the residual sum of squares for CpG i (the
sum of squares of the difference between observed and expected
methylation levels, summed over all tissue samples at CpG i)
under the model for uninformative sites: minciðf uni Þ ¼ minci
ðPjðci � bi;jÞ2Þ ¼

P
jðbi;: � bi;jÞ2 will be larger than

that under the model for informative sites:
minai;bi;EðX1;iÞðf ini j njÞ ¼ minai;bi;EðX1;iÞð

X
j
ð ai
1� bi

þ b
nj�1
i ðEðX1;iÞ � ai

1� bi
Þ � bi;jÞ

2 j njÞ.
Note that ci ¼ bi is average of methylation values for CpG site i
across all samples.

Thus, we need to define a cutoff c0 (>0, to be discussed next)
for si prior to the optimization process of the objective function
in Equation (3). Once c0 is determined, it is fixed during the
iterative optimization procedure where sites with si > c0 are set
as informative and sites with si�c0 are set as uninformative.
The objective function f then becomes:

f ¼
X
i

X
j

EðXnj;iÞ � bi;j

� �2
¼

X
i

f uni Iðsi�c0Þ þ f ini Iðsi > c0Þ
� �

:

(4)

To determine the cutoff c0, we calculated si for each CpG site i
under the “null model” when methylation levels do not change
as cell divides. Under the “null model”, we assigned mitotic age
nj to each tissue sample j generated randomly from a Unif(100,
3000) distribution and calculated �si ¼ minciðf uni Þ �
minai;bi;EðX1;iÞðf ini j njÞ j null model for each CpG site i. Note that
in calculating �si, we treated randomly generated nj for tissue
sample j as known, but estimated site-specific parameters ai; bi;
EðX1;iÞ minimizing f ini . Here, �si can be considered as the
decrease in the residual sum of squares purely due to over-fit-
ting. Therefore, we set maxið�siÞ over all available CpG sites as
the cutoff c0. We conducted a simulation study to investigate
the impact of different cutoffs on the performance of MiAge.
The simulation results support the choice of c0 ¼ maxið�siÞ
(Supplementary Materials).

Optimization procedure. With c0 determined, we estimate the
parameters nj and other site-specific parameters ai; bi; EðX1;iÞ
minimizing the objective function in Equation (4) through the
following iterative optimization process.

Let nð1Þj denote the initial value of mitotic age assigned to

each tissue sample j. Given nð1Þj , at CpG site i, we calculate sð1Þi

and determine if CpG i is informative (if sð1Þi > c0) or uninfor-

mative (if sð1Þi � c0). In calculating sð1Þi , we estimate site-specific

parameters að1Þi ; bð1Þi ; EðX1;iÞð1Þ; minimizing f ini j nð1Þj and f uni ,

respectively subject to the following linear inequality con-

straints 0� að1Þi þ bð1Þi � 1; 0� að1Þi ; bð1Þi ; EðX1;iÞð1Þ� 1: We then
update nj to minimize the following objective function given
these site-specific parameters

f ð1Þ ¼
X

i

X
j
ðcð1Þi � bi;jÞ2Iðsð1Þi �c0Þ

n

þ
X

j

að1Þi

1� bð1Þi

þ ðbð1Þi Þnð1Þj �1ðEðX1;iÞð1Þ
�

� að1Þi

1� bð1Þi

Þ � bi;jÞ2Iðsð1Þi > c0Þg;

with the constraint 10�nj�10000 and obtain nð2Þj . We itera-

tively repeat the above steps until f ðnÞ converges. We used the
R function ‘optim’ to find parameters minimizing a given func-
tion.

Unidentifiability problem of MiAge. One important caveat
when minimizing the objective function f in Equation (4) is
that there is no unique solution minimizing f. This is because

f ¼
X
j

X
i

ai
1� bi

þ b
nj�1
i EðX1;iÞ � ai

1� bi

� �
� bi;j

� �2
Iðsi > c0Þ

(

þ
X
i

ci � bi;j

� �2
Iðsi�c0Þg

¼
X
j

X
i

ai
1� bi

þ ðb1ci Þcðnj�1Þ EðX1;iÞ � ai
1� bi

� �
� bi;j

� �2

Iðsi > c0Þ
(

þ
X
i

ci � bi;j

� �2
Iðsi�c0Þg:

Therefore, the sets nj
� �

and fn0
j ¼ c�ðnj � 1Þ þ 1g for a

constant c give the same value of f with different sets of site-

specific parameters ai; bi; EðX1;iÞ
� �

and fa0
i; b

0
i; EðX1;iÞ

0g if b
0
i ¼

b
1
c

i and
ai

1�bi
¼ a

0
i

1�b0i
, EðX1;iÞ ¼ EðX1;iÞ

0
. That is, if the true mitotic

age of tissue sample j is nj
� �

, the best estimate will be

fn0
j ¼ c�ðnj � 1Þ þ 1g for some constant c. Thus, the estimated

mitotic age is proportional to the true mitotic age and should
be interpreted as a relative number rather than an actual num-
ber. Similarly, the estimated site-specific parameters for CpG
site i are also proportional to the true values. This is because
when bi is close to 1 for informative sites, we have
bi ¼ ðb0

iÞc ¼ ð1� ð1� b
0
iÞÞc � 1� ð1� b

0
iÞ�c ¼ 1� cþ b

0
i�c. a

0
i

is also linearly related with ai because ai
1�bi

¼ a
0
i

1�b0i
.

Simulation studies of MiAge. We conducted a set of simula-
tion studies to investigate the robustness of MiAge when the
assumption that the site-specific parameters ai; bi, EðX1;iÞ at
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CpG i are the same across samples is not met. To do so, we
simulated methylation data allowing each sample j to have
different site-specific parameters. Note the correspondence
between site-specific parameters ai; bi and the original parame-
ters on methylation transmission rates mi; d

p
i ; d

d
i at CpG i:

d
p
i þ ddi ¼ 2ai, and mi ¼ 2ðai þ biÞ � 1, where parameters d

p
i

and ddi cannot be separated. Specifically, for each sample j, we
first simulated site-sample-specific parameters mi;j; di;j ¼ ðdpi;j þ
ddi;jÞ=2 and EðX1;i;jÞ, where mi;j were simulated from Unif ðmi �
0:975;minðmi � 1:025; 1ÞÞ and mi is the parameter estimated
from the TCGA BRCA data. Other site-sample-specific param-
eters di;j and EðX1;i;jÞ were similarly simulated. With these site-
sample-specific parameters, we then calculated the expected
methylation level EðXnj;i;jÞ at CpG i for sample j given nj using
Equation (1) and added large errors ei;j »Nð0; 0:05Þ.

We also investigated the robustness of MiAge when the
assumption that all cells of tissue sample j have gone through the
same number of cell divisions nj is not met, but instead a tissue
sample is a mixture of different types of cells with different
mitotic ages. We simulated methylation values bi,j for CpG i of
sample j as a mixture of methylation values from two or more
different types of cells whose true mitotic ages are different. We
first simulated mixture samples consisting of two cell types, with
proportion of the dominating cell type = 0.7, 0.8, 0.9 (see Supple-
mentary Materials for detailed simulation steps). We then simu-
lated mixture samples consisting of three cell types, with
proportion of the dominating cell type = 0.7, 0.8, 0.9 and propor-
tion of each of the other two minor cell types = 0.15, 0.1, 0.05,
respectively. Similarly, we simulated mixture samples consisting
of four cell types with proportion of the dominating cell type =
0.7, 0.8, 0.9 and proportion of each of the other three minor cell
types = 0.1, 0.0667, 0.0333, respectively.

We further investigated if multiple DNA methylation data-
sets from multiple tissue types can be combined and the mitotic
age estimates across different tissue types can be compared.
Here, we allowed the site-specific parameters ai; bi, EðX1;iÞ at
CpG i to be first different across tissue types then different
across samples within a tissue type (see Supplementary Materi-
als for detailed simulation steps).

Validation of MiAge Calculator as non-tissue-specific using
testing data of 5 different TCGA cancer types. The MiAge Cal-
culator built with the training data of 8 cancer types is expected
to be non-tissue-specific and can be applied to any tissue types.
We validated this property using the testing data of 5 indepen-
dent TCGA cancer types. To do so, we first built a temporary tis-
sue-specific calculator for each cancer type in the testing data. To
build the temporary tissue-specific mitotic age calculator for
each cancer, we used the same panel of selected 268 “mitotic
clock” CpGs but estimated the site-specific parameters using
available tumor and adjacent normal samples of each cancer
type in the testing data instead of using the MiAge Calculator
built-in parameters estimates. We then examined the correlation
between mitotic ages estimated using the MiAge Calculator and
mitotic ages estimated using the temporary tissue-specific calcu-
lator for each cancer type in the testing data. High correlations
indicate that the MiAge Calculator is non-tissue-specific and can
be applied to DNA methylation data of the selected panel of 268
“mitotic clock CpGs” of any tissue types.

Validation of MiAge Calculator using surrogate measures of
unknown true mitotic ages. We next validated the MiAge Cal-
culator by correlating estimated mitotic ages with several surro-
gate measures of the unknown true mitotic age: (i) correlating
mitotic ages of cell cultures with their passage number; (ii)
within each of the 13 cancer types in the training and testing
data combined, correlating mitotic ages of TCGA tumor sam-
ples with number of somatic mutations accumulated in the
same tumor samples; and (iii) correlating mitotic ages of adja-
cent normal samples with the patients’ chronological age within
each of the selected tissue types that are proliferative.

We obtained 450K DNA methylation data of 31 human ES
cells and 35 human iPS cells [17]. We estimated mitotic ages of
these cell cultures using the MiAge Calculator and correlated
them with the passage numbers of these cell cultures.

Within each of the 13 cancer types, we then investigated the
relation between the estimated mitotic age of tumor samples
and the number of somatic nucleotide mutations accumulated
in the same tumor samples. Although somatic mutations are
acquired during each cell division with very low probabilities,
the number of somatic mutations accumulated can reflect the
total number of cell divisions the cell has undergone. One
potential problem of using this measure is that there are sam-
ples with much higher mutation rates than others due to factors
like environmental mutagens or mutations in genes that main-
tain genomic stability. Those samples tend to accumulate more
somatic mutations and their mitotic ages might be overesti-
mated [21]. To correlate number of somatic mutations in
tumor samples and their mitotic age estimates, we thus
restricted to tumor samples with number of somatic mutations
below the median of all samples within that tumor type. To cal-
culate the number of somatic mutations per tumor sample, we
also excluded mutations in candidate cancer driver genes iden-
tified by the MutSIG algorithm at FDR �0.3 [22].

Lastly, within each of these renewable tissue types out of the 13
tissue types in the training and testing data combined, we com-
pared the estimated mitotic ages of adjacent normal samples with
the chronological ages of the patients. While the mitotic age of a
tumor tissue is usually larger than that of the adjacent normal tis-
sue from the same patient, the tumor and adjacent normal samples
of the same patient have the same chronological age. Mitotic ages
of normal proliferative tissues that consist of mitotic cells capable
of proliferation may correlate better with chronological age while
mitotic ages of tissues that do not divide or tissues whose divisions
are under hormonal effect may not correlate well with chronologi-
cal age. Therefore, we compared mitotic ages of adjacent normal
tissues from the major renewable organs such as colon, liver, and
kidney with their chronological ages.

High correlations between the mitotic age estimates and the
surrogate measures provide some degree of validation of the
MiAge Calculator.

Correlation of individual-level mitotic age with individual-
level clinical information and survival within each cancer.
Within each cancer, we evaluated associations between mitotic
age of tumor samples with widely used T/N/M staging variables
that describe the extent of the cancer. For the TCGA T/N/M
staging variables, the T variable describes tumor sizes and its
spread to nearby tissues; the N variable describes the number
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of lymph nodes that have cancerous cells; the M variable deter-
mines if cancer has metastasized to other organs of the body.
To examine the relationship between mitotic age of tumor sam-
ples with the T/N/M staging variables, we fit the following lin-
ear regression adjusting for patients’ chronological ages:

estimated mitotic age of tumor tissues

¼ aþ h�chronological ageþ
X

gk�IðT=N=M ¼ kÞ; (4)

where I is an indicator for the T/N/M staging variable with
T = 1/N = 0/M = 0 as the reference group. Therefore, gk can be
considered as the increase in mitotic ages for the T/N/M staging
variables of group k compared to the reference group. The esti-
mate of h is the increase in mitotic ages per one year increase in
chronological age. We also examined mitotic age estimates of
tumor samples to that of the matched adjacent normal samples
and examined the association between time to death and dichoto-
mized mitotic age of tumor samples categorized at median using
Kaplan-Meier curves and the log-rank test.

Evaluation of estimated mitotic age as a survival predictor
using cross-validation. Within each of the 13 cancer types, we
evaluated and compared the survival prediction using clinical
information alone, using mitotic age alone, and using clinical
information plus mitotic age. We used two-fold cross validation
where in each round of cross validation we randomly split cancer
patients into two groups with 50% patients in the training group
and the remaining 50% patients in the testing group. We used
even split to ensure there are enough death events in both groups.
With the training group, we built the survival prediction model
based on estimated mitotic age, clinical information with one of
the TNM staging variables, whichever is the most significant, and
clinical information plus estimated mitotic age. After the model
was built using the training group, we used the testing group to
test the prediction accuracy of the predictive model using the C-
index [23], where a C-index of 1 indicates perfect prediction and a
C-index of 0.5 indicates random guess. We repeated the cross vali-
dation 100 times and compared C-indexes from different predic-
tive models using a paired (two-sided)Wilcoxon rank sum test.
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