Cloud Provider Connectivity in the Flat Internet

Todd Arnold†, Jia He†, Weifan Jiang†, Matt Calder‡†, Italo Cunha§†, Vasileios Giotsas#, Ethan Katz-Bassett†
Evolving Internet Topology

- Traditional: Hierarchical
 - Tier-1 ISPs are global networks, and all other networks fall under at least one
 - Tier-2 ISPs are larger, regional networks
 - Tier-3 ISPs interconnect edge networks
 - Edge networks at the bottom
 - Networks pay higher tiers to transport their data (a.k.a. transit)
Evolving Internet Topology

- Traditional: Hierarchical
 - Tier-1 ISPs are global networks, and all other networks fall under at least one
 - Tier-2 ISPs are larger, regional networks
 - Tier-3 ISPs interconnect edge networks
 - Edge networks at the bottom
 - Networks pay higher tiers to transport their data (a.k.a. transit)
Evolving Internet Topology

- Traditional: Hierarchical
 - Tier-1 ISPs are global networks, and all other networks fall under at least one
 - Tier-2 ISPs are larger, regional networks
 - Tier-3 ISPs interconnect edge networks
 - Edge networks at the bottom
 - Networks pay higher tiers to transport their data (a.k.a. transit)
Evolving Internet Topology

● Traditional: Hierarchical
 ○ Tier-1 ISPs are global networks, and all other networks fall under at least one
 ○ Tier-2 ISPs are larger, regional networks
 ○ Tier-3 ISPs interconnect edge networks
 ○ Edge networks at the bottom
 ○ Networks pay higher tiers to transport their data (a.k.a. transit)

● Recent Years: Internet Flattening
 ○ Increased direct connectivity between networks at lower tiers
Evolving Internet Topology

- **Traditional: Hierarchical**
 - Tier-1 ISPs are global networks, and all other networks fall under at least one
 - Tier-2 ISPs are larger, regional networks
 - Tier-3 ISPs interconnect edge networks
 - Edge networks at the bottom
 - Networks pay higher tiers to transport their data (a.k.a. transit)

- **Recent Years: Internet Flattening**
 - Increased direct connectivity between networks at lower tiers
Evolving Internet Topology

● Traditional: Hierarchical
 ○ Tier-1 ISPs are global networks, and all other networks fall under at least one
 ○ Tier-2 ISPs are larger, regional networks
 ○ Tier-3 ISPs interconnect edge networks
 ○ Edge networks at the bottom
 ○ Networks pay higher tiers to transport their data (a.k.a. transit)

● Recent Years: Internet Flattening
 ○ Increased direct connectivity between networks at lower tiers
Motivation and Goals

- Majority of Internet traffic now occurs over direct connections
- Impact of flattening is not captured by traditional approaches
 - Invisible to traditional vantage points
 - Existing metrics of importance (e.g., customer cone)
 - Do not reflect the rich peering interconnectivity of the flat Internet
 - Focus on how much transit an AS could provide rather than how much it does provide
- To understand this gap and capture the progress of Internet flattening
 - Uncover the missing links
 - Understand to what degree they enable the major cloud providers (Amazon, Google, IBM, and Microsoft) to bypass the traditional hierarchy
Methodology

AS topology graph from two sources

- CAIDA’s AS relationship dataset
Methodology

AS topology graph from two sources

- CAIDA’s AS relationship dataset
- Traceroutes from inside clouds
 - Used to identify directly connected neighbors to add to the topology
 - Map IP-to-ASN
Methodology

AS topology graph from two sources

- CAIDA’s AS relationship dataset
- Traceroutes from inside clouds
 - Used to identify directly connected neighbors to add to the topology
 - Map IP-to-ASN

Validation

- Iterative process with feedback from both Microsoft and Google
- Worked with Microsoft while we refined our methodology
- Google’s feedback validated our refinements
- Microsoft: 11% FDR, 21% FNR, 3,565 neighbors
- Google: 15% FDR, similar FNR, 7,554 neighbors
- Amazon: 1,188 neighbors
- IBM: 2,747
Calculating Hierarchy-free Reachability

- Calculate reachability propagating announcements through customers and peers, but not
 - Cloud’s providers
 - Tier-1 ISPs
 - Tier-2 ISPs

- Reachability
 - If AS B receives a prefix announcement from the cloud, AS B is reachable by the cloud
 - Announcing AS called the *origin*
 - Uses augmented topology
 - Enforces common routing policies

- **Hierarchy-free Reachability**
 - Count of reachable ASes when using peer links and not the hierarchical Internet

```
Do not propagate routes via
(1) Origin’s transit providers
(2) Tier 1 ISPs
(3) Tier 2 ISPs
```
Calculating Hierarchy-free Reachability

- Calculate reachability propagating announcements through customers and peers, but not
 - Cloud’s providers
 - Tier-1 ISPs
 - Tier-2 ISPs

- Reachability
 - If AS B receives a prefix announcement from the cloud, AS B is reachable by the cloud
 - Announcing AS called the origin
 - Uses augmented topology
 - Enforces common routing policies

- **Hierarchy-free Reachability**
 - Count of reachable ASes when using peer links and not the hierarchical Internet

Legend

- **Transit**
- **Peer**
Calculating Hierarchy-free Reachability

- Calculate reachability propagating announcements through customers and peers, but not
 - Cloud’s providers
 - Tier-1 ISPs
 - Tier-2 ISPs

- Reachability
 - If AS B receives a prefix announcement from the cloud, AS B is reachable by the cloud
 - Announcing AS called the origin
 - Uses augmented topology
 - Enforces common routing policies

- **Hierarchy-free Reachability**
 - Count of reachable ASes when using peer links and not the hierarchical Internet

Do not propagate routes via
1. Origin's transit providers
2. Tier 1 ISPs
3. Tier 2 ISPs
Calculating Hierarchy-free Reachability

● Calculate reachability propagating announcements through customers and peers, but not
 ○ Cloud’s providers
 ○ Tier-1 ISPs
 ○ Tier-2 ISPs

● Reachability
 ○ If AS B receives a prefix announcement from the cloud, AS B is reachable by the cloud
 ○ Announcing AS called the origin
 ○ Uses augmented topology
 ○ Enforces common routing policies

● **Hierarchy-free Reachability**
 ○ Count of reachable ASes when using peer links and not the hierarchical Internet

Do not propagate routes via
(1) Origin’s transit providers
(2) Tier 1 ISPs
(3) Tier 2 ISPs
Calculating Hierarchy-free Reachability

- Calculate reachability propagating announcements through customers and peers, but not
 - Cloud’s providers
 - Tier-1 ISPs
 - Tier-2 ISPs

- Reachability
 - If AS B receives a prefix announcement from the cloud, AS B is reachable by the cloud
 - Announcing AS called the origin
 - Uses augmented topology
 - Enforces common routing policies

- **Hierarchy-free Reachability**
 - Count of reachable ASes when using peer links and not the hierarchical Internet

Legend
- Transit
- Peer

Do not propagate routes via
1. Origin's transit providers
2. Tier 1 ISPs
3. Tier 2 ISPs
Calculating Hierarchy-free Reachability

- **Calculate reachability propagating announcements through customers and peers, but not**
 - Cloud’s providers
 - Tier-1 ISPs
 - Tier-2 ISPs

- **Reachability**
 - If AS B receives a prefix announcement from the cloud, AS B is reachable by the cloud
 - Announcing AS called the *origin*
 - Uses augmented topology
 - Enforces common routing policies

- **Hierarchy-free Reachability**
 - Count of reachable ASes when using peer links and not the hierarchical Internet

Legend
- **Transit**
- **Peer**

Do not propagate routes via
- (1) Origin’s transit providers
- (2) Tier 1 ISPs
- (3) Tier 2 ISPs
Hierarchy-free Reachability Results

Takeaway
- Cloud providers have higher reachability than most networks, including the Tier 1 and Tier 2 ISPs.
- They are able to reach the majority of networks even when bypassing their transit providers, Tier 1 ISPs, and Tier 2 ISPs.
- Thousands of networks benefit from flattening.

<table>
<thead>
<tr>
<th>#</th>
<th>Network (AS)</th>
<th>Reachability (total, %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Level 3 (3356)</td>
<td>61,154 (90.2%)</td>
</tr>
<tr>
<td>2</td>
<td>HE (6939)</td>
<td>58,981 (87.0%)</td>
</tr>
<tr>
<td>3</td>
<td>Google (15169)</td>
<td>58,922 (86.9%)</td>
</tr>
<tr>
<td>4</td>
<td>Microsoft (8075)</td>
<td>57,357 (84.6%)</td>
</tr>
<tr>
<td>5</td>
<td>IBM (36351)</td>
<td>55,714 (82.2%)</td>
</tr>
<tr>
<td>6</td>
<td>Cogent (174)</td>
<td>55,049 (81.2%)</td>
</tr>
<tr>
<td>7</td>
<td>Zayo (6461)</td>
<td>54,489 (80.4%)</td>
</tr>
<tr>
<td>8</td>
<td>Telia (1299)</td>
<td>54,324 (80.1%)</td>
</tr>
<tr>
<td>9</td>
<td>GTT (3257)</td>
<td>53,388 (78.7%)</td>
</tr>
<tr>
<td>10</td>
<td>SG.GS (24482)</td>
<td>53,157 (78.4%)</td>
</tr>
<tr>
<td>11</td>
<td>COLT (8220)</td>
<td>52,256 (77.1%)</td>
</tr>
<tr>
<td>12</td>
<td>G-Core Labs (199524)</td>
<td>51,820 (76.4%)</td>
</tr>
<tr>
<td>13</td>
<td>NTT (2914)</td>
<td>51,374 (75.8%)</td>
</tr>
<tr>
<td>14</td>
<td>Wikimedia (14907)</td>
<td>51,204 (75.5%)</td>
</tr>
<tr>
<td>15</td>
<td>Core-Backbone (33891)</td>
<td>51,110 (75.4%)</td>
</tr>
<tr>
<td>16</td>
<td>WV FIBER (19151)</td>
<td>51,083 (75.3%)</td>
</tr>
<tr>
<td>17</td>
<td>TELIN PT (7713)</td>
<td>50,919 (75.1%)</td>
</tr>
<tr>
<td>18</td>
<td>Amazon (16509)</td>
<td>50,867 (75.0%)</td>
</tr>
<tr>
<td>19</td>
<td>Swisscom (3303)</td>
<td>50,758 (74.9%)</td>
</tr>
<tr>
<td>20</td>
<td>IPTP (41095)</td>
<td>50,606 (74.6%)</td>
</tr>
</tbody>
</table>
Hierarchy-free Reachability Results

Takeaway
- Cloud providers have higher reachability than most networks, including the Tier 1 and Tier 2 ISPs.
- They are able to reach the majority of networks even when bypassing their transit providers, Tier 1 ISPs, and Tier 2 ISPs.
- Thousands of networks benefit from flattening reachability.

Table: Reachability (%) by Network

<table>
<thead>
<tr>
<th>#</th>
<th>Network (AS)</th>
<th>Reachability (total, %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Level 3 (3356)</td>
<td>61,154 (90.2%)</td>
</tr>
<tr>
<td>2</td>
<td>HE (6939)</td>
<td>58,981 (87.0%)</td>
</tr>
<tr>
<td>3</td>
<td>Google (15169)</td>
<td>58,922 (86.9%)</td>
</tr>
<tr>
<td>4</td>
<td>Microsoft (8075)</td>
<td>57,357 (84.6%)</td>
</tr>
<tr>
<td>5</td>
<td>IBM (36351)</td>
<td>55,714 (82.2%)</td>
</tr>
<tr>
<td>6</td>
<td>Cogent (174)</td>
<td>55,049 (81.2%)</td>
</tr>
<tr>
<td>7</td>
<td>Zayo (6461)</td>
<td>54,489 (80.4%)</td>
</tr>
<tr>
<td>8</td>
<td>Telia (1299)</td>
<td>54,324 (80.1%)</td>
</tr>
<tr>
<td>9</td>
<td>GTT (3257)</td>
<td>53,388 (78.7%)</td>
</tr>
<tr>
<td>10</td>
<td>SG.GS (24482)</td>
<td>53,157 (78.4%)</td>
</tr>
<tr>
<td>11</td>
<td>COLT (8220)</td>
<td>52,256 (77.1%)</td>
</tr>
<tr>
<td>12</td>
<td>G-Core Labs (199524)</td>
<td>51,820 (76.4%)</td>
</tr>
<tr>
<td>13</td>
<td>NTT (2914)</td>
<td>51,374 (75.8%)</td>
</tr>
<tr>
<td>14</td>
<td>Wikimedia (14907)</td>
<td>51,204 (75.5%)</td>
</tr>
<tr>
<td>15</td>
<td>Core-Backbone (33891)</td>
<td>51,110 (75.4%)</td>
</tr>
<tr>
<td>16</td>
<td>WV FIBER (19151)</td>
<td>51,083 (75.3%)</td>
</tr>
<tr>
<td>17</td>
<td>TELIN PT (7713)</td>
<td>50,919 (75.1%)</td>
</tr>
<tr>
<td>18</td>
<td>Amazon (16509)</td>
<td>50,867 (75.0%)</td>
</tr>
<tr>
<td>19</td>
<td>Swisscom (3303)</td>
<td>50,758 (74.9%)</td>
</tr>
<tr>
<td>20</td>
<td>IPTP (41095)</td>
<td>50,606 (74.6%)</td>
</tr>
</tbody>
</table>
Conclusions

● Emulated connectivity using an AS-level topology graph constructed from:
 ○ BGP data
 ○ Traceroutes
 ○ Validated cloud neighbor lists

● Hierarchy-free Reachability quantifies the extent of Internet flattening and how little networks rely on the Internet hierarchy.

● Show that thousands of networks benefit from flattening:
 ○ Other metrics do not capture these insights
 ○ The cloud providers rely less on the hierarchy than most other networks