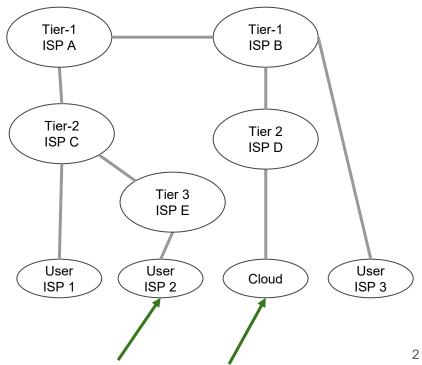
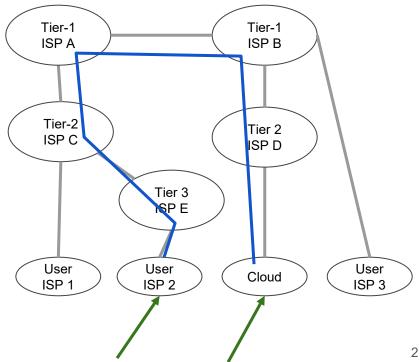
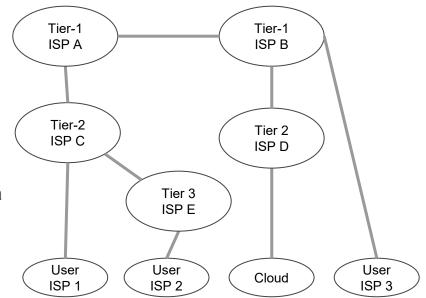
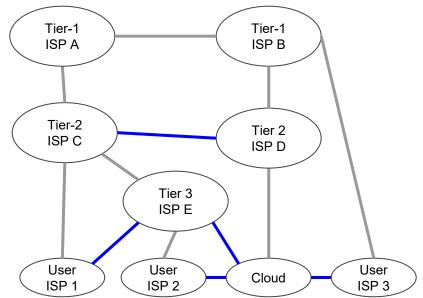
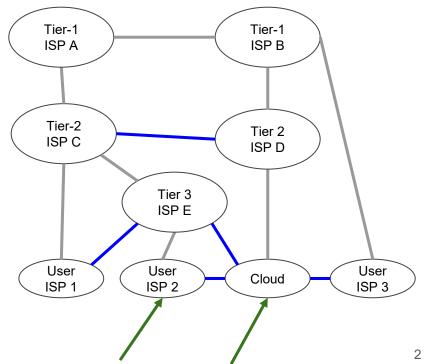

Cloud Provider Connectivity in the Flat Internet


Todd Arnold[†], Jia He[†], Weifan Jiang[†], Matt Calder^{‡†}, Italo Cunha^{§†}, Vasileios Giotsas[#], Ethan Katz-Bassett[†]


- Traditional: Hierarchical
 - Tier-1 ISPs are global networks, and all other networks fall under at least one
 - Tier-2 ISPs are larger, regional networks
 - Tier-3 ISPs interconnect edge networks
 - Edge networks at the bottom
 - Networks pay higher tiers to transport their data (a.k.a. *transit*)


- Traditional: Hierarchical
 - Tier-1 ISPs are global networks, and all other networks fall under at least one
 - Tier-2 ISPs are larger, regional networks
 - Tier-3 ISPs interconnect edge networks
 - Edge networks at the bottom
 - Networks pay higher tiers to transport their data (a.k.a. *transit*)


- Traditional: Hierarchical
 - Tier-1 ISPs are global networks, and all other networks fall under at least one
 - Tier-2 ISPs are larger, regional networks
 - Tier-3 ISPs interconnect edge networks
 - Edge networks at the bottom
 - Networks pay higher tiers to transport their data (a.k.a. *transit*)


- Traditional: Hierarchical
 - Tier-1 ISPs are global networks, and all other networks fall under at least one
 - Tier-2 ISPs are larger, regional networks
 - Tier-3 ISPs interconnect edge networks
 - Edge networks at the bottom
 - Networks pay higher tiers to transport their data (a.k.a. *transit*)
- Recent Years: Internet Flattening
 - Increased direct connectivity between networks at lower tiers

- Traditional: Hierarchical
 - Tier-1 ISPs are global networks, and all other networks fall under at least one
 - Tier-2 ISPs are larger, regional networks
 - Tier-3 ISPs interconnect edge networks
 - Edge networks at the bottom
 - Networks pay higher tiers to transport their data (a.k.a. *transit*)
- Recent Years: Internet Flattening
 - Increased direct connectivity between networks at lower tiers

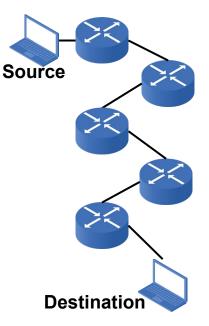
- Traditional: Hierarchical
 - Tier-1 ISPs are global networks, and all other networks fall under at least one
 - Tier-2 ISPs are larger, regional networks
 - Tier-3 ISPs interconnect edge networks
 - Edge networks at the bottom
 - Networks pay higher tiers to transport their data (a.k.a. *transit*)
- Recent Years: Internet Flattening
 - Increased direct connectivity between networks at lower tiers

Motivation and Goals

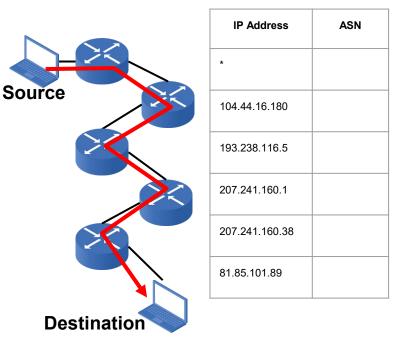
- Majority of Internet traffic now occurs over direct connections
- Impact of flattening is not captured by traditional approaches
 - Invisible to traditional vantage points
 - Existing metrics of importance (*e.g.*, customer cone)
 - Do not reflect the rich peering interconnectivity of the flat Internet
 - Focus on how much transit an AS could provide rather than how much it does provide
- To understand this gap and capture the progress of Internet flattening
 - Uncover the missing links
 - Understand to what degree they enable the major cloud providers (Amazon, Google, IBM, and Microsoft) to bypass the traditional hierarchy

Limitations of Available Measurements

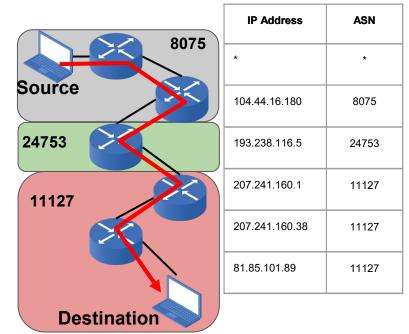
- BGP feeds
 - High visibility of transit connections (90+% coverage of Tier-1 and Tier-2 interconnections) [1]
 - Poor coverage of edge networks and peering links (~10% coverage of interconnects) [1]

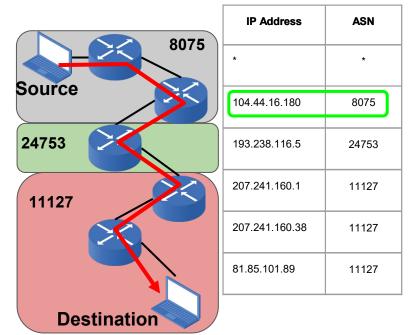

Limitations of Available Measurements

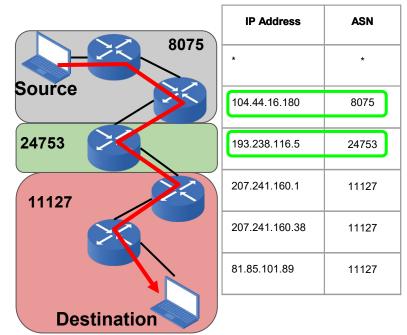
- BGP feeds
 - High visibility of transit connections (90+% coverage of Tier-1 and Tier-2 interconnections) [1]
 - Poor coverage of edge networks and peering links (~10% coverage of interconnects) [1]
- Traceroutes
 - Can be sourced from inside the cloud providers
 - Can infer false links due to dropped packets or load balancing
 - Networks can interfere with measurements

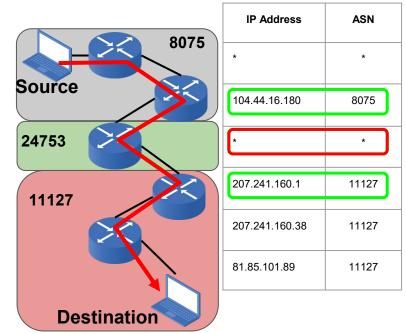

- BGP Feeds
 - Use CAIDA's AS relationship dataset from Sep 2020 as our initial topology

- BGP Feeds
 - Use CAIDA's AS relationship dataset from Sep 2020 as our initial topology
- Traceroutes from inside clouds
 - Used to identify directly connected neighbors to add to the topology
 - Target every prefix using ICMP via scamper
 - Map IP-to-ASN using PeeringDB, Cymru IPto-ASN Mapping Tool, and whois
 - Traceroute must
 - Have at least one cloud provider hop
 - One non-cloud hop
 - No intermediate hop with an unresolved IP address


- BGP Feeds
 - Use CAIDA's AS relationship dataset from Sep 2020 as our initial topology
- Traceroutes from inside clouds
 - Used to identify directly connected neighbors to add to the topology
 - Target every prefix using ICMP via scamper
 - Map IP-to-ASN using PeeringDB, Cymru IPto-ASN Mapping Tool, and whois
 - Traceroute must
 - Have at least one cloud provider hop
 - One non-cloud hop
 - No intermediate hop with an unresolved IP address


- BGP Feeds
 - Use CAIDA's AS relationship dataset from Sep 2020 as our initial topology
- Traceroutes from inside clouds
 - Used to identify directly connected neighbors to add to the topology
 - Target every prefix using ICMP via scamper
 - Map IP-to-ASN using PeeringDB, Cymru IPto-ASN Mapping Tool, and whois
 - Traceroute must
 - Have at least one cloud provider hop
 - One non-cloud hop
 - No intermediate hop with an unresolved IP address


- BGP Feeds
 - Use CAIDA's AS relationship dataset from Sep 2020 as our initial topology
- Traceroutes from inside clouds
 - Used to identify directly connected neighbors to add to the topology
 - Target every prefix using ICMP via scamper
 - Map IP-to-ASN using PeeringDB, Cymru IPto-ASN Mapping Tool, and whois
 - Traceroute must
 - Have at least one cloud provider hop
 - One non-cloud hop
 - No intermediate hop with an unresolved IP address


- BGP Feeds
 - Use CAIDA's AS relationship dataset from Sep 2020 as our initial topology
- Traceroutes from inside clouds
 - Used to identify directly connected neighbors to add to the topology
 - Target every prefix using ICMP via scamper
 - Map IP-to-ASN using PeeringDB, Cymru IPto-ASN Mapping Tool, and whois
 - Traceroute must
 - Have at least one cloud provider hop
 - One non-cloud hop
 - No intermediate hop with an unresolved IP address

- BGP Feeds
 - Use CAIDA's AS relationship dataset from Sep 2020 as our initial topology
- Traceroutes from inside clouds
 - Used to identify directly connected neighbors to add to the topology
 - Target every prefix using ICMP via scamper
 - Map IP-to-ASN using PeeringDB, Cymru IPto-ASN Mapping Tool, and whois
 - Traceroute must
 - Have at least one cloud provider hop
 - One non-cloud hop
 - No intermediate hop with an unresolved IP address

- BGP Feeds
 - Use CAIDA's AS relationship dataset from Sep 2020 as our initial topology
- Traceroutes from inside clouds
 - Used to identify directly connected neighbors to add to the topology
 - Target every prefix using ICMP via scamper
 - Map IP-to-ASN using PeeringDB, Cymru IPto-ASN Mapping Tool, and whois
 - Traceroute must
 - Have at least one cloud provider hop
 - One non-cloud hop
 - No intermediate hop with an unresolved IP address

Validation

Iterative process with Microsoft and Google

- True and false positives
 - False Discovery Rate (FDR): *FP* / (*FP* +*TP*)
- True and false negatives
 - False Negative Rate (FNR): *FN* / (*FN* +*TP*)
- Worked with Microsoft while we refined our methodology
- Google's feedback validated our refinements

- Initial methodology
 - Allow a single unresponsive/unresovled hop between cloud and neighbor; assume the AS immediately following this hop was a neighbor

- Initial methodology
 - Allow a single unresponsive/unresovled hop between cloud and neighbor; assume the AS immediately following this hop was a neighbor

IP Address	ASN
*	*
104.44.16.180	8075
*	*
207.241.160.1	11127
207.241.160.38	11127
81.85.101.89	11127

- Initial methodology
 - Allow a single unresponsive/unresovled hop between cloud and neighbor; assume the AS immediately following this hop was a neighbor

IP Address	ASN
*	*
104.44.16.180	8075
*	*
207.241.160.1	11127
207.241.160.38	11127
81.85.101.89	11127

- Initial methodology
 - Allow a single unresponsive/unresovled hop between cloud and neighbor; assume the AS immediately following this hop was a neighbor
 - Both: ~50% FDR and 23 50% FNR. Microsoft: 8,910 neighbors, Google: 13,336 neighbors

IP Address	ASN
*	*
104.44.16.180	8075
*	*
207.241.160.1	11127
207.241.160.38	11127
81.85.101.89	11127

- Initial methodology
 - Allow a single unresponsive/unresovled hop between cloud and neighbor; assume the AS immediately following this hop was a neighbor
- Evaluated traceroute that caused false positives
 - Some had timeouts for intermediate hop not possible to resolve

IP Address	ASN
*	*
104.44.16.180	8075
*	*
207.241.160.1	11127
207.241.160.38	11127
81.85.101.89	11127

- Initial methodology
 - Allow a single unresponsive/unresovled hop between cloud and neighbor; assume the AS immediately following this hop was a neighbor
- Evaluated traceroute that caused false positives
 - Some had timeouts for intermediate hop not possible to resolve

ASN
*
8075
*
11127
11127
11127

- Initial methodology
 - Allow a single unresponsive/unresovled hop between cloud and neighbor; assume the AS immediately following this hop was a neighbor
 - ~50% FDR and 23 50% FNR
- Evaluated traceroute that caused false positives
 - Some had timeouts for intermediate hop not possible to resolve
 - Most had intermediate hop IP
 - AS not resolved by Cymru using BGP
 - Registered in whois to an IXP examined PeeringDB

IP Address	ASN
*	*
104.44.16.180	8075
193.238.116.5	*
207.241.160.1	11127
207.241.160.38	11127
81.85.101.89	11127

Search here for a network, IX, or facility.

Advanced Search

Register or Login

Of

NL-IX Silver Sponsor

Organization NL-ix Long Name Neutral Internet Exchange City Amsterdam Country NL Continental Region Europe Media Type Ethernet Protocols Supported ⊘ Unicast IPv4 ○ Multicast ⊘ IPv6 Last Updated 2020-08-04T14:01:37Z Notes 😯

Contact Information

. ...

Company Website	https://www.nl-ix.net/
Traffic Stats Website	https://www.nl-ix.net/traffic.php
Technical Email	support@nl-ix.net
Technical Phone	+31703120710
Policy Email	info@nl-ix.net
Policy Phone	

LAN	
DOT1Q	0
MTU	1500
IX-F Member Export URL Visibility	Private

Peers at this Exchange Point		Filter	
Peer Name <mark>↓</mark> ² ASN	IPv4 IPv6		Speed Policy
10100			
Gemeente Heerlen Main	193.239.116.35		1G
38915	2001:7f8:13::a503:8	8915:1	Open
Gemeente Maastricht Main	193.239.116.253		1G
57124	2001:7f8:13::a505:7	/124:1	Open
Gigabit ApS Main	193.239.116.152		10G
60876	2001:7f8:13::a506:8	876:1	Open
Gigabit ApS Main	193.239.116.157		10G
60876	2001:7f8:13::a506:8	376:2	Open
Global-e Datacenter BV Main	193.239.116.98		10G
39591	2001:7f8:13::a503:9	9591:1	Open
Globe Telecom Main	193.239.118.107		1G
4775	2001:7f8:13::a500:4	775:1	Open
Globecomm Europe Main	193.239. <mark>116.5</mark>		1G
24753			Open
<u>gnTel</u> Main	193.239.117.101		1G
41153	2001:7f8:13::a504:1	153:1	Selective
<u>gobler.net</u> Main	193.239.118.95		1G
48374	2001:7f8:13::a504:8	374:1	Open
Google LLC Main	193.239.117.141		200G
15169	2001:7f8:13::a501:5	5169:1	Open
GTT (former KPN International /	193.239.116.126		100G
<u>KPN Eurornigs)</u> Main	2001:7f8:13::a500:2	286:1	Restrictive
286			
H4Hosting B.V. Main	193.239.116.246		1G
51050	2001:7f8:13::a505:1	050:1	Open
Llon 7 nl Main	102 020 116 11		10014

IP Address	ASN
*	*
104.44.16.180	8075
193.238.116.5	*
207.241.160.1	11127
207.241.160.38	11127
81.85.101.89	11127

Search here for a network, IX, or facility.

Advanced Search

Register or Login

Of

NL-IX Silver Sponsor

Organization	<u>NL-ix</u>
Long Name	Neutral Internet Exchange
City	Amsterdam
Country	NL
Continental Region	Europe
Media Type	Ethernet
Protocols Supported	⊘ Unicast IPv4 ○ Multicast ⊘ IPv6
Last Updated	2020-08-04T14:01:37Z
Notes ?	

Contact Information

Company Website	https://www.nl-ix.net/
Traffic Stats Website	https://www.nl-ix.net/traffic.php
Technical Email	support@nl-ix.net
Technical Phone	+31703120710
Policy Email	info@nl-ix.net
Policy Phone	

LAN	
DOT1Q	0
MTU	1500
IX-F Member Export URL Visibility	Private

Dears of this Each area Daird		
Peers at this Exchange Point	Fil	ter
Peer Name J ₂	IPv4	Speed
ASN	IPv6	Policy
Gemeente Heerlen Main	193.239.116.35	1G
38915	2001:7f8:13::a503:8915:	1 Open
Gemeente Maastricht Main	193.239.116.253	1G
57124	2001:7f8:13::a505:7124:	1 Open
Gigabit ApS Main	193.239.116.152	10G
60876	2001:7f8:13::a506:876:1	Open
Gigabit ApS Main	193.239.116.157	10G
60876	2001:7f8:13::a506:876:2	Open
Global-e Datacenter BV Main	193.239.116.98	10G
39591	2001:7f8:13::a503:9591:	1 Open
Globe Telecom Main	193.239.118.107	IG
4775	2001:7f8:13::a500:4775.	1 Open
Globecomm Europe Main	193.239. <mark>116.5</mark>	1G
24753		Open
<u>gnTel</u> Main	193.239.117.101	1G
41153	2001:7f8:13::a504:1153:	1 Selective
gobler.net Main	193.239.118.95	1G
48374	2001:7f8:13::a504:8374:	1 Open
Google LLC Main	193.239.117.141	200G
15169	2001:7f8:13::a501:5169:	1 Open
GTT (former KPN International /	193.239.116.126	100G
<u>KPN Eurornigs)</u> Main	2001:7f8:13::a500:286:1	Restrictive
286		
H4Hosting B.V. Main	193.239.116.246	1G
51050	2001:7f8:13::a505:1050:	
Llon 7 nl Main	100 000 116 11	10014

	IP Address	ASN
	*	*
	104.44.16.180	8075
•	193.238.116.5	24753
	207.241.160.1	11127
	207.241.160.38	11127
	81.85.101.89	11127

- Initial methodology
 - Allow a single unresponsive/unresovled hop between cloud and neighbor; assume the AS immediately following this hop was a neighbor
 - ~50% FDR and 23 50% FNR
- Evaluated traceroute that caused false positives
 - Some had timeouts for intermediate hop not possible to resolve
 - Most had intermediate hop IP
 - AS not resolved by Cymru using BGP
 - Registered in whois to an IXP examined PeeringDB
 - Microsoft: FDR 8%, FNR 34%, 2,982 neighbors

IP Address	ASN
*	*
104.44.16.180	8075
193.238.116.5	24753
207.241.160.1	11127
207.241.160.38	11127
81.85.101.89	11127

- Initial methodology
 - Allow a single unresponsive/unresovled hop between cloud and neighbor; assume the AS immediately following this hop was a neighbor

- Evaluated traceroute that caused false positives
 - Some had timeouts for intermediate hop not possible to resolve
 - Most had intermediate hop IP
 - Not resolved in BGP
 - Registered in whois to an IXP -- examined PeeringDB
 - Microsoft: FDR 8%, FNR 34%, 2,982 neighbors
- Additional VM locations
 - Cloud providers have neighbors only available at specific locations
 - Microsoft: 16% FDR, 24% FNR, 3,619 neighbors

- Initial methodology
 - Allow a single unresponsive/unresovled hop between cloud and neighbor; assume the AS immediately following this hop was a neighbor
 - ~50% FDR and 23-50% FNR
- Evaluated traceroute that caused false positives
 - Some had timeouts for intermediate hop not possible to resolve
 - Most had intermediate hop IP
 - Not resolved in BGP
 - Registered in whois to an IXP -- examined PeeringDB
 - Microsoft: FDR 8%, FNR 34%, 2,982 neighbors
- Additional VM locations
 - Cloud providers have neighbors only available at specific locations
 - Microsoft: 16% FDR, 24% FNR, 3,619 neighbors
- Prefer PeeringDB
 - Other IPs may have resolved using Cymru, but have more specific entry in PeeringDB
 - Microsoft: 11% FDR, 21% FNR, 3,565 neighbors
 - Google: 15% FDR, similar FNR, 7,554 neighbors

Initial methodology

 Allow a single unresponsive/unresovled hop between cloud and neighbor; assume the AS immediately following this hop was a neighbor

- Evaluated traceroute that caused false positives
 - Some had timeouts for intermediate hop not possible to resolve
 - Most had intermediate hop IP
 - Not resolved in BGP
 - Registered in whois to an IXP -- examined PeeringDB
 - Microsoft: FDR 8%, FNR 34%, 2,982 neighbors
- Additional VM locations
 - Cloud providers have neighbors only available at specific locations
 - Microsoft: 16% FDR, 24% FNR, 3,619 neighbors

• Prefer PeeringDB

- Other IPs may have resolved using Cymru, but have more specific entry in PeeringDB
- Microsoft: 11% FDR, 21% FNR, 3,565 neighbors
- Google: 15% FDR, similar FNR, 7,554 neighbors

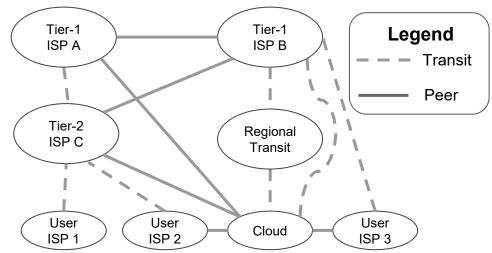
ASN
*
8075
34307
11127
11127
11127

Initial methodology

 Allow a single unresponsive/unresovled hop between cloud and neighbor; assume the AS immediately following this hop was a neighbor

- Evaluated traceroute that caused false positives
 - Some had timeouts for intermediate hop not possible to resolve
 - Most had intermediate hop IP
 - Not resolved in BGP
 - Registered in whois to an IXP -- examined PeeringDB
 - Microsoft: FDR 8%, FNR 34%, 2,982 neighbors
- Additional VM locations
 - Cloud providers have neighbors only available at specific locations
 - Microsoft: 16% FDR, 24% FNR, 3,619 neighbors

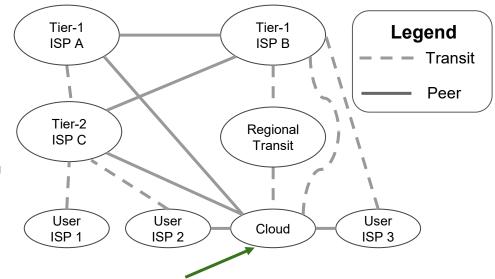
• Prefer PeeringDB


- Other IPs may have resolved using Cymru, but have more specific entry in PeeringDB
- Microsoft: 11% FDR, 21% FNR, 3,565 neighbors
- Google: 15% FDR, similar FNR, 7,554 neighbors

ASN
*
8075
24753
11127
11127
11127

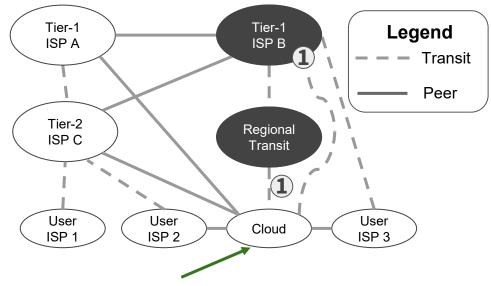
- Calculate reachability propagating announcements through customers and peers, but not
 - Tier-1 ISPs
 - Tier-2 ISPs
- Reachability
 - If AS B receives a prefix announcement from the cloud, AS B is reachable by the cloud
 - Announcing AS called the *origin*
 - Uses augmented topology
 - Enforces common routing policies

• Hierarchy-free Reachability


• Count of reachable ASes when using peer links and not the hierarchical Internet

- Calculate reachability propagating announcements through customers and peers, but not
 - Tier-1 ISPs
 - Tier-2 ISPs
- Reachability
 - If AS B receives a prefix announcement from the cloud, AS B is reachable by the cloud
 - Announcing AS called the *origin*
 - Uses augmented topology
 - Enforces common routing policies

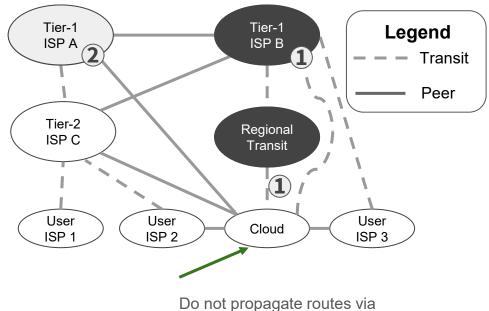
• Hierarchy-free Reachability


 Count of reachable ASes when using peer links and not the hierarchical Internet

- Calculate reachability propagating announcements through customers and peers, but not
 - Tier-1 ISPs
 - Tier-2 ISPs
- Reachability
 - If AS B receives a prefix announcement from the cloud, AS B is reachable by the cloud
 - Announcing AS called the *origin*
 - Uses augmented topology
 - Enforces common routing policies

• Hierarchy-free Reachability

 Count of reachable ASes when using peer links and not the hierarchical Internet

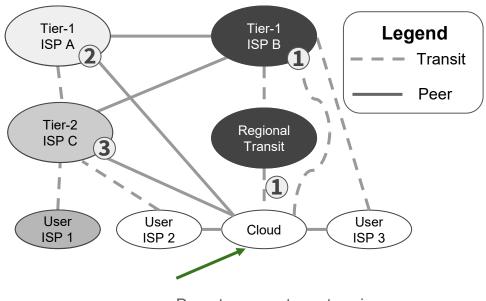


Do not propagate routes via (1) Origin's transit providers

- Calculate reachability propagating announcements through customers and peers, but not
 - Tier-1 ISPs
 - Tier-2 ISPs
- Reachability
 - If AS B receives a prefix announcement from the cloud, AS B is reachable by the cloud
 - Announcing AS called the *origin*
 - Uses augmented topology
 - Enforces common routing policies

• Hierarchy-free Reachability

 Count of reachable ASes when using peer links and not the hierarchical Internet

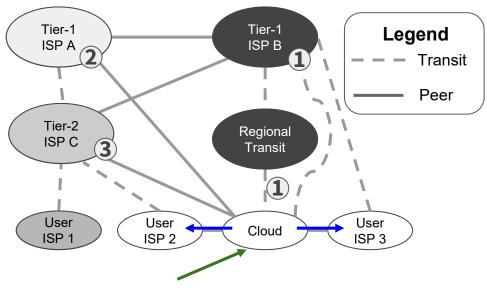


(2) Tier 1 ISPs

- Calculate reachability propagating announcements through customers and peers, but not
 - Tier-1 ISPs
 - Tier-2 ISPs
- Reachability
 - If AS B receives a prefix announcement from the cloud, AS B is reachable by the cloud
 - Announcing AS called the *origin*
 - Uses augmented topology
 - Enforces common routing policies

• Hierarchy-free Reachability

 Count of reachable ASes when using peer links and not the hierarchical Internet

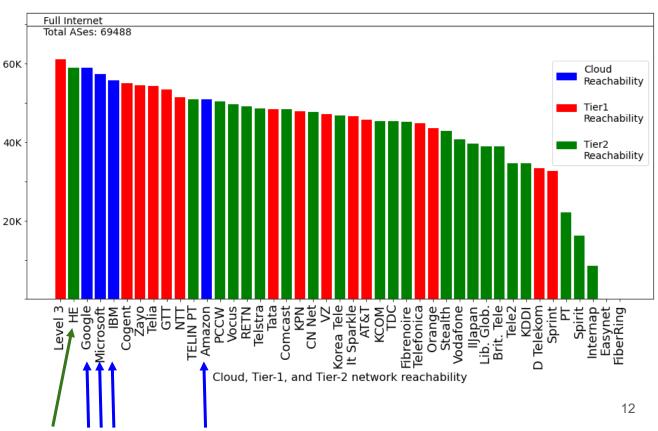

Do not propagate routes via

- (1) Origin's transit providers
- (2) Tier 1 ISPs
- (3) Tier 2 ISPs

- Calculate reachability propagating announcements through customers and peers, but not
 - Tier-1 ISPs
 - Tier-2 ISPs
- Reachability
 - If AS B receives a prefix announcement from the cloud, AS B is reachable by the cloud
 - Announcing AS called the *origin*
 - Uses augmented topology
 - Enforces common routing policies

• Hierarchy-free Reachability

 Count of reachable ASes when using peer links and not the hierarchical Internet


Do not propagate routes via

- (1) Origin's transit providers
- (2) Tier 1 ISPs
- (3) Tier 2 ISPs

Hierarchy-free Reachability Results

Takeaway

- Cloud providers have higher reachability than most Tier 1 and Tier 2 ISPs
- They are able to reach the majority of networks even when bypassing their transit providers, Tier 1 ISPs, and Tier 2 ISPs.

Conclusions

- Emulated connectivity using an AS-level topology graph constructed from
 - BGP data
 - Traceroutes
 - Validated cloud neighbor lists
- Hierarchy-free Reachability quantifies the extent of Internet flattening and a network's potential to bypass the Internet hierarchy
- Show that thousands of networks benefit from flattening
 - Insights that are not captured by other metrics of measurements of a network's importance
 - The cloud providers are better able to bypass the hierarchy than most other networks, including the Tier 1 and Tier 2 ISPs